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ABSTRACT OF THE THESIS

Fairness-aware Machine Learning in Power Grids

By

Ruijie Du

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2023

Assistant Professor Yanning Shen, Chair

With the development of intelligent measurement systems, power grids improved reliability

and efficiency according to the vast amount of collected information. Machine learning(ML)

techniques are increasingly used in smart grids since they are efficient in dealing with huge

amounts of data and extracting valuable information. However, large-scale deployment of

ML models relies on how trustworthy the model is. While sole pursuit of overall learning

performance may lead to unfair results. Specifically, the model may unintentionally dis-

criminate different subgroups. To mitigate the unfairness, we propose accuracy parity, equal

opportunity and predictive equality regularizers, which can be used for different classification

tasks in power grids to mitigate the corresponding discrepancy.

However, most tasks in power grids cannot be formulated as classification tasks. Instead,

more practical tasks like regression and decision-making take precedence. When addressing

the fairness of dynamic decision-making problems over a continuous time scale, two different

fairness objectives naturally arise: the instantaneous fairness objective that aims to ensure

fairness at every time slot and the long-term fairness objective that aims to sustain fair-

ness over a period. Long-term fairness becomes increasingly crucial due to its adaptability

and applicability. We formulate the problem as an online optimization problem with the

long-term fairness constraint and propose an algorithm to tackle it. The proposed method

analytically yields sub-linear dynamic regret and sub-linear accumulated fair violations.

ix



Chapter 1

Introduction

With the development of intelligent measurement systems and smart metering technology,

migrating to an electronically controlled grid has yielded significant improvements in reliabil-

ity and efficiency [8]. The evolution of power grids has led to a more efficient data collection

process. Machine learning techniques provide an efficient way to analyze a massive amount

of data and extract valuable information. By analyzing the measurements, more information

can be obtained more accurately: the status of the network, the actual detailed load patterns,

etc. The increasing reliance on machine learning techniques has brought about significant

benefits to power grids in various tasks, including predictions of consumption [33, 27], fault

detection [14], etc.

However, as decision-making increasingly relies on machine learning and the utilization of

data, the issue of fairness is receiving increasing attention. In classical machine learning,

when considering a classification task, the objective is to minimize a loss function(e.g., cross

entropy) that reflects the errors. Unfortunately, this approach is unable to control the distri-

bution of errors across different subgroups. This lack of control over subgroup-specific errors

has raised concerns about unintentional discrimination and unfairness in decision-making
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processes. In recent years, research has pointed out plenty of evidence that decision making

by machine learning models may unintentionally discriminate different subgroups and causes

unfairness, especially in media and social studies. In settings such as loan approvals[15] or

college admissions[2], fairness must be carefully taken into account in order to ensure the

absence of discrimination. To tackle this issue, more and more fairness-aware machine learn-

ing solutions have been proposed [41, 40, 1, 42]. However, the issue of potential bias has not

yet been extensively explored or considered in power grids. While the development of smart

metering technology provides more convenient data collection, it also leads to potential bias

since more detailed and private data may be revealed. Moreover, the prevalence of smart

meters and sensors varies widely among users or locations, potentially leading to biased data

collection practices. Consequently, machine Learning models trained from such datasets

may henceforth inherit the bias in the collected data. In Chapter 3, a novel fairness-aware

framework is introduced to eliminate potential bias in power grid user classification.

To extend fair machine learning to dynamic systems, such as network systems and power

grids, some recent works study the long-term impact of fairness in various applications, such

as [4, 10, 36, 44, 39, 38]. Most fairness-aware machine learning frameworks have predom-

inantly focused on classification settings within ecosystems. However, in many real cyber-

physical systems, the decisions in these systems are often bound by physical limitations and

cannot be easily framed as classification tasks, such as [30, 6, 7]. For achieving long-term

fairness in different systems, most approaches focus on the problems with dynamic costs

but time-invariant fair constraints but do not consider the problem with time-varying fair

constraints. However, the fair constraint might vary with the dynamics of the systems and

decisions [44]. To address the need for long-term fairness in dynamic decision-making systems

with time-varying fair constraints, Chapter 4 introduces a novel framework to ensure long-

term fairness. By adapting to the dynamics of the system and considering time-varying fair

constraints, this framework aims to provide sustainable fairness in dynamic environments.

