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Abstract. A 0-1 matrix M contains a 0-1 matrix pattern P if we can obtain P from M by
deleting rows and/or columns and turning arbitrary 1-entries into Os. The saturation function
sat(P,n) for a O-1 matrix pattern P indicates the minimum number of 1s in an n x n 0-1
matrix that does not contain P, but changing any 0-entry into a 1-entry creates an occurrence
of P. Fulek and Keszegh recently showed that each pattern has a saturation function either
in O(1) or in ©(n). We fully classify the saturation functions of permutation matrices.
Keywords. Forbidden submatrices, saturation

Mathematics Subject Classifications. 05D99

1. Introduction

In this paper, all matrices are 0-1 matrices. For cleaner presentation, we write matrices with
dots () instead of 1s and spaces instead of Os, for example:

(888)=(.")

In line with this notation, we call a row or column empty if it only contains Os. Furthermore,
we refer to changing an entry from O to 1 as adding a 1-entry, and to the reverse as removing a
1-entry.

A pattern is a matrix that is not all-zero. A matrix M contains a pattern P if we can obtain P
from M by deleting rows and/or columns, and removing arbitrary 1-entries. If M does not
contain P, we say M avoids P. Matrix pattern avoidance can be seen as a generalization of
two other well-known areas in extremal combinatorics. Pattern avoidance in permutations (see,
e.g., Vatter’s survey [Vatl4]) corresponds to the case where both M and P are permutation

*Supported by DFG grant KO 6140/1-1.


https://www.combinatorial-theory.org
mailto:benjamin.berendsohn@fu-berlin.de

2 Benjamin Aram Berendsohn

matrices; and forbidden subgraphs in bipartite graphs correspond to avoiding a pattern P and all
other patterns obtained from P by permutation of rows and/or columns.! There are also close
connections to the extremal theory of ordered graphs [PT06] and posets [GNPV22].

A classical question in extremal graph theory is to determine the maximum number of edges
in an n-vertex graph avoiding a fixed pattern graph H. The corresponding problem in forbidden
submatrix theory is determining the maximum weight (number of 1s) of an m xn matrix avoiding
the pattern P, denoted by ex(P, m,n). We call ex(P,n) = ex(P, n,n) the extremal function of
the pattern P. The study of the extremal function originates in its applications to (computational)
geometry [Mit87, Fiir90, BGI1]. A systematic study initiated by Fiiredi and Hajnal [FH92] has
produced numerous results (e.g., [KI1a00, Kla01, MT04, Tar05, Kesz09, Ful09, Gen09, Petl 1a,
Pet11b]), and further applications in the analysis of algorithms have been discovered [Petl10,
CGK*15].

A natural counterpart to the extremal problem is the saturation problem. A matrix M is
saturating for a pattern P, or P-saturating if it avoids P and is maximal in this respect, i.e.,
adding a 1-entry anywhere creates an occurrence of P. Clearly, ex(P, m,n) can also be defined
as the maximum weight of an m X n matrix that is P-saturating. The function sat(P, m,n)
indicates the minimum weight of an m X n matrix that is P-saturating. We focus on square
matrices and the saturation function sat(P,n) = sat(P,n,n).

The saturation problem for matrix patterns was first considered by Brualdi and Cao [BC21] as
a counterpart of saturation problems in graph theory.> Fulek and Keszegh [FK21] started a sys-
tematic study. They proved that, perhaps surprisingly, every pattern P satisfies sat(P,n) € O(1)
or sat(P,n) € ©(n), where the hidden constants depend on P. This is in stark contrast to the
extremal problem, where a wide range of different orders of magnitude is attained by various pat-
terns (from linear and quasi-linear [Kesz09, Petl1a], to nearly quadratic [ARSz99]). Fulek and
Keszegh also present large classes of patterns with linear saturation functions. For our purposes,
their most important result is that every decomposable pattern has linear saturation function. We
call a pattern P decomposable if it has the form

(0 5) (5 o)

for two matrices A, B # 0, where 0 denotes an all-0 matrix of the appropriate size. Otherwise,
we call P indecomposable. Patterns of the first form (4 %) are called sum decomposable, and
patterns not of that form are called sum indecomposable.’

Fulek and Keszegh also found a single non-trivial pattern with bounded saturation function
(Q, pictured in Figure 1.1), and conjectured that there are many more. Geneson [Gen21] recently
confirmed this by proving that almost all permutation matrices have bounded saturation func-
tion. A permutation matrix is a matrix with exactly one 1-entry in each row and each column. A
different class of matrices with bounded saturation function, containing both permutation ma-

trices and non-permutation matrices were found recently by the author [Ber20].*

IFor this, we interpret the M and P as adjacency matrices of bipartite graphs.

2We refer to [FK21] for references to graph saturation results.

3These terms are derived from the theory of permutation patterns (see, e.g., Vatter [Vat14]). We are not aware
of a standard term for this property in the context of 0-1 matrices.

“These results have been incorporated into this paper in Sections 1.1 and 2.



COMBINATORIAL THEORY 3 (1) (2023), #17 3

Q = (. o .)
Figure 1.1: The matrix with saturation function O(1) found by Fulek and Keszegh [FK21].

In this paper, we show that, in fact, all indecomposable permutation matrices have bounded
saturation function. This completes the characterization of permutation matrices in terms of
their saturation function.

Theorem 1.1. A permutation matrix has linear saturation function if and only if it is decompos-
able.

A simple generalization of the technique that Fulek and Keszegh used to prove that sat(Q), n)
is bounded implies the following: To prove Theorem 1.1, it is sufficient to find a vertical witness
for every indecomposable permutation matrix P, where we define a vertical witness for P to
be a matrix M (of arbitrary size) that avoids P, has an empty row, and adding a 1-entry in that
empty row creates an occurrence of P in M.

We therefore construct vertical witnesses for all permutation matrices. Our constructions are
based on the fact that every indecomposable permutation matrix contains a spanning oscillation
(defined in Section 1.2).

We also generalize a partial result to a class that contains non-permutation patterns:

Theorem 1.2. Let P be a pattern that contains four I-entries x1,xs,xs3, T4 Such that for
each i € [4], there are no other I-entries in the same row or column as x;, and x; is in the
first or last row or column, and x1, x2, x3, x4 form one of the two patterns

()00
Then sat(P,n) € O(1).

In Section 1.1, we define and discuss (vertical) witnesses, and in Section 1.2, we define
spanning oscillations. In Section 1.3, we present the structure of the proof of Theorem 1.1. In
Section 1.4 we introduce an alternative characterization of pattern containment that simplifies
our proofs.

Section 1.5 gives an introduction to the witness-construction techniques used in the follow-
ing chapters. In Sections 2 to 4, we construct vertical witnesses for all permutation matrices,
based on different types of spanning oscillations, which proves Theorem 1.1. We also prove
Theorem 1.2 in Section 2.

We now introduce conventions and notations used throughout the paper. Some more defini-
tions needed for Sections 2 to 4 will be introduced in Section 1.4.

We identify 1-entries in an m x n matrix M as their positions (i, j) € [m] x [n], where  is the
row of the 1-entry (from top to bottom), and j is its column (from left to right). £(M ) denotes
the set of 1-entries in M. For two l-entries © = (i,5) € E(M) and 2’ = (i, j') € E(M), we
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write x <, 2’ if i < i’ and x <y, 2/ if j < j'. Define x <, 2’ and x <;, 2’ analogously. We also
say x is above x' if x <, 2/, and use below, to the right, and to the left similarly.

In a permutation matrix P, we denote the leftmost (rightmost, topmost, bottommost) 1-entry
of Pby {p (rp,tp, bp). Note thatif P is an indecomposable k x k permutation matrix with & > 1,
then these four 1-entries are pairwise distinct.

Let M be an arbitrary matrix. Denote by rot(A/) the matrix obtained by rotating M 90
degrees clockwise, denote by rev(M ) the matrix obtained by reversing all rows of M/, and denote
by trans(M) the transpose of M, i.e., the matrix obtained by swapping the roles of rows and
columns.’

If Aisak x m matrix and B is a k X n matrix, then the horizontal concatenation (A, B) is
the k x (m + n) matrix M where E(M) = E(A) U{(i,7 +m) | (i,7) € E(B)}. Intuitively,
M is obtained by placing A to the left of B. The horizontal concatenation (A;, Ay, ...) of a
sequence of matrices with the same height is defined accordingly.

1.1. Witnesses

Let P be a matrix pattern without empty rows or columns. An explicit witness® for P is a
matrix M thatis P-saturating and contains at least one empty row and at least one empty column.

Lemma 1.3 ([FK21]). For each pattern P without empty rows and columns, we
have sat(P,n) € O(1) if and only if P has an explicit witness.

Proof. Suppose sat(P,n) < cp for all n € N. Then there exists a (cp + 1) x (cp + 1) P-
saturating matrix M with at most cp 1-entries. Clearly, M has an empty row and an empty
column, so M is an explicit witness for P.

Now suppose that P has an mg X ng explicit witness M of weight w. We can replace the
empty row (column) in M by an arbitrary number of empty rows (columns), and the resulting
(arbitrarily large) matrix will still be P-saturating. As such, sat(P, m,n) < w for all m > my
and n > ng. Note that it is critical here that P has no empty rows or columns. Otherwise,
inserting empty rows or columns into M might create an occurrence of P. [

We call a row (column) of a matrix M P-expandable if the row (column) is empty and
adding a single 1-entry anywhere in that row (column) creates a new occurrence of P in M. An
explicit witness for P is thus a saturating matrix with at least one P-expandable row and at least
one P-expandable column. We define a witness for P (used implicitly by Fulek and Keszegh)
as a matrix that avoids P and has at least one P-expandable row and at least one P-expandable
column. Clearly, an explicit witness is a witness. The following lemma shows that finding a
witness is sufficient to show that sat(P,n) € O(1).

Lemma 1.4. If a pattern P without empty rows or columns has an mg X ng witness, then P has
an mg X ng explicit witness.

>We do not use the common superscript T, as it will later be used with the meaning “top”.
6 An explicit witness is what Fulek and Keszegh [FK21] simply call a witness.
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Proof. Let M be an mg X ny witness for P. If M is P-saturating, then we are done. Otherwise,
there must be a 0-entry (7, j) in M that can be changed to 1 without creating an occurrence P.
Choose one such 0-entry and turn it into 1. Note that (4, j) cannot be contained in an expandable
row or column of M, so the resulting matrix is still a witness. Thus, we obtain an explicit witness
after repeating this step at most my - ng times. [

1.1.1 Vertical and horizontal witnesses

Fulek and Keszegh also considered the asymptotic behavior of the functions sat(P, mg,n)
and sat(P, m, ng), where mq and ng are fixed. The dichotomy of sat(P,n) also holds in this
setting:

Theorem 1.5 ([FK21, Parts of Theorem 1.3]). For every pattern P, and constants mg, n,
(i) either sat(P,mgy,n) € O(1) or sat(P,my,n) € O(n);
(ii) either sat(P,m,ng) € O(1) or sat(P,m,ng) € O(m).

We can adapt the notion of witnesses in order to classify sat(P, mg, n) and sat(P, m,ng).
Let P be a matrix pattern without empty rows or columns. A horizontal (vertical) witness for P is
amatrix M that avoids P and contains an expandable column (row).” Clearly, P has a horizontal
witness with m rows if and only if sat( P, mg, n) is bounded; and P has a vertical witness with ng
columns if and only if sat(P, m,ng) is bounded. Further note that M is a witness for P if and
only if M is both a horizontal witness and a vertical witness.

We now prove that we can essentially restrict our attention to the classification of the func-
tions sat( P, mg,n) and sat(P,m,ng). The following two lemmas are a generalization of the
technique used by Fulek and Keszegh to prove that sat(Q,n) € O(1) for the pattern () depicted
in Figure 1.1.

Lemma 1.6. Let P be a matrix pattern without empty rows or columns, and only one I-entry
in the last row (column). Let W be a horizontal (vertical) witness for P. Then, appending an
empty row (column) to W again yields a horizontal (vertical) witness.

Proof. We prove the lemma for horizontal witnesses with a row appended. The other case fol-
lows by symmetry. Let W be an mg x ng horizontal witness for P, where the j-th column of W
is expandable. Let W’ be the matrix obtained by appending a row to W. Clearly, W’ still does
not contain P. Moreover, adding an entry in W' at (7, j) for any i # ny + 1 creates a new
occurrence of P. It remains to show that adding an entry at (ng + 1, j) creates an occurrence
of P.

We know that adding an entry at (ng,j) in W’ creates an occurrence of P, say at
positions I C [ng]?. Since P has only one entry in the last row, all positions (i, ') € I\{(no, j)}
satisfy i’ < ng + 1. Thus, adding a 1-entry at (no + 1, j) instead of (ny, j) creates an occurrence
of P at positions I \ {(ng, )} U{(no + 1,7)}. Thus, W’ is a horizontal witness. O

7 A horizontal witness can be expanded horizontally, a vertical witness can be expanded vertically.
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Figure 1.2: A pattern (left), a witness (middle) and an explicit witness (right) for the pattern.
The small dots indicate the expandable row/column.

Lemma 1.7. Let P be a indecomposable pattern without empty rows or columns, and with only
one I-entry in the last row and one I-entry in the last column. Then sat(P,n) € O(1) if and
only if there exist constants mg, ng such that sat(P, mg,n) € O(1) and sat(P,m,ng) € O(1).

Proof. Suppose that sat(P,n) € O(1). Then P has an mg X ng witness M by Lemma 1.3, and
thus sat( P, mg, n) is at most the weight of M, for every n > ng. Similarly, sat(P, m,ng) € O(1).

Now suppose that sat(P, mg,n) € O(1) and sat(P, m,ny) € O(1). Then, for some m;, ny,
there exists an mg X ny horizontal witness Wy and an m; X ng vertical witness W+,. Consider
the following (mg + mq) X (ng + n1) matrix, where 0,,,, denotes the all-0 m x n matrix:

. 0m0><n0 WH
W N ( WV 0m1><n1

We first show that W does not contain P. Suppose it does. Since P is contained neither
in Wy nor in W4, an occurrence of P in W must contain 1-entries in both the bottom left and
top right quadrant. But then P is decomposable, a contradiction.

By Lemma 1.6, W3, = (Wy, 0,,, x,, ) is a vertical witness, and W}; = (, " ) isahorizontal

m] Xny
witness. The expandable row in WY, and the expandable column in WW}; are both also present
in . This implies that W is a witness for P, so sat(P,n) € O(1). O

Figure 1.2 shows an example of a witness, constructed with Lemma 1.7, using vertical and
horizontal witnesses presented later in Section 2, and an explicit witness constructed using
Lemma 1.4.

Observe that the transformations rev, rot, and trans all preserve witnesses. However, the
latter two change vertical witnesses to horizontal witnesses, and vice versa. Formally:

Observation 1.8. Let P be a matrix with a vertical witness W. Then rev(W) is a vertical witness
of rev(P), rot(W) is a horizontal witness of rot(P), and trans(W) is a horizontal witness of
trans(P). O

Recall that our goal is to show that every indecomposable permutation matrix has a wit-
ness. Since indecomposable permutation matrices are closed under transposition, Lemma 1.7
and Observation 1.8 imply that it suffices to find a vertical witness for each indecomposable
permutation matrix. The same is true for every class of matrices satisfying the conditions of
Lemma 1.7 that is closed under transposition or 90-degree clockwise rotation. This is useful to
prove Theorem 1.2.
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Lemma 1.9. Let P be a class of indecomposable patterns without empty rows or columns, and
with only one I-entry in the last row and one I-entry in the last column. If P is closed under

transposition or 90-degree clockwise rotation and each pattern in P has a vertical witness,
then sat(P,n) € O(1) for each P € P.

Proof. Suppose that P is closed under transposition and each P € P has a vertical witness. By
Lemma 1.7, it suffices to show that each pattern in P also has a horizontal witness. Let P € P.
Then trans(P) € P has a vertical witness 1. By Observation 1.8, trans(1¥) is a horizontal
witness for trans(trans(P)) = P.

The case that P is closed under 90-degree rotation can be handled analogously. 0

1.2. Spanning oscillations

We now introduce spanning oscillations, a class of substructures that characterizes indecompos-
able permutation matrices.

For a permutation matrix P, the permutation graph G p of the underlying permutation can be
defined as follows: The vertex set is £/( P), and two 1-entries x,y € FE(P) have an edge between
them if x is below and to the left of y (or vice versa).

An oscillation in a permutation matrix of P is a sequence X = (z1,x9,...,%,,) of dis-
tinct 1-entries in P such that X forms an induced path in Gp, i.e., there is an edge between x;
and z;, for each ¢ € [m — 1], and no other edges between 1-entries in X. Oscillations have
been studied before in several contexts [Pra73, BRV08, Vatl1]. Vatter showed that a permuta-
tion matrix P is sum indecomposable if and only if it has an oscillation that starts with ¢p and
ends with rp [Vatl1, Propositions 1.4, 1.7]. Our characterization of indecomposable permuta-
tions is very similar. Call an oscillation X = (z1, zo, ..., x,,) spanning if {x1, 22} = {{p,tp}
and {z,,_1, 2z} = {bp,rp}.

Lemma 1.10. Let P be a sum indecomposable permutation matrix such that tp is to the left
of bp or Up is above rp. Then P has a spanning oscillation.

Proof. We write {,t,b,r for {p,tp,bp,rp. By symmetry, we can assume that ¢ is to the left
of b (otherwise, replace P by trans(P), noting that Gp = Girans(p))- Recall that £, ¢, b, are
pairwise distinct, as P is indecomposable and not 1 x 1.

Since P is sum indecomposable, by the result of Vatter mentioned above, it has an oscilla-
tion X' = (x}, 25, ..., 2 ) witha| = £, 2/ = r. Suppose first that ¢ occurs in X'. Since G p has
an edge between ¢ and ¢, and X is an induced path in G'p, this means that x, = ¢. Otherwise,
note that ¢ is connected in Gp to precisely those 1-entries that are to the left of . Let ¢ be

maximal such that 2 is to the left of t. If ¢ = 1, then (¢,¢,5%,...,2),) is an induced path
in Gp. Otherwise, ¢,t,x},...,x} is an induced path in Gp. In either case, we have an oscilla-
tion X" = (2,25, ..., a2/ ) that starts with {¢, ¢} and ends with 7.

It remains to make sure that b is among the last two 1-entries in the oscillation. If b occurs

in X”, then x],_, = b, since X" is an induced path. Otherwise, let j be minimal such that z;
!

is to the right of b. If j = m, then X = (af,25,....x r,b) is an induced path in Gp.

» Ym—1»
Otherwise, X = (z7,y,...,27,b,7) is an induced path in G p. Since £, ¢ are both to the left

of b, we have j > 2, so X is a spanning oscillation. O]
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We obtain the following characterization of indecomposable permutation matrices.

Corollary 1.11. A permutation matrix P is indecomposable if and only if P or rev(P) has a
spanning oscillation or P is the 1 X 1 permutation matrix.

Proof. First, assume P is indecomposable. If ¢p is to the left of bp, then Lemma 1.10 implies
that P has a spanning oscillation. If ¢ p is to the right of bp, then Lemma 1.10 implies that rev(P)
has a spanning oscillation. If {p = bp, then Pis 1 x 1.

Second, assume P has a spanning oscillation. Then P is sum indecomposable. Suppose P
is decomposable, then P has the form (§ 5), so ¢ is to the right of b and ¢ is below r. But
then /¢, 0,t,r form the complete bipartite graph K55 in G p, implying that P has no spanning
oscillation, a contradiction. A symmetric argument shows that P is indecomposable if rev(P)
has a spanning oscillation. 0

Spanning oscillations have a very rigid structure, which we now describe more explicitly, in
terms of relative positions of 1-entries. Let P be a permutation matrix and X = (1, xa, ..., Zy)
be a spanning oscillation of P. For 2 < 7 < m — 1, call z; an upper 1-entry if x; is above and to
the right of ;1 and x; 1, and call x; a lower 1-entry if x; is below and to the left of z;_; and z; ;.
Since G'p contains the edges {z;_1,z;} and {z;, x; 1}, but not the edge {x;_ 1,21}, every
I-entry (except x1, x,,) is either upper or lower. Clearly, upper and lower 1-entries alternate,
i.e., x; is upper if and only if x;; is lower, for 2 < ¢ < m — 1. It is convenient to also call {p, bp
lower 1-entries and ¢p, rp upper 1-entries. We then have:

Observation 1.12. Let P be a permutation matrix and X = (x1,%2,...,T,) be a spanning
oscillation of P. If x1 = Up, then all x; with odd i are lower I-entries, and all x; with even i are
upper 1-entries. If x1 = tp, then all x; with odd i are upper 1-entries, and all x; with even i are
lower I-entries. L]

It is easy to see that, if ¥y = {p, then x3, £, must be below and to the right of ;. By
induction, and by considering symmetric cases, we can prove:

Observation 1.13. Let P be a permutation matrix and X = (x1,%2,...,Ty) be a spanning
oscillation of P. Then x; is above and to the left of x; for eachi € [m — 2] and i +2 < j < m.

This leaves us with only two possible forms of spanning oscillations for each length m, see
Figure 1.3. Observe that spanning oscillations are preserved by transposition and 180-degree
rotation, in the following sense.

Let P be a k x k permutation matrix and X = (i1, j1), (42, ja), - - - , (i¢, j¢) @ spanning oscil-
lation of P. Define

trans(X) = (j1,41), (J2,%2), - - -, (Je, %), and
rot*(X) = (k —ig, k — jo), (k — i1,k — jeo), ... (k — iy, k= ).

Itis easy to see that trans(X) is a spanning oscillation of trans(P) and rot?(X) is a spanning
oscillation of rot?(P).

A spanning oscillation X = (x1,xs,...,x,,) is tall if the following two properties are sat-
isfied for each 2 < 7 < m — 2 where z; is an upper 1-entry.
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Figure 1.3: The spanning oscillations of length m, for m = 4, 5,6, 7. The dashed line segments
indicate the edges of the permutation graph. The borders indicate the possible positions for other
1-entries if the spanning oscillation is tall (top row) or wide (bottom row).

(i) P has no 1-entry that is below x;,; and to the left of x;.
(ii) P has no 1-entry that is above z; and to the right of z; .

A spanning oscillation X is wide if trans(X) is tall. We now show that we can always assume
that a minimum-length spanning oscillation is tall (or wide).

Lemma 1.14. Let P be a permutation matrix and X = (x1, o, ..., x,,) be a spanning oscilla-
tion of P of minimum length m. Then P has a tall spanning oscillation of length m that starts
with x1, xo and ends with x,,_1, .

Proof. Suppose X is not tall, so it violates (i) or (ii) at some index 7 with 2 < 7 < m — 2. We
now show how to construct a spanning oscillation X’ of length m that starts with 1, x5, ends
with x,,_1, x,,, and violates (i) or (ii) less often than X. Repeating this, we eventually obtain a
tall spanning oscillation.

Suppose first that X violates (i) at index . Then z; is an upper 1-entry, and thereisay € E(P)
such that y is below z;,; and to the left of z;. Assume y is the bottommost such 1-entry.
Note y ¢ {{p,bp}, and that z;,, is above x;,; by Observation 1.12.

Let j be minimal such that z; is to the right of y. Since {p <}, y <y, ;, we have 2 < j < 4.
Let k£ be maximal such that xj, is above y. Since x;, 5 <, y <, bp, wehave i +2 < k < m — 1.

By Observation 1.13, z; is above and to the left of &), meaning that both x; and z;, are above
and to the right of y. Thus, the sequence X' = (x1, %2, ...,%;,Y, Tk, Tpt1, - - -, Tm) is a path.
We now show that X" is an induced path. Let j* < j. By definition of j, we know that x is to
the left of y. By Observation 1.13, ; is above x;,, implying that x; is above y. Thus, G'p has
no edge between z;; and y. Similarly, we can prove that there is no edge between y and z;, for
each k' > k.

Since 2 < j and k < m — 1, we know that X’ starts with x1, x5 and ends with x,,_1, Z,,,
implying that X' is a spanning oscillation.

By assumption, P has no spanning oscillation shorter than P, so X must have length m,
implying that j = 7 and k = i + 2. Further, X’ does not violate (i) at index i, since, by choice
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of y, there are no 1-entries below y and to the left of x; = x;. Thus, X’ has strictly less overall
violations of (i) or (ii) than X.
The second case, where X violates (ii), can be proven symmetrically. [

Clearly, the statement of Lemma 1.14 is also true when replacing “tall” with “wide”, using
the same proof on trans(P).

1.3. Structure of the main proof

We divide the proof of Theorem 1.1 into three cases, proven in Sections 2 to 4. In Section 2, we
handle the special case of length-4 spanning oscillations:

Lemma 1.15. Each permutation matrix with a spanning oscillation of length 4 has a vertical
witness.

In Section 3, we prove:

Lemma 1.16. Each permutation matrix P with a wide spanning oscillation of length m > 5
that starts with tp has a vertical witness.

The final and most involved case is treated in Section 4:

Lemma 1.17. Each permutation matrix P with a tall spanning oscillation of even length m > 6
that starts with {p has a vertical witness.

It is not immediately obvious that Lemmas 1.15 to 1.17 cover all indecomposable permuta-
tion matrices. We now show that this is the case.

Corollary 1.18. Every indecomposable permutation matrix has a vertical witness.

Proof. Let P be an indecomposable permutation matrix. If P is 1 x 1, any all-zero matrix is a
witness of P. Otherwise, one of P and rev(P) has a spanning oscillation X by Corollary 1.11.
By Observation 1.8, it suffices to find a vertical witness for either P or rev(P), so without loss
of generality, assume that X is a spanning oscillation of P, and that X has minimum length m.
If m = 4, we can apply Lemma 1.15. If m > 5 and X starts with ¢p, then Lemma 1.14
implies that P also has a wide spanning oscillation of size m that starts with ¢ p, so we can apply
Lemma 1.16.

Now assume m > 5 and X starts with ¢p. If m is even, we can apply Lemma 1.17, since
by Lemma 1.14 we can assume that X is tall. Otherwise, if m is odd, Observation 1.12 im-
plies that X ends with bp. This means that the spanning oscillation rot?(X) of rot?(P) starts
with ¢,2(py, s0 we can apply Lemma 1.16 to obtain a witness W' of rot?(P). Observation 1.8
implies that rot*(7V’) is a witness of P. O
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1.4. Embeddings

In the following sections, we use an alternative definition of pattern containment based on sets
of 1-entries. Let P be a pattern and M be a matrix. We say a function ¢: E(P) — E(M)
is an embedding of P into M if for x,y € FE(P) we have x <, y < o¢(x) <un ¢(y)
and r <, y < ¢(x) <, ¢(y).

Note that if we allow empty rows or columns in P, then £(P) does not determine P, since
appending an empty row or column to P does not change F/(P). This means that the existence
of an embedding of P into M does not necessarily imply that P is contained in M. However, we
only consider patterns without empty rows or columns in this paper, and in that case, equivalence
holds.

Lemma 1.19. Let P, M be matrices, and let P have no empty rows or columns. Then P is
contained in M if and only if there is an embedding of P into M.

A proof of Lemma 1.19 is provided in Appendix A. We now introduce some notations used
in the following sections.

Let z = (i,7), y = (7,j') be two l-entries. The horizontal distance between z and y
is d(z,y) = |i — 7|, and the vertical distance between x and y is d¥(z,y) = [j — j'|. The
width width(A) (resp. height height(A)) of a set A C F(M) is the maximum horizontal (resp.
vertical) distance between two 1-entries in A.

Let ¢ be an embedding of P into M. We say a row (column) is hit by ¢ if ¢(z) is in that row
(column) for some 1-entry x € F(P). We define variants of the above notions that only “count”
rows and columns of M that are hit by ¢. This will be useful when we have partial information
about ¢, or when we know that certain rows/columns are empty and thus cannot be hit by ¢.
Let d}((4,), (i, j')) be the number of rows i” such that 7 is hit by ¢ and i < i"” < ¢'. Similarly,

!/

let d3((4, ), (¢, ")) be the number of columns j” such that j is hit by ¢ and j < j” < j'.
For A C E(M), let widthy(A) = max, ye dj(z, y), and height,(A) = max, yea dy(, ).

Observation 1.20. Let ¢ be an embedding of P into M, let x,y € E(P), and let ¢(z), p(y) €
A C E(M). Then

d"(z,y) = dg(6(2), 6(y)) < d"(é(2), ¢(y)) < width(A); and
d*(z,y) = dg(o(x), ¢(y)) < d"(d(x), 6(y)) < height(A). H

1.5. Constructing witnesses

In this subsection, we describe intuitively how our various constructions work. Recall that a
vertical witness for a matrix P avoids P and has a P-expandable row. As we will see in the
following, there are many different ways of constructing a matrix with a P-expandable row;
ensuring that it also avoids P is the hard part.

Suppose we have a permutation matrix P. Place a copy of P in the middle of a large matrix,
and remove the leftmost 1-entry ¢ of the copy (Figure 1.4 a, b). Then, adding a 1-entry at the
position of ¢ or in the same row to the left of ¢ will complete an occurrence of P. Thus, we have
constructed the “left part” of an expandable row. We can similarly use a copy of P missing the
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Figure 1.4: Constructing witnesses as described in Section 1.5. Empty dots indicate positions
that complete the pattern, i.e., (partial) expandable rows. Colors/shapes of dots (1-entries) in d,
g, J, and k indicate different parts of the construction. Red circles in f indicate the occurrence
of the pattern.

rightmost 1-entry r to get the “right part” of an expandable row (Figure 1.4 ¢). If we now place
the copy without ¢ (call it L) to the right of the copy without r (call it R), we can create a whole
expandable row (Figure 1.4 d).

It turns out that the resulting matrix avoids P for a large class of patterns, in particular for
patterns with a spanning oscillation of length 4. We prove this in Section 2.

The smallest example where the construction does contain P is shown in Figure 1.4 e, f.
However, observe that changing the vertical position of a 1-entry preserves the expandable row
as long as the vertical order within both L and R is maintained. Thus, we can try to vertically
“stretch” L and/or R to make the matrix avoid P. In the given example, moving the top entry
of L up one row suffices (Figure 1.4 g).

When stretching does not help, another option is to construct larger matrices in the following
way. Consider some 1-entry = of P that is not the leftmost or rightmost 1-entry. Place a copy
of P into a large matrix M, remove x, and then move all 1-entries to the left of x further to
the left. This creates a “middle part” of an expandable row (Figure 1.4 A, 7). Call that modified
matrix P,. Arranging L, R, and P, as in Figure 1.4 j completes an expandable row. In Section 3
we use this construction, except that P, is additionally stretched in a certain way.
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More generally, we can obtain an expandable row by interleaving copies of L, R
and P,,, P,,, ... for several 1-entries x,xy,... of P. Figure 1.4 k shows another witness for
the matrix in Figure 1.4 e constructed in this way. Observe that each partial copy of P takes
care of a certain part of the expandable row. This idea forms the basis for the construction in
Section 4, where we use a number of different partial copies P,, depending on the pattern P.

2. Spanning oscillations of length 4

In this section, we show Theorem 1.2, which immediately implies Lemma 1.15.

Theorem 1.2. Let P be a pattern that contains four I-entries x1,xs,x3, T4 Such that for
each i € [4], there are no other I-entries in the same row or column as x;, and x; is in the
first or last row or column, and x1, x2, x3, x4 form one of the two patterns

(7))
Then sat(P,n) € O(1).

Let P denote the class of patterns defined in Theorem 1.2. Note that P is closed under
transposition. Thus, by Lemma 1.9, it is sufficient to prove that each P € P has a vertical
witness.

Let P’ be the subset of patterns P € P where the unique leftmost 1-entry ¢ of P is above
the unique rightmost 1-entry r of P. It is easy to see that each P € P’ has the following form,
where the boxes contain arbitrarily many 1-entries:

t
000
‘0Do0O
0oo
b

14
,

Since for each P € P\ P’, we have rev(P) € P’, Observation 1.8 implies that it is sufficient
to prove that each P € P’ has a vertical witness.

Lemma 2.1. Each P € P’ has a vertical witness.

Proof. Let P € P’ be a k; X ks pattern, let £ = (7, j) be the unique leftmost 1-entry in P, and
let r = (¢, j') be the unique rightmost 1-entry in P. Note that i < 7’.

We essentially use the construction shown in Figure 1.4 d. Let P, and Py be the submatrices
of P obtained by removing the rightmost, resp. leftmost, column. Note that in F;,, the i'-th row
is empty, and in Py, the ¢-th row is empty. As described in Section 1.5, the idea is to place a copy
of P, to the left of Py, so that the two empty rows coincide. More formally, obtain L from P,
by appending ¢ — i > 0 rows (at the bottom), obtain R from Py by prepending i’ — i > 0
rows (at the top), and define S(P) as the horizontal concatenation (L, R). Note that S(P) is



14 Benjamin Aram Berendsohn

a (k1 411 —1i) x (2ke — 2) matrix, and that the i'-th row of S(P) is empty. In the following, we
use L and R interchangeably with the corresponding subsets of F(S(P)).

We claim that the ¢’-th row is P-expandable. Indeed, adding a 1-entry in the ¢’-th row in the
first £ — 1 columns (to the left of k) completes an occurrence of P with R, and adding a 1-entry
in the last £ — 1 columns (to the right of L) completes an occurrence of P with L.

It remains to show that S(P) avoids P. Suppose S(P) contains P, so there is an embedding ¢
of Pinto S(P). Lett,b € E(P) be the unique topmost, respectively bottommost, 1-entry in P.

Suppose first that ¢(b) € L. Since height(L) = d¥(¢,b) = k — 1, and the i'-th row of P
is empty, we have height, (L) < d¥(¢,b). This implies that ¢(t) is above L. But S(P) has no
1-entries above L, a contradiction.

Otherwise, ¢(b) € R. Since t is to the right of b, this implies that ¢(¢) € R. But a similar
argument as above shows that height () < d¥(¢,b), a contradiction. O

3. Spanning oscillations starting with ¢

In this section, we prove:

Lemma 3.1. Each permutation matrix P with a wide spanning oscillation of length m > 5 that
starts with tp has a vertical witness.

