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Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained
effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial
success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and
McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing
multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic
interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a
phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility.
In this approach, a stable equilibrium molecular system is described by a phase field that takes one
constant value in the solute region and a different constant value in the solvent region, and smoothly
changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric
boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of
the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic
free energy described by the Poisson–Boltzmann theory. We apply our model and methods to
the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to
demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric
boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial
region. Our theory is developed based on rigorous mathematical studies and is also connected to the
Lum–Chandler–Weeks theory (1999). We discuss these connections and possible extensions of our
theory and methods. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4932336]

I. INTRODUCTION

Aqueous solvent plays a central role in biological molecu-
lar processes such as conformational change, molecular recog-
nition, and molecular assembly.1–6 Detailed descriptions of
individual solvent molecules, however, can be very costly due
to the large number of such molecules necessary to be included
in an underlying system. Dielectric boundary based implicit-
solvent models7–12 provide efficient descriptions of coarse-
grained effects, particularly the electrostatic effect, of aqueous
solvent through a few macroscopic parameters such as the sur-
face tension, dielectric coefficients, bulk solvent density, and
bulk ionic concentrations. In such a model, one first determines
a dielectric boundary that separates a charged molecular region
from the solvent region, with the dielectric coefficients of these
regions close to 1 and 80, respectively, and then applies the

a)H. Sun, J. Wen, and Y. Zhao contributed equally to this work.
b)Electronic mail: hus003@ucsd.edu
c)Electronic mail: wen.jiayi.thomas@gmail.com
d)Electronic mail: yxzhao@email.gwu.edu
e)Electronic mail: bli@math.ucsd.edu
f)Electronic mail: jmccammon@ucsd.edu

Poisson–Boltzmann (PB) theory13–24 or the generalized Born
(GB) model25,26 to calculate the electrostatic free energy.

The question here is how to define and computationally
determine a dielectric boundary as it is critical to the free-
energy estimation. For instance, the classical Born model27

predicts the free energy of hydration of a single ion in water
to be inversely proportional to an effective radius of the ion;
any relative error in such a radius will therefore lead to a
relative error of same order in the free-energy estimation. For
a biological molecule such as a protein, one can efficiently
generate a dielectric boundary as a van der Waals surface
(vdWS), solvent-excluded surface (SES), or solvent-accessible
surface (SAS),28–32 leaving though many parameters to ad-
just. Moreover, in calculating the surface energy that is an
important component of the total free energy with such a fixed
surface, a curvature correction33 to surface tension can hardly
be made systematically. Such correction is known to be crucial,
as cavitation free energies do not scale with surface area for
high curvatures.34–38 A more subtle and important situation
occurs around a hydrophobic pocket, a region inside or on
the surface of a protein where a few water molecules fluc-
tuate, making dry-wet transitions. Experiment and molecular
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dynamics (MD) simulations have suggested that such pockets
and the associated dry-wet transitions are crucial in protein-
ligand binding, and molecular recognition in general. 39–58 As
the size of such a pocket is large enough to contain a few water
molecules, it is evident that the fluctuating pocket surface can
be hardly described by any kinds of fixed surfaces.

In general, determining a dielectric boundary requires tak-
ing into account multi-body effects, including solute-solvent
interactions, solute charge and solvent polarization effects,
and many others. This is exactly one of the principles behind
a recently developed, dielectric boundary based, implicit-
solvent model: variational implicit-solvent model (VISM).59,60

In VISM, one minimizes a macroscopic, mean-field free-
energy functional of all possible solute-solvent interfaces or di-
electric boundaries. The free-energy functional consists of sur-
face energy, solute excluded volume and solute-solvent vdW
interaction energy, and continuum electrostatic free energy,
all coupled together through a given solute-solvent interface,
i.e., dielectric boundary. Moreover, the curvature correction to
surface tension can be systematically incorporated in the VISM
free-energy functional. Minimization of the functional deter-
mines the solvation free energy and stable equilibrium solute-
solvent interfaces. Computationally, such minimization can be
realized by a robust level-set numerical method.61–65 Extensive
level-set computational results with comparison to experiment
and MD simulations have demonstrated the success of this new
approach to the solvation of charged molecular systems in cap-
turing efficiently different hydration states, providing qualita-
tively good estimates of solvation free energies, and describing
subtle electrostatic effects; cf. Refs. 61–72. In general, stable
equilibrium solute-solvent interfaces determined by the level-
set VISM can be quite different from vdWS, SES, or SAS,
particularly when it comes to the description of hydrophobic
interactions.1,2,39,73–77 Perhaps, the most significant feature of
VISM is that its free-energy functional exhibits a complex
energy landscape with multiple local minima corresponding
to different equilibrium hydration states.

We notice that several related issues, such as coupling
the solvent boundary to optimization of overall energy, the
curvature effect to surface energy, and dewetting transition,
have been discussed in the literature; and the related models
and methods have also been proposed.10,12,36,45,78–80

In this work, we develop a phase-field variational implicit-
solvent model (PF-VISM) with the PB electrostatics. It is an
alternative to the original VISM that uses a sharp-interface
formulation, and it extends our previous work81,82 that only
used the Coulomb-field approximation (CFA) of electrostatic
free energy. We aim at making these approaches more flexible
in describing possibly detailed solute-solvent interfacial struc-
tures, and introducing fluctuations in the future.

The phase-field theory and methods have been widely
used to study many interfacial problems in materials physics,
complex fluids, biomembranes, and other scientific areas; cf.,
e.g., Refs. 83–94 and the references therein. The key idea here
is to describe a diffuse interface that separates two regions by
a smooth function φ, called a phase field, that takes its value
close to one constant in one of the regions and another constant
in the other region, but smoothly changes its value from one of
the constants to another in a thin transition layer, forming the

diffuse interface. The area of such an interface is approximated
by the phase-field area Sξ[φ], defined by

Sξ[φ] =
 

ξ

2
|∇φ|2 + 1

ξ
W (φ)


dx,

where ξ > 0 is a small parameter characterizing the width of
transition layer and W is a properly chosen double-well po-
tential, e.g., W (φ) = 18φ2(1 − φ)2. If the surface area Sξ[φ] is
small, then the W -term forces the phase field φ to be close to the
two wells of W , partitioning the entire system into two regions
with a thin transition layer, and the gradient term penalizes
such partition. In our case, these two regions are the solvent
region {φ ≈ 0} and solute region {φ ≈ 1}, respectively, and the
thin transition layer is the diffuse solute-solvent interface. As
the parameter ξ becomes smaller and smaller, the transition
layer converges to a sharp interface and the corresponding
integral value converges to the interfacial area.81,95,96 This well
established mathematical theory is the foundation of the phase-
field approach. Note that, in terms of the mathematical form,
the integral Sξ[φ] is exactly the first term of the Hamiltonian
of large-scale solvent density in the Lum–Chandler–Weeks
theory97 for hydrophobic interactions.

We minimize our PF-VISM free-energy functional to de-
termine a stable equilibrium molecular conformation and its
corresponding solvation free energy. As in the sharp-interface
VISM, our total solvation free-energy functional consists of
three parts: (1) The surface energy γ0Sξ[φ] with γ0 an effective
surface tension; (2) The solute-solvent interaction energy de-
termined by the bulk water density ρw and the Lennard-Jones
(LJ) parameters for the individual solute-solvent pairwise in-
teractions; and (3) The electrostatic free energy determined
by the PB theory in which the dielectric coefficient ε = ε(φ)
depends smoothly on the phase field φ and takes the solvent
and solute dielectric coefficients for φ ≈ 0 and φ ≈ 1, respec-
tively. Note that we have not directly included the curvature
correction to the surface tension, for otherwise, such inclusion
can be computationally costly. Rather, we tune the effective
parameters γ0 ad ξ to make our free-energy calculations more
accurate. Note also that we shall use the linearized PB equation
as we consider charged molecules in a dilute aqueous solution.

