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Strain-Induced Quantum Phase Transitions in Magic-Angle Graphene

Daniel E. Parker ,1,2 Tomohiro Soejima (副島智大),2 Johannes Hauschild ,2 Michael P. Zaletel,2,3 and Nick Bultinck2,4
1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics, University of California, Berkeley, California 94720, USA

3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4Department of Physics, Ghent University, 9000 Ghent, Belgium

We investigate the effect of uniaxial heterostrain on the interacting phase diagram of magic-angle twisted 
bilayer graphene. Using both self-consistent Hartree-Fock and density-matrix renormalization group
calculations, we find that small strain values (ϵ ∼ 0.1%–0.2%) drive a zero-temperature phase transition 
between the symmetry-broken “Kramers intervalley-coherent” insulator and a nematic semimetal. The 
critical strain lies within the range of experimentally observed strain values, and we therefore predict that 
strain is at least partly responsible for the sample-dependent experimental observations.

Experiments on different twisted bilayer graphene
(TBG) devices, all close to the first magic angle, have
produced a broad variety of different low-temperature
phase diagrams. For example, at the charge neutrality point
(CNP), both semimetallic [1–6] and insulating [7–11] states
have been observed. The insulating devices are thought to
be divided into two groups. In the first group [7,8], one of
the graphene sheets is almost perfectly aligned with the
hexagonal boron-nitride substrate, which breaks the two-
fold rotation symmetry and therefore generates mass terms
for the Dirac cones [12–17] in the single-particle con-
tinuum model of TBG [18–20]. In the second group of
devices [9,11], those without substrate alignment, the
Coulomb interaction is believed to be responsible for the
insulating behavior. Both analytical and numerical studies
[21,22] of pristine TBG at the CNP indeed find an
insulating ground state due to spontaneous “Kramers
intervalley-coherent” (K-IVC) order [22]. The K-IVC state
is thus a promising candidate for the CNP insulators in
Ref. [9] as well as the jνj ¼ 2 insulators in general, but it
cannot explain the semimetals observed in Refs. [1,3–6].
Moreover, self-consistent Hartree-Fock (SCHF) predicts a
K-IVC gap of ∼20 meV [22], while experiments measure a
global transport gap of only ∼1 meV [9].

Thus, an important question is this: what weakens the
insulators in some experimental devices and destroys them
in others? Twist-angle disorder is expected to be at least
partly responsible for this phenomenon [23–26]. Another
possible culprit is the presence of strain in the graphene
sheets. Uniaxial heterostrain is characterized by a param-
eter ϵ, which scanning tunneling spectroscopy experiments
have found to be in the range ϵ ¼ 0.1%–0.7% [27–29].
Although these values seem small at face value, strain
contributes to the Hamiltonian as a perturbation of order
ϵℏvF=a, which is ∼20 meV for ϵ ¼ 0.5%—precisely the

energy scale at issue. Further evidence for the importance
of strain comes from symmetry considerations. In the
absence of strain, models at even-integer filling show that,
although the ground state has K-IVC order, there is a close
competitor whose energy is only slightly higher: a nematic
semimetal [22,28,30–32]. As elucidated in Ref. [30], the
semimetal has two Dirac points close to, but not at, the
mini-BZ Γ point, spontaneously breaking the threefold
rotational symmetry C3z. The shear part of uniaxial strain
breaks the C3z symmetry, and thus one expects on general
grounds that strain will lower the energy of the nematic
semimetal relative to the rotationally invariant insulating
states. However, despite this expectation, Refs. [22,30]
found that if strain is modeled using the phenomenological
method of Ref. [33], it cannot stabilize the semimetal.
This Letter provides a careful treatment of the effects of

strain on the correlated insulators using a more realistic
model for strained TBG [34]. We find that physical strain
values can drive a zero-temperature phase transition from
the K-IVC insulator to a semimetal at even-integer fillings.
Our results at charge neutrality are obtained using SCHF,
and our results at ν ¼ −2 (ν is the number of electrons per
moiré unit cell relative to charge neutrality) using both the
density-matrix renormalization group (DMRG) algorithm
and SCHF. Our DMRG considers both valley degrees of
freedom, which is essential for correctly identifying the
even-integer insulators. Similar to earlier works on single-
valley models [31,32], we find that DMRG and SCHF
agree remarkably well. In particular, DMRG confirms the
presence of K-IVC order at ν ¼ −2 in the absence of strain.