In Section 3.1, we present a construction of (possible) witnesses, which we use for the
case m = 5 in Section 3.2, and for the case m > 5 in Section 3.3.

3.1. Witness construction

Let P be an k x k permutation matrix such that / = /{p is above r = rp, and
let ¢ = (iq, j,) € E(P), such that ¢ is above ¢. We first construct a matrix S'(P,¢q) with a
P-expandable row, in the way shown in Figure 1.4 j. Then, we modify S’(P, q) to obtain the
matrix S(P, ¢), which retains the expandable row and will be shown to avoid P if P has a wide
spanning oscillation (tp, {p, x3, T4, . .., Ty) with m > 5 and we choose g = x3.

Let Pr (F) be the submatrix of P obtained by removing the leftmost (rightmost) column.
Both Py and P, have an empty row. To start the construction of S’( P, ¢), we place a copy of Pr
to the left of a copy of P, such that the two copies do not intersect, and the empty rows are
aligned. We denote the copy of Py in the construction with R and the copy of P, with L. Note
that, compared to the construction in Section 2, L. and R switch places.

Let P/ consist of all columns of P to the left of ¢, and let P} consist of all columns of P to
the right of ¢. To finish the construction of S’(P, ¢), we place a copy of P to the left of R and
a copy of P to the right of L, such that the empty 7,-th rows of P and P}, are aligned with the
empty row in R and L. Denote the copies of P, and P} as L' and R' and let P’ = L' U R'.

Clearly, the empty row in S’(P, q) is expandable: Adding a l-entry to the left of R will
complete the partial occurrence R of P, adding a 1-entry to the right of L will complete L, and
adding a 1-entry within R or L will complete P’.
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Figure 3.1: A sketch of P and the two witness constructions S’(P, ¢) and S(P, q).

We modify S'( P, q) to obtain S(P, q) as follows.® Let B be the set of entries in P’ = L' U R’
that are below the leftmost 1-entry in P’ (the copy of £ in P’). Move B down by a fixed number
of rows, such that each 1-entry in B is lower than all 1-entries in R U L. Clearly, the expandable
row stays expandable after this change.

Figure 3.1 sketches the constructions. In the following sections, we denote the 1-entries
in S(P, q) as follows. If x is a 1-entry in P, then let 2% be the copy of z in R, let 2" be the copy
of x in L, and let 2’ be the copy of x in P’. For subsets X C E(P), we use X%, X" and X’
similarly.

We now show a property of S(P, g) that is useful in both of the following subsections.

Lemma 3.2. Let P be a k X k permutation matrix and q € E(P) suchthat g <, {p <, r andtp
is to the left of bp. If ¢ is an embedding of P into S(P, q), then ¢(tp) ¢ L' and ¢(bp) € R'.

Proof. We write ¢, t,b,r for {p,tp,bp,rp. Let L, denote the portion of L’ below ¢, and
let L) = L'\ L.

We first show that ¢(t) ¢ L’. Suppose ¢(t) € L. Then also ¢(¢) € L'. Since
height(L5) < dY(¢,b), and there are no nonempty rows below L), we know that ¢(¢) ¢ L,
and therefore ¢(t), ¢(¢) € L. But height (L) < d¥(¢,£) — 1, a contradiction.

o(t) ¢ L' already shows that ¢p(b) ¢ L', since b is to the right of ¢. It remains to show
that ¢(b) ¢ R U L. First, suppose that ¢(b) € L. Then there are at most £ — 2 nonempty rows
above ¢(b), but d¥(¢,b) = k — 1, a contradiction.

Second, suppose that ¢(b) € R. Then also ¢(t) € R, because t is to the left of b
and ¢(t) ¢ L'. But height,(R) < dV(t,b) — 1, a contradiction. O

3.2. Spanning oscillations of length five

Lemma 3.3. Let P be a permutation matrix and X = (tp, xs, 3, T4, x5) be a a spanning oscil-
lation of P. Then S(P, x3) avoids P.

Proof. Let ¢ = x3, and note that o = ¢p and x4 = bp, so ¢ is above {p and to the right
of bp. Suppose ¢ is an embedding of P into S(P,q). By Lemma 3.2, ¢(bp) € R
But width(R') = d"(¢,rp) — 1 < d"(bp,rp), a contradiction. O

8This idea comes from Geneson’s construction. [Gen21]
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3.3. Longer spanning oscillations

We now consider the case where P has a wide spanning oscillation (¢p, x, . .., x,,) of length
greater than five. We first prove a useful property of long spanning oscillations.

Lemma 3.4. Let P be a permutation matrixand X = (tp, s, ..., T,,) be a spanning oscillation
of P withm > 6. Then, removing t = tp, the columns to the left of t, and the rows above x3 (as
well as all newly created rows or columns) does not make P decomposable.

Proof. Suppose it does, and let £ be the resulting decomposable pattern. Since xj is the highest
I-entry in P, (slightly abusing notation), and x3 is above r = rp and to the left of b = bp, we
know that P, has the form ({ &), where x5 lies in A and 7, b lie in B. This means that x4
lies in A, since t <;, x4 <y x3. Let P, be the matrix obtained from F, by further removing
all columns to the right of x,. Clearly, P, is decomposable, but (x3, z4, ..., x,,) is a spanning
oscillation of P, a contradiction. U]

We are now ready to prove the main result of this subsection.
oo L
t ==l
=19 R ppe. E —
e \
(NS R/
4 [

Figure 3.2: P and S(P, ¢) in the case of Lemma 3.5.

SHESY
e

Lemma 3.5. Let X = (tp, xa, ..., Ty) be awide spanning oscillation of P withm > 6. Then P
has a vertical witness.

Proof. We write (,t,b,r for {p,tp, bp, rp in the following. Let ¢ = z3, and let F, be the set of
1-entries of P that are to the right of ¢ and not above q. By Lemma 3.4, F, does not correspond
to a decomposable pattern. Let A denote the set of 1-entries to the right of q. Note that b, r € A,
and, by wideness of X, all 1-entries in A are below ¢. Let x be the highest 1-entry in A, and let B
be the set of 1-entries below z, to the left of ¢ and to the right of ¢. Then B # &, otherwise F,
would be decomposable. Finally, C' = B\ (AU B) consists of the 1-entries to the right of ¢, not
above ¢, and above x. Figure 3.2 shows a sketch of P and S(P, X). Note that A" = R’ (recall
that A’ denotes the copy of A in P’).

Suppose ¢ is an embedding of P into S(P, q). By Lemma 3.2, ¢(b) € R’ and ¢(t) ¢ L'.
Since all 1-entries in B are to the right of ¢, this implies ¢(y) ¢ L’ for each y € B. Moreover,
width(R') = d"(g,7) — 1 < d%(y, r) for each y € B, so we have ¢(B) C L U R.

Let L/, denote the portion of L' below ¢ and let L} = L'\ L}. Note that L, is below all 1-
entries in LU R. Since all 1-entries in C' are above all 1-entries in B, and all 1-entries in A are to
the right of all 1-entries in B, we have ¢(Fy) = ¢(AUBUC) C LYULURUR'. Since R’ = A/,
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Figure 4.1: A tall traversal. The solid lines indicate the boundary of possible positions for other
I-entries.

all 1-entries in R’ are to the right and below all 1-entries in L] UL U R, so L1 UL U RU R’
can be decomposed into the two blocks Lj U L U R and R'. Further, ¢(b) € R’ by Lemma 3.2,
and since height(R’') < d¥(q,b), we have ¢(q) ¢ R'. This means that P, is decomposable, a
contradiction. [

4. Even-length spanning oscillations starting with /¢

In this section, we prove:

Lemma 4.1. Each permutation matrix P with a tall spanning oscillation of even length m > 6
that starts with {p has a vertical witness.

For our witness construction to work, we need to define a substructure that generalizes (tall)
spanning oscillations of even length that start with /p. We call that substructure a traversal.
Defining our witness construction for traversals instead of spanning oscillations allows us to
make a maximality assumption that is required later in the proof.

4.1. Traversals

Let P be a permutation matrix and let m > 4. A traversal of P is a sequence X of distinct
1-entries z1, zo, . . ., x,, such that

(i) vy =Llp, 3 =tp, Tpy_1 = bp, T, = Tp;
() o1 <p 23 <p T2 <n T5 <n T4 <h -+ <h Tim—1 <h Tm—2 <n Tms
(i) Ip <y T4 <y Tg <y - .. <y T}
4v) 3 <y, 25 <y ... <y Tpy—3 <y, Tp; and
(V) xs is below x4, for each odd s € [m — 1].

Intuitively, property (ii) enforces the same horizontal order on the 1-entries as an even-length
spanning oscillation. Vertically, however, we are allowed to arrange the 1-entries more freely.
There are still upper (even) and lower (odd) 1-entries as in Observation 1.12 (this is implied by
(iii), (iv), (v)), and we keep the order within the upper, resp. lower, 1-entries with (iii), (iv). But
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Figure 4.2: Arrangement of x,_1, x5, Y1, Y2, Ts11, Ts1o in Lemma 4.3. The shaded areas must be
empty, since X is tall.

we drop the condition that z; is above x; for each odd ¢« < m — 3 and even j > ¢ + 3. This
means that we are allowed to “move” some upper 1-entries upwards, and some lower 1-entries
downwards, as long as the vertical order among upper (lower) 1-entries is kept intact. (iii), (iv)
additionally ensure that we cannot move any 1-entries above /p or below rp. Figure 4.1 shows
the shortest traversal that is not an oscillation.

We say a traversal (21, xo, . .., ,,) is tall if it satisfies the following two properties for each
even2 <1< m— 2.

(vi) P has no l-entry that is below x; 1 and to the left of x;.
(vii) P has no 1-entry that is above x; and to the right of x; ;.

Observation 4.2. Each tall spanning oscillation of even length that starts with ( is a tall traver-
sal. 0

4.2. Maximality assumption

Let P be a permutation matrix with a tall traversal X. We can assume that X is maximal in
the sense that no tall traversal of P has X as a proper subsequence. We now show that such a
maximally tall traversal also cannot be extended to a larger non-tall traversal in the following

sense. Call a traversal (z1, xo, . . ., T, ) extendable if there is an odd s with 5 < s < m — 5, and
two l-entries ¥y, yo in P such that (z1,xs, ..., Zs, Y1, Y2, Tst1, - - - , Ly ) i & traversal of P.
Lemma 4.3. Let X = (x1,9,...,%,) be a maximally tall traversal of the permutation ma-

trix P. Then X is non-extendable.

Proof. Suppose X is extendable. Then there exists an odd s with 5 < s < m — 5 and 1-entries
y1,y2 € E(P)suchthatY = (21,29, ..., %5, Y1, Y2, Ts11, - - -, Ty is @ traversal of P. We show
that then P has a tall traversal of length m + 2 with X as a subsequence. This contradicts our
assumption that X is maximally tall.

Note that property (v) of X implies that x4, is above x,. Further using properties (ii), (iii),
(iv) of Y, it follows that the relative positions of xs_1, x5, y1, Y2, Tsi1, and x4, o are fixed as
shown in Figure 4.2.

Let y; and v/ be 1-entries in P such that
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(a) w5 is to the left of y/;

(b) v} is above or equal to y; and v/, is below or equal to y»; and

(c) d¥(v},yh) is maximal under the previous two conditions.

LetY' = (x1,%9, ..., s, Y\, Yo, Tsi1, - ., Tm). Wefirst show that Y is atraversal. Y’ clearly
satisfies (i). Since y] is not below 4, it is above 1, so tallness of X implies that ¥ is to the
left of x5, 2. Symmetrically, v is to the right of z,_1, so (a) implies z5_1 <p ¥5 <n Y] <n Tst2,
and thus Y’ satisfies (ii).