One of the new features of our PF-VISM with the PB
electrostatics is its flexibility in the detailed description of the
dielectric environment in the thin solute-solvent interfacial
layer.98 This is related to the basic issue of defining a
dielectric boundary. There are different kinds of solute-solvent
interfaces; and most of them are defined using the fluctuating
solvent density.99,100 Such an interface can be conceptually
different from a dielectric boundary defined as a sharp surface
that separates the solute region with one dielectric constant
from the solvent region with another dielectric constant. In
our previous VISM calculations, after we minimized the
free-energy functional, we shifted the free-energy minimizing
dielectric boundary inward to the solute to finally calculate
the electrostatic free energy. We found that such a boundary
shift provided better results on electrostatics in comparison
with experiment and MD simulations.65,67,69,70 Similarly,
calculations reported in Ref. 101 show that a tight vdWS is a
better dielectric boundary than a molecular surface (i.e., SES).
In our PF-VISM, we construct analytic forms of the dielectric
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coefficient ε = ε(φ) to mimic experimental data, allowing the
asymmetry with respect to φ ≈ 0 for the solvent region and φ
≈ 1 for the solute region.98 We shall demonstrate that
this may be a first step toward a detailed description of
solute-solvent interfacial structures using an implicit-solvent
approach.

To minimize our PF-VISM free-energy functional Fξ[φ],
where the PB equation for the electrostatic potential ψ
= ψφ is a constraint, we solve numerically the gradient-flow
(i.e., relaxation dynamics) partial differential equations ∂tφ
= −δφFξ[φ] together with the PB equation for ψφ that de-
pends now on the phase field φ through mainly the dielec-
tric coefficient ε = ε(φ). In our recent mathematical work,102

we derived rigorously the first variation δφFξ[φ] and also
proved that in the sharp-interface limit as ξ → 0, our phase-
field relaxation dynamics converges to the sharp-interface
VISM relaxation dynamics. Here, we first present the main
steps in the calculation of first variation for the electrostatic
part of the free energy. We then use an implicit scheme for
the Laplacian of φ and other linear terms and an explicit
scheme for nonlinear terms in the time discretization of the
gradient-flow partial differential equations. In each time step,
we solve several systems of linear equations with the pre-
conditioning conjugate gradient method. These schemes and
methods are shown to be convergent in the expected order. In
coding our algorithms, we used the computational software
PETSc.103

We apply our theory and method to several charged molec-
ular systems of different complexities. First, we consider the
hydration of some single ions and compare our phase-field
calculations with experimental results. Notice that it is in gen-
eral difficult to experimentally measure the ionic hydration free
energy and effective radius for a single ion. The experimental
data (a lot, if not all), reported in the past century and col-
lected in Ref. 104, seem so dispersive. We shall demonstrate
that, with reasonable adjustment of certain parameters, our
approach can provide good estimates of hydration free energies
for single ions. Second, we consider two parallel, initially
hydrophobic plates, where the plate charge is a free parameter
and gradually increased. We study the influence of charging on
the hydrophobic interactions, the system balance between dry
and wet equilibrium states, and the resulting hysteresis in the
potential of mean force. Third, we consider two real protein
systems. One is the two domain protein BphC and the other is
the protein complex p53/MDM2. For each of these systems,
we show the charge effect captured by our approach and also
the difference between our PF-VISM dielectric boundary and
a vdWS. In all of our computations, we do not shift our phase-
field dielectric boundary.

We organize the rest of our paper as follows: In Section II,
we present our phase-field solvation free-energy functional
and derive its first variations. In Section III, we describe our
numerical methods for solving the gradient-flow partial dif-
ferential equations for minimizing the free-energy functional.
In Section IV, we present our computational results for single
ions, two charged plates, the two-domain protein BphC, and
the protein complex p53/MDM2. Finally, in Section V, we
draw conclusions of our studies, discuss several issues of our
approach, and point out some possible extensions.

FIG. 1. A schematic description of a solvation system. A solute-solvent
interface Γ divides the entire solvation region Ω into the solute region Ωp
and solvent region Ωw. Solid dots represent solute atoms, located at xi and
carrying partial charges Qi (1 ≤ i ≤ N ), respectively.

II. THEORY

We consider the solvation of a charged molecule (or a
group of charged molecules) in aqueous solvent and assume
that the solvation system occupies a bounded region Ω ⊂ R3.
This region is divided into the solute region Ωp (p stands for
protein) that contains all the solute atoms, the solvent region
Ωw (w stands for water), and a thin transition layer that is a
smeared solute-solvent interface Γ, cf. Fig. 1. We assume that
there are N solute atoms, located at xi ∈ Ω and carrying partial
charges Qi (1 ≤ i ≤ N), respectively. These atoms are assumed
to be fixed as we only consider here the equilibrium properties
of the solvation system.

A. Free-energy functional

Let ξ > 0 be a small, numerical parameter with the unit of
length that characterizes the size of solute-solvent transition
layer. We minimize the following effective, solvation free-
energy functional of phase field φ = φ(x):

Fξ[φ] = Fgeom,ξ[φ] + FvdW[φ] + Fele[φ], (2.1)

where

Fgeom,ξ[φ] = P

Ω

φ2 dx + γ0


Ω


ξ

2
|∇φ|2 + 1

ξ
W (φ)


dx,

FvdW[φ] = ρw


Ω

(φ − 1)2UvdW dx,

Fele[φ] = FPB
ele [φ] =

1
2

N
i=1

Qiψreac,φ(xi)

+


Ω

(φ − 1)2


1
2
ψφV ′(ψφ) − V (ψφ)


dx.

The geometrical part Fgeom,ξ[φ] consists of two terms. In
the first term, P is the difference between the solvent liquid
pressure and solute vapor pressure. The integral term approx-
imates the volume of solute region described by φ ≈ 1 for a
phase field φ with a low free energy. Note that this term is
usually very small compared with the others and is therefore
often neglected. (We shall set P = 0 in this work.) The sec-
ond term in Fgeom,ξ[φ] describes the solute-solvent interfacial
energy, where γ0 is an effective surface tension and W (φ)
= 18φ2(1 − φ)2. If the free energy Fξ[φ] is small, then the W -
term forces the phase field φ to be close to 0 or 1 in the entire
solvation region Ω, with {φ ≈ 1} and {φ ≈ 0} the solute and
solvent regions, respectively, except a thin transition layer. The
van der Waals (vdW) part FvdW[φ], in which ρw is the bulk
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solvent density, describes the solute-solvent interaction that
includes both the solute excluded volume and solute-solvent
vdW attraction. We take the potential UvdW = UvdW(x) to be
the sum of pairwise interactions UvdW(x) = N

i=1 U (i)
LJ (|x − xi |),

where U (i)
LJ (r) = 4εi

(σi/r)12 − (σi/r)6


is the LJ potential for
the interaction of the ith solute particle and a solvent molecule
or ion. The term (φ − 1)2 in the integrand indicates that the
integral is over the solvent region {φ ≈ 0}.