2



The thesis is structured as follows: Chapter 1 provides an overview of the thesis. Chap-

ter 2 provides the study background and the related literature. Chapter 3 addresses the

fairness-aware user classification in power grids which introduces two regularizers to elim-

inate potential bias. Chapter 4 addresses the long-term fairness-aware decision-making in

power grids and aims to ensure long-term fairness with time-varying fair constraints. Chapter

5 concludes the thesis and discusses the limitations and future directions.
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Chapter 2

Background

This chapter presents the study background and the related literature about machine learning

and fairness in power grids.

The power grid serves as a vital infrastructure, enabling the generation, transmission, and

distribution of electricity to meet the growing energy demands of modern society [8]. As

power systems become increasingly complex and face new challenges such as integrating

renewable energy sources and managing fluctuating electricity demand, the adoption of ma-

chine learning techniques has emerged as a promising avenue to enhance grid operations,

improve reliability, and optimize energy management [7, 31].

Two of my studies about fairness-aware machine learning in power grids, one on the fairness-

aware classification (Chapter 3) and another one on long-term fairness-aware decision making

(Chapter 4).
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2.1 Machine Learning in Power Grids

Machine learning, a branch of artificial intelligence, encompasses a range of algorithms and

methodologies that enable computers to learn from data and make predictions or take actions.

In the context of power grids, machine learning techniques have the potential to revolutionize

various aspects of grid operations, including predictive maintenance [35], demand response

[24], energy management [6], etc.

Demand Response: Demand response programs play a crucial role in balancing electricity

supply and demand, particularly with the increasing penetration of renewable energy sources

and the variability of electricity consumption patterns. Machine learning techniques enable

accurate demand forecasting by considering various factors such as weather patterns and

historical consumption data. This enables utilities to optimize energy dispatch, load shifting,

and effectively manage peak demand periods.

Energy Management: Efficient energy management is a key consideration in modern

power grids. Machine learning algorithms can analyze historical energy consumption pat-

terns, customer data, and external factors such as weather forecasts to develop predictive

models for load forecasting [4]. These models help utilities in resource planning, grid expan-

sion, and optimal resource allocation. Additionally, machine learning can support energy

optimization strategies by optimizing the operation of distributed energy resources, energy

storage systems, and microgrids.

The current power systems are undergoing a transition towards their more active, flexible,

and intelligent counterpart smart grid, which brings about tremendous challenges in many

domains, e.g., integration of various distributed renewable energy sources [18], demand-side

management [24], and decision-making of system planning and operation. The concept of a

smart grid, as Figure 2.1, has emerged as a complex cyber-physical system encompassing a

huge electrical power network with the underlying information and communication system

5



Figure 2.1: Concept of smart grid.

[11, 37]. The fulfillment of advanced functionalities in the smart grid firmly relies on the

underlying information and communication infrastructure, and the efficient handling of a

massive amount of data generated from various sources, e.g., smart meters and various

forms of sensors [13].

The integration of machine learning techniques into power grids offers significant oppor-

tunities to enhance grid operations, improve reliability, optimize energy management, and

strengthen cybersecurity. By leveraging advanced analytics, pattern recognition capabilities,

and predictive modeling, machine learning empowers utilities to make data-driven decisions,

automate processes, and enable more efficient utilization of grid resources. As the power

grid continues to evolve and face new challenges, machine learning will play a crucial role

in shaping the future of power systems and enabling a more sustainable and resilient energy

infrastructure.

Machine learning techniques provide an efficient way to analyze the massive amount of data

and extract valuable information. The real-time operational condition monitoring and effi-

cient data analysis can greatly strengthen the system management for many aspects, includ-

ing predictions of consumption [33, 27], fault detection [14], management of load demands
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[24], etc.

2.2 Fairness in Power Systems

As power systems continue to evolve, there is a growing recognition of the importance of

fairness in the design, operation, and regulation of these systems. Fairness encompasses the

equitable allocation of resources, benefits, and costs among different stakeholders, ensuring

that all individuals and communities have equal access to reliable and affordable electricity

services. Achieving fairness in power systems is not only a matter of social justice but also

crucial for promoting sustainability, inclusivity, and economic development.

As decision-making increasingly relies on machine learning and data, the issue of fairness is

receiving increasing attention. In recent years, research has pointed out plenty of evidence

that decision making by machine learning models may unintentionally discriminate different

subgroups and causes unfairness, especially in media and social studies [41, 40, 1, 42].