Since y; is to the right of x4, tallness of X implies that y; is below xs_;. We already
observed that i} is above x,,;, so we have =z, 1 <, y; <, osr1. Similarly, we
have z; <, Y. <, Zs4o. Together with ;1 <, x4, this implies the remaining traversal proper-
ties (iii), (iv), (v).

It remains to show that Y” is tall. Suppose Y violates tallness property (vi). Since X is tall,
the only way this can happen is if there is a 1-entry z below v/, and to the left of y}. Then z is
also below v, but d" (1, z) > d¥(y1, v5), violating our assumption (c). A symmetric argument
shows that Y satisfies (vii). ]

4.3. Construction

Fix a k x k permutation matrix P. Throughout this subsection, we write ¢, b, ¢, r for {p, bp,tp, rp.
For a l-entry z = (i,j) € E(P), denote by PF the submatrix of P consisting of all columns to
the left of z (i.e., the leftmost 7 — 1 columns), and denote by Pf the submatrix of P consisting of
all columns to the right of z (i.e., the rightmost k¥ — j columns). Note that in both PX and PR, the
i-th row is empty. Also note that the constructions in Sections 2 and 3 implicitly used PL, PX,
with z € {{,r, q}.

We first construct a matrix with an expandable row. For this, we take P- and PR for (almost)
every l-entry z in a traversal of P and arrange them like in Figure 1.4 k. Then, we vertically
move parts of to arrive at our final construction. A formal description follows.

Let X = (z1,%9,...,%,) be a traversal of P with m > 6, and write (is,7s) = s
for s € [m]. Then the (2k — 1) x (m — 2)k matrix S’(P, X) is constructed as follows. Let L’ be
the (2k —1) x (j, — 1) matrix consisting of a copy of P that is shifted down by k — i, rows (i.e.,
we prepend k — i, rows and append i, — 1 rows to Py’). Similarly, let R/, be the (2k—1) x (k—j,)
matrix consisting of a copy of Pfi that is shifted down by k£ — 7, rows. Note that the empty ¢4-th
row of P (PY) corresponds to the k-th row of L/, (R.). Finally, let S'(P, X) be the following
horizontal concatenation’ of matrices:

m—37 “'m—4> “m—27 F"m—3» m—2

S'"(P,X)= (L3, Ry, Ly, Ry, Ly, R}, ..., L ! L ! L R ).

Note the irregularities at the beginning and the end. Notably, L, R,, L' | R/ _, are not

used in the construction. L and R/, are not used, either, but they are empty anyway, since 1 = ¢
and z,,, = r. See Figure 4.3 for an example.

9See Page 4 for the definition of horizontal concatenations.
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Figure 4.3: A matrix P consisting of a 6-traversal X, and the corresponding construc-
tion S’(P, X'). Some empty columns in S’( P, X') have been omitted. The dotted line indicates
the expandable row.

We claim that the k-th row of S”( P, X) is expandable. Indeed, for each i with 3 < i < m—2,
adding a 1-entry in the k-th row between L) and R; will complete a copy of P with L} and R..
Moreover, adding a 1-entry in the k-th row to the left of R} or to the right of L/ will complete
a copy of P. By construction, this covers the whole k-th row.

As in the Section 3.1, we will not directly use S’(P, X), but rather a modified construction
that preserves the expandable row. We do this to avoid that two different parts of the construction
(i.e., L) U R for i € [m]) overlap vertically. This reduces the number of ways P could appear in
the constructed matrix, and thus makes the analysis much easier.

In the following, we will slightly abuse the notation by writing L’ (R.) for the subsets
of E(S'(P, X)) that correspond to L’ (R.).

Let S(P, X)bea ((2m—6)k+1) x (m—2)k matrix, constructed as follows. Start with a copy
of S'( P, X), shifted down by (m—4)k rows, such that the expandable k-th row of S’ (P, X ) corre-
sponds to the (m — 3)k-th row of S(P, X). Now, foreach s € {5,6,...,m — 1,m — 2, m}, take
all 1-entries in LU R/, that are above the ((m—3)k—1)-th row (i.e., at least two rows above the ex-
pandable row), and move them up by (s —4)k rows. Similarly, for each s € {1,3,4,...,m—4},
take all 1-entries in L/, U R. that are below the ((m — 3)k + 1)-th row (i.e., at least two rows
below the expandable row), and move them down by (m — s — 3)k rows. Figure 4.4 shows the
rough structure of S(P, X') when m = 12 and X is tall.

Let Ly (Rs) denote the the modified set of entries in S(P, X) corresponding to L, (RY).
Clearly, L, and R; still form a partial occurrence of P with a single 1-entry missing between
them in the (m — 3)k-th row. Similarly, R; and L,, form occurrences when adding a 1-entry in
the left- or rightmost part of that row. Thus:

Lemma 4.4. If X is a traversal of P, then S(P, X) has an expandable row.

Note that the construction used in Section 2 can be seen as a special case of both S(P, X)
and S'(P, X)) when m = 4.

The remainder of this paper is dedicated to the proof that if X is a non-extendable tall traver-
sal of a permutation matrix P, then S(P, X ) avoids P, implying that S(P, X ) is a vertical witness
of P. We first fix some notations and make a few observations about S(P, X). Let T" denote the
set of 1-entries that are above row (m — 3)k — 1 (at least two rows above the expandable row).
Similarly, let B denote the set of 1-entries that are below row (m — 3)k + 1, and let M denote
the remaining 1-entries. For a subset A C E(S(P, X)), let AT = ANT,let AB = AN B and
let AM = AN M. For a 1-entry p # x,, let p* denote the copy of p in L, U R,.
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Observation 4.5. Let s,u € {1,3,4,....,m —3,m —2,m} with s < u. Ifu > 5, then every
I-entry in LT U RT is below every 1-entry in LT U RY. Moreover, if s < m — 4, then every
I-entry in LB U RB is below every I-entry in L® U RE, ]

Since X is tall, there are no 1-entries below and to the left of x, if s is odd, or above and to
the right of z; if s is even. This implies:

Observation 4.6. Let s be odd with 3 < s < m—3. Then L, contains no 1-entries below the ex-

pandable row, and R, | contains no I-entries above the expandable row. In particular, L® = &
and RY | = @. ]

We now consider the width and height of relevant parts of S(P, X).
Observation 4.7. Foreach s € {1,3,4,...,m —3,m — 2, m},

e width(Ly) = d"((, 2,) — 1;

width(R,) = d"(xs,r) — 1;

height(LT U RT) = d¥(¢,x,) — 2, if LY U R # &;

height,, (LY U RY") < 1; and

height(L? U RP) = d¥(z,,b) — 2, if LB U RP # @. -

Let 3 < s < m —3beodd. Since X is tall, there are no 1-entries in P above z,_; and to the
right of x5. Thus, z¢_, is the topmost 1-entry in [?,. Similarly, xzj:% is the bottommost 1-entry

in Lg 1. This implies the following improved bounds:
Observation 4.8. For each odd s € {3,4,...,m — 2}:
e height(RY) < d"(w,_y,x,) — 2, if RY # @; and

* height(LP, ) < d¥(zs41, Tsy2) — 2, if LY, # 2. =

4.4. S(P, X) avoids P
In this section, we show:

Lemma 4.9. Let P be a permutation matrix, m = 6 be even and let X = (x1,xs,..., %) be a
non-extendable tall traversal of P. Then S(P, X) avoids P.

Together with Observation 4.2 and Lemmas 4.3 and 4.4, this implies Lemma 1.17. For the
remainder of this section, fix P and X as in Lemma 4.9, and write ¢, b, t,r for {p,bp,tp,7p.
We use the notation for parts of S(P, X) as defined in Section 4.3. Suppose ¢ is an embedding
of P into S(P, X). Our overall strategy is to distinguish cases based on the location of ¢(t),
and derive a contradiction in each case. While the full proof is long and technical, it only uses
a handful of simple arguments that are combined and applied to various situations.
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Figure 4.4: A sketch of the block structure of S(P, X') with | X| = 12.

Note that we make no further assumptions on P, X, ¢, so each lemma or corollary in this
section holds on its own for every choice of P, X, ¢ (we only fix P, X, ¢ for brevity). This
allows us to make use of the following symmetry argument. S(P, X) is not usually symmetric,
in the sense that its 180-degree rotation rot?(S(P, X)) is equal to S(P, X). However, it is easy
to see that rot?(S(P, X)) is equal to S(rot?(P),rot*(X)). Now, in Lemma 4.10, for example,
we show that ¢(t) ¢ L3 for each choice of P, X, ¢, in particular also for every embedding ¢’
of rot?(P) into rot?*(S(P, X)).

We also get ¢(b) ¢ R,_o, since R, in S(P,X) corresponds to Lz in
rot?(S(P, X)) = S(rot?(P),rot*(X)), b in P corresponds to ¢ in rot*(P), and ¢ corresponds
to some embedding ¢’ of rot*(P) into rot*(S(P, X)).

4.4.1 ¢(t) in the front or the back

In this section, we show ¢(¢) and ¢(b) cannot lie in the leftmost or rightmost few “blocks”
of S(P, X). The precise results are Corollary 4.18 and Lemma 4.19 at the end of the section. The
proofs in this section also serve as a warm-up for the more complex later proofs. Most techniques
used in Sections 4.4.2 and 4.4.3 already appear here, where we explain them thoroughly.

Lemma 4.10. ¢(t) ¢ L3 and ¢(b) ¢ R,,—o.

Proof. By symmetry, it suffices to show ¢(t) ¢ Ls. Suppose ¢(t) € Ls. Then
also ¢(¢) € Lz, since S(P,X) contains no l-entries to the left of L;.  But
width(Ls) = d"(¢, x3) — 1 < d"(¢,t) — 1, thus we cannot have both ¢(¢) and ¢(¢) in L3, a con-
tradiction. [

Lemma 4.11. ¢(t) ¢ Ry and ¢(b) ¢ L,y,.

Proof. By symmetry, it suffices to show ¢(t) ¢ R;. Suppose ¢(t) € R;. Note
that height(RT U M) < d¥(t,£) + 1. Since this bound counts the (empty) expandable row,
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Figure 4.5: A sketch of the block structure of S(P, X) with | X| = 6.

we have height (R} U M) < d"(t,£). This implies that ¢(¢) must lie in the lowest row of M or
lower, and thus ¢(¢) is below the expandable row.

Since x5 is below /, this also implies that x3 at least two rows below the expandable row,
so ¢(x3) € B. Further, z3 is to the right of ¢ and LY = &, so we have ¢(z3) € RY. As r is be-
low x3, and all l-entries in S(P,X) that are to the right of R; are above RP, we
have ¢(r) € RB. Since width(R;) < d"(¢,r), this implies that ¢(¢) is to the left of R;. We
now know that ¢(¢) is below the expandable row and to the left of R]. But S(P, X) has no such
1-entry, a contradiction. O]

If m = 6 (see Figure 4.5), then the only remaining possibility is ¢(¢), ¢(b) € L, U R3, which
implies ¢(t) € Ly or ¢(b) € R (since t is to the left of b). Thus, the following lemma concludes
the case m = 6.

Lemma 4.12. If m = 6, then ¢(t) ¢ Ly and ¢(b) ¢ Rs.