Finally, the electrostatic free energy Fele[φ] or FPB
ele [φ] is

defined by the PB theory. In FPB
ele [φ], ψφ is the electrostatic po-

tential. It is the unique solution to the boundary-value problem
of PB equation in the phase-field formulation

− ∇ · ε(φ)∇ψφ + (φ − 1)2V ′(ψφ) = ρf in Ω, (2.2)
ψφ = ψ∞ on ∂Ω, (2.3)

where ρf(x) = N
i=1 Qiδ(x − xi) is the solute point charge den-

sity and ψ∞ is a given function. In FPB
ele [φ], ψreac,φ = ψφ − ψvac

is the reaction field, and ψvac(x) = N
i=1 Qi/(4πεpε0|x − xi |) is

the electrostatic potential in the reference state with εp the
solute dielectric coefficient and ε0 the vacuum permittivity.
Since −εpε0∆ψvac = ρf and ψvac(∞) = 0, we can reformulate
the boundary-value problem of PB equation into

− ∇ · ε(φ)∇ψreac,φ + (φ − 1)2V ′ �ψreac,φ + ψvac
�

= ∇ ·
�
ε(φ) − εpε0

�
∇ψvac in Ω, (2.4)

ψreac,φ = ψ∞ − ψvac on ∂Ω. (2.5)

The function V = V (ψφ) in Fele[φ], Eq. (2.2), and Eq. (2.4) is
given by

V (ψφ) =



β−1
M
j=1

c∞j
�
e−βq jψψ − 1

�
for nonlinear PB,

1
2
εwε0κ

2ψ2
φ for linearized PB,

where β = 1/(kBT) with kB the Boltzmann constant and T
the temperature, qj = Z je with e the elementary charge, and
Z j and c∞j are the valence and bulk concentrations of the jth
ionic species, respectively, and κ is the inverse Debye length,
κ2 = (β/εwε0)M

j=1 c∞j q2
j . Here, we assume there are M ionic

species. Note for the linearized PB that the integral term in the
free energy FPB

ele [φ] vanishes.
The phase-field dielectric coefficient ε(φ) is a smooth

and monotonic function of φ such that ε(φ) = εpε0 if φ ≥ 1
and ε(φ) = εwε0 if φ ≤ 0, where εw is the solvent dielectric
coefficient. An example of such a function is102

ε(φ) =



εwε0 if φ ≤ 0,
εpε0etan(π(φ−1/2)) + εwε0e− tan(π(φ−1/2))

etan(π(φ−1/2)) + e− tan(π(φ−1/2)) if 0 < φ < 1,

εpε0 if φ ≥ 1.

(2.6)

Note that the profile of ε = ε(φ) is rather symmetric, cf. Fig. 2
(left). However, it is known experimentally98 that the profile of
dielectric coefficient in the region of transition from charges
to aqueous ionic solution is not symmetric, cf. Fig. 2 (right).
Therefore, we introduce two adjustable parameters φp and
φw such that 0 ≤ φw < φp ≤ 1 and define the corresponding,
shifted, phase-field dielectric coefficient by

εShift(φ) = ε
(
φ − φw

φp − φw

)
. (2.7)

Based on experiment,98 we often choose φw > 0 (e.g., φw
= 0.25 or 0.33) and φp = 1. Fig. 2 shows the profile of the orig-
inal ε = ε(φ) defined in (2.6) and that of a shifted one with φw
= 1/3 and φp = 1, respectively.

We recall the CFA of electrostatic free energy,67,81,82,105

FCFA
ele [φ] =


Ω

(φ − 1)2UCFA dx, (2.8)

where the term (φ − 1)2 indicates again that the integral is over
the solvent region {φ ≈ 0} and

UCFA(x) = 1
32π2ε0

(
1
εw
− 1
εp

) ������
N
i=1

Qi(x − xi)
|x − xi |3

������

2

. (2.9)

Note that the ionic effect is neglected in the CFA. Here, we
shall use the CFA to speed up our computations, as it does not
require the solution of any partial differential equations.

B. First variation and relaxation dynamics

We minimize free-energy functional (2.1) by solving
the equation of relaxation dynamics ∂tφ = −δφFξ[φ] for

FIG. 2. Thick curve is the profile of the original, symmetric phase-field
dielectric coefficient ε = ε(φ) defined in (2.6). Thin curve is the profile of an
asymmetric phase-field dielectric coefficient ε = ε(φ) defined in (2.7) with
φw= 1/3 and φp= 1.
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φ = φ(x, t), together with PB equation (2.4), to obtain an
equilibrium solution for which φ = 1/2 determines the solute-
solvent interface and Fξ[φ] is the solvation free energy for the
equilibrium conformation.

To calculate the first variation δφFξ[φ], we first approxi-
mate the point charges ρf =

N
i=1 Qiδxi by the sum of Gaus-

sian type functions centered at solute atoms xi (1 ≤ i ≤ N).
We denote still by ρf this smoothened solute charge density.
The potential ψφ with such a smoothened charge density is
no longer singular at xi (1 ≤ i ≤ N). In the same way, we
smooth out the reference potential ψvac. We now rewrite the
PB electrostatic free energy FPB

ele [φ]. Multiplying both sides of
PBE (2.2) by ψφ and integrating them over Ω using integra-
tion by parts, we obtain with appropriate boundary conditions

that
Ω

�
ε(φ)|∇ψφ |2 + (φ − 1)2ψφV ′(ψφ)� dx = ⟨ρf,ψφ⟩, (2.10)

where the right-hand side denotes
N

i=1 Qiψφ(xi). Applying
this to −⟨ρf,ψφ⟩/2, we have

FPB
ele [φ] = −

1
2
⟨ρf,ψvac⟩ + ⟨ρf,ψφ⟩

−

Ω


ε(φ)

2
|∇ψφ |2 + (φ − 1)2V (ψφ)


dx.

Denoting by δφ and δφψφ, respectively, the variations of φ and
ψφ with respect to φ, we then obtain by (2.1) and the Chain
Rule that

δφFξ[φ]δφ =

Ω


2Pφ − γ0ξ∆φ +

γ0

ξ
W ′(φ) + 2ρw(φ − 1)UvdW


δφ dx +


Ω


−ε
′(φ)
2

|∇ψφ |2 − 2(φ − 1)V (ψφ)

δφ dx

+ ⟨ρ f , δφψφ⟩ +

Ω

�
∇ · ε(φ)∇ψφ − (φ − 1)2V ′(ψφ)� δφψφ dx

=


Ω


2Pφ − γ0ξ∆φ +

γ0

ξ
W ′(φ) + 2ρw(φ − 1)UvdW −

ε′(φ)
2

|∇ψφ |2 − 2(φ − 1)V (ψφ)

δφ dx, (2.11)

where in the last step, we used (2.10). Consequently,

δφFξ[φ] = 2Pφ − γ0ξ∆φ +
γ0

ξ
W ′(φ)

+ 2ρw(φ − 1)UvdW −
ε′(φ)

2
|∇ψφ |2

− 2(φ − 1)V (ψφ).

To summarize, we shall solve numerically the following
initial-boundary-value problem for φ = φ(x, t) andψ = ψ(x, t):

∂tφ = −2P φ + γ0


ξ∆φ − 1

ξ
W ′(φ)


− 2ρw(φ − 1)

×UvdW +
ε′(φ)

2
|∇ψ |2 + 2(φ − 1)V (ψ), (2.12)

− ∇ · ε(φ)∇ψreac + (φ − 1)2V ′ (ψreac + ψvac)
= ∇ ·

�
ε(φ) − εpε0

�
∇ψvac, (2.13)

where ψ = ψreac + ψvac, together with the boundary conditions
φ = 0 and ψ = ψ∞ on ∂Ω, and the initial condition φ(x,0)
= φ0(x) for all x ∈ Ω for some given function φ0 = φ0(x). To
speed up our computations, we shall first relax the total sol-
vation free energy with CFA (2.8) before switching to the PB
free energy. Relaxing the solvation free-energy functional with
CFA amounts to solving only the phase-field equation

∂tφ = −2P φ + γ0


ξ∆φ − 1

ξ
W ′(φ)



− 2(φ − 1)(ρwUvdW +UCFA), (2.14)

where UCFA is defined in (2.9).

C. Potential of mean force

We now consider the solvation of two solute objects (e.g.,
a protein and a ligand) and the effective, solvent-mediated
interaction of these two objects by the potential of mean force
(PMF) with respect to certain reaction coordinate and reference
state. Let us assume that the two solute objects consist of N1
and N2 atoms, with N1 + N2 = N the total number of solute
atoms, located at x1, . . . ,xN1 and xN1+1, . . . ,xN , respectively.
We also assume that the relative positions of all atoms in the
same object are fixed. We choose the reaction coordinate d
between these two solutes to be the distance between their
geometrical centers (N1

i=1 xi)/N1 and (N
i=N1+1 xi)/(N − N1).

We also choose the reference state to be that with d = dref = ∞,
i.e., the two solutes are at infinite separation.