Continuum model with strain.—To add uniaxial strain to
the Bistritzer-MacDonald (BM) continuum Hamiltonian
[18–20], we follow Ref. [34]. Uniaxial strain is charac-
terized by the following symmetric matrix:
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S ¼
�
ϵxx ϵxy

ϵxy ϵyy

�
¼ RðφÞT

�
ϵ

−νPϵ

�
RðφÞ; ð1Þ

where νP ≈ 0.16 is the Poisson ratio of graphene. The angle
φ corresponds to the uniaxial strain direction, and RðφÞ is a
2 × 2 rotation matrix. Throughout this Letter, we take
φ ¼ 0, but we have verified that our conclusions do not
depend on the choice of φ. The strain magnitude is
determined by the dimensionless parameter ϵ, which in
the devices prepared for STM study has values in the range
ϵ ¼ 0.1%–0.7% [27–29,35]. Under the combined effect of
rotation and strain, the coordinates of the carbon atoms
in the two graphene layers l ¼ � of TBG transform as
Rl;i → ½Rðlθ=2Þ − ðl=2ÞS�Rl;i ≕MT

lRl;i where θ is the
twist angle. The coordinate transformation matrix MT

l is
correct to first order in both θ and ϵ. Note that we only
consider heterostrain, as it affects the electronic structure
much more strongly than homostrain [36].
The continuum Hamiltonian in the presence of uniaxial

heterostrain for the τ ¼ þ valley is given by

Hτþ ¼
�

Dþ TðrÞ
TðrÞ† D−

�
; ð2Þ

with Dl the monolayer Dirac Hamiltonians and TðrÞ the
interlayer tunneling (Hτ− is then fully specified by time
reversal). The Dirac Hamiltonians are given by

Dl ¼ −ℏvF½Mlð−i∇þAlÞ −K� · σ; ð3Þ

where σ ¼ ðσx; σyÞ are Pauli matrices acting in sublattice
space, and K ¼ ð4π=3a; 0Þ, with a the graphene lattice
constant, corresponds to the location of the τ ¼ þ valley.
Strain shifts the locations of the Dirac points via a “vector
potential”Al¼−ðl=2Þðβ ffiffiffi

3
p

=2aÞðϵxx−ϵyy;−2ϵxyÞ [37,38],
where β ∼ 3.14 characterizes the dependence of the tight-
binding hopping strength on the bond length.
The tunneling term TðrÞ in Eq. (2) has the same form as

in the original BM model, but we update the microscopic
parameters to follow recent density functional theory
calculations [39–41]. Specifically, we take differing intra
and intersublattice interlayer tunneling amplitudes wAA ¼
83 meV and wAB ¼ 110 meV. To account for nonzero
strain ϵ, the moiré reciprocal lattice vectors are deformed to
gj ¼ ½M−1þ −M−1

− �Gj, where Gj are the reciprocal vectors
of undeformed graphene.
As was shown in Ref. [34,36], uniaxial heterostrain has

three important effects on the BM band spectrum: (i) while
strain preserves C2T symmetry and hence the stability of
the two mini Dirac points, the threefold rotation symmetry
is broken and the two Dirac points move away from the K�
points toward the Γ point in the mini-BZ; (ii) the two Dirac
points are no longer degenerate but are separated in energy
by a few meV (thus creating small electron and hole

pockets at the CNP); and (iii) the bandwidth of the
“narrow” bands increases significantly—for ϵ as small as
0.6%, the bandwidth of the narrow bands is ∼50 meV.
Below, we investigate the effect of strain on the interacting
phase diagram of TBG.
Hartree-Fock at neutrality.—We model interacting TBG

as the BM Hamiltonian plus Coulomb interactions:

H ¼
X
k

f†khðkÞfk þ 1

2A

X
q

Vq∶ρqρ−q∶; ð4Þ

where A is the area of the sample, and f†k;s;τ;m creates an
electron with momentum k and spin s in the BM band m
in valley τ. The charge density operators are given by
ρq ¼ P

k f
†
kΛqðkÞfkþq, where the form factor matrices

½ΛqðkÞ�ðτ;mÞ;ðτ0;nÞ¼δτ;τ0 huτ;m;kjuτ;n;kþqi are defined in terms

of overlaps between the periodic part of the Bloch states
of the BM Hamiltonian. The interaction is given by a
gate screened Coulomb potential Vq ¼ R

dreiq·rVðrÞ ¼
tanhðdsqÞ½2ε0εrq�−1. We work with a gate distance of
ds ¼ 25 nm, and we let the dielectric constant εr vary
between 6 and 12. In Eq. (4), we also project into a
subspace where most or all of the remote BM valence
(conduction) bands are completely filled (empty), and m, n
run over only those bands whose filling is not fixed. The
single-particle Hamiltonian hðkÞ contains the BM band
energies, an HF contribution from the remote filled bands,
and a subtraction term [21,30]. For more details on the
definition of hðkÞ, see Ref. [32].
Without strain, Ref. [22] found that the ground state ofH

at ν ¼ −2, 0, 2 has a charge gap and spontaneously breaks
both the valley charge symmetry eiατz and the time-reversal
symmetry T ¼ τxK, where K denotes complex conjuga-
tion. However, the product T 0 ¼ eiπτz=2T is preserved.
Because T 0 ¼ τyK is a (spinless) Kramers time reversal,
the insulating ground state was dubbed the Kramers
intervalley-coherent (K-IVC) state [22].
Figure 1 shows the HF phase diagram at the CNP as a

function of twist angle and strain magnitude for both εr ¼ 6
and εr ¼ 12. (Note that, throughout this work, we allow HF
to break all symmetries except for the translation sym-
metry.) Two phases are clearly visible. The region in Fig. 1
with nonzero charge gap has K-IVC order. The gapless
region, on the other hand, corresponds to a semimetal (SM)
without spontaneous symmetry breaking. The HF band
structure of the SM has two Dirac cones close to the Γ point
and is therefore similar to the band structure of the strained
BM Hamiltonian (for more details, see [42]). The transition
from the K-IVC state to the SM in Fig. 1 occurs at strain
values ϵ ∼ 0.4%–0.6% with εr ¼ 6 and at ϵ ∼ 0.1%–0.2%
with εr ¼ 12. These critical values lie exactly in the range
of strain values observed in STM devices [27–29,35], from
which we conclude that strain plays an important role in
TBG. From Fig. 1, we also see that the K-IVC state is more



robust at larger θ. Because at ϵ ¼ 0 the energy difference
between the K-IVC state and the SM depends only weakly
on θ [22], we attribute this feature to the fact that the active
bands are less affected by strain at larger θ (in particular, the
Dirac points remain further away from Γ, and the change in
bandwidth is smaller).
In Fig. 2(a), we plot the K-IVC order parameter as a

function of ϵ. The order parameter is defined as
jΔK−IVCj ≔ ð1=NÞPk kPIVCðkÞk, where N is the number
of k values and PIVC is the intervalley (τ ≠ τ0) part
of the K-IVC correlation matrix ½PðkÞ�ðs;τ;mÞ;ðs0;τ0;nÞ ¼
hf†k;s0;τ0;nfk;s;τ;mi. We see that the transition occurs at ϵ� ∼
0.19% if we keep Nb ¼ 6 BM bands per spin and valley.
By increasing Nb, ϵ� shifts to slightly smaller values and
converges for Nb ¼ 12. Figure 2(a) shows a discontinuity
in jΔK−IVCj, implying that the transition is first order.
However, we also find that close to the transition, jΔK−IVCj
decreases by a factor of 20 (usingNb ¼ 12) compared to its

value at ϵ ¼ 0. We therefore cannot exclude that the weakly
first-order behavior is an artifact of HF.
Figure 2(b) shows the density of states (DOS) obtained

in SCHF for different ϵ, interpolating between the K-IVC
insulator and the SM. The dominant feature for both the
K-IVC and SM DOS is a pair of broad peaks separated by
∼50 meV. In the K-IVC phase, there is a finite window
around the Fermi energy where the DOS is zero, which
decreases with ϵ and vanishes at the transition. This is a
subtle feature, however, making it hard to sharply distin-
guish the SM from the K-IVC. A finer probe for the
properties of the SM is the (layer-resolved) local DOS
(LDOS) [42]. In Figs. 3(a),(b), we plot the LDOS of the SM
at energies E=W ¼ −0.11 and E=W ¼ 0.15, where W is
the HF bandwidth. The LDOS at the AA regions shows
strong C3z breaking. This strong C3z breaking results from
interactions, as it does not show up in the LDOS of the BM
ground state at the same energy ratios E=W0 ¼ −0.11
and E=W0 ¼ 0.15, where W0 is the BM bandwidth [see
Figs. 3(c),(d) and [42] ]. These properties of the HF LDOS
agree with STM experiments [27,28,43]. In particular,
Ref. [43] observed strong C3z breaking at the CNP but
not at ν ¼ 4. We calculated the LDOS at this filling, where
the active bands are fully filled, and indeed found almost no
reconstruction of the BM LDOS by interactions and, as a
result, no strong C3z breaking.
Finally, strain can be invoked to explain the degeneracies

of the Landau fan near the CNP [33,34] of the SM. At low
densities, quantum oscillations are governed by cyclotron
orbits around the mini Dirac points, with two Dirac points
for each of the four isospins. When mirror symmetry (C2x)
ensures that the two Dirac points are equivalent, the
resulting Landau fan will have the eightfold degeneracy
νϕ ¼ �4;�12;�20;…, which is observed, for example,
far from the magic angle. However, mirror symmetry is
broken by strain: for example, at ϵ ¼ 0.22% and εr ¼ 10,

FIG. 1. Particle-hole gap in the SCHF band spectrum at the
CNP as a function of both twist angle θ and strain ϵ, for εr ¼ 6
(left) and εr ¼ 12 (right). The results were obtained on a 18 × 18
momentum grid, keeping six bands per spin and valley. The
gapped regions have K-IVC order; the gapless regions corre-
spond to a symmetric SM.

(a) (b)

FIG. 2. (a) K-IVC order parameter jΔK−IVCj ≔
ð1=NÞPk kPIVCðkÞk at charge neutrality as a function of ϵ,
obtained with SCHF using θ ¼ 1.05°, εr ¼ 10, and Nb ¼ 6, 10,
or 12 bands per spin and valley. The calculations were done on a
24 × 24momentum grid. (b) DOS of the SCHF band spectrum on
a 36 × 36momentum grid using θ ¼ 1.05°, εr ¼ 10, andNb ¼ 6.
The edges of the K-IVC gap are indicated with red dots.

(a)

(c) (d)

(b)

FIG. 3. Normalized LDOS for θ ¼ 1.05° and ϵ ¼ 0.22%. (a),
(b) LDOS of the self-consistent SM (for εr ¼ 10) at E=W ¼
−0.11 and E=W ¼ 0.15, where W ∼ 65 meV is the HF band-
width. (c),(d) LDOS of the BM ground state at E=W0 ¼ −0.11
and E=W0 ¼ 0.15, where W0 ∼ 17 meV is the BM bandwidth.



we find that the two Dirac points in the same valley are
separated in energy by ΔD ∼ 10 meV. For generic B, this
halves the degeneracy, νϕ ¼ 0;�4;�8;�12;…, as
observed in most magic-angle experiments [2,3]. When
jνj ≳ 0.25, the cyclotron orbits of the two Dirac points
merge and form one connected orbit with a 2π-Berry phase.
Because the resulting Landau fan νϕ ¼ �4;�8;�12;…
has the same fourfold degeneracy as the ΔD-split Dirac
points, the conclusion is the same. However, we note that
some devices show a crossover from a low-B eightfold
degeneracy to a high-B fourfold degeneracy (for example,
at B ∼ 1 T in Ref. [44]). It may be that in devices where the
strain configuration happens to produce a small ΔD, the
mirror breaking manifests in the terms that are linear in B.
DMRG at ν ¼ −2.—While SCHF is a mean field

approach, we may further confirm the existence of a
strain-induced transition using unbiased DMRG calcula-
tions. In Ref. [22], it was argued that, in the absence of
strain, the ground state of the interacting Hamiltonian H at
fillings ν ¼ �2 is a spin-polarized version of the K-IVC
state at neutrality. This claim was further substantiated by
Refs. [45–47]. Following the methods developed in
Refs. [31,32,48], here we use infinite DMRG to study H
compactified onto a infinitely long cylinder of circum-
ference Ly moiré cells. SCHF finds that the ground state is
perfectly spin polarized for ϵ≲ 0.2%, so we accelerate our
DMRG calculations by assuming full spin polarization of
the narrow bands at ν ¼ −2 while keeping both valleys
[42]. Projecting into the narrow bands, our computational
basis for the four remaining active bands consists of hybrid
Wannier orbitals that are localized in the x direction but
have the well-defined momentum ky ¼ 2πn=Ly.
The ground state of the unstrained model at ν ¼ −2 is

expected to have K-IVC order and thus to spontaneously
break the Uð1Þ valley symmetry. The Hohenberg-Mermin-
Wagner theorem, however, forbids such continuous sym-
metry breaking on the quasi-1D cylinder geometry used by
DMRG [49,50]. Instead, the K-IVC phase will manifest as
algebraic long-range order [51] CKðxÞ ≔ hΔþ

KðxÞΔ−
Kð0Þi∼

x−ηðLyÞ, where Δ�
KðxÞ are operators at position x that have

valley charge �2 and satisfy T 0−1O�
KðxÞT 0 ¼ O∓

K ðxÞ [42].
The exponent ηðLyÞ depends on the circumference and
satisfies ηð∞Þ ¼ 0. An additional complication for identi-
fying the K-IVC phase using DMRG is that at any finite
DMRG bond dimension χ (i.e., numerical accuracy), the
ground state has exponentially decaying correlations. This
complication can be overcome by using “finite entangle-
ment scaling” [52–54] to characterize algebraic order via a
scaling collapse as χ → ∞. Denoting the finite-χ induced
correlation length as ξK [Fig. 4(c)], the K-IVC correlator
can be written as a general function CKðx; ξKÞ. In the
K-IVC phase, we expect this function to satisfy the scaling
relation CKðx; ξKÞ ¼ ξ−ηK CKðx=ξK; 1Þ, which allows us to
perform a scaling collapse of the data obtained at different
χ. In Fig. 4(a), we find an excellent data collapse for χ

ranging between 1024 and 3072, from which we conclude
that DMRG indeed finds a K-IVC ground state. Note that
we find a very small exponent ηð6Þ ∼ 0.06 [42], so there is
no regime of algebraic decay clearly visible in Fig. 4(a).
Figure 4(b) shows the effect of adding strain. Both the

correlation length ξK and summed correlator ΣC ≔P
x CKðxÞ measure the amount of K-IVC correlations in

the ground state. They are both order 1 for small strain and
decrease monotonically with ϵ. For ϵ≳ 0.07%, however, ξK
and ΣC plateau at a small value, indicating that the algebraic
K-IVC order is destroyed. For strain values larger than
∼0.07%, we find no evidence for symmetry breaking in the
DMRG ground state. In particular, we have verified that
DMRG does not double the unit cell, which excludes the
stripe phase discussed previously for single-valley models
[31,32]. The absence of symmetry breaking in DMRG is
consistent with HF, where we find a symmetric SM at large
ϵ [42]. Figure 4(b) plots the SCHF order parameter
jΔK-IVCj, which shows a transition from the K-IVC state
to the SM at a strain value ϵ ∼ 0.1%, close to where the
algebraic K-IVC order disappears in DMRG. While the
behavior of the DMRG correlation length is consistent with
a first-order transition, much larger bond dimensions—
and cylinder circumferences—would be needed to
decide this issue. To confirm that the large strain phase
found with DMRG is the same SM obtained in SCHF, we
compute the averaged single particle entropy S̄vN ≔
−ð1=NÞPk tr½PðkÞ lnPðkÞ�. This quantity is zero if the
DMRG ground state is a Slater determinant. Figure 4(b)
shows that S̄vN is negligibly small at ϵ≳ 0.07% (at smaller
ϵ, the Hohenberg-Mermin-Wagner theorem implies the
K-IVC state cannot be a symmetry breaking Slater deter-
minant in DMRG, so S̄vN is order unity). It thus follows that

(a) (b)

(c)

FIG. 4. DMRG results at ν ¼ −2 (spin polarized) at θ ¼ 1.05°
and εr ¼ 10. (a) Scaling collapse of the K-IVC correlator
CKðx; ξKÞ at ϵ ¼ 0. (b) Transition from K-IVC to SM with
strain. K-IVC correlation length ξK , average entropy S̄vN, the
DMRG K-IVC correlator ΣC ¼ 10

P
x CKðxÞ (scaled for visibil-

ity), and the HF K-IVC correlator jΔK−IVCj as a function of ϵ.
(c) Scaling of ξK with bond dimension at ϵ ¼ 0. DMRG
parameters: Ly ¼ 6, Φy ¼ 0, χ ≈ 2048 for (b), and the
Hamiltonian, Eq. (4), is represented to accuracy better than
0.1 meV. All quantities are defined in the text.



(i) SCHF and DMRG agree closely for all strain and are
essentially identical at large ϵ, and (ii) the transition in
DMRG is indeed from the K-IVC state to the SM.
Discussion.—The results presented in this Letter show

that strain is likely responsible for the semimetallic behav-
ior and strong C3z breaking observed at the CNP of most
TBG devices (for related discussions of the CNP physics,
see Refs. [55,56]). C3z breaking has also been observed in
TBG near ν ¼ −2 [4] and was discussed in various
theoretical contexts in Refs. [57–60]. From our DMRG
and SCHF results, we found that TBG couples strongly to
strain both at ν ¼ 0 and ν ¼ −2. Two important questions
that follow from this are (i) whether the strong coupling to
strain persists to ν ¼ −2 − δ with δ ∼ 0.1–0.9 (where
nematicity was observed in experiment [4]), and
(ii) whether strain is important for superconductivity.
Our findings also invigorate the question about the origin
of the insulating behavior consistently observed at ν ¼ −2,
as we find that within the model studied here, strain drives
the K-IVC–SM transition at roughly the same ϵ for both
ν ¼ 0 and ν ¼ −2. One possibility is that band structure
effects we have neglected, such as lattice relaxation [39,41]
or nonlocal interlayer tunneling [41,61], stabilize the
insulators at ν ¼ �2 at larger strain values.

We want to thank Eslam Khalaf, Shubhayu Chatterjee,
and Ashvin Vishwanath for helpful discussions. N. B.
would like to thank Glenn Wagner and Yves Kwan for
useful feedback on an earlier version of this manuscript.
N. B. was supported by a fellowship of the Research
Foundation Flanders (FWO) under Contract
no. 1287321N. D. E. P. was funded by the Gordon and
Betty Moore Foundation’s EPiQS Initiative Grant
No. GBMF8683. M. P. Z. was supported by the Director,
Office of Science, Office of Basic Energy Sciences,
Materials Sciences and Engineering Division of the U.S.
Department of Energy under Contract no. DE-AC02-05-
CH11231 (van der Waals heterostructures program,
KCWF16). J. H. was funded by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences,
Materials Sciences and Engineering Division under
Contract no. DE-AC02-05- CH11231 through the
Scientific Discovery through Advanced Computing
(SciDAC) program (KC23DAC Topological and
Correlated Matter via Tensor Networks and Quantum
Monte Carlo). This research used the Savio computational
cluster resource provided by the Berkeley Research
Computing program at the University of California,
Berkeley (supported by the UC Berkeley Chancellor,
Vice Chancellor for Research, and Chief Information
Officer).

[1] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi,
E. Kaxiras et al., Correlated insulator behaviour at

half-filling in magic-angle graphene superlattices, Nature
(London) 556, 80 (2018).

[2] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional super-
conductivity in magic-angle graphene superlattices, Nature
(London) 556, 43 (2018).

[3] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K.
Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R.
Dean, Tuning superconductivity in twisted bilayer gra-
phene, Science, 363, 1059 (2019).

[4] Y. Cao, D. Rodan-Legrain, J. M. Park, F. N. Yuan, K.
Watanabe, T. Taniguchi, R. M. Fernandes, L. Fu, and P.
Jarillo-Herrero, Nematicity and competing orders in super-
conducting magic-angle graphene, arXiv:2004.04148.

[5] X. Liu, Z. Wang, K. Watanabe, T. Taniguchi, O. Vafek, and
J. I. A. Li, Tuning electron correlation in magic-angle
twisted bilayer graphene using Coulomb screening,
arXiv:2003.11072.

[6] J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P.
Jarillo-Herrero, Flavour Hund’s coupling, correlated chern
gaps, and diffusivity in Moiré flat bands, arXiv:2008.12296.
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double-layer graphene, Proc. Natl. Acad. Sci. U.S.A. 108,
12233 (2011).

[19] E. S. Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z.
Barticevic, Flat bands in slightly twisted bilayer graphene:
Tight-binding calculations, Phys. Rev. B 82, 121407(R)
(2010).

[20] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro
Neto, Continuum model of the twisted graphene bilayer,
Phys. Rev. B 86, 155449 (2012).

[21] M. Xie and A. H. MacDonald, Nature of the Correlated
Insulator States in Twisted Bilayer Graphene, Phys. Rev.
Lett. 124, 097601 (2020).

[22] N. Bultinck, E. Khalaf, S. Liu, S. Chatterjee, A. Vishwanath,
and M. P. Zaletel, Ground State and Hidden Symmetry of
Magic-Angle Graphene at Even Integer Filling, Phys. Rev.
X 10, 031034 (2020).

[23] A. Uri, S. Grover, Y. Cao, J. A. Crosse, K. Bagani, D.
Rodan-Legrain, Y. Myasoedov, K. Watanabe, T. Taniguchi,
P. Moon, M. Koshino, P. Jarillo-Herrero, and E. Zeldov,
Mapping the twist-angle disorder and landau levels in
magic-angle graphene, Nature (London) 581, 47 (2020).

[24] U. Zondiner, A. Rozen, D. Rodan-Legrain, Y. Cao, R.
Queiroz, T. Taniguchi, K. Watanabe, Y. Oreg, F. von Oppen,
A. Stern, E. Berg, P. Jarillo-Herrero, and S. Ilani, Cascade of
phase transitions and dirac revivals in magic-angle gra-
phene, Nature (London) 582, 203 (2020).

[25] J. H. Wilson, Y. Fu, S. D. Sarma, and J. H. Pixley, Disorder
in twisted bilayer graphene, Phys. Rev. Research 2, 023325
(2020).

[26] B. Padhi, A. Tiwari, T. Neupert, and S. Ryu, Transport
across twist angle domains in Moiré graphene, Phys. Rev.
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