Proof. By symmetry, it suffices to show ¢(t) ¢ L,. This can be done with essentially the same
argument as in the proof of Lemma 2.1. Suppose ¢(t) € L,. Then ¢(¢) is not above ¢! € L.
By Lemmas 4.10 and 4.11, ¢(b) € Ly U R3. The lowest 1-entry in Ly U R3 is b*, so ¢(b) is not
below b*. But dj(*,b*) < d¥(t,b) (note the empty expandable row), a contradiction. O

We now continue with the case m > 8.
Lemma 4.13. If m > 8§, then ¢(t) ¢ Ly and ¢(b) ¢ R,—s.

Proof. By symmetry, it suffices to show ¢(¢) ¢ L,. Suppose ¢(t) € Ls. We have
height, (L U M) < d¥(¢,x4) < d¥(¢,x3), implying that ¢(x3) € B. More precisely, we
have ¢(x3) € RP U L, because z3 is to the left of ¢.

Since 7 is below z3 and to the left of ¢, we have ¢(r) € LEURPURE. This means that ¢ maps
no l-entry to the right of R,, and thus maps no 1-entry into the rows between M and L} U RE.
This is a very useful observation, since it essentially allows us to pretend that M is directly
above LY U RE. Similar observations will be used frequently in subsequent proofs.

From the above, we get height,(Ls U Ry) < d¥(t,b) (note that Lj is directly above M),
so ¢(b) is below Ly U Ry, and thus ¢(b) € RY. Moreover, by tallness of X, we have
height, (L4) < dY(f,25), so ¢(w5) is below Ly. Since x5 is to the left of b, this means
that ¢(x5) € RE.

Consider now ¢(z4). Since =5 <, x4 <u b, we have ¢(ry) € Rs. Since
height(RY) < d¥(z3,b) < d¥(z4,b), we have ¢(x4) € RY U R}
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We conclude the proof with a case distinction. First, assume that ¢(t) # t*. Since ¢(t) € Ly
and t* is the highest l-entry in L,, this means that ¢(¢) is below t*, and thus
Ay (p(t), P(4)) < dy(t*, ¢(x4)) < heighty(Ly U M) < d¥(t, 24), a contradiction.

Second, assume that ¢(t) = ¢,. Recall that ¢ maps no 1-entries between M and LY. Because
of this and the fact that the expandable row is empty, we have that d;(t‘*, r3) < d'(t, x3), im-
plying that ¢(z3) is below x3. By tallness of X, this also implies that ¢(z3) is to the right of x3.
However, since xj is to the left of t*, this means that d"(¢(x3), ¢(¢)) < d(z3, 1) = dP(x3, 1),
a contradiction. [

Lemmad4.14. Letm > 8. If ¢(t) € Rs, then ¢(b) is to the right of Ry. Moreover, if $(b) € L,_o,
then ¢(t) is to the left of L, _s.

Proof. By symmetry, proving the first statement suffices. Let ¢(t) € R3 and suppose ¢(b) not
to the right of R4. Since ¢(R3) < d¥(¢,x3), we know that ¢(z3) is below the expandable row.
Let g5 be the 1-entry directly below z3 in P. Clearly, ¢(q3), ¢(b), ¢(r) € B, and since ¢(b) is to
the right of ¢(¢) and not to the right of R4, we have ¢(b) € RY U RY. We separately consider
three cases.

Case 1: ¢(r) € REB. Since X is tall, g3 is to the right of ¢, so ¢(q3) € RP. But
height(RY) = d¥(x3,b) — 2 = d"(gs, b) — 1, a contradiction.

Case 2: ¢(r) € RY. Consider z5. Since x5 is below x3, we have ¢(z5) € B. Since w5 is
to the right of ¢, and above and to the left of r, we have ¢(z5) € RP. But
width(Ry) = d"(z4,7) — 1 < d®(z5,7), a contradiction.

Case 3: ¢(r) is to the right of R,. Then ¢(r) is also above LY U RP. Consider again z5. We
know that ¢(z5) is below M and above LY U RY. Since z; is to the left of b, we also
know that ¢(z5) is not to the right of R,. But there are no such 1-entries in S(P, X),
a contradiction. O

We proceed with some more special cases, showing that ¢(t) also cannot lie in the rightmost
few blocks of S(P, X).

Lemma 4.15. Let m > 8. Then, ¢(t) lies to the left of L,,_o, and ¢(b) lies to the right of Rs.

Proof. By symmetry, it suffices to prove that ¢(t) lies to the left of L,,_o. If ¢(b) lies to the left
of L,,_o, then ¢(t) does, too. ¢(b) ¢ R,,—3U Ly, U R,,,_2 by Lemmas 4.10, 4.11 and 4.13. The
only remaining possibility is that ¢(b) € L,,_», where Lemma 4.14 implies that ¢(¢) lies to the
left of L,,_3, and thus to the left of L,,,_s. U]

To show that ¢(t) ¢ L,,—3 U R,,_4, we use the following more general lemma. Figure 4.6 is
useful to visualize the proof.

Lemma 4.16. Let s be odd with5 < s <m — 3. If §(t) € Ly U R,_4, then ¢(b) lies to the right
OfRsfl.

Proof. Suppose not. Then, ¢(t), ¢(b) € Ls U Ry_1.
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Case 1: ¢(f) ¢ Ls U R,_1. Since / is to the left of ¢, this means that ¢(¢) is to the left of L.
This implies that ¢(¢) is also below LT, and thus ¢(z4) is below LT.
Since z4 is to the right of ¢, we have ¢(x4) € M U B, which implies ¢(z5) € B, as
height, (M) < 1 < d¥(x4,75). Since x5 is to the right of ¢ and to the left of b, we
further know ¢(z5) € RE |. Since width(R,_;) < d®(zs, ), this implies that ¢(r) is
to the right of Rs_;. But then ¢(r) is above ¢(z5), a contradiction.

Case2: ¢({) € Ly U Ry_1. Then ¢ maps no 1-entry to the left of L. Since P is indecompos-
able, there must be some y, z € E(P) such that ¢(y) € L, and ¢(z) is above ¢(y)
and to the right of L,. Note that L, contains no 1-entries below the expandable row
(by tallness of X), so ¢(z) € T. Further, ¢(t) € L, implies that ¢(z) € RI.
Since ¢(b) € Ls U R,_1, we know that b is to the left of z. Tallness of X im-
plies that z is not above x,, 5. Now consider z, ;. We know x, 1 <y, Zpgq <u b
and 7,1 <y T4 <v Tmo <y 2. Thus, ¢(z,;) € LI But
width(LT) < d"(¢, z,) < d¥(¢,z,_,), a contradiction. O

Corollary 4.17. If m > 8, then ¢(t) ¢ L,,_3U R,,,_4 and ¢(b) ¢ Ls U R,.

Proof. By symmetry, it suffices to prove that ¢(t) ¢ L, 3 U R, 4  Suppose
¢(t) € Lyp—3 U Ry,—4q. By Lemmas 4.10, 4.11, 4.13 and 4.14, ¢(b) cannot lie in L, or further
right. This contradicts Lemma 4.16. ]

We now consolidate and reformulate the above results. For the more involved proofs in
Sections 4.4.2 and 4.4.3, it will be convenient to organize the “middle” blocks L;, R;
of S(P,X) into two sets of groups, as follows. For each odd s with 5 < s < m — 5,
letGs = Ly URs 1 ULg 1 URg,andlet H, = Lgyy U Ry U Lgyo U Ry . Figure 4.6 il-
lustrates GG, and H,. Combining Lemmas 4.10, 4.11, 4.13 and 4.15 and Corollary 4.17 yields:

Corollary 4.18. If m > 8, then:

* @(t) lies to the right of L4 and to the left of L, _3. In other words, ¢(t) € Rz or ¢(t) € G
for some odd s with5 < s < m — 5; and

* ¢(b) lies to the right of Ry and to the left of R,,_3. In other words, ¢(b) € L, o
or ¢(b) € Hy for some odd s with 5 < s < m — b.

At this stage, we cannot easily show that both ¢(t) ¢ R3 and ¢(b) ¢ L,,_», but we can show
that at least one of the two must be true.

Lemma 4.19. If m > 8, then ¢(t) ¢ R3 or ¢(b) ¢ Ly,—o

Proof. Suppose ¢(t) € Rz and ¢(b) € Ly, 5. Since height (R5 U M) < dY(t,z3) < d¥(t, z5),
we have ¢(x5) € B. More precisely, as b€ L,, o, we have ¢(z5)€ L2 ,URE ,ULB URE ..
Similarly, ¢(z,,_4) € L3 U RT U L] U R}. In particular, ¢(zs) is to the right of ¢(z,,_4).
But x5 <y, x4 <y, T;—4, a contradiction. U]
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Figure 4.6: (left) A sketch of parts of S(P, X). Here, s is odd and 5 < s < m — 5. The dashed
lines and open rectangles indicate M and the rest of S(P, X). (right) Sketches of three (not
necessarily disjoint) parts of P. The solid lines illustrate tallness.

Note that Corollary 4.18 and Lemma 4.19 completely resolve the case m = 8.

In the following two subsections, we show that the remaining possibilities also lead to a
contradiction. In Section 4.4.2, we treat the easier case, where ¢(t) € G, for some odd s
with 5 < s < m — 5, and ¢(b) is to the right of R, (i.e., to the right of H,). This also handles
the symmetric case where ¢(b) € H, and ¢(t) is to the left of Gs. In Section 4.4.3, we consider
the case where ¢(t) € G and ¢(b) € H,.

4.4.2 ¢(t), ¢(b) in the middle and far from each other
The following lemma is central to this subsection and will also be useful later on.

Lemma 4.20. Let s be odd with 5 < s < m — 5 such that ¢(t) € G. Then ¢(x5) is below the
expandable row, or ¢(0), ¢(t), p(xs) € Lgyq.

Proof. Assume that ¢(¢), ¢(t), ¢(xs) € Lsy1 does not hold. We show that then ¢(z;) is below
the expandable row. Note that ¢(t) € G, implies that ¢ maps no 1-entry into G for u > s.

Case 1: ¢(l) ¢ LyU Ly 1 UR,. Then ¢(¢) is below LT U RT. Since x4 is to the right of ¢ and
below /, this implies that 24 € M U B. Since x, is above x, this means that ¢(x;) is
in the bottom row of M or further below, so ¢(z;) is below the expandable row.

Case2: ¢(t) ¢ LsU Lgiy U Rg. Then ¢(t) € Rs_1, so ¢(t) is below the expandable row,
implying the same for ¢(x).

Case 3: ¢({), p(t) € Ly U R,. Since ¢ does not map any 1-entry to a position below LT U R
and above M, we have height, (L} U L} U R} U RY') < d¥(t, z,). Thus, ¢(x,) is in
the bottom row of M or further below.

Case4: ¢({) € Ly and ¢(t) € Lgyq. Since x4 is below ¢ and to the right of ¢, we have
either ¢(x4) € MUB or ¢(x4) € RY. In the former case, we are done, as in case 1. In
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the latter case, note that ¢ does not map any 1-entry of P into arow below LLURY and
above M, thus height (R} U R)M) = d¥(2,_1,2,) < d¥(24,2,) by Observation 4.8.
Thus, ¢(x,) is below the expandable row.

Case5: ¢(0),p(t) € Lsyq and ¢(x) ¢ Lgyq. Since x4 is to the right of ¢, this means that ¢(x)
is to the right of L, ;. Suppose x, is above the expandable row. Then all 1-entries
in LY, U LB, are below or in the same row as x. Tallness of X, together with the
fact that ¢ maps no two 1-entries into the same row, implies that ¢ maps no 1-entries
into L, U L2, |. But then ¢ maps every 1-entry of P either to LY, or to the right

and below L7, |, and ¢(t) € LY, ¢(b) ¢ L, ,. This means that P is decomposable,

a contradiction. ]

Lemma 4.21. For each odd s with 5 < s < m — 5, if ¢(t) € G5 and ¢(b) is to the right of H,,
then ¢(x;) is below the expandable row.

Proof. Suppose ¢(z) is above the expandable row. By Lemma 4.20, ¢(¢), ¢(t), d(xs) € L.
Since height(L}, ;) < d¥(t, z5), we know that ¢(z) is below LT, , so ¢(x5) must be in the top
row of LM .

541 is above and to the right of ., implying that ¢(z,41) € LY, , U RY. Further, x4, is be-
low Zg, 80 ¢(T540) € MUB,and xs <y, Ts12 <p Tsi1, 50 ¢(Xs12) € Ley1UR,. Since ¢(b) is to
the right of H, by assumption, we know that ¢ maps no l-entry to HE.
Thus, ¢(z,42) € LY, U R

But now ¢(z), ¢(zs42) € LM, U RM, so ¢ maps no further 1-entries to M. Therefore,
¢ maps every 1-entry eitherto A = LT, U LY, U R U RM, or below and to the right of A
(and ¢(t) € A, ¢(b) ¢ A). This means P is decomposable, a contradiction. O

We now consider a simple special case.

Lemma 4.22. If ¢(t) € G for some odd s with5 < s < m — 5, then ¢(b) ¢ Ly,—o.
Moreover, if p(b) € H, for some odd s with5 < s < m — b, then ¢(t) ¢ Rs.

Proof. By symmetry, it suffices to show the first statement. Suppose ¢(b) € L,,_». Then,
¢(b) is to the right of R,,_4, and thus to the right of R, so Lemma 4.21 implies that ¢(zy)
is below the expandable row. Since x; is to the left and above b, we have ¢(zs) € L, o.
Since zy, <y Tey1 <u b, and ., is below ¢, we have ¢(x,y1) € LM , U LB ,. But
height (LY, U LY _5) < d¥(2m—2,b) < d"(2p—4,b) < d"(2441,b), a contradiction. O

We proceed with the main case of this subsection.
Lemma 4.23. Let s,u be odd such that 5 < s <u < m — 5. If ¢(t) € G, then ¢(b) ¢ H,.

Proof. Suppose ¢(b) € H,. Note that then ¢ maps no 1-entry to G2 or H_.

Lemma 4.21 implies that ¢(z;) is below the expandable row. Since z, is below xg, we
have ¢(z,) € B. Moreover, ¢(z,) is to the left and above ¢(b) € H,, so ¢(z,) € HE.

Since x, <p Ty_1 <n Tur1 <n b, we have ¢(x,_1), d(ry1) € H,. Note that ¢ maps
nothing to H_, so ¢(z,_1) € HM U HZ, and ¢(x,1) is below the expandable row, as x, is
below z,,_1.
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Further, 7, <, 7 <, b, so ¢(r) € HE. Thus, ¢ does not map any 1-entries to the rows
between M and H, so height, (M U L7, U Ry ;) < d¥(@y41,b). Since ¢(a,41) is not in the
top row of M, this means that ¢(b) is below L2, , U R2, |, so ¢(b) € R%.

Consider now ¢(z,2). Since ¢(z,41) is below the expandable row and, by Observations 4.7
and 4.8, height (L}, | ULY ;) < d¥(Zy41, Tusa), we know that ¢(z,1) is below L)} ;. Further,
Tyio is to the left of b, s0 ¢(z.,42) € RE. Since r is below z,, 5, this implies ¢(r) € RE.

This means that ¢(x, 1) € L, U R,. Since height(RB) < dV(z,,b) < d"(xys1,b), we
have ¢(z,,41) above R2, so ¢(z,41) € LB, U LM | U RM. We distinguish two cases:

Case 1: ¢(xyi1) € LY, U LM, . Since ¢(z,41) is below the expandable row, tallness of X
implies that ¢ maps no 1-entry to RM. But then ¢ maps all 1-entries to R or above
and to the left of RP (recall that ¢ maps no 1-entries to H,"). Thus, P is decomposable
(since ¢(b) € RB, ¢(t) ¢ RB), a contradiction.

L

Case2: ¢p(r,41) € RM. Since ¢(x, 1) € HM U HP is above ¢(z,1), this means
that ¢(x,—1) € LM, U RM. Note that ¢ cannot map any further 1-entries to M.
But this means that ¢ maps all 1-entries either to HM U HE or above and to the left
of HM U HE, again contradicting that P is indecomposable. O

Corollary 4.24. There is some odd s with 5 < s < m — b such that ¢(t) € G5 and ¢(b) € H,.

Proof. Suppose first that ¢(t) € Rs. Then Corollary 4.18 and Lemma 4.19 imply
that ¢(b) € H; for some odd s with 5 < s < m — 5. But then Lemma 4.22 implies
that ¢(t) ¢ R, a contradiction. A similar argument shows that ¢(b) ¢ L,,_».

As such, there are odd s, u with 5 < s,u < m — 5 such that ¢(t) € G, and ¢(b) € H,.
Lemma 4.23 implies v < s. If u < s, then ¢(t), ¢(b) € Ly U Rs_4, contradicting Lemma 4.16.
Thus, s = wu. OJ

4.4.3 ¢(t), ¢(b) in the middle and close to each other

In this subsection, we show that Corollary 4.24 also leads to a contradiction, which shows that our
assumption that S(P, X) contains P must have been false. Figure 4.6 will be useful throughout
this subsection. We start with the case ¢(t) € L.

Lemma 4.25. ¢(t) ¢ L and ¢(b) ¢ Rsy1 for each odd s with5 < s < m — 5.

Proof. By symmetry, it suffices to prove the first statement. Suppose ¢(t) € Ls. Lemma 4.20
implies that ¢(x;) is below the expandable row and thus to the right of L.

We will consider several possibilities for the location of ¢(b) and ¢(r). Before, we make
some observations. Corollary 4.24 implies that ¢(b) € Hy. Since ¢(z;) is below the expandable
row, ¢(z542),¢(b) € B, and thus ¢(zs40),0(b) € HP = L%, U R U R2 . Since
Toro <y Tm_g <, T, this also implies ¢(r) € HE. This means that ¢ does not map any 1-
entry into the rows between M and L7, U RY,,, so height, (M U LY, ) < d¥(x441, %542) and
height, (M U R2,;) < d¥(wg41,b).
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Case 1:

Case 2:

Case 3:

Case 4:

p(b) € LB Then we have ¢(r) € L2, U RZ,. Since
height, (M U L3,) < dY(@e1,Zer2) < d¥(ws41,0), we have p(2,1) € T.
Since ., is to the left of b, we have ¢(z,,1) € LY. Moreover, t <, { <, T4y
implies ¢(¢) € L,. But width(L,) = d"(¢, z,) — 1 < d"(¢, 2,41), a contradiction.

¢(b) € RY,,. Then ¢(r) € RP,,. Since height, (M U R} ) < d¥(z.41,b), we
know that ¢ (1) is above the expandable row, and therefore to the left of R, ; (by
Observation 4.6).

Since z,_; is above x,1, we have ¢(x,_;) € T, implying ¢(z,_1) € LT U RT and
thus ¢(¢) € L,. Further, width(L}) < d"(¢, 2, 1), so ¢(zs_1) € RY.

Finally, since ¢(x512) € B and 445 is to the left of z,,1, we have ¢(z42) € L2, .
But then ¢(z,, ) is to the left of ¢(zs_) € RY, while x,, is to the right of z,_1, a
contradiction.

o(b), é(r) € RB. We consider the location of ¢(zs_;). Note that ¢(z,_1) € G,
since t <y, xs_1 <p .

First, suppose that ¢(xs_1) € Rs. Let ¢, be the 1-entry of P in the row below z,. We
have ¢(qs) € B, because ¢(x) is below the expandable row. Since X is tall, g5 is to
the right of z,_1, so ¢(q;) € RP. But height(RP) < d¥(z,,0) — 2 =d"(¢s,b) — 1,2
contradiction.

Second, suppose ¢(xs_1) € Lgy1. Since ¢(t) € L, this means ¢(zs_1) € M U B.
By tallness of X, there are no 1-entries in P that are above and to the right of z,_1,
so ¢ does not map any l-entry to R). Note that ¢ must map some 1-entry y to RM.
Otherwise, ¢ maps all 1-entries to B2 or above and to the left of RE (and ¢(t) ¢ RZ,
#(b) € RB), so P is decomposable.

By tallness of X, and since y is to the left of zs_;, we know that y must be below z5_;.
Thus, ¢(zs_1) is in the top row of M, and ¢(y) is in the bottom row of M. But since M
only consists of two rows, ¢ maps no further 1-entries to M, so ¢ maps all 1-entries
either to HM U HE or to the left and above HM U HB. This again implies that P is
decomposable, a contradiction.

Third, suppose ¢(z,_1) € RM . Then ¢(z,_1) is below the expandable row (by Ob-
servation 4.6), so ¢(xs) € B. But xy also lies to the left of x;_; and above b, a
contradiction.

Finally, suppose ¢(zs_1) € Ls. Since t <y =5 <, Zs_1, this implies ¢(xs) € L.
But ¢(z5) is below the expandable row, contradicting Observation 4.6.

¢(b) € RP and ¢(r) € RZ_,. Then ¢(zs42) is above and not to the right of RY.
Together with the fact that ¢(z4.2) € B, this implies ¢(z542) € L2, ;.

Since height, (LY, ; U M) < dV(211, Ts42), we know that ¢(z,41) is above the ex-
pandable row, and thus ¢(z,_1) € T, implying ¢(zs_1) € LT U RT. Moreover, since
width(LT) < d"(¢, z5_1), we have ¢(zs_1) € RY. Now ¢(zs_1) € RY is to the right
of p(x440) € LEH, but x,_; is to the left of x5, a contradiction. O
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The next few lemmas deal with the case that ¢(t) € L.
Lemma 4.26. Let s be odd with5 < s < m — 5. If ¢(t) € Ly, then ¢p(b) ¢ L.

Proof. Suppose ¢(t), p(b) € Lgy1. Since width(L,y 1) < dP(f, zs1) < d2(£,b), we know
that ¢(?) is to the left of L.

b <p Xy <p Ts <p Tsy1 <p bimplies that ¢(xy), d(xs)d(xsr1) € Lsyq1. Moreover, ¢(x4) is
below LSTH, since x4 is below ¢. This implies that x,., is below the expandable row, which in
turn implies that z, € L, .

Since r is below z, and above b, we have ¢(r) € L2, U RY ,, implying that ¢) maps no
l-entry into the rows between M and L7, U RY, . But then height (LY, | UM) < d¥ (441, b),
S0 ¢(xs41) is above the expandable row, a contradiction. [l

Lemma 4.27. Let s be odd with 5 < s < m — 5. If ¢(t) € Lsy1, then ¢p(b) € R.

Proof. Assume ¢(t) € Lg,1. By Corollary 4.24, we have ¢(b) € H,. Lemmas 4.25 and 4.26
imply that ¢(b) ¢ Lsi1 U Reyq. If ¢(b) € Lo, then ¢(b) is above the expandable row. But
then ¢(r) is to the right of R, below L, ,, and in T, which is impossible. The only remaining
possibility is that ¢(b) € R. O

Lemma 4.28. Let s be odd with 5 < s < m — 5. If ¢(t) € Lgsi1, then ¢(x5_1) € Lsiq
and ¢<xs+2) S Rs-

Proof. By Lemma 4.27 and symmetry, it suffices to show that ¢(z,_1) € Ls,1. Suppose not.
By Lemma 4.27, ¢(b) € Rs, sot <y x5_1 <y b implies that ¢(z,_1) € R,. Let ¢; € E(P) be
the 1-entry of P in the row directly below x;.

We claim that ¢(z;) is below the expandable row, and thus ¢(¢s) € B. If ¢(zs_1) € M U B,
then ¢(z;) is indeed below the expandable row, since x is below 1. Otherwise, ¢(zs_1) € RST,
which implies that ¢(¢) € LT U LY., so ¢ maps no l-entry into the rows between L} U R}
and M. Thus, height, (R} U R}') < d¥(ws_1, z), implying that ¢(z,) is below the expandable
row. This proves the claim.

We have height height(RP) < dY(x,,b) — 2 = d¥(¢,,b) — 1, which implies
that ¢(qs) ¢ RP. Since X is tall, g, is to the right of z,_; and thus ¢(g,) is not to the left
of R,. Since ¢(q;) € B\ RE, this implies that ¢(q,) is to the right of R, so ¢(r) is to the right
of Ry, and thus above RP.

Consider now s o. First, 7,1 <j Ts12 <, b implies that ¢(xs.2) € Rs. Since x; is below
the expandable row, ¢(x,,2) € R2. But then ¢(x,,2) is below ¢(r), a contradiction. O

Lemma 4.29. Let s be odd with5 < s < m — 5. If ¢(t) € Ly, then (E(P)) C Ly U R,

Proof. We show that ¢({) € Ly and ¢(r) € R;. By Lemma 4.27, we have ¢(b) € R,. Thus,
by symmetry, it suffices to prove ¢(¢) € Ly1. Suppose ¢(¢) ¢ Ly 1. Then ¢(¢) is below LY, ;.
Since xs_1 is below ¢ and ¢(zs_1) € Lgi1 by Lemma 4.28, we have ¢(xs_1) € Lls\il U LSBH.
Since d¥(zs_1,Zs12) > 1, this means ¢(z542) € B. More precisely, by Lemma 4.28, we
have ¢(z,.2) € RE. Since r is below x5, we also have ¢(r) € RE.
Now consider (., 1). Since height(RP) < dV(x,,1,b), we know that ¢(z,) is above RE.
Further, 7,9 <j Zs41 < bimplies ¢(z,41) € RT U RM.
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Ts_ 1 is above xs, 1, SO we have ¢(zs_1), d(rs11) € M. This implies that dV(zs_1, z541) <
d;(qb(xs_l), ¢(xs11)) = 1, 80 xs_1 is in the row directly above x4, in P. Note that this means
that the top row of LM | contains precisely 2511, and thus ¢(zs_;) = z5F].

Finally, consider ¢(x,). We know that ¢(z,) is not to the right of ™! € L, otherwise
dP(p(zs), p(zs_1)) < dP(@sF', 25t]) = dP(as, x,_1). Moreover, () must be below 25+,
Indeed, ¢(r) € R, implies that ¢ maps no 1-entries between L2, U R® | and M, implying
4y (3t 25h) < d¥(wem1, ws) — 1. So () is below and to the left of 25!, But then tallness

of X implies that ¢(z,) is below ¢(b) € HE, a contradiction. O
Lemma 4.30. ¢(t) ¢ Ly and ¢(b) ¢ R for each odd s with 5 < s < m — b.

Proof. By symmetry, it suffices to show the first statement. Suppose ¢(t)
By Lemmas 4.28 and 4.29, we have ¢(xs 1) € Lgiq as well as ¢(xsi2), d(b
and (b(P) - Ls+1 U Rs-

Since t <y, x5 <p =51, we also have ¢(xs) € Ly ;. Symmetrically, ¢(z541) € Rs.
Let ps11 € E(P) be the 1-entry of P in the row directly above x4, 1, and let ¢, € F(P) be the 1-
entry in the row directly below z,. Since height(L}, ;) = d"(¢, ps41) — 1, we know that ¢(p,41)
is below L7, , and, symmetrically, ¢(g;) is above RE. With p,y 1 <, Tei1 <y Ts <y (s, WE
have ¢<$s)7 ¢($s+1)7 ¢(qs)7 (b(szrl) S Llsv—[H U LSB-H U RST U RISVI

Our goal for the remainder of the proof is to find two 1-entries y;,y2 € FE(P) such that
the sequence ¥ = x1,%9,...,%s, Y1, Y2, Tst1,..., Ty iS a traversal of P. For this, we have
to show that (i) yo <p w1, as well as (ii) y1 <, xs11, and (iii) zs; <y y2 (note that then
Ts—1 <n Y2 <n Y1 <n Tsyo and x5_1 <y Y1 <y Y2 <y Ts12 follow from tallness of X'). The ex-
istence of such a traversal implies that X is extendable, contradicting our assumption.

We consider two cases. First, assume that ¢, is to the left of p,.;. Then we simply
choose y; = ps41 and yo» = ¢s. By definition, ps,; is above z,,1 and ¢, is below zg, and (i)
follows by assumption.

Second, assume that p,.; is to the left of ¢;. Then either ¢(psi1) € Lsiq
or ¢(gs) € Rs. By symmetry, we can assume the former, which implies ¢(ps11) € LY, ULE, |.
Since ¢(zs11) € BRI U RM and z,, is below p,, 1, we have ¢(p,11), d(xsy1) € M. More pre-
cisely, ¢(pst1) = piﬂ € LY}, and ¢(x441) = ¢5 € R}

Now choose y1,y2 € E(P) such that yit" = ¢(z,_1) and 5™ = ¢(x,). Note that this is
well-defined, since ¢(z,_1), ¢(xs) € Lyr1. We immediately have (i) from =, <), z5_1.

We now show (ii), that y; is above 1. Since x5 is above x5y and ¢(z541) = ¢2, we
know that ¢(z,_1) = ;™' is above the expandable row. Since the expandable row in L,
corresponds to the row containing =4, in P, this means that g, is above .

Finally, we show (iii), that ys is below z. Since ¢(r) € Ry, we know that ¢ maps no 1-entry
into the rows between M and LE,,. Since ¢ also maps no 1-entry into the expandable row, we
have d(pt], 25™!) < d¥(per1, @5) — 1. As ¢(psy1) = p2i1. this means that ¢(z,) = 5+ is
below x$*1, implying (iii). O

S Ls+1°
) € R

The remaining cases are now easy:

Lemma 4.31. ¢(t) ¢ R, 1 U Rs and ¢(b) ¢ Lsy1 U Lg, o for each odd s with 5 < s < m — b.
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....)

Figure 5.1: An indecomposable non-permutation matrix without a spanning oscillation.

Proof. By symmetry, it suffices to show the first statement. Suppose ¢(t) € R, ; U R,. By
Corollary 4.24 and Lemmas 4.25 and 4.30, we have ¢(b) = L1 U Lgyo.

Suppose first that ¢(t) € Rs_1. Then ¢(t) is below the expandable row, meaning that ¢(¢)
is below M, but not to the right of Ry ;. But ¢(b) is above R? |, implying that ¢(¢) is also
above RP |, a contradiction.

Second, if ¢(t) € R, then ¢(b) € Ly, o, since b is to the right of . A symmetric argument
shows that ¢(r) is above M, below LST+2, and not to the right of L., a contradiction. O]

Lemmas 4.25, 4.30 and 4.31 imply that ¢(t) ¢ G, contradicting Corollary 4.24. As such,
our assumption that ¢ is an embedding of P into S(P, X') must be false. This concludes the
proof of Lemma 4.9.

5. Conclusion and open problems

We showed that each indecomposable permutation matrix has bounded saturation function,
thereby completing the classification of saturation functions of permutation matrices. Our proofs
imply the upper bound sat(P,n) < 9k* for an indecomposable k x k permutation matrix P (note
that the largest witness S(P, X) is not larger than 2k? x k2, and Lemma 1.7 combines it with
its 90-degree rotation, resulting in a 3k? x 3k? matrix). It would be interesting to improve this
bound, especially if a simpler construction for patterns satisfying the conditions of Lemma 4.9
can be found. Note that for general patterns with bounded saturation functions, no upper bound
for sat(P, n) in terms of P is known, as noted by Fulek and Keszegh [FK21].

We also characterized a large class of non-permutation patterns with bounded saturation
function, including very dense matrices (Theorem 1.2). Still, a full characterization of the satu-
ration functions of all matrices remains out of reach. Note that there are indecomposable patterns
without spanning oscillations, see, e.g., Figure 5.1. Thus, new techniques are likely required to
fully resolve this problem.

Our results trivially imply that every permutation matrix with a vertical witness also has a
horizontal witness. It would be interesting to determine whether this is true for arbitrary patterns.

It is also possible to consider the saturation functions of sets of patterns. If P is a set of
patterns, let a matrix M be P-saturating if M avoids each P € P, and adding a single 1-entry
in M creates an occurrence of some P € P in M. Let sat(P,n) be the minimum weight
of P-saturating matrices. Since our witnesses for £ x k& permutation matrices have size at most
3k? x 3k2, they avoid all patterns with one side of side length more than 3k2. Thus, if PP contains
one indecomposable permutation matrix, and arbitrarily many much larger patterns, our results
imply that sat(P,n) € O(1).
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It would be interesting to determine the saturation functions for, say, all pairs of two permu-
tation matrices of the same size. Gerbner, Nagy, Patkés, and Vizer [GNPV22] observed that
certain saturation problems for two-dimensional posets can be reduced to saturation problems
for sets of matrix patterns. However, these sets usually contain both permutation matrices and
non-permutation matrices (of similar size).

A. Proof of Lemma 1.19

Lemma A.1. Let P, M be matrices, and let P have no empty rows or columns. Then P is
contained in M if and only if there is an embedding of P into M.

Proof. Say P is g x s and M is m x n. Suppose P = (p; ;) ; is contained in M. Then there
are Tows 11 < 19 < -+ < rgand columns ¢; < ¢ < -+ < ¢ such that p;; < My,
for each i € [¢q],j € [r]. Now simply define ¢(i,5) = (r;,¢;). Clearly, ¢(E(P)) C E(M).
Moreover, consider (i, j), (', ') € E(P). We have ¢ < ¢ if and only if r; < r;;, and j < j" if
and only if r; < rj. Thus ¢ is an embedding of P into M.

Now suppose ¢: E(P) — E(M) is an embedding of P into M. Note that z,y € E(P) are
in the same row (resp. column) if and only if ¢(z), ¢(y) are in the same row (resp. column).
Thus, ¢(E(P)) intersects exactly g rows and s columns. Let r; < ry < --- < r, be those rows
and ¢; < ¢ < --- < ¢ be those columns. We show that ¢(i,j) = (r;,¢;) for
each (i,j) € FE(P). Let xy,x9,...,2, € FE(P) such that z; is in the i-th row for
each i € [m], and let r; be the row of M containing ¢(z;). Clearly ; > r;. By induction,
we further have r, > r; for each ¢ € [m/|. Similarly, r/, < r,,, and, again by induction, r, < r;
for each i € [m]. This implies that ¢(i, j) is in the r;-th row of M for every (i, j) € E(P). An
analogous argument shows that ¢(¢, j) is in the ¢;-th column of M.

Since ¢ is an embedding, we have (r;,c;) = ¢(i,5) € E(M) for each (i,j) € E(P).
Thus, p; ; < my, ., for each (i, j) € [g] X [s], so P is contained in M. O
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