For a finite coordinate d, let us denote by φd a correspond-
ing free-energy minimizing phase field. We define the (total)
PMF as the sum of its separate contributions67,82

GPMF
tot,ξ(d) = GPMF

geom,ξ(d) + GPMF
vdW(d) + GPMF

elec (d),
with

GPMF
geom,ξ(d) = Fgeom,ξ[φd] − Fgeom,ξ[φ∞],

GPMF
vdW(d) =FvdW[φd] − FvdW[φ∞]

+

N1
i=1

N
j=N1+1

U (i, j)
LJ (|xi − x j |),

GPMF
elec (d) =Fele[φd] − Fele[φ∞]

+
1

4πεpε0

N1
i=1

N
j=N1+1

QiQ j

|xi − x j | ,
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where a quantity at∞ is understood as the limit of that quantity
at a coordinate d ′ as d ′ → ∞, and where U (i, j)

LJ is the LJ po-
tential of interaction of solute atoms at xi and x j, respectively.
Any free energy (total or a component) at∞ can be computed
as the sum of the corresponding individual free energies for
the two solute objects, respectively. Note for a small reaction
coordinate d that the solute-solute vdW interaction, defined by
the double sum of U (i, j)

LJ (|xi − x j |), can be very large, dominat-
ing over all other parts in the total PMF. Therefore, in order to
better understand the solvent influence in the PMF for small
d, it is reasonable to look only at the PMF that excludes the
solute-solute vdW interaction.

We remark that, for a given reaction coordinate d, there
can be multiple, stable equilibrium phase fields φd that are
different local minimizers of solvation free-energy functional
(2.1). Such local minimizers describe different hydration states,
such as dry and wet states. Their different solvation free-
energy values define different branches of the PMF along
the reaction coordinate d and can lead to hysteresis.63,65–67,82

Strictly speaking, each of the branches is not a PMF; and
the true PMF should be the Boltzmann average of all such
branches.

D. Radially symmetric system of a single particle

We now consider the solvation of a single, charged particle
(e.g., an ion) by placing a point charge Q at the origin immersed
in an aqueous solvent. This corresponds to the case N = 1, x1
= O (the origin), σ = σ1, and ε = ε1. By the radial symmetry,
we assume now the system region is Ω = {x ∈ R3 : r = |x|
< R∞} for some large R∞ > 0, and that both the phase field
φ = φ(r) and the electrostatic potential ψ = ψ(r) only depend
on r = |x|. The phase-field, solvation free-energy functional is
now

Fξ[φ] = 4πP
 R∞

0
[φ(r)]2r2dr + 4πγ0

×
 R∞

0


ξ

2
|φ′(r)|2 + 1

ξ
W (φ(r))


r2dr

+ 4πρw

 R∞

0
[φ(r) − 1]2UvdWr2dr

+
1
2

Qψreac,φ(0) + 4π
 R∞

0
[φ(r) − 1]2

×


1
2
ψφ(r)V ′(ψφ(r)) − V (ψφ(r))


r2 dr, (2.15)

where ψφ = ψφ(r) is the electrostatic potential that depends on
φ. The corresponding reaction field ψreac,φ = ψφ − ψvac solves
PB equation (2.4), which is now

− d
dr


ε(φ)r2 dψreac,φ

dr


+ r2(φ − 1)2V ′(ψreac,φ + ψvac)

= − Q
4πεpε0

d
dr

(ε(φ)) , (2.16)

where we assumed that φ = 1 near r = 0. Since φ and ψφ
depend only on r , we can convert the integral in (2.11) to
obtain the corresponding relaxation dynamics for φ = φ(r, t)

and ψφ = ψφ(r, t),

∂tφ = −2Pφ + γ0


ξ

r2

d
dr

(
r2 dφ

dr

)
− 1
ξ

W ′(φ)


− 2ρw(φ − 1)UvdW +
ε′(φ)

2

(
dψφ
dr

)2

+ 2(φ − 1)V (ψφ), (2.17)

where we absorbed the factor 4π by rescaling the relaxation
time variable t, together with PB equation (2.16) for each
time t. We use the boundary conditions φ(0) = 1, φ(R∞) = 0,
ψ ′reac,φ(0) = 0, and ψreac,φ(R∞) = ψ∞ − ψvac(R∞), where ψ∞ is
now a given constant. We often choose

ψ∞ =
Qe−κ(R∞−R0)

4πεwε0(1 + κR0)R∞ ,
which is the value at R∞ of the Debye–Hückel potential (ana-
lytical solution to the linearized PB equation) for a sphere of
radius R0 with point charge Q at center immersed in the ionic
solution with κ being the inverse Debye length. We estimate R0
to be close to the LJ parameter σ. We choose our initial phase
field φ0 = φ0(r) to be

φ0(r) = 1
2
+

1
2

tanh
(

R0 − r
ξ/3

)
.

If we apply the linearized PB equation, then the last in-
tegral in Fξ[φ] in (2.15) vanishes. Moreover, we can compare
with the sharp-interface formulation in which a possible dielec-
tric boundary is determined by the radius R of the spherically
charged particle, and the solvation free energy becomes67

G[R] = 4
3
πPR3 + 4πγ0R2 + 16πρwε

(
σ12

9R9 −
σ6

3R3

)
+

Q2

8πε0R


1

εw(1 + κR) −
1
εp


. (2.18)

This simple one-dimensional function can be minimized nu-
merically with a very high accuracy. The optimal R can be used
as our R0 in ψ∞ and φ0(r).

In the case that κ = 0, i.e., the ionic effect is very small
and can be neglected, we can solve Poisson’s equation (2.16)
together with the boundary condition that ψ ′reac,φ(0) = 0 to
obtain

r2ψ ′reac,φ(r) = Q
4π

(
1
ε(1) −

1
ε(φ)

)
. (2.19)

This implies that r2ψ ′φ(r) = −Q/(4πε(φ(r))), where the value
at r = 0 is understood as the limit as r → 0. This limit exists
and is the same as limr→0 r2ψ ′vac(r) = −Q/(4πεpε0). Conse-
quently, since V = 0 in this case, Eq. (2.17) becomes

∂tφ = −2Pφ + γ0


ξ

r2

d
dr

(
r2 dφ

dr

)
− 1
ξ

W ′(φ)


− 2ρw(φ − 1)UvdW +
Q2ε′(φ)

32π2(ε(φ))2r4
, (2.20)

where we used the fact that φ(r) = 1, and hence ε′(φ(r)) = 0,
for r near 0. Note in this case that we do not need to solve
any equation for the electrostatic potential. Once we obtain a
stable equilibrium phase-field φ, we can obtain by (2.19) and
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the boundary condition ψφ(R∞) = Q/(4πεwε0) that

ψreac,φ(r) = Q
4πR∞

(
1

εwε0
− 1
εpε0

)
+

 R∞

r

Q
4πs2


1

ε(φ(s)) −
1
εpε0


ds.

Finally, the electrostatic energy is

Fele[φ] = 1
2

Qψreac,φ(0) = Q2

8πR∞

(
1

εwε0
− 1
εpε0

)
+

 R∞

0

Q2

8πs2


1

ε(φ(s)) −
1
εpε0


ds, (2.21)

where we note that φ(s) = 1 near s = 0. If R0 is the optimal,
sharp, dielectric boundary defined by φ(R0) = 1/2, and we
replace φ(s) by its sharp-interface version, φ(s) = 1 for s < R0
and φ(s) = 0 for s > R0, then we obtain exactly the Born
energy

Fele[φ] = 1
2

Qψreac,φ(0) = Q2

8πR0

(
1

εwε0
− 1
εpε0

)
.

III. NUMERICAL METHODS

A. Discretization and algorithm

We choose some L > 0 and set Ω = (−L,L)3. We choose
a positive integer Ng and cover Ω by a uniform grid with
Ng × Ng × Ng grid cells. All the grid points are labeled by
(i, j, k). We also choose a time step ∆t > 0 and set tn = n∆t
for n = 1,2, . . .. For a given function u = u(x, t), we denote
by u(n)(x) and u(n)

i, j,k
approximations of u(x, tn) and u(xi, j,k, tn),

respectively.
Given φ(n) and ψ(n), hence also ψ

(n)
reac = ψ

(n) − ψvac. We
approximate the left-hand side ∂tφ of Eq. (2.12) by (φ(n+1)
− φ(n))/∆t. We approximate φ by φ(n+1) in −2Pφ and γ0∆φ
and approximate φ and ψ by φ(n) and ψ(n) in all the other
terms on the right-hand side of (2.12). Once we get φ(n+1),
we use it to replace φ in PB equation (2.13) for solving for
ψ(n+1). After working out details, we obtain the following semi-
implicit scheme:

(1 + 2P∆t)φ(n+1) − γ0ξ∆t∆φ(n+1)

= φ(n) + ∆t

−γ0

ξ
W ′

(
φ(n)

)
− 2ρw

(
φ(n) − 1

)
UvdW

+
ε′
�
φ(n)

�

2
���∇ψ

(n)���
2
+ 2

(
φ(n) − 1

)
V

(
ψ(n)) , (3.1)

− ∇ · ε
(
φ(n+1)) ∇ψ(n+1)

reac +
(
φ(n+1) − 1

)2
V ′

(
ψ
(n+1)
reac + ψvac

)
= ∇ ·


ε
(
φ(n+1)) − εpε0


∇ψvac. (3.2)

These, together with the boundary conditions φ(n+1) = 0 and
ψ
(n+1)
reac = ψ∞ − ψvac on ∂Ω, determine uniquely φ(n+1) and

ψ
(n+1)
reac . For the nonlinear PB equation, we can use Newton’s

iteration with linearization around ψ(n) to solve (3.2). We use
the central difference scheme for spatial discretization of ∆φ
and∇ · ε(φ)∇ψ. The coefficient matrices of the resulting linear
systems are symmetric positive definite. We use the conjugate
gradient method or multigrid method to solve these systems
of equations. To speed up our computations, we shall first use

CFA and then switch to the PB equation. In a similar way, we
can discretize equation (2.14) to obtain

(1 + 2P∆t)φ(n+1) − γ0ξ∆t∆φn+1

= φ(n) + ∆t

−γ0

ξ
W ′ (φn) − 2 (φn − 1)

× (ρwUvdW +UCFA)

. (3.3)

Note that we choose some ζ ∈ (0,0.5) and after we solve
Eq. (3.1) or (3.3), set φ(n+1) = 1 at any grid point that is in-
side any ball B(xi,σi,cut) with σi,cut = max{1, ζσi} for each i
(1 ≤ i ≤ N).

We use two different types of initial phase fields φ(0)
= φ(0)(x). One is a tight wrap. It corresponds to a molecular
surface. The other is a loose wrap that corresponds to a large
surface (e.g., a sphere) that encloses all the solute atoms.
Practically, we use

φ(0)(x) = tanh
(

1
ξ

dist
�
x,∪N

i=1B(xi,ri)�
)
,

where B(xi,ri) is the ball of radius ri centered at xi and all ri
are adjustable parameters and modify φ(0) so that it takes the
value 1 close to any xi (1 ≤ i ≤ N).
Algorithm

Step 1. Input all the parameters. Set the geometrical center of
x1, . . . ,xN to be the origin. Define a uniform grid cov-
ering Ω = (−L,L)3 and choose a time step ∆t . Com-
pute UvdW(xi, j,k) and UCFA(xi, j,k) at all the grid points
xi, j,k that are not locations of any solute atoms. Choose
ζ ∈ (0,0.5). Generate an initial phase field φ(0).

Step 2. Choose an integer NCFA. For n = 0, . . . ,NCFA, solve
Eq. (3.3) with the boundary conditions φ(n+1) = 0 on
∂Ω. Set φ(n+1) = 1 at grid points that have distance
to xi smaller than max{1, ζσi} (1 ≤ i ≤ N). Set n
= 0 and φ(0) = φ(NCFA+1) and choose an error tolerance
parameter εtor.

Step 3. Solve Eq. (3.1) with the boundary condition φ(n+1) = 0
on ∂Ω. Set φ(n+1) = 1 at grid points that have distance
to xi smaller than max{1, ζσi} (1 ≤ i ≤ N). Then
solve PB equation (2.13) with the boundary condition
ψ(n+1) = ψ∞ on ∂Ω. If



φ

(n+1) − φ(n)


L2(Ω) +



ψ

(n+1)
reac − ψ

(n)
reac




L2(Ω) ≤ εtor,

then stop. Otherwise, set n := n + 1 and repeat this
step.

Step 4. Let φ and ψ be the solutions from last step. Compute
the free energy Fξ [φ]. Set {x ∈ Ω : φ(x) = 1/2} as the
equilibrium solute-solvent interface.

B. Convergence test

We first test our code for solving Equations (2.12) and
(2.13). They are both of the type

− ∇ · a∇u + bu = f in Ω, (3.4)
u = u∞ on ∂Ω, (3.5)

where a = a(x), b = b(x), f = f (x), and u∞ = u∞(x) are
smooth and bounded functions, and a is bounded below by
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FIG. 3. The log-log plot of the absolute
error in different norms vs. the number
of grid points Ng in one direction for
the first (left) and second (right) cases.
Red (bottom) line: Absolute error in
L1-norm. Blue (second to the bottom)
line: Absolute error in L2-norm of the
error. Black (top) line: Absolute error
in L∞-norm. Green line (second line
from top): line of slope 2 for compari-
son. A second-order convergence rate is
observed for both cases.

a positive constant and b is nonnegative. We set Ω = (−5,5)
× (−5,5) × (−5,5) and consider two cases. In the first case,
we mimic the coefficients in φ-equation (2.12) and set a
= 0.001, b = 1, u∞ = 0, and f is obtained by (3.4) with the
exact solution

u(x, y, z) = sin (πx) sin (πy) sin (πz) .
In the second case, we set a(x, y, z) = 80 + 70 sin (x + y + z),
b = (η − 1)2 with η(x, y, z) = sin (πx/10) sin (πy/10) sin(πz/
10), and f and u∞ by (3.4) and (3.5) with the exact solution

u(x, y, z) = sin
(
πx
10

)
sin

(
πy

10

)
sin

(
πz
10

)
+ x2 + (y − 1)(z + 3).

We discretize these equations using central finite difference
schemes and solve the resulting systems of equations using
a preconditioned conjugate gradient method. For each of the
two cases, we use a grid of Ng × Ng × Ng grid points with Ng
∈ {50,51, . . . ,147,148}. In Fig. 3, we plot in the log-log scale
the absolute errors of our numerical solutions in different
norms vs. the number of grid points Ng in one direction.
We see that our numerical method achieves a second-order
convergence rate as expected.

We now test our model and algorithm for a spherical
particle with a point charge Q at center immersed in an ionic
solution to demonstrate that our phase-field model “converges”
to the corresponding sharp-interface model as the numeri-

TABLE I. A comparison of numerical results obtained by minimizing the phase-field solvation free-energy
functional Fξ[φ] defined in (2.15) and the sharp-interface solvation free-energy functional G =G[R] defined in
(2.18) for the radially symmetric one-particle system. The sharp-interface results are presented in the last column.
See the text for the units.

Q

Optimal
radius/energy ξ = 0.1 ξ = 0.05 ξ = 0.02 ξ = 0.01 ξ = 0.005 Sharp interface

Rmin 3.039 3.043 3.047 3.047 3.047 3.054
Fsurf 20.313 20.361 20.412 20.414 20.407 20.511

0.0 FvdW −2.653 −2.603 −2.589 −2.569 −2.556 −2.644
Felec 0.000 0.000 0.000 0.000 0.000 0.000
Ftot 17.660 17.759 17.823 17.845 17.851 17.867

Rmin 2.953 2.958 2.960 2.960 2.960 2.961
Fsurf 19.189 19.247 19.269 19.266 19.266 19.275

0.5 FvdW −1.245 −1.189 −1.127 −1.090 −1.073 −1.067
Felec −23.356 123.270 −23.242 −23.241 −23.241 −23.236
Ftot −5.412 −5.212 −5.100 −5.066 −5.015 −5.028

Rmin 2.755 2.766 2.772 2.771 2.771 2.772
Fsurf 16.789 16.869 16.858 16.697 16.881 16.902

1.0 FvdW 4.978 4.882 4.900 4.998 5.067 5.048
Felec −100.154 −99.525 −99.299 −99.302 −99.289 −99.238
Ftot −78.387 −77.774 −77.541 −77.607 −77.340 −77.288

Rmin 2.561 2.581 2.593 2.592 2.593 2.594
Fsurf 15.089 14.902 14.825 14.648 14.795 14.800

1.5 FvdW 18.615 17.854 17.465 17.729 17.848 17.806
Felec −242.564 −239.969 −238.817 −238.826 −238.740 −238.586
Ftot −208.860 −207.213 −206.528 −206.449 −206.097 −205.980

Rmin 2.386 2.425 2.448 2.449 2.448 2.446
Fsurf 17.673 14.089 13.480 13.197 13.255 13.195

2.0 FvdW 42.473 39.522 37.503 37.994 38.444 38.449
Felec −465.014 −454.035 −449.668 −449.503 −449.464 −449.152
Ftot −404.867 −400.424 −398.685 −398.311 −397.765 −397.506
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TABLE II. Hydration free energies in kBT for single ions K+, Na+, Cl−, and F− obtained by PF-VISM and by
experiment. The second column lists experimental values of hydration free energies for these ions, with Espec from
Ref. 107 and Eave averaged from dozens of data sets collected in Ref. 104. The third column lists two different
sets of the LJ parameters ε and σ for each ion, with εspec, σspec designed in Ref. 106 and εave, σave averaged
over a few sets of data collected in Ref. 106. The fourth column is the amount of shift in the dielectric profile of
ε = ε(φ), cf. Eqs. (2.6) and (2.7) and Fig. 2. Numbers in the last three columns are our numerical values of the
hydration free energies for different numerical values of ξ.

PF-VISM

Ions Experiment ε and σ Shift ξ = 0.5 ξ = 0.1 ξ = 0.05

K+

εspec= 0.008 0 −148.86 −137.58 −129.29
Espec=−117.51 σspec= 3.850 1/3 −165.66 −157.03 −149.08

Eave=−133.72 εave= 0.201 0 −121.10 −108.26 −98.17
εave= 3.403 1/3 −134.53 −123.76 −116.06

Na+

εspec= 0.008 0 −175.55 −165.22 −159.40
Espec=−145.39 σspec= 3.49 1/3 −194.98 −188.09 −182.25

Eave=−160.25 εave= 0.182 0 −150.29 −140.17 −131.67
σave= 2.998 1/3 −166.55 −158.73 −152.07

Cl−

εspec= 0.207 0 −100.74 −85.56 −81.36
Espec=−135.43 σspec= 3.780 1/3 −112.28 −100.26 −81.54

Eave=−125.32 εave= 0.245 0 −99.29 −81.75 −80.83
σave= 3.780 1/3 −110.54 −98.40 −81.00

F−

εspec= 0.219 0 −126.23 −113.75 −103.90
Espec=−185.22 σspec= 3.30 1/3 −139.85 −130.34 −122.35

Eave=−174.50 εave= 0.232 0 −122.33 −109.69 −99.67
σave= 3.348 1/3 −135.77 −125.96 −177.73

cal parameter ξ → 0. We choose ξ = 0.1,0.05,0.02,0.01, and
0.005 in the unit Å and Q = 0.0, 0.5, 1.0, 1.5, and 2.0 in
the unit of elementary charge e. For each of these values Q
and ξ, we minimize the solvation free-energy functional Fξ[φ]
defined in (2.15) with the linearized PB electrostatics and
obtain the optimal radius Rmin, the minimum total free energy
Ftot, and all the corresponding components of the free energy:
the surface energy Fsurf, the solute-solvent vdW energy FvdW,
and the electrostatic energy Fele. The minimization is done by
solving Equations (2.17) and (2.16) with the corresponding
initial solution for φ and boundary conditions for both φ and
ψφ. The sharp-interface solvation free-energy functional with
the linearized PB electrostatics is given as a one-variable func-
tion G = G[R] defined in (2.18). We minimize it numerically
and obtain the optimal radius, total free energy, and all the
components of the free energy. We use the following parame-
ters: the pressure difference P = 0 bar, effective surface tension

γ0 = 0.175 kBT/Å2, solvent bulk density ρw = 0.0333 Å−3, LJ
parameters ε = 0.3 kBT and σ = 3.5 Å, dielectric coefficients
εp = 1 and εw = 80, and the inverse Debye length κ = 0.1 Å−1.
(For the case Q = 0 e, we set κ = 0 Å−1.) We summarize our
test results in Table I. It is clear that as ξ becomes smaller
and smaller, the corresponding optimal radii and total free
energies are closer and closer to those of the sharp-interface
model.

IV. RESULTS

A. Single ions: Solvation free energy
and dielectric boundary

We use our PF-VISM to calculate the hydration free ener-
gies for single ions K+, Na+, Cl−, and F− in water and compare
our results with experimental data. We shall show how the

TABLE III. PF-VISM hydration free energies in kBT for the anions Cl− and F− with the new LJ parameters
εnew= εave kBT andσnew=σave−0.5 Å, with comparison with experiment. All the other parameters and data are
the same as in Table II.

PF-VISM

Ions Experiment ε and σ Shift ξ = 0.5 ξ = 0.1 ξ = 0.05

Cl−
Espec=−135.43 εnew= 0.245 0 −128.45 −116.41 −106.72
Eave=−125.32 σnew= 3.280 1/3 −142.46 −133.16 −125.33

F−
Espec=−185.22 εnew= 0.232 0 −156.00 −148.23 −140.18
Eave=−174.50 σnew= 2.848 1/3 −171.79 −167.21 −160.93
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FIG. 4. A typical plot of the phase field, total force, and different force components. The horizontal axis is the radial axis r . From top to bottom: an equilibrium
phase field; the total force; the surface force; the vdW force; and the electrostatic force. Two different boundaries can be seen clearly in the interfacial region.

interplay between the ionic geometry, vdW dispersive force,
and the charge effect can contribute to the hydration free en-
ergy of a single ion through a few adjustable parameters. We
shall also show how the flexibility of a diffuse interface can
possibly describe microscopic properties in the solute-solvent
interfacial layer, particularly boundary locations for different
kinds of interfaces. Experimental data are used here more as
guidelines, as such data are very dispersive.104

For all of these ions, we use the following parameters and
data: T = 298 K; P = 0 bar; γ0 = 0.06 kBT/Å2; (this is calcu-
lated using the curvature correction 1 − 2δ/R to the usual pla-
nar surface tension value 0.175 kBT/Å2 with the Tolman length
δ ≈ 1 Å and with the ionic radius R ≈ 3 Å) ρw = 0.0333 Å−3;
Q = 1 e (elementary charge) for K+ and Na+ and Q = −1 e for
Cl− and F−; ε0 = 1.417 65 × 10−4 e2(kBT)−1 Å−1; εp = 1; εw
= 80; κ = 0 Å; (this approximation results from our assump-
tion that there are no other ions nearby in the system) and ξ
= 0.5,0.1,0.05 Å. We use two sets of ion-water LJ parameters
ε in kBT and σ in Å. One is averaged from 4–8 data sets
collected in Ref. 106 and will be denoted by εave and σave. The
other is optimally designed in the same work106 and will be
denoted by εspec and σspec. We converted the units of energy

to kBT . We compare two sets of experimental values of ionic
hydration free energies in kBT . One is averaged from a few
dozens of data collected in Ref. 104 and will be marked as
Eave. The other is from Ref. 107 and will be marked Espec. We
converted the units to kBT .

Due to the radial symmetry and since κ = 0, we need only
to solve φ-equation (2.20) without solving the ψ-equation and
evaluate the free energy by (2.21). We choose initially very fine
spatial finite difference grid (e.g., the grid size h = 0.001), very
small time step (e.g., ∆t = 0.000 01), and very large number
of total time iteration steps (e.g., 106–107). We then reduce
largely the number of grid points, increased the time step, and
reduced the total number of time iterations. For both sets of
these numerical parameters, we obtain almost the same results.
In average, we need only a few minutes to half an hour to finish
one run. Note that we do not shift our final phase-field dielectric
boundary to calculate the electrostatic free energy.

In Table II, we display our PF-VISM calculation results.
We observe that overall our PF-VISM predicted hydration free
energies agree with experimental data very well, with better
results for cations than anions. The best parameters for all the
ionic systems are the averaged LJ parameters εave, σave, the
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FIG. 5. Solute-solvent interfaces of the
two-plate system obtained by the PF-
VISM computation with the linearized
PB electrostatics. In each individual
part, a colored region is the solute region
without solvent. Outside the colored re-
gion is the solvent region. The col-
ored interface is defined as the 1/2-level
set of a phase-field function {x :φ(x, t)
= 1/2}, where φ(x, t) solves Eqs. (2.12)
and (2.13) with a tight initial (top) and
loose initial (bottom) phase field. The
separation distance is d = 12 Å. The
charges are (q1,q2)= (0 e,0 e) (left),
(q1,q2)= (0.1 e,0.1 e) (middle), and
(q1,q2)= (−0.1 e,0.1 e) (right).

amount of dielectric shift 1/3, and the numerical value ξ = 0.5.
By a more careful check, we find that the 10% reduction of ξ
from ξ = 0.5 to ξ = 0.05 leads to a 10%–5% reduction of the
free energy, consistent for all the systems. In a MD forcefield,
the ion-water LJ parameter σ for an anion can be in general
larger than that for a cation with the same crystal radius, since
a water molecule is often considered to be centered near the
center of oxygen. Therefore, we introduce the new LJ parame-
ters σnew = σave − 0.5 Å and εnew = εave for the anions Cl− and
F−. With such LJ parameters, we then obtain much better PF-
VISM estimates for the hydration free energies for the anions,
cf. Table III.

Fig. 4 shows a typical profile of a stable equilibrium
phase field φ obtained from solving Eq. (2.20), the corre-
sponding total force −δφFξ[φ] which is the right-hand side of
Eq. (2.20), and the different force components. They are the
surface force, vdW force, and electrostatic force corresponding
to the second, third, and fourth terms on the right-hand side of
Eq. (2.20). It is clear that within the interfacial region there are
two boundaries. One of them is where the magnitude of elec-

trostatic force reaches the maximal value and different forces
balance.

B. Two charged parallel plates: Potential
of mean force

We now consider a system of two parallel solute plates
in an aqueous solution. Due to its unique geometrical
features, such and similar systems have been used exten-
sively to study the hydrophobic interaction and charge
effect.41,43,54,55,58,61,65,67,82,108 The specific two-plate system we
study here is the same as that studied by MD simulations
in Ref. 41 and VISM with CFA in Refs. 61, 67, and 82.
Our system setup and results are similar to those in Refs. 67
and 82. Each plate consists of 6 × 6 fixed CH2 atoms with
the atom-to-atom distance 2.1945 Å. The plate has a square
length of about 30 Å. We use the following parameters: P = 0
bar; γ0 = 0.175 kBT/Å2; ρw = 0.0333 Å−3; εp = 1; εw = 80;
and κ = 0.1 Å−1; the solute-solvent LJ parameters for each
solute atom in the plate ε = 0.3 kBT and σ = 3.5 Å; and

FIG. 6. The two PMF branches corresponding to the wet (red and circles) and dry (blue and +), in certain range of d states for the two plates with different
charging patterns.
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FIG. 7. Different components of the
PMF for the two-plate system for dif-
ferent charge combinations (q1,q2) (see
legend) obtained by the PF-VISM with
loose initial surfaces.

ξ = 1. We assign the charges q1 and q2 to the center of each
solute atom in the first and second plates, respectively, with
|q1| = |q2|. The total charges of these two plates are 36q1
and 36q2, respectively. We choose the values of (q1,q2) to be
(0 e,0 e), (+0.1 e,−0.1 e), (+0.1 e,+0.1 e), (+0.2 e, −0.2 e),
and (+0.2 e,+0.2 e), respectively. We define the center-to-
center distance between these two parallel plates as the reaction
coordinate and denote it by d with the unit Å. For each of
a few selected d values, we use two different types of initial
phase fields. One is a tight wrap which consists of two surfaces
tightly wrapping up the two plates, respectively. The other
is a loose wrap, a large box containing both of the plates.

Once an initial phase field is chosen, we solve Eqs. (2.12) and
(2.13) on the computational box Ω = (−L,L)3 with L = 25 Å
to obtain a steady-state solution which in turn determines a
stable equilibrium solute-solvent interface.

In Fig. 5, we display our PF-VISM equilibrium solute-
solvent interfaces of the two-plate system with d = 12 Å,
tight initial phase fields (top) and loose initial phase fields
(bottom), and the charges (q1,q2) = (0 e,0 e) (left), (q1,q2)
= (0.1 e,0.1 e) (middle), and (q1,q2) = (−0.1 e,0.1 e) (right).
We see that the PF-VISM equilibrium surfaces obtained with
tight initials are all very similar to a molecular surface (i.e.,
SES). Moreover, it is clear that the PF-VISM with tight and

FIG. 8. Different components of the
PMF for the two-plate system for dif-
ferent charge combinations (q1,q2) (see
legend) obtained by the PF-VISM with
tight initial surfaces.
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FIG. 9. Conformations of BphC
obtained by PF-VISM computation
with PB electrostatics. Left: no partial
charges. Right: with partial charges.
Color on the right image indicates the
electrostatic potential distribution: blue
for positive and red for negative values.

loose initials predict wet and dry states, respectively, and
that the electrostatics wets the inter-plate region, agreeing
with MD simulations and previous level-set VISM calcula-
tions.41,43,61,65,67,82,108 Note that the dielectric boundary force
always directs from the high dielectric solvent region to the low
dielectric solute region, and the PB based continuum electro-
statics theory predicts such a force direction.105,109–111 This is
the reason that with the solute partial charges, the dielectric
boundary is pushed in to wet the system. The asymmetric
charges (q1,q2) = (−0.1 e,0.1 e) give rise to a stronger electric
field and hence a larger dielectric boundary force. It drags
more polar water into the void, and the system (bottom-right)
is wetter than that (bottom-middle) with symmetric charges
(q1,q2) = (0.1 e,0.1 e).

Fig. 6 shows the two different PMF branches for the two-
plate system with several, different values of partial charges.
These PMFs exhibit clearly the bimodal behavior and hystere-
sis of the system. For the neutral plates (cf. Fig. 5, left), a
strong hysteresis is present for 6 . d . 16 Å. Adding charges
influences the free-energy branches and hysteresis as shown
in Fig. 6 (middle and right). The charge effect with oppositely
charged plates is most significant as a strong electrostatic field
develops in between the hydrophobic plates.

In Figs. 7 and 8, we plot the different components of the
PMF with loose and tight initial surfaces, respectively. For the
loose initials (Fig. 7), the geometric part (i.e., the surface en-
ergy part) displays a strong attraction below a critical distance

dc at which capillary evaporation begins. This crossover dis-
tance decreases from dc ≃ 22 Å for (q1,q2) = (0 e,0 e) down to
8 Å for (q1,q2) = (−2 e,2 e). The value 22 Å is larger than 14 Å
predicted by the sharp-interface VISM where the curvature
correction was included. Note that the opposite charging has
a much stronger effect than like-charging due to the elec-
trostatic field distribution discussed above. Also, the solute-
solvent vdW part of the interaction is strongly affected by elec-
trostatics due to the very different surface geometries induced
by charging. Both curves GPMF

geom(d) and GPMF
vdW(d) demonstrate

the strong sensitivity of nonpolar hydration to local electrostat-
ics when capillary evaporation occurs and very “soft” surfaces
are present. For the surfaces resulting from the tight initials
(Fig. 8), the situation is a bit less sensitive to electrostatics as
the final surface is close to the molecular surface for dc & 8 Å.

C. Proteins BphC and p53/MDM2: Dry/wet states
and charge effect

1. Two-domain protein Bphc

The protein biphenyl-2,3-diol-1,2-dioxygenase (BphC) is
a key enzyme of biphenyl biodegradation pathway in Pseu-
domonos sp. The functional unit of this protein is a
homo-octamer, and each subunit consists of two domains. The
separation of the two domains in the native configuration in
crystal structure has the 0 Å separation (PDB code: 1dhy). It

FIG. 10. Cross sections of BphC ob-
tained by PF-VISM computation with
PB electrostatics. Left: the superposi-
tion of a wet state indicated by the black
curve and a dry state indicated by the
color maroon using the computed phase
field. Right: the electrostatic potential
distribution with blue for positive and
red for negative values.
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FIG. 11. A stable equilibrium conformation of the protein p53/MDM2 ob-
tained by our PF-VISM calculation with the PB electrostatics. Color indicates
the electrostatic potential distribution, with blue for positive and red for
negative values.

has been shown that the behavior of water molecules between
the two domains depends heavily on both nonpolar and polar
interactions with the protein.39 To demonstrate that our PF-
VISM can describe such behavior, particularly the charge
effect, here we consider the case that the two domains are
separated in 14 Å. We use the following parameters in our PF-
VISM calculations for this system: the effective surface tension
γ0 = 0.1 kBT/Å2, the bulk solvent density ρw = 0.0333 Å−3,
the dielectric constants εp = 1 and εw = 78, the inverse Debye
length κ = 0.1 Å−1, and the numerical parameter ξ = 1 Å.
We use the solute-solvent LJ parameters same as those in our
previous works.67,82

In Fig. 9, we display our PF-VISM surfaces for BphC
with the two domains separated at 14 Å, without (left) and
with (right) atomic partial charges. It is clear that, without
the charges, the necking region between the two domains is
largely dry, with water molecules being pushed away from
this region. When the charges are turned on, the electrostatic
force pushes the solute-solvent interface inward and the neck-
ing region is quite wet, filled with many water molecules.
In Fig. 10, we show some cross sections of the same three-
dimensional conformations displayed in Fig. 9. Fig. 10 (left)
is the superposition of the wet state indicated by the black
curve and the dry state indicated by the color maroon using
the computed phase field. Fig. 10 (right) is the distribution of
the corresponding electrostatic potential, with blue for positive
and red for negative values, for the case with the atomic partial

FIG. 12. A cross section of the p53/MDM2 obtained by our PF-VISM cal-
culation with the PB electrostatics, with blue for positive and red for negative
values.

charges included. We see again that the strong charge effect in
pushing water molecules into the necking region.

2. The protein complex p53/MDM2

The protein p53 is known as a tumor suppressor, and the
receptor protein MDM2 acts as a negative regulator of p53.
Hydration of the p53/MDM2 complex plays an important role
in its binding process. This system exhibits a strong hydropho-
bic character at the binding interface: 70% of the residues at
the binding interface are apolar.112,113 However, the edge of
the binding pocket is decorated by polar hydrophilic residues.
To study the heterogeneous hydration behaviors around the
protein during the p53/MDM2 binding, we choose the inter-
domain distance between these two proteins to be 5 Å. We use
the parameters γ0, ρw, εp, εw, κ, and ξ same as in the calculation
for BphC.

In Fig. 11, we display our PF-VISM surface of the com-
plex p53/MDM2, where the color code indicates the value of
electrostatic potential, with blue for positive and red for nega-
tive values. In Fig. 12, we show the distribution of electrostatic
potential in a cross section of this complex, with the same
color code. In Fig. 13 (left), we show the cross section of a
wet state of the system p53/MDM2 obtained by generating the
vdW surface. One observes some pocket regions. In Fig. 13
(right), we show the cross section of a dry state of the system

FIG. 13. A cross section of p53/MDM2
obtained by PF-VISM computation
with PB electrostatics. Left: a wet state.
Right: a dry state.
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p53/MDM2 obtained by our PF-VISM PB calculation using a
loose initial surface.

V. CONCLUSIONS

We have developed a PF-VISM with the PB electrostatics
for charged molecules in aqueous solvent. Central in this model
is a solvation free-energy functional of all possible phase fields,
consisting of solute-solvent interfacial energy, solute excluded
volume and solute-solvent vdW interaction energy, and the
electrostatic free energy. We have designed, implemented, and
tested efficient and accurate numerical methods for solving
the gradient-flow partial differential equations to relax such a
free-energy functional. Applications to the hydration of single
ions, solvent-mediated interactions of two parallel plates, and
solvation of protein complexes BphC and p53/MDM2 have
demonstrated that our phase-field approach is a good alterna-
tive to the level-set VISM in capturing dry and wet hydration
states, describing subtle electrostatic effects, and providing
qualitatively good estimates of solvation free energies. Note
that we do not shift our final, phase-field dielectric boundary
to calculate the electrostatic free energy.

A distinguished feature of our new phase-field approach is
its flexibility in describing the complex solute-solvent interfa-
cial structure. Our PF-VISM computations of the hydration of
single ions have shown that there are two different interfaces,
with one closely related to the electrostatic effect. While one
can question if the two boundaries will eventually merge after
the code runs much longer time, it is clear that such a two-
boundary interfacial structure is rather persistent. This may
provide a way to resolve the boundary-shift issue in the level-
set implementation, calling for further studies. Another quite
different aspect of our phase-field implementation of VISM
is that we need to adjust an additional numerical parameter
ξ. Usually, we use ξ = 1 or 0.5 Å. In principle, a very small
value of ξ will lead to results that are close to those by the
level-set VISM. But, for stable numerical computations in our
PF-VISM with a very small ξ value, we would need to use
many more spatial grid points, often not practical. Moreover, a
diffuse interface will not easily move in the computation with
a small ξ. A too large value of ξ may not be good either as
the term Sξ[φ] will not be close to the interfacial area. More
tests are therefore needed to determine optimal values of this
parameter ξ. Finally, in comparison with the level-set VISM,
we have not included the curvature correction to the surface
tension in our PF-VISM. Such inclusion may well increase the
computational cost.91,114 An optimal choice of the numerical
value of ξ may describe such curvature effect.

There are several issues that exist in the general VISM
approach, regardless of the level-set or phase-field numerical
realization. First, the efficiency of both implementations is
compatible, usually ranging from minutes to hours. Due to the
coupling with the electrostatics, we have to choose very small
time steps in the phase-field calculations, similar to that in the
level-set VISM calculations. In general, VISM is much more
efficient than MD simulations, hours vs. days or weeks. But, in
generating the optimal dielectric boundary, the current version
of either the level-set method or our phase-field method imple-
menting VISM is still much slower than generating a vdWS,

SES, or SAS. One possible way to speed up our computations
is to use the GPU computing.

Second, VISM is an implicit-solvent model. It has a mini-
mum number of parameters to adjust. These include the surface
tension, bulk solvent density, solute and solvent dielectric coef-
ficients, and solute-solvent LJ parameters in a forcefield of MD
simulations. For nonpolar systems, such LJ parameters work
well in VISM. But for charged molecules, errors can be large
with using some of the LJ parameters. In addition, the charge
asymmetry115–117 is a common issue in the continuum model-
ing of electrostatics. Therefore, determining VISM parameters
for charged systems is important and needs to be done.

Finally, introducing the fluctuations in our VISM ap-
proach is crucial to sampling different hydration states and
calculating accurately the free energy. VISM calculations can
often provide quickly both tight wrap and loose wrap surfaces
around an underlying charged molecule. Surface fluctuations
here will then be needed only in between such VISM surfaces,
making it possible to speed up the sampling process. Including
such fluctuations in either the level-set or phase-field imple-
mentation of VISM amounts to solving numerically stochastic
partial differential equations.118 We are currently working on
these computational modeling and implementation.
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