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A Model of Rapid Memory Formation in the Hippocampal System
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International Computer Science Institute
1947 Center Street, Suite 600
Berkeley, CA 94704 USA

Abstract

Our ability to remember events and situations in our daily
life demonstrates our ability to rapidly acquire new memories.
There is a broad consensus that the hippocampal system (HS)
plays a critical role in the formation and retrieval of such mem-
ories. A computational model is described that demonstrates
how the HS may rapidly transform a transient pattern of activity
representing an event or a situation into a persistent structural
encoding via long-term potentiation and long-term depression.

Introduction

Our ability to remember events and situations in our daily life
and acquire facts after reading a newspaper demonstrates our
ability to rapidly acquire new memories. This form of memory
has been the focus of considerable research in psychology and
cognitive neuroscience and has been characterized variably as
declarative, locale, and explicit. There is a broad consensus
that this form of memory is distinct, both in its functional
properties and its neural basis, from other forms of memories
such as memories of perceptual-motor skills, priming, and
classical conditioning (for areview see Cohen & Eichenbaum,
1993; Squire, 1992).

Memories of events and situations are acquired rapidly. It
is reasonable to assume that the construal of an experience
in terms of an event or a situation is initially expressed as
a pattern of activity over neural structures. This expression,
however, is per force transient, and hence, the neural encoding
of a memorable event or situation must be transformed rapidly
from a transient pattern of activity into a persistent structural
encoding, or else it would be lost.

A battery of neuropsychological, neuroanatomical, neuro-
physiological, and imaging data suggests that the hippocampal
system (see below) plays a critical role in the encoding and re-
call of events and situations. Several studies have shown that
human patients with bilateral damage to the HS suffer from
severe amnesia and are unable to remember events that oc-
curred just a few minutes ago (e.g., Scoville & Milner, 1957).
Such patients, however, can still acquire procedural skills and
demonstrate priming effects. Studies of animal models (e.g.,
O’Keefe & Nadel, 1978; Squire & Zola-Morgan, 1991) also
provide support for the putative role of the HS.

A number of researchers have proposed models to explain
and understand the functionality of the HS based memory
system. These include system-level models that attempt to
describe the functional role of the HS (e.g., Cohen & Eichen-
baum, 1993; Squire & Zola-Morgan, 1991) as well as com-
putational models that attempt to explicate how the HS might

680

realize its putative function (e.g., Marr, 1971; Treves & Rolls,
1994; Lynch & Granger, 1992; Gluck & Myers, 1993; Has-
selmo, 1997; Schmajuk & DiCarlo, 1992; O’Riley & McClel-
land, 1994). This work has greatly enhanced our understand-
ing of the HS and its role in memory formation and retrieval,
but it has not dealt with some critical representational prob-
lems associated with the encoding and retrieval of specific
events and situations. We discuss some of these problems
below.

Representational Requirements of Encoding Events
and Situations

Typically, memories of events and situations record who did
what to whom where and when. Alternately, they may de-
scribe a state of affairs wherein multiple entities occur in a
particular configuration or relationship, or record the state of
an entity. In each of these cases an event or a situation may
be viewed as a relational instance consisting of a collection
of bindings between the roles of a generic relation and the
entities that fill these roles in the given event or situation. For
example, the event “John gave Mary a book on Tuesday™ may
be viewed as an instance of the generic relation GIVE with the
role-entity bindings:

(GIVE: (giver=John),
(recipient=Mary),
(give-object=a-Book),
(temporal-location=Tuesday))

There exists a vast body of work in traditional as well as
cognitive linguistics that demonstrates how various aspects
of conceptual knowledge can be expressed using appropriate
relational structures composed of role-entity bindings. Such
structures have been variably referred to as frames, schemas,
scripts, and predicates.

The fact that an event or a situation is essentially a collection
of role-entity bindings gives rise to a number of representa-
tional requirements.

First, it entails that a memory of events and situations must
be capable of encoding and subsequently detecting role-entity
bindings. A memory that only binds together the entities that
occur in an event, but does not encode which entity fills which
role, cannot function properly since it cannot distinguish be-
tween events such as “John gave Mary a book” and “Mary
gave John a book”. Observe that these two events are distinct
even though they involve the same roles and entities because
some of the entities fill different roles in the two events.

Second, the encoding of an event or a situation should
respond positively to partial cues, but at the same time, it
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must respond negatively to a cue that specifies incompatible
bindings — even if the cue is otherwise highly similar to
the memorized event. For example, while the encoding of
the event “John gave Mary a book in front of the library on
Tuesday” must respond positively to the partial cue “Did John
give Mary a book?”, it must respond negatively to the highly
similar but erroneous cue “Did Susan give Mary a book in
front of the library on Tuesday?”’ These two requirements
— the recognition of partial cues and the rejection of similar
but erroneous cues — together entail that the encoding of an
event or a situation should be capable of actively detecting
errors (mismatches) between the bindings specified in a cue
and those specified in the memorized event or situation. An
encoding of the event “John gave Mary a book on Tuesday”
that only detects binding matches and cannot detect binding
errors will be unable to distinguish between the erroneous cue
“Did John give Mary a book on Friday?" and the partial but
matching cue “Did John give Mary abook?” To thisencoding,
the partial and the erroneous cues would appear similar since
both contain three matching bindings. Hence the encoding
of an event or a situation must also incorporate binding error
detectors.

Third, the encoding of an event or a situation should sup-
port recall and respond to wh-queries by selectively retrieving
entities that fill a specified role in the memorized event or
situation. For example, the encoding of the event “John gave
Mary a book on Tuesday” must selectively activate “Mary™ in
response to the wh-query “To whom did John give a book on
Tuesday?” Hence the encoding must also include binding ex-
tractor circuits that can activate entities that fill specific roles
within the memorized event or situation.

To summarize, the memorization of an event or a situation
requires the rapid formation of: binding detectors, binding
error detectors, circuits for integrating the responses of these
detectors, and circuits for extracting role-fillers from bindings.
Existing HS based memory models as well as purely compu-
tational models of rapid memorization proposed by Feldman
(1982) and Valiant (1994) do not satisfy these representational
requirements.

A Model of Memory Formation in the HS

The proposed model SMRITI' (Shastri, 1997) addresses the
representational requirements discussed above and demon-
strates how a system like the HS might rapidly transform a
transient pattern of activity representing an event or a situation
into a persistent encoding capable of supporting recognition
and recall. This transformation leads to the rapid formation
of distributed structures for detecting bindings and binding
errors, integrating the outputs of these detectors, and perform-
ing binding extraction. The resulting encoding can recognize
highly partial patterns, exhibit a high-degree of pattern sepa-
ration, and respond to wh-queries.

While itis relatively straightforward to imagine how the HS
might learn isolated binding detectors and binding extractors
using associative learning, the concurrent learning of such
detectors for all of the role-entity bindings pertaining to an
event is problematic since cross-talk among active roles and

'"The name is derived from the Sanskrit word for “memory™. It is

also an acronym for a “System for the Memorization of Relational
Instances from Transient Impulses”.
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entities can lead to the formation of spurious binding detectors
and extractors.

The formation of binding error detectors is even more prob-
lematic given their paradoxical behavior. The crux of the
problem is this: The formation of a binding error detector for
the binding of a role r and an entity f must occur in response
to the coincident activity of r and f. But subsequent to its
formation, the binding error detector must not fire anymore
in response to the coincident activity of r and f — the very
activity that led to its formation. Instead, it must fire in re-
sponse Lo the firing of r in the absence of the coincident firing
of f. It is not obvious how such a detector might be learned
rapidly withina neural circuit. One of the contributions of the
present work is that it demonstrates how circuits that behave
like binding error detectors can be learned rapidly within the
HS vialong-term potentiation (LTP) and long-term depression
(LTD).

The model’s architecture parallels the circuitry of the HS
and provides a rationale for various components of the HS and
their idiosyncratic interactions. It also predicts the memory
deficits that would result from selective damage to compo-
nents of the HS.

The encoding is sparse, but at the same time, it is physi-
cally distributed and redundant. While the sparseness of the
encoding enables the model to memorize a large number of
events, the physically distributed and redundant nature of the
encoding makes the model robust against significant amounts
of cell loss.

After a brief review of the HS architecture and the LTP
and LTD phenomena, the paper describes the proposed model
emphasizing its functional architecture and the mapping be-
tween its components and those of the HS. Finally, the paper
lists some behavioral deficits predicted by the model. Limited
space precludes a circuit level description of the model; such
a description may be found in Shastri (1997).

The Hippocampal System

The hippocampal system (HS) refers to a collection of medial
temporal lobe structures consisting of the entorhinal cortex
(EC) and the hippocampal formation (HF). The HF in turn
consists of the Ammon’s horn, the dentate gyrus (DG) and the
subicular complex (SC). Ammon'’s horn and DG together form
a distinctive sea-horse shaped structure that arches around
the mesencephalon and is referred to as the hippocampus.
Ammon’s horn in turn consists of distinct regions labeled
CAl, CA2, and CA3.

Figure 1 depicts a schematic of the major pathways inter-
connecting the components of the HS. The EC acts as the
principal gateway between the HS and other cortical areas;
it funnels cortical outputs into the HF and in turn, relays the
output of the HF back to cortical areas. EC receives direct
and massive projections from higher-order polymodal asso-
ciational areas (e.g., Van Hoesen, 1982) as well as major
projections from the perirhinal and parahippocampal cortices.
The latter in turn receive inputs from higher-order visual areas
and several polymodal associational areas. Thus EC appears
to be the locus of converging polymodal and high-level ac-
tivity and it is plausible that this activity corresponds to a
transient high-level representation of an agent's construal of
its experience in terms of events and situations.



-
R
Higher order
sensory and
polysensory

aasvciabon
wreas

CA2

Al

G
sC

EC

Figure 1: Architecture of the hippocampal formation (after
Amaral, 1993). See text for abbreviations.

The major pathways connecting the components of the HS
form an idiosyncratic network. These connections give rise to
a large number of distinct pathways that start and terminate in
EC. Thus the major pathways of the HS form a complex loop
around the HS, 2

The HS also interacts with several other brain regions. For
example, the HS receives afferents from the amygdala which
is implicated in the autonomic and emotive aspects of behav-
ior and cognition and the septal nuclei which in turn receive
inputs from the reticular formation, a brain-stem network me-
diating arousal. These inputs are believed to play an important
regulatory role and may provide a global control signal that
enables or disables learning (Hasselmo, 1997).

LTP and the Emergence of Committed Cells

Long-term potentiation (LTP) involves long-term increase in
synaptic strength resulting from the pairing of presynaptic
activity with postsynaptic depolarization, and has emerged as
the most promising cellular mechanism underlying activity
dependent memory formation (Lynch & Granger, 1992).

LTP involves the unusual receptor NMDA which is acti-
vated by the neurotransmitter glutamate, but only if the post-
synaptic membrane is already depolarized. Once the NMDA
receptor is activated, calcium ions flood into the postsynaptic
cell and lead to a complex series of biochemical changes that
result in the induction of LTP. The two conditions required
for the activation of the NMDA receptor can be brought about
by converging inputs arriving at a cell in close temporal prox-
imity; one input can lead to postsynaptic depolarization and
the other can cause the release of glutamate. Consequently,
NMDA mediated LTP can form the basis of associative learn-
ing in neural circuits. LTP possesses several properties that
make it suitable for rapid memory formation. It is induced
very rapidly — within a few seconds, it is synapse specific,
and once stable, it can persist for a long time.

In addition to potentiation, synapses can also undergo ac-
tivity dependent long-term depression (LTD). The following
describes how different forms of LTP and LTD have been
modeled in SMRITI using four parameters, namely, Aw, w, k,
and isp.

2CA2 is often merged with CA3 when describing the rat hip-
pocampal circuitry. In humans and other primates, however, CA2
forms a distinct region.

682

Associative LTP  Coincident pre-synaptic activity at a pair
of synapses r and y that share the same post-synaptic cell can
lead to their LTP. Synaptic efficacy is modeled as a weight
and Awy, specifies the increase in weight upon potentiation.
The parameter w specifies the maximum duration by which
impulses arriving at x and y can lead/lag one another and still
be considered synchronous. Repeated synchronous activity
at r and y is required for the induction of LTP. The param-
eter k specifies the number of times z and y must receive
synchronous impulses for the induction of LTP. Finally, isp
specifies the maximum permissible gap between the arrival of
successive impulses at z (or y) in the above repetition.

Homosynaptic LTP Repeated activation arriving at a
synapse can also cause its weight (o increase by Awiy,. This
is referred to as homosynaptic LTP. As before, k specifies
the number of impulses & must receive before homosynaptic
LTP is induced, and 2sp specifies the maximum permissible
gap between successive impulses arriving at z in the above
repetition.

Heterosynaptic LTD When a synapse undergoes LTP,
neighboring synapses on the same post-synaptic cell may un-
dergo heterosynaptic LTD if they do not receive sufficient
pre-synaptic activity. Upon undergoing LTD, the weight of a
synapse decreases by Awj¢q.

Homosynaptic LTD A synapse receiving low-level pre-
synaptic activity may undergo homosynaptic LTD if the low
level of presynaptic activity is accompanied by post-synaptic
hyperpolarization. Upon undergoing LTD, the weight of a
synapse decreases by Awyq.

Emergence of Committed Cells and Circuits

LTP and LTD can lead to an activity dependent transforma-
tion of a quasi-random network into a structure consisting of
cells and circuits that are committed to specific functionali-
ties. Typically, a cell receives a large number of afferents and
hence, can participate in a potentially large number of func-
tional circuits. If however, the weights of selected synapses
impinging on the cell increase (say, via LTP) and optionally,
the weights of other synapses decrease (say, via LTD), then
the cell becomes highly selective and participates in only a
small number of functional circuits. When this happens, we
say that the cell has become committed. The process of com-
mitment can also be viewed as a neurally plausible realization
of the notion of long-term recruitment (Feldman, 1982).

Figure 2 describes how the cell C' may become committed
to the functional circuit A&B;. We assume that initially
C' is uncommitted and its synapses have low efficacy. The
coincident activity of A and B results in the associative LTP
of synapses formed by the afferents from A and B, and the
heterosynaptic LTD of synapses formed by afferents from
other B;s. If we assume that the firing of C requires inputs
at two or more potentiated synapses, then C fires if and only
if both A and B, fire concurrently. In other words, C' now
behaves as the circuit A&B;. Observe that if A corresponds
to a role and B;s correspond to some entities then C' can be
viewed as a binding detector for the binding (A = B)).

The encoding of relational instances involves the commit-
ment of more complex circuits for detecting and integrating
binding errors. Shastri (1997) describes how local feedback



7

heterosynaplic
LTD

. associative
LTP

— a

Figure 2: Cell C becomes committed to the circuit A&B,. A
“** indicates that the source is firing,

and feedforward circuits of the sort known to exist in the HS
can get committed to form such functional units.

An Overview of SMRITI

At amacroscopic level, the overall functioning of SMRITI may
be described as follows. It is assumed that our cognitive
apparatus construes our experiences in terms of events and
situations as a result of complex interactions between sensory,
perceptual, categorical, linguistic, and inferential processes.
These construals are expressed as transient and distributed
patterns of activity over high-level cortical circuits (HLCC).
The HLCCs in turn project to EC and give rise to transient
patterns of activity in EC. The resulting activity in EC can be
viewed as the presentation of an event or a situation to the HS
by a HLCC for possible memorization. Alternately, a HLCC
may present an event or a situation to the HS as a “query” and
expect a certain type of response if the query matches one of
the items previously memorized by the HS, and a qualitatively
different type of response if it is novel.

The activity injected into EC by a HLCC propagates around
the complex loop consisting of EC, DG, CA3, CA2, CAl, SC,
and EC, and triggers a sequence of synaptic changes involving
LTP and LTD. As a result of these changes, the event or
situation presented to the HS is transformed from a transient
pattern of activity into a persistent structural encoding. The
structures committed during this transformation behave as
distributed circuits for detecting and integrating bindings and
binding errors, and extracting role-fillers from bindings.

The pattern of activation in EC resulting from the activity
arriving from CAl and SC constitutes the response of the
HS. The reentrant activity in EC in turn propagates back to
the HLCCs. Note that the full blown neural expressions of
roles, entities, and generic relations involved in an event or a
situation lie outside the HS.

Functional Architecture of SMRITI

Figure 3 shows the functional architecture of SMRITI and iden-
tifies how its components might map onto the HS. The mem-
orization of an event or situation involves the rapid formation
of:
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Figure 3: The functional architecture of SMRITI.

e linking cells in EC that connect entities, roles, and generic
relations in HLCCs to the HS,

o binding detector cells in DG,

binding error detector circuits in CA3,

binding error integrator cells in CA2,

relational instance match circuits in CAl, and

binding extractor cells in SC.

As described in Shastri (1997) the above cells and circuits

emerge from loosely organized quasi-random network struc-
tures as a result of LTP and LTD.

The Transient Encoding of an Event or a Situation

The model posits that the dynamic (active) representation of
an evenlt or a situation is a transient pattern of rhythmic activity
wherein arole-entity binding is expressed by the synchronous
firing of cells associated with the bound role and entity as
described in Shastri & Ajjanagadde (1993). It is assumed that
each generic relation is encoded as a focal cluster in some
HLCC. The cluster for an n-place generic relation P contains
n role nodes, an enabler node (?P), and two collector nodes
(+P and —P). The significance of the ?P, +P and —P nodes is
as follows: Assume that the roles of P are dynamically bound
to some fillers. The activation of 7P means that the HLCC is
querying whether or not the currently active instance of P is
already encoded in the HS. In contrast, the HLCC activates
+P to assert the currently active dynamic instance of P, or
it activates —P to assert the negation of the currently active
instance.’ In response to a query about an instance of P, the
HS activates the positive (negative) collector if the encoding
of the instance (or its negation) exists in the HS.

The activity pattern shown in Figure 4 depicts the transient
activity within an HLCC corresponding to an event RI given
by: (Ry : (r1 = fi), (rz = f2)) where R, isagenericrelation,
ry and r; are roles, and f; and f; are entities bound to ry and
ry respectively. It is assumed that the cells associated with
ry and f; fire in synchrony and so do cells associated with
ry and f;. The firing of these two groups of cells however
is desynchronized with reference to each other. The transient
representation of the query (R : (ri = fi),{ra = f2))? is
similar except that the enabler cells ?¢;, ?f;, and ?f, are
active instead of the collector cells + Ry, +f;, and +f;.

3 An example of a negation being asserted is “John did not give a
book to Mary."
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Figure 4: Transient encoding of the relational instance (F, :

(rm=f)(r2= f2))

Stepping Through the Model

Interactions between EC and HLCC As a result of the
activity arriving in EC from HLCCs, cells in certain regions
of EC become committed to the collector nodes of entities
and generic relations in the HLCCs. Similarly, cells in other
regions of EC become committed to the enabler nodes of
these entities and generic relations. At the same time, cells
in a third region of EC become committed to the role nodes.
Finally, links between the cells committed to a collector node
and cells committed to the corresponding enabler node get
potentiated. The commitment of cells in EC to particular
generic relations, entities, and roles occurs the very first time
the generic relation, entity, or role appears in a relational
instance presented to the EC by a HLCC. Subsequently, a
committed cell in EC fires whenever the HLCC node it is
committed to, fires. Thus the resulting activity of committed
enabler, collector, and role cells in EC in response to activity
in HLCCs is similar to that shown in Figure 4.

Interactions within the HS Role and Zentity cells project
to a large number of cells in DG. As a result of the syn-
chronous activity of those role and ?entity cells in EC that
correspond to bound roles and entities in R1, certain uncom-
mitted cells in DG receive convergent activity from r| and
?f cells and become committed to serve as their binder cells.
Similarly, for r; and f>. We refer to such committed DG cells
as binder((ry = fi)) and binder((ry = fa)) cells, respec-
tively. Subsequent to their commitment, binder((ry = fi))
cells will fire whenever r; and ?f; in EC fire synchronously.
The cell binder({ra = f2)) will behave in an analogous man-
ner.

Cells in DG project to cells in CA3 which also receive
afferents from role cells in EC. Impulses along afferents from
DG and EC lead to the commitment of nodes within CA3 to
form circuits for detecting binding errors. Thus convergent
impulses arriving from binder({r) = f;)) cells in DG and r,
cells in EC lead to the commitment of cells in CA3 to form
a local feedback circuit for detecting an error in the binding
(r1 = fi). We refer to such a circuit as bed((r; = f1)).
Subsequent to its commitment, this circuit will fire whenever
71 is bound to any entity other than f; in the relational instance
currently active in EC. Similarly, convergent impulses arriving
from binder((r2 = f2)) cells in DG and r; cells in EC
lead to the commitment of a binding error detection circuit
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bed((rr = f2)).

Cells in CA2 receive inputs from binding error detector
circuits in CA3. These inputs together with inputs arriving
from role nodes in EC lead to the commitment of local cir-
cuits within CA2 that integrate binding error signals arriving
from CA3. Each committed CA2 circuit integrates binding
errors pertaining to a specific relational instance memorized
within the HS. We refer to a binding error integrator circuit
for a relational instance RI as bei( RI). Subsequent to its
commitment, bei(£]) will fire whenever the relational in-
stance currently active in EC specifies any role-binding that
is different from that specified in R1.

Cells in CA2 project to cells in CA1 which also receive
inputs from the Trelation nodes in EC. Convergent activity
along these pathways leads to the commitment of local circuits
within CAT1 that act as relational instance match circuits. We
refer to such a match circuit for a relational instance RI
as rim(RI). Subsequent to its commitment, rim(RI) will
fire whenever the relational instance currently active in EC
matches RI.

Cells in CA1 project to +relation cells in EC. This projec-
tion allows the afferents from rim circuits in CAl to form
potentiated links with the appropriate +relation cells in EC.
Thus rim(RI) cells in CA1 form potentiated links with +R;
cells in EC. Subsequent to the potentiation of these CAl to
EC links, the firing of rim(RI) cells in CA1 will lead to the
firing of +R) cells in EC.

CA1 cells project to SC which also receives direct projec-
tions from role cells in EC. The incident activity along these
pathways leads to the commitment of cells in SC that act as
binding extractor (or bex) cells. We refer to binding extrac-
tor cells for the roles ry and r; of RI as bex((r; =?)|RI)
bex((r, =7)|RI) respectively. Subsequent to their commit-
ment, bex({r; =?)| RI) cells will fire whenever rim(RI) fires
in temporal proximity of the firing of #; and bez((r, =7)|RI)
cells will fire whenever rim(R1I) fires in temporal proximity
of the firing of r;.

Cells in SC project back to +entity cells in EC. This
projection allows afferents from bex cells to form poten-
tiated links with the appropriate +entity cells in EC. Thus
bex((r, =7)|RI) cells and bex({r; =7)|RI) cells in SC
form potentiated links with +f; and +f; cells in EC re-
spectively. Subsequent to their potentiation, the firing of
bex({r) =7)|R1) and bex((r; =?)|RI) will lead to the firing
of EC cells +f; and + f respectively.

Encoding and Recognition Times

As shown in Shastri (1997), the cells and circuits mentioned
above start off as indistinguishable cells and links embedded
within loosely organized quasi-random networks but emerge
rapidly as a result of LTP and LTD. SMRITI memorizes a
relational instance within 20 periods (see Figure 4). Since
synchronous activity encoding dynamic bindings is expected
to lie in the y-band, a plausible range of period values is
25—35 msec. Thus SMRITI demonstrates that an event can be
memorized in less than a second. SMRITI takes between S and
8 periods to recognize and recall memorized instances.

Capacity Considerations

The memorization of relational instances occurs as a result
of interactions between quasi-random networks and depends



on the existence of target cells that receive suitable afferents
from other committed cells. In the absence of complete con-
nectivity, the existence of appropriate target cells required to
encode a relational instance cannot be guaranteed. But if the
probability that appropriate cells will be found is extremely
high, it may be assumed with “practical certainty" that it will
be possible to encode a given relational instance.

Relevant probabilities have been calculated using plausible
region and projective field sizes, and by making the simplify-
ing assumption that projective fields are distributed uniformly
over a region. The results suggest that a capacity of about
50,000 events containing 200,000 distinct bindings involving
2000roles and 50,000 entities is tenable. Even at this level of
memory utilization, the odds of not finding suitable cells for
commitment remain below 1 in 300,000. The odds of failure
when the memory is loaded with 25,000 events containing
100,000 distinct bindings are less than 2 in a billion. Detailed
quantitative results appear in Shastri (1997).

Since multiple cells redundantly encode each functional
unit, and given that these cells are quasi-randomly distributed
in a region, the probability that limited cell loss will destroy
all the “copies™ of a functional unit is extremely small. Thus
the encoding is robust against cell loss. For example, by
assuming that about 10 cells become committed to be binding
error detectors for each memorized relational instance, it can
be shown that the odds of more than 5 of these 10 cells being
lost due to a 1% loss of cells are less than 1 in a billion.

Some Predictions

A few key predictions about the effect of focal damage to com-
ponents of the HS are summarized here: Major damage to EC
will lead to erroneous “don’t know” responses. Behaviorally
this amounts to forgetting. In contrast, major insult to CA3
or CA2 will lead to excessive false positive responses. Major
damage to CA1, however, will lead to a catastrophic memory
failure. Finally, major damage to SC will leave recognition
memory intact but disrupt recall memory. Major cell loss
in HF, in particular CA1, will prevent the formation of new
memories. Major damage to SC will leave the formation of
structures required to support recognition memory intact but
prevent the formation of structures required to support recall.

Conclusion

The computational model described above demonstrates how
the HS may rapidly transform a transient pattern of activity
representing an event or a situation into a persistent structural
encoding. It is hoped that detailed experimentation with the
model will provide some useful insights into human memory.

The work outlined here has significance for other learn-
ing tasks besides the memorization of events and situations.
In particular, both the proposed circuit for detecting binding
errors and the manner in which such circuits can be formed
rapidly within quasi-random network structures, have broad
relevance for cognitive neuroscience. For example, this kind
of circuit can perform the generic function of ceincidence er-
ror detection; such a circuit is formed when two patterns A
and B occur concurrently, and subsequently, it fires whenever
A occurs without being accompanied by B. Moreover, the
firing of this type of circuit can signify a failure of expectation,
and hence, such circuits can form the basis of a system for
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novelty detection.
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