The issue of potential bias also exists in power grids. With the increasing use of data analytics

and machine learning in power systems, there is a need to address data bias and algorithmic

fairness concerns. Data-driven decision-making processes should be carefully monitored to

ensure that they do not inherit existing biases or lead to discriminatory outcomes. Power

system decisions not only affect the overall system, but also individual end-users, such as

generators, flexibility providers and end-consumers, depending on their location and char-

acteristics [9]. Though the importance of fairness is increasingly recognized in the power

system literature [9, 32], most machine learning models in power grids have not considered it

yet. In order to achieve more fair results in decision making, such as energy management and

resource allocation in power systems, existing machine learning schemes need to introduce

additional bias-mitigating schemes before they can be readily applied to the grids.
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Fairness is a fundamental principle that should underpin the design, operation, and regula-

tion of power systems. By addressing challenges related to access, affordability, grid planning,

renewable energy transitions, and algorithmic fairness, power systems can be transformed

into more equitable and inclusive frameworks. Achieving fairness requires collaboration

between policymakers, regulators, utilities, and community organizations to identify and im-

plement strategies that promote equal access to reliable and affordable electricity services,

regardless of socioeconomic status or geographic location.
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Chapter 3

Fairness-aware User Classification in

Power Grids

In this chapter, we examined and showcased the existing bias in directly applying neural

network models, then two types of regularizers were introduced to promote the fairness in

user classification tasks in power grids.

3.1 Introduction

Machine learning techniques are increasingly used in smart grids since they are efficient to

deal with the huge amount of collected data and extract valuable information. The avail-

ability of large-scale data enables the employment of machine learning methods in various

tasks in power grids [37]. However, large-scale deployment of machine learning model relies

on how trustworthy the model is. Machine learning models for smart grids also have fairness

concerns. Power consuming users and buildings with different power consumption patterns

may be treated with different conditions. To mitigate the unfairness, we propose accuracy
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parity, equal opportunity and predictive equality regularizers, which can be used for different

classification tasks in power grids to mitigate the corresponding performance discrepancy.

The chapter is organized as follows: Section 3.2 introduces the problem of high load indica-

tion, and proposes the fairness enhancing framework. Section 3.3 focuses on fairness-aware

user type identification task. Numerical tests are presented in Section 3.4 to evaluate the

performance of the proposed schemes.

3.2 Fairness-aware High-load Indication

High-load indication task refers to the task of predicting whether the load of the next time

period is high-load state or not based on current and previous load information, see e.g., [19].

Knowing the loading status or behavioral categories of power consumers can better model

the behavior forecast which is an important task for load balancing. The input information

is the load information of T time frames, including the load information from now to T − 1

time frames ago. And the output is the binary indicator y ∈ {0, 1} of high-load status at

time T + 1, where y = 1 indicates high-load status.

Specifically, such task can be viewed as a binary classification problem, where the objective

is to minimize a loss function that reflects the errors made by the classifier F . Specifically,

the loss function considered in the present work is the cross-entropy loss

L(θ;D) = − 1

|D|
∑
x∈D

(y log(F (x; θ))+(1− y) log(1− F (x; θ))) , (3.1)

where x ∈ Rn is the input feature of a data sample and y ∈ {0, 1} is the ground truth label

corresponding to x. In high-load indication task, x represents time-series load data and y

represents the load status. θ denotes the parameters of the classifier that will be trained

to minimize the loss function. F (x; θ) is the output of the classifier which represents the

10



predicted probability of x being class 1. Because the classification is binary, 1 − F (x; θ) is

the predicted probability of x being class 0. Such loss is widely used for classification tasks

including but not limited to anomaly detection [43], quality prediction [35], fault detection

[14], or load indication [19, 28].

3.2.1 Accuracy Parity Regularizer

Existing frameworks for load indication in power grids usually focus on how to design the

classifier F with lower error rate, but they are usually bias-oblivious. This will lead to

potential bias in the results. The classification of loading status is based on their consumption

patterns which potentially have fairness issues due to the sensitive attributes, e.g. building

sizes, geographical locations, user types.

Let z ∈ {1, 0} denote the sensitive attribute, which can denote, e.g., building size or loca-

tion. Let d(x) represent the signed distance between the feature vectors of samples and the

classifier decision boundary [40]. The covariance between the sensitive attributes z and d(x)

can be written as

Cov(z, d(x)) =E[(z − z̄)g(y,x)]− E[(z − z̄)]ḡ(y,x)

≈ 1

|D|
∑

(x,y,z)∈D

(z − z̄)g(y,x), (3.2)

where z̄ and ḡ(y,x) denote the average of the value z and g(y,x) for all data samples in D,

g(y,x) := max(0, (1
2
−y)d(x)), E[(z− z̄)]ḡ(y,x) = 0 since E[(z− z̄)] = 0. In neural networks

for binary classification, the final decision is based on the output of last linear layer, denoted

as f(x). The final output of the classifier F (x) is obtained as the output of the last logistic

activation function with input f(x). Hence, ŷ = 1 if f(x) > 0, otherwise y = 0. The

decision boundary is simply the hyperplane that f(x) = 0. Hence d(x) = f(x) − 0 = f(x)

11



and g(y,x) := max(0, (1
2
− y)f(x)). Splitting the sum in Equation 3.2 into two terms with

respect to the sensitive attribute z, we obtain

∑
D

(z − z̄)g(y,x) =
∑
z=0

(0− z̄)g(y,x) +
∑
z=1

(1− z̄)g(y, x). (3.3)

It can be readily observed that if the prediction matches the true label ŷ = y, we have

f(x) > 0 for y = 1 and f(x) < 0 for y = 0. Hence, (1
2
− y)f(x) < 0. Due to the

maximum operation, g(y,x) = 0. Similarly, g(y,x) > 0 if ŷ ̸= y. Meanwhile, the term

(z − z̄) takes different signs for different sensitive groups: For the subgroup with z = 0,

(0 − z̄)g(y,x) ≤ 0; for the subgroup with z = 1, (1 − z̄)g(y,x) ≥ 0. Hence, the addition

of the two terms in Equation 3.3 characterizes the difference of the mismatch accumulation

between two subgroups.

If a decision boundary satisfies accuracy parity (AP) in the sense that P (ŷ ̸= y|z = 0) =

P (ŷ ̸= y|z = 1), the covariance will be close to zero, Cov(z, d(x)) ≈ 0.Therefore, the accuracy

parity regularizer can be introduced as

RAP =

(
1

|D|
∑

(z − z̄)g(y,x)

)2

(3.4)

=

(
1

|D|
∑

(z − z̄)max(0, (
1

2
− y)f(x))

)2

=

(
1

|D|
∑
z=0

max(0, (0− z̄)(y − 1

2
)f(x))− 1

|D|
∑
z=1

max(0, (1− z̄)(
1

2
− y)f(x))

)2

.

The penalty comes from the difference of the mismatch accumulation between the sensitive

groups. If the model is more fair, the performance of two sensitive groups will be more

similar and the penalty will be smaller. Hence, the problem can be formulated as:

min
θ

L(θ;D) + αRAP, (3.5)

where α > 0 is a hyperparameter used to tradeoff between training accuracy and fairness in

12



terms of accuracy parity.

3.2.2 Equal Opportunity and Predictive Equality Regularizers

In addition to the accuracy parity criterion presented in the previous subsection, in certain

scenarios, we may be interested in different fairness criteria. For example, in anomaly de-

tection, where costly immediate actions may be taken towards the high-load states, more

emphasis needs to be put on the classes that are predicted positive. In this case, fairness cri-

teria such as equal opportunity or predictive equality need to be incorporated. Specifically,

equal opportunity ∆EO := |P (ŷ = 1|y = 1, z = 0) − P (ŷ = 1|y = 1, z = 1)| character-

izes the difference of true positive rate TRP := P (ŷ = 1|y = 1), while predictive equality

∆PE := |P (ŷ = 1|y = 0, z = 0) − P (ŷ = 1|y = 0, z = 1)| measures the discrepancy between

the false positive rate FPR := P (ŷ = 1|y = 0) see e.g., [1]. Based on these two criteria, we

can obtain the corresponding regularizers as

RPE =

(∑
z=0,y=0 f(x)

Nz=0,y=0

−
∑

z=1,y=0 f(x)

Nz=1,y=0

)2

, (3.6)

REO =

(∑
z=0,y=1 f(x)

Nz=0,y=1

−
∑

z=1,y=1 f(x)

Nz=1,y=1

)2

. (3.7)

Similarly, f(x) is the output of the last linear layer. β1 and β2 are the weights of regularization

terms which trade off between fairness and accuracy. Adding the equal opportunity and

predictive equality regularizers, the problem can be formulated as:

min
θ

L(θ;D)+β1RPE + β2REO. (3.8)
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3.3 Fairness-aware User Type Identification

There exist large numbers of users in power grids, which fall into different classes, e.g.,

building types, safety or quality status. Hence, user type identