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Abstract

Most adult carcinomas develop from noninvasive precursor lesions, a progression that is supported 

by genetic analysis. We analyzed the somatic variants of co-existing pancreatic cancers and 

precursor lesions sampled from distinct regions of the same pancreas. After inferring evolutionary 

relationships, we found that the ancestral cell had initiated and clonally expanded to form one or 

more lesions, and that subsequent driver gene mutations eventually led to an invasive pancreatic 

cancer. We estimate that this multi-step progression generally spans many years. These new data 

reframe the step-wise progression model of pancreatic cancer by illustrating independent, high-

grade pancreatic precursor lesions observed in a single pancreata often represent a single neoplasm 

that has colonized the ductal system, accumulating spatial and genetic divergence over time.

The transformation of a normal cell to invasive cancer occurs through the accumulation of 

genetic and epigenetic changes1. Many invasive carcinomas of adults develop from 

morphologically recognizable noninvasive precursor lesions2. The most common precursor 

lesion associated with pancreatic ductal adenocarcinoma (PDAC) is pancreatic 

intraepithelial neoplasia (PanIN)3. At the morphologic level, low-grade PanINs (LG-PanIN, 

PanIN-1 and PanIN-2) have minimal to moderate cytologic atypia and higher-grade PanINs 

(HG-PanIN, PanIN-3) have severe cytologic atypia. HG-PanINs exhibit morphological 

features that are thought to facilitate progression to an infiltrating carcinoma4.

Aspects of this progression are supported by genetic studies4–6, yet fundamental questions 

about the development of PDAC remain7. The majority of PanINs (regardless of grade) 

harbor KRAS mutations; increasing grade of PanINs and invasive carcinomas are more 

likely to contain additional driver gene alterations such as those in TP53, CDKN2A, and 

SMAD4. Moreover, PanINs adjacent to PDACs often share many genetic alterations in both 

passenger and driver genes8,9. Collectively, these observations suggest a subset of PDACs 

arise from adjacent PanINs, just as a colorectal carcinoma can arise from an underlying 

adenoma10. However, in individuals with multiple anatomically distinct PanINs11, the 

biologic and genetic relationships among these lesions and their clinical significance are not 

fully understood12. For instance, cancerization of the pancreatic ducts by an established 

PDAC recapitulates lesions with histopathologic features that are difficult to distinguish 

from those of bona fide PanIN precursor lesions13. Further, the importance of non-invasive 

precursor lesions was recently challenged by a whole genomic sequence analysis of 

pancreatic cancers which proposed that pancreatic cancer tumorigenesis is neither gradual 

nor slow14. We posited that a genomic evaluation of PDAC and matched co-evolving PanINs 

would provide additional insights into the biology of pancreatic cancer precursors and the 

dynamics of step-wise progression.

Evolutionary scenarios

Figure 1a presents the conceptual framework underlying the interpretation of sequencing 

data generated from one PanIN and PDAC in the same patient, outlining three possible 

scenarios that in theory might be found. In the first scenario, the PanIN and the PDAC do not 

share any somatic mutations and arose independently. In the second scenario, the PanIN 

shares a subset of the somatic passenger and driver gene mutations with the PDAC, but the 
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PDAC contains additional driver or passenger gene alterations not present in the PanIN. 

Scenario 2 presumes that a common ancestral cell underwent initiation and clonal expansion 

prior to seeding the PanIN and PDAC, but neither the common ancestral cell nor the 

founding PanIN cell had yet acquired all the genetic events required to generate an invasive 

neoplasm. In the third scenario, the PanIN and the PDAC share some passenger mutations 

and all driver gene alterations, and the ancestral cell that seeded both the PDAC and PanIN 

already acquired all alterations required to form a malignant cancer.

Patient selection, whole exome sequencing and phylogenetic analysis

To investigate the progression patterns of pancreatic carcinogenesis, >100 resected pancreata 

from over a three-year interval were prospectively screened to identify those samples in 

which at least one LG-PanIN (PanIN-2) or HG-PanIN (PanIN-3) was present in a region that 

was anatomically distinct and far removed from that of the PDAC (Methods). We excluded 

any patient with a personal or family history of PDAC from our study, as the dynamics of 

initiation in patients with germline alterations may be different from that in sporadic 

pancreatic carcinogenesis15. Eight patients were identified, from which 12 PanINs and eight 

PDACs were sampled for the current study (Supplementary Table 1). All 20 tissue samples 

were laser-capture microdissected to ensure that a high fraction of the cells within each 

lesion were neoplastic (Figure 1b). Despite the microscopic size of the PanINs, we were able 

to obtain sufficient amounts of DNA to generate high quality libraries for whole exome 

sequencing (WES). Importantly, the generation of these libraries did not require whole 

genome amplification prior to WES, thus reducing potential errors in downstream analyses.

Sequencing libraries were prepared from each of the lesions as well as from normal tissues 

of each patient and used for massively parallel sequencing on an Illumina HiSeq instrument. 

We obtained a median canonical exon coverage of 253x across all samples. By comparison 

of each lesion with its matched normal DNA, a total of 2,886 somatic single base 

substitutions (SNVs) and small insertions or deletions (INDELs) were identified (Extended 

Data Figure 1, Supplementary Table 2). As a group, the PanINs harbored as many SNVs/

INDELs as the PDACs (average of 75 vs. 80, Extended Data Figure 1b). We also analyzed 

somatic copy number alterations (CNAs) and structural variants (SVs) from the exomic 

sequencing data (Supplementary Tables 3 and 4, Extended Data Figures 1c and 2). The 

number of CNAs, unlike the number of SNVs/INDELs, was higher in PDACs compared to 

PanINs (average of 90 vs 68).

Computational analysis (Methods) revealed somatic mutations in many well-known driver 

genes, such as KRAS, CDKN2A, TP53, SMAD4, U2AF1, and KMT2D (Supplementary 

Table 5). Collectively, the genetic features of this set of PanINs and PDACs were consistent 

with previous sequencing studies of these tumors16–20. To infer evolutionary relationships 

among the PanINs and PDACs for each patient based on the SNVs/INDELs, we employed 

Treeomics21, a recently developed phylogenetic method designed specifically for analyzing 

sequencing data from spatially distinct tumors in the same individual22 (Methods). 

Treeomics identified high confidence phylogenies for the matched samples from each of the 

eight patients (Figure 2a-c, Extended Data Figures 3-5). These analyses allowed us to derive 

the evolutionary relationships between the coexisting PanINs and the PDAC in each patient.
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Evolutionary patterns in pancreatic cancer and precursor lesions

In our cohort, we found two cases (PIN102 and PIN105) in which no passenger gene 

mutations were shared by the PDAC and PanIN (Figure 2a, Extended Data Figure 3). For 

example, in patient PIN105 both the PanIN and PDAC had a KRAS p.G12D missense 

mutation. The PDAC exhibited 80 additional point mutations, including a one basepair 

frameshift deletion in TP53, a missense mutation in ACVR1B p.C34Y, and a 15 basepair in 

frame deletion in SMAD4. Additionally, the PDAC acquired CNA losses affecting 

CDKN2A, MAP2K4, TP53, and SMAD4 (Extended Data Figure 3b). The PDAC and PanIN 

may have arisen independently and by chance accumulated the same KRAS mutation 

(scenario 1), or they may have been initiated by a single KRAS p.G12D mutant clone and 

subsequently diverged (i.e. scenario 2). Scenario 1 may be more likely given the high 

frequency of KRAS variants in PDAC (>90%)13 and the absence of any other shared 

somatic variants among the matched PanIN and PDAC samples in both of these patients. 

Moreover, the PanINs in both of these cases exhibited PanIN-2 histology, and a previous 

study indicated that low grade PanINs often harbor genetic features that support independent 

evolution. We note the previous observation included distinct KRAS variants in matched 

PanINs, contrary to the two cases presented here9.

Four of the eight cases showed unequivocal evidence for scenario 2, that is a common 

ancestral cell underwent initiation and clonal expansion to form one or more PanINs. Further 

clonal expansions driven by additional driver gene mutations in a PanIN cell eventually led 

to a PDAC (Figure 2b, Extended Data Figure 4). For example, in patient PIN101, the 

common ancestor of PanIN lesion A and the PDAC acquired 14 somatic passenger 

mutations, including a KRAS p.G12D, as well as losses affecting ACVR1B, MAP2K4, 

TP53, and SMAD4 (Figure 2b, Extended Data Figure 4a). The PDAC accumulated 28 point 

mutations including a p.A21D missense mutation in CDKN2A and a missense mutation in 

TP53 for p.R273H, as well as a loss affecting CDKN2A and a gain affecting MYC. The 

PanIN lesion A accumulated 111 point mutations, including a nonsense mutation in SDK2. 

Similar patterns were found in PIN103, PIN104 and PIN108, i.e. driver gene mutations 

common to all lesions as well as additional driver gene mutations specific to the PDAC (i.e., 

scenario 2, Figure 2b).

Finally, we observed two cases with phylogenetic patterns consistent with scenario 3 

(PIN106 and PIN107) in which all lesions in a single pancreata shared all of the driver gene 

mutations identified (Figure 2c, Extended Data Figure 5). In patient PIN106, the common 

ancestor of all four samples harbored 47 somatic point mutations, including a p.G12D 

missense mutation in KRAS, a p.G266E missense mutation in TP53, a mutation affecting 

the splice region in ATM, and a p.Q597* in GLI3 (Figure 2c). The PDAC subsequently 

acquired 39 passenger mutations and losses affecting CDKN2A and SMAD4.

In summary, the lesions in four of these eight patients were unequivocally derived from the 

same precursor clone, as they shared multiple passenger genes and a subset of driver genes 

(scenario 2). The presence of these additional driver gene alterations, coupled with 

phylogenetic analysis, provides persuasive evidence that the PDAC was derived from a 

PanIN in each case. These results highlight the value of genetic evaluation of 
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morphologically distinct legions in revealing the evolutionary dynamics of pancreatic 

carcinogenesis. Because the PanINs were all anatomically distinct and far removed from the 

PDAC (Methods), the data indicate that a single mutant clone had spread through the 

pancreatic ductal system to generate coexisting neoplastic lesions (Figure 3a). This situation 

is similar to what occurs in the bladder, wherein a single clone can form multiple 

anatomically distinct neoplasms23. Though it would seem much more challenging for a 

neoplastic cell to journey through the fluid in the pancreatic ductal system than to journey 

through the urine, this journey has been described in intraductal papillary mucinous 

neoplasms of the pancreas, and clearly occurred in these four patients as well24.

To assess genetic relatedness using all somatic variants, we quantified Jaccard similarity 

coefficients between pairs of lesions within each scenario (Figure 2d, Supplementary Table 

6). Interestingly, scenario 2 PanIN lesions tended to share fewer somatic variants with the 

matched PDAC as compared to PanIN lesions in scenario 3 (average Jaccard similarity 

coefficient of 0.39 vs. 0.50, respectively), although the range of Jaccard similarity 

coefficients overlapped between the two scenarios (scenario 2 range = 0.10 – 0.57, scenario 

3 range = 0.44 – 0.70).

Our phylogenetic analysis also enabled us to estimate the mutational signatures operating in 

different tumor lineages that led to the PDAC or a coexisting PanIN (Extended Data Figures 

6-8). Some signatures were shared between a PDAC and PanIN, while others operated only 

on a subset of different branches25.

In PIN106 and PIN107, the PDACs and corresponding PanINs contained the same driver 

gene SNVs/INDELs (scenario 3, Figure 2 and Extended Data Figure 5). In addition to the 

lost copies of CDKN2A and SMAD4, several unobserved factors might contribute to their 

morphological differences. First, the PDAC may have accumulated additional genetic events 

of significance in regions of the genome not assessed by whole exome sequencing. Second, 

the PDACs may have acquired epigenetic alterations that were not detectable by the 

approach we used. Third, the microenvironment may have influenced the progression from a 

PanIN to a PDAC13. Finally, the PanIN lesions in PIN106 and PIN107 may represent 

cancerization of the ducts (invasive cancer growing back into the duct system and simulating 

PanINs). We note the PDACs in these two patients showed moderate to poorly differentiated 

histology, thereby decreasing but not fully eliminating this possibility12.

Modeling progression time of pancreatic cancer evolution

The WES data allow us to estimate the time required for a cell to progress from a non-

invasive, neoplastic clone to an invasive pancreatic cancer26 (Methods). We used the number 

of acquired genetic passenger alterations from a common ancestor to the PanINs and the 

PDACs, after removing mutations suspected to be drivers or subclonal, to infer the amount 

of passed time. Because the great majority of the mutations present in any of these lesions 

are passengers and are not associated with positive or negative growth advantage, these 

mutations can serve as a molecular clock. Based on previously estimated mutation rates27 

and cell division times28 measured in PanINs, we found that the median time elapsed 

between the common ancestral cell (Figure 3b) and the birth of the founder clone of a PanIN 
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was 7.1 years (90% CI of the median: 3.3 to 12.2 years). Similarly, the median time elapsed 

between the common ancestral cell and the founder cell of the PDAC itself was 4.3 years 

(90% CI 2.3 to 7.2 years). Because the PanIN samples are monophyletic in all patients, we 

cannot estimate how long the primary tumor lineage might have existed as a PanIN. 

Nonetheless, these intervals are conservative underestimates of the times required to develop 

neoplasia and radiographically detectable cancer because they do not include any clonal 

steps prior to the birth of the common ancestral cell nor the time between the birth of the 

PDAC founder cell and the multiplication of this cell to form a clinically evident mass. A 

larger patient cohort is required to assess whether or not this length of time is characteristic 

of the population of individuals with PDAC. When the time required for mass development 

is taken into account, the data suggest that it takes an average of at least 8.1 years elapsed 

between the birth of the common ancestral cell and the presence of a clinically evident mass 

(Methods).

Discussion

Comparison of our results with three recent studies is informative. First, Matsuda et al. 
found that 77% of patients without clinically evident pancreatic neoplasia actually harbored 

PanIN-1 lesions when autopsied11. Moreover, Wood et al. found that low grade PanINs 

(PanIN-1 and PanIN-2) from the same patient generally do not share the same genetic 

alterations, in contrast to our data which show genetic relationships among high grade 

PanINs (PanIN-3)9. When taken together with our results, the data suggest that early 

neoplastic lesions in the pancreas may represent independent events, and that the success of 

the neoplastic cells in colonizing the ductal system is only achieved with histologic 

progression and the accrual of additional genetic alterations. Of interest in this regard, the 

budding off of small clusters of neoplastic epithelial cells into the lumen is one of the 

pathognomonic morphological features of a high-grade PanIN (PanIN-3)29.

Our data are apparently at odds with the interpretation of a recent study that concluded 

PDACs do not arise in a gradual fashion14. This conclusion was based on genetic analyses of 

microdissected PDACs and did not include an analysis of PanINs, nor were models applied 

to the data to support such a conclusion. As such, it relied on assumptions about the timing 

of transition from precursor lesion to invasive carcinoma. By contrast, our data are directly 

based on genomic analyses of the precursor lesions and their corresponding PDACs. Our 

step-wise model is supported not only by the current data but also by a body of scientific 

literature17–20,22,26,30,31 that suggests single/short base substitutions that gradually 

accumulate over many years form the great majority of the genetic alterations responsible 

for this tumor type. Our findings in no way contradict the observation that multiple 

chromosome translocations can occur simultaneously (chromothripsis) in a small subset of 

pancreatic tumors14,31. However, they do buttress the model that PDAC development is a 

multi-step progression caused by the accumulation of somatic alterations in driver genes, a 

process that generally spans many years.

It could be argued that the cases we analyzed were unusual in that more than one advanced 

PanIN was found in each pancreas, and our selection of eight out of ~100 patients 

potentially introduced an unintended bias in our cohort. However, Matsuda et al. have shown 
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that multiple advanced PanIN lesions are the norm rather than the exception when the entire 

pancreas is methodically dissected11. Further, the mutations in driver genes and distribution 

of mutational signatures in this cohort are similar to those previously observed in pancreatic 

cancers. Finally, genomic analysis of a PDAC arising directly from an adjacent high grade 

PanIN lesion revealed a gradual genetic progression from PanIN to PDAC8 – similar to our 

findings for anatomically separate high grade PanIN lesions and their corresponding PDACs.

In summary, we have discovered that pancreatic intraepithelial neoplasia (i.e., PanIN-2 and 

PanIN-3) need not be a spatially localized lesion; rather, it is a disease that can spread 

through the entire ductal system. Additional studies—with more patients and a higher 

density of samples—will be required to determine the frequencies of the evolutionary 

scenarios we identified and to clarify which features of precursor lesions put them at 

substantial risk of transformation. Nonetheless, our data suggest that the multiple, apparently 

discrete PanIN lesions observed in an individual patient often represent a single neoplasm 

that can spread (contiguously or discontiguously) along the ductal system. This finding 

provides an explanation for the observation that patients who have had a high grade PanIN 

or PDAC removed by subtotal pancreatectomy are at high risk for the development of 

recurrent disease.

Methods

Patient selection.

Human tissues were collected with the approval of the Johns Hopkins Hospital Institutional 

Review Board (protocols NA_00001584 and NA_00017879) after informed and written 

consent was obtained, following all relevant ethical regulations. Fresh-frozen samples from 

eight patients who underwent surgical resection of pancreatic cancer at Johns Hopkins 

Hospital (Jan 2009-Dec 2011) with pathologic confirmation of pancreatic ductal 

adenocarcinoma and geographically distinct PanIN-2 or PanIN-3 lesions were selected for 

study. For inclusion in the study, PDAC, PanIN lesion(s), and normal duodenum tissue were 

required for each patient. To minimize the possibility of studying cancerization of normal 

ducts, we only included PanINs in which at least 1.0 cm of uninvolved lobular parenchyma 

was present between the PanIN and the cancer, or the PanINs were present in a block that 

contained no cancer.

Processing of tissue samples.

For each tissue sample, multiple sequential 5 μm thick cryosections were mounted on 

polyethylene naphthalate (PEN) membrane slides and stained with cresyl violet for 

visualization of histologic features and confirmation of adequate cellularity. Neoplastic 

epithelium was laser-microdissected using the Leica LMD7 laser microdissection system.

DNA extraction and quantification.

Genomic DNA (gDNA) was extracted from each normal, PanIN, or tumor piece using a 

standard phenol and chloroform extraction followed by precipitation in ethanol. The gDNA 

was quantified by LINE assay (i.e. counting long interspersed elements (LINE) using real-

time PCR. The LINE forward primer was 5’-AAAGCCGCTCAACTACATGG-3’ and the reverse 
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primer was 5’-TGCTTTGAATGCGTCCCAGAG-3’. The real-time PCR protocol was 50°C for 

2 min, 95°C for 2 min, 40 cycles of 94°C for 10 s, 58°C for 15 s, and 70°C for 30 s, 95°C 

for 15 s, and 60°C for 30 s. The PCR reactions were carried out using Platinum SYBR 

Green qPCR mastermix (Invitrogen).

Whole exome sequencing and alignment.

Whole exome sequencing (WES) was performed on an Illumina HiSeq 2000 platform for a 

target coverage of 150X. Upon the completion of WES, the data were analyzed in silico to 

determine overall quality and coverage. Sequencing reads were aligned to the hg19 human 

reference genome using BWA32. Read de-duplication, base quality recalibration, and 

multiple sequence realignment were performed using the Picard Suite and GATK version 

3.133,34. SNVs were called using Mutect version 1.1.6 and INDELs were detected using 

HaplotypeCaller version 2.433,35.

Filtering of whole exome sequencing data.

WES generated a large list of potential mutations, and we evaluated these data to identify 

high quality mutations while removing sequence artifacts. Each mutant must have been 

observed with at least 5% variant allele frequency with 20x coverage in at least one 

neoplastic sample; each mutant must have been observed in less than 2% of the reads (or 3 

reads total) of the matched normal sample with 10x coverage. This filtering yielded a total of 

2,886 mutations for subsequent analysis (Supplementary Table 2).

Driver gene and mutation analysis.

All somatic variants causing a frameshift deletion, frameshift insertion, in-frame deletion, 

in-frame insertion, missense, nonsense, nonstop, splice site/region, or a translation start site 

were considered. If a variant was a missense or nonsense mutation, we required the variant 

to have a CHASM p-value of ≤ 0.05 and an FDR of ≤ 0.25. In combination with manual 

review, driver gene mutations were identified if the gene was supported by at least three of 

the following four methods: 20/20+36, TUSON37, MutSigCV38 (see Table S1 in Ref. 36 for 

gene list), and a hotspot analysis39. In addition, we also considered genes significantly 

mutated in large PDAC sequencing studies17,18,20,40. Further, we required that each somatic 

variant have a variant allele frequency of < 2% in the patient-matched normal tissue as well 

as any normal tissue from another patient. If a deleterious variant was detected in a driver 

gene as described above, and was not detected abundantly in any normal tissue, it was 

considered a driver gene variant.

CNAs.

Allele-specific copy number analysis was performed using FACETS41. Briefly, FACETS 

performs a complete analysis that includes library size and GC-normalization, and 

segmentation of total and allele-specific signals, using coverage and genotypes of single 

nucleotide polymorphisms simultaneously across the exome41. The resulting segments 

accurately identify points of change in the exome, accounting for diploidy, purity, and 

average ploidy for each sample. A maximum likelihood approach then assigns each segment 

with a major and minor integer copy number.
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Evolutionary analysis.

We derived phylogenies for each set of samples by using Treeomics 1.7.921. Each phylogeny 

was rooted at the matched patient’s normal sample and the leaves represented the PanIN or 

tumor samples. Treeomics employs a Bayesian inference model to account for error-prone 

sequencing and varying neoplastic cell content to calculate the probability that a specific 

variant is present or absent. Treeomics infers the global optimal tree based on Mixed Integer 

Linear programming. For Extended Data Figures 3-5, the CNAs were not directly used to 

infer phylogenies in order to prevent bias from potential false-negatives or false-positives, 

given that CNA calls from multiple samples within a patient are particularly sensitive to 

varying neoplastic cell content and depth of sequencing. Moreover, WES data usually does 

not capture the exact breakpoints of CNAs, further complicating phylogenetic analysis. 

Nevertheless, common PDAC driver genes KRAS, MYC, GATA6, and CDK6 were 

manually reviewed in the CNA data for evidence of gains, while CDKN2A, SMAD4, TP53, 

MAP2K4, TGFβR2, and ACVR1B were queried for losses. Allelic losses were defined as 

total copy number (tcn) = 1 or 0, and gains were defined as tcn ≥ 4. Given the CNA status of 

a given driver gene in each sample, the driver gene with the CNA status was manually 

placed on the corresponding position edge in the phylogeny (previously derived using SNVs/

INDELs). This approach was used with each PDAC driver gene affected by a CNA as 

defined above.

Our classification of each patient into one of three evolutionary scenarios was based on 

SNVs/INDELs that affect key driver genes in PDAC (e.g. KRAS G12D). Such alterations 

represent driver gene variants that are readily interpretable with respect to function as well 

as position on the phylogenetic tree. Nonetheless, CNAs can also affect driver genes 

involved in pancreatic cancer (e.g. CDKN2A deletion). If we reclassify the eight patients 

using both SNVs/INDELs as well as CNAs affecting driver genes (Extended Data Figures 

3-5), we find that the evolutionary scenario does not change for six patients. For two patients 

(PIN106 and PIN107), the scenario changes from scenario 3 to scenario 2, indicating a step-

wise progression of PanINs and PDACs for all eight patients. As noted above, the 

identification and placement of CNAs on a phylogenetic tree remains challenging. 

Nonetheless, we note that the SNV/INDEL phylogenies represent a minimum number of 

evolutionary steps: including additional CNAs would either confirm or increase the total 

number of steps in the evolution of the PDAC.

Structural variant analysis.

We inferred structural variants (SV) using DELLY2 (v.0.7.5) to verify the reconstructed 

phylogenies42. Since the SVs were called for each sample independently, we merged SVs 

for which DELLY determined breakpoints differing by at most 250 base-pairs among the 

samples of each patient. In total, we found 154 distinct SVs in the eight subjects. After a 

comprehensive manual review of the called SVs, we developed additional criteria to 

minimize the number of false-positives. We required that each SV has to pass one of the 

following two filters in at least one sample: 1) (a) SV is supported by at least 3 distinct split 

reads, (b) the ratio of split reads that support the SV to the total number of split reads at the 

position of the SV is greater or equal to 0.75, and (c) the number of the SV supporting split 

reads is greater than the number of split reads in the normal sample; or 2) (d) SV is 
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supported by at least 5 discordantly paired (DP) reads, (e) the ratio of DP reads that support 

the SV to the total number of DP reads at the position of the SV is greater or equal to 0.25, 

and (f) the number of the SV supporting DP reads is greater than the number of DP reads in 

the normal sample. After applying these filters, we obtained 40 SVs (Supplementary Table 

4).

To create input files for Treeomics, we used the number of SV supporting split and DP reads 

as the number of variant reads. We normalized the coverage of SVs such that on average it 

approximately matched the median coverage of the SNVs (single nucleotide variants). 

Generally, the inferred phylogenies based on the SVs agreed well with the ones based on 

SNVs. However, since the significantly lower number of SVs per subject (median 4; range 

0–14; Supplementary Table 4), the confidence in the inferred branches was significantly 

lower than in the phylogenies based on SNVs. For PIN106 (coverage in sample of PanIN-A 

was extremely low), we inferred a slightly different phylogeny as PanIN-A diverged before 

the PDAC, likely due to many false-negatives resulting from the extremely low coverage and 

the therefore difficult detection of SVs in this sample. For PIN108, no SVs were shared 

across multiple samples and hence there were no parsimony-informative SVs such that a 

phylogeny could be inferred.

Mutation signatures.

We assessed the presence of previously identified mutational signatures43 in each patient. 

Our phylogenetic analysis enabled us to estimate the signatures operating at different stages 

of cancer evolution25. For SNVs acquired along each phylogenetic branch, we estimated the 

maximum likelihood signature proportions among 30 previously identified trinucleotide 

signatures44 (see https://github.com/mskcc/mutation-signatures). We quantified the 

uncertainty in these estimates by performing 100 iterations of bootstrap resampling within 

each branch followed by signature re-estimation. We ignored branches with 5 or fewer 

mutations and removed signature 24 because of its similarity to smoking. The maximum 

likelihood signature estimates and 90% bootstrap confidence intervals for each branch are 

shown in Extended Data Figures 6-8. We detect signatures 1, 2, 3, and 6, consistent with 

previous studies43. Additionally, we find evidence for signatures 4 (associated with 

smoking) and 29 (associated with chewing tobacco). Signatures operating on different 

branches within a patient were not significantly more similar than those across patients 

(mean cosine distance similarity 0.62 vs 0.59, p=0.21, one-sided permutation test). We note 

that signature estimates had large bootstrap uncertainty and the number of patients as well as 

the number of mutations is limited.

Progression time inference.

We assume that the number of passenger mutations n acquired along a lineage during time T 
(in cell generations) is Poisson-distributed with rate equal to T times the mutation rate per 

cell division16:

nμ T ∼ Poisson μ T .
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We assume that a random sample from the population of PanINs or PDACs takes T 
generations to progress from a previous stage (either most recent common ancestor (MRCA) 

of all sampled PanINs and PDAC in a patient or the MRCA of the most closely related 

PanIN to the PDAC) to the founder of a particular PanIN or PDAC, and that the mutational 

clock time μT is gamma-distributed with hyperparameters shape k and scale θ (k, θ > 0) 

uniform a priori:

μ T ∼ Gamma k, θ .

In order to infer the joint distribution of (T, k, θ), we use the following sampling strategy. 

For each sample i, we update T by sampling directly from the gamma posterior:

Ti · μ n, k, θ Gamma k + n, θ
1 + θ .

Using the updated values, we jointly update k, θ by Metropolis-Hastings sampling from the 

posterior:

L k, θ ∝ π k, θ ∏
Ti

dgamma k, θ, μ · Ti

where dgamma is the density function for the gamma distribution and π k, θ  is the prior over 

the hyperparameters (uniform). This setup pools information about the time to progression 

for each sample toward the population of progression time estimates, with a flexible 

structure for the overall distribution of times provided by the gamma distribution.

In order to convert the inferred number of generations to absolute time, we follow a previous 

method26 by multiplying by the average time for cell division. To estimate the division time, 

we again follow the previous method but instead note that 14% of Stage II PanINs stain 

positively for Ki-6728. We therefore estimate the generation time of PanIN Stage II cells to 

be 4 days. The mutation rate μ per generation is 0.0224, calculated for 35 Mb of exome 

sequencing multiplied by a point mutation rate of 6.4 · 10−10 per generation27.

To calculate the expected time it takes that the PDAC founding cell grows to a detectable 

lesion of 1cm3 ≈ 109cells , we used previously measured PDAC metastasis doubling times of 

56 days45 leading to an exponential growth rate of r=0.012 per day. The probability density 

function for the time an exponential branching process conditioned on survival takes to 

reach size M = 109 is approximately given by:

f tM
t = exp − r

b · M · exp −r · t · r2 · M
b · exp −r · t

where b = 1/2.3 per day is the assumed PDAC cell division rate26,46.

Makohon-Moore et al. Page 11

Nature. Author manuscript; available in PMC 2019 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data

Extended Data Figure 1. Mutation counts and features of samples.
a. Number of somatic mutations detected per sample with clinical features of each 
patient. The y-axis shows mutation counts while the x-axis is patient ID. FS Del: frameshift 

deletion, FS Ins: frameshift insertion, IF Del: in-frame deletion, IF Ins: in-frame insertion, 

TSS: transcription start site. b,c. Box and whisker plots comparing number of somatic 
SNVs and CNAs between PanINs and PDACs. The PanIN data are in yellow while the 

PDAC data are shown in green. The x-axes show the two groups, the y-axes indicate the 

number. The whiskers indicate the minimum and maximum, while the box indicates the 

quartiles. The total number of independent PanIN lesions is n = 12, while the total number 

of PDACs is n = 8. b. Plot depicting the SNVs/INDELs between PanINs and PDACs. c. 
Plot depicting the CNAs between PanINs and PDACs. Panel c contains hisens results 

only.
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Extended Data Figure 2. Allelic copy number alterations (x-axis) across all patient samples (y-
axis).
The CNAs were inferred using the FACETS algorithm (Supplementary Table 3, 

FACETs.purity variants shown in this figure). The scale of CNAs range from putative losses 

(blue) to putative gains (red).
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Extended Data Figure 3. Phylogenetics of PanINs and the matched primary tumor for patients 
PIN102 and PIN105.
See Supplementary Table 1 for sample identities. The primary tumor is labeled “PDAC” 

while the PanIN is labeled by a letter. Gene names in orange text are SNVs/INDELs, in blue 

are copy-number losses, and in red are copy-number gains affecting putative driver genes. 

The sequencing data for each driver gene variant was manually reviewed to verify 

phylogenetic position. For each phylogeny, the numbers of acquired mutations are in black 

font. The branch lengths are proportional to the number of SNVs/INDELs. The dashed line 

indicates the branch from the germline to the PDAC and PanIN-A. For the Bayesian heat 

maps, samples are indicated on each row while variants are represented by each column. The 

color of each tile indicates the probability that the variant is present or absent in the 

corresponding sample. Dark blue indicates a variant with a >99.9% probability of being 

present, while dark red indicates a variant with a >99.9% probability of being absent. Light 

blue and red tiles indicate lower probabilities, and white tiles indicate approximately a 50% 

probability. a. Phylogenetic tree and Bayesian heat map with each variant for PIN102. 
b. Phylogenetic tree and Bayesian heat map with each variant for PIN105.
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Extended Data Figure 4. Phylogenetics of PanINs and the matched primary tumor for patients 
PIN101, PIN103, PIN104, and PIN108.
See Supplementary Table 1 for sample identities. The primary tumor is labeled “PDAC” 

while the PanIN is labeled by a letter. Gene names in orange text are SNVs/INDELs, in blue 

are copy-number losses, and in red are copy-number gains affecting putative driver genes. 

The sequencing data for each driver gene variant was manually reviewed to verify 

phylogenetic position. For each phylogenetic tree, the numbers of acquired mutations are in 

black font. The branch lengths are proportional to the number of SNVs/INDELs. The dashed 

lines indicate branches that have been extended to accommodate gene annotation and variant 
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numbers. For the Bayesian heatmaps, samples are indicated on each row while variants are 

represented by each column. The color of each tile indicates the probability that the variant 

is present or absent in the corresponding sample. Dark blue indicates a variant with a 

>99.9% probability of being present, while dark red indicates a variant with a >99.9% 

probability of being absent. Light blue and red tiles indicate lower probabilities, and white 

tiles indicate approximately a 50% probability. a. PIN101. In manual review of the 

sequencing data, a read supporting the presence of the KRAS p.G12D variant was detected 

in both the PDAC and PanIN-A samples and was thus moved to the trunk of the phylogeny 

despite the overall low coverage of KRAS in PanIN-A. b. PIN103. c. PIN104. The node 

leading from the first MRCA to the second MRCA has a confidence value of >99%. d. 
PIN108. The node leading from the first MRCA to the second MRCA has a confidence 

value of >99%.

Extended Data Figure 5. Phylogenetics of PanINs and the matched primary tumor for patients 
PIN106 and PIN107.
See Supplementary Table 1 for sample identities. The primary tumor is labeled “PDAC” 

while the PanINs are labeled by letters. Gene names in orange text are SNVs/INDELs, in 

blue are copy-number losses, and in red are copy-number gains affecting putative driver 

genes. The sequencing data for each driver gene variant was manually reviewed to verify 

phylogenetic position. For each phylogeny, the numbers of acquired mutations are in black 
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font. The branch lengths are proportional to the number of SNVs/INDELs. The dashed lines 

indicate branches that have been extended to accommodate gene annotation and variant 

numbers. For each Bayesian heat map, samples are indicated on each row while variants are 

represented by each column. The color of each tile indicates the probability that the variant 

is present or absent in the corresponding sample. Dark blue indicates a variant with a 

>99.9% probability of being present, while dark red indicates a variant with a >99.9% 

probability of being absent. Light blue and red tiles indicate lower probabilities, and white 

tiles indicate approximately a 50% probability. a. PIN106. The node leading from the first 

MRCA to the second MRCA has a confidence value of >99% and the node leading from the 

second MRCA to the third MRCA has a confidence value of 82%. b. PIN107.

Extended Data Figure 6. Average signature abundance across samples.
Signature numbers 1–30 from Alexandrov et al.43 are shown on the x-axis with signature 

abundance averaged across phylogenetic branches shown on the y-axis. Each histogram is 

colored by signature identity.
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Extended Data Figure 7. The proportion of mutational signatures from Alexandrov et al.43 

estimated in PIN101-PIN104.
Signatures are shown on the x-axis, with the proportion of each signature shown on the y-

axis. Each bar is colored by signature identity. The text on the top of each panel denotes the 

corresponding phylogenetic branch and the number of mutations acquired along it in 

parentheses. Error bars depict 90% confidence intervals in the signature proportion 

estimated by 100 iterations of bootstrap resampling.
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Extended Data Figure 8. The proportion of mutational signatures from Alexandrov et al.43 

estimated in PIN105-PIN108.
Signatures are shown on the x-axis, with the proportion of each signature shown on the y-

axis. Each bar is colored by signature identity. The text on the top of each panel denotes the 

corresponding phylogenetic branch and the number of mutations acquired along it in 

parentheses. Error bars depict 90% confidence intervals in the signature proportion 

estimated by 100 iterations of bootstrap resampling.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Evolutionary scenarios and study strategy of coexistent PanIN(s) and PDAC.
a. Evolutionary scenarios of coexistent PanIN(s) and PDAC. For each of the three 

evolutionary scenarios, D1 and D2 indicate two hypothetical driver gene alterations whereas 

the colored cells represent the germline (matched normal sample) in blue and the most 

recent common ancestor (MRCA) in orange for each PanIN/PDAC pair. The primary tumor 

is labeled “PDAC” while the PanIN is labeled by a letter. In scenario 1, none of the somatic 

gene alterations are shared by the PanIN and PDAC. Mutation D1 is private to PDAC and 

mutation D2 is private to the PanIN. In scenario 2, only D1 is shared by the PanIN and 

PDAC. The mutation in D2 is private to the PDAC. In scenario 3, both D1 and D2 driver 

gene alterations are shared by the PanIN and PDAC. b. Tissue collection, histological 
review and microdissection, whole exome sequencing (WES), and phylogenetic analysis 
of human patients. Body diagram was adapted from the Motifolio toolkit. Example of 

PanINs and matched PDAC. The dashed outlines indicate regions that underwent laser 
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capture microdissection of DNA extraction followed by whole exome sequencing (WES). 

The low-grade PanIN (LG-PanIN) shows well formed papillary structures with nuclear 

crowding and cytologic atypia. The high-grade PanIN (HG-PanIN) has regions of 

pseudopapillary formation (arrows) with high nuclear to cytoplasmic ratio. The matched 

PDAC shows features of poorly differentiated carcinoma with desmoplasia.
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Figure 2. Phylogenetics of eight patients.
a-c. Phylogenetic trees from SNVs/INDELs. See Supplementary Table 1 for sample 

identities. For each phylogeny, gene names in orange text are SNVs/INDELs and the number 

of additionally acquired mutations are in black font. The branch lengths approximate the 

number of SNVs/INDELs. The dashed lines indicate branches that have been extended to 

accommodate gene annotation and variant numbers. The sequencing data for each driver 

gene variant was manually reviewed to verify phylogenetic position. a. PIN102 and PIN105 

are both scenario 1. b. PIN101, PIN103, PIN104, and PIN108 are scenario 2. In manual 
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review of the PIN101 sequencing data, a read supporting the presence of the KRAS p.G12D 

variant was detected in both the PDAC and PanIN-A samples and was thus moved to the 

trunk of the phylogeny despite the overall low coverage of KRAS in PanIN-A. c. PIN106 

and PIN107 are scenario 3. d. Jaccard indices from SNVs/INDELs. For each evolutionary 

scenario, the average Jaccard index for each patient was calculated from all driver and 

passenger variants (see Supplementary Table 6 for values) and plotted on a range from 0 to 

1, with values closer to 1 denoting higher genetic similarity.
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Figure 3. Putative growth pattern of coexistent PanIN(s) and PDAC and mathematical model.
a. Spatial evolution and PanIN progression in intralobular ducts. Low grade PanIN (LG-

PanIN) and high grade PanIN (HG-PanIN) lesions represent precursors with differing 

degrees of nuclear and cytologic atypia. A LG-PanIN develops and seeds a cell that travels 

to a second duct (arrow, left panel). The first LG-PanIN matures into a HG-PanIN, while a 

LG-PanIN develops at the second site and a cell subsequently travels to a third duct (arrow, 

center panel). The second site LG-PanIN matures into a HG-PanIN while a LG-PanIN 

develops at the second site (right panel). b. Estimated progression times. The lineage 
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leading from the MRCA to the PanINs is illustrated in yellow, while the lineage leading 

from the MRCA to the PDAC is in green. Clonal passenger mutations were used to estimate 

progression times, shown for each patient with 90% CIs. Overall (black), the inferred 

median time elapsed between the common ancestral cell and the birth of the founder clone 

of a PanIN was 7.1 years (90% CI 3.3–12.2; MRCA to PanIN, n = 12). The median time 

elapsed between the common ancestral cell and the PDAC was 4.3 years (90% CI 2.3–7.2; 

MRCA to PDAC, n = 8). These estimates assume a mutation rate of 0.0224 per generation 

and a time per generation of 4 days (Online Methods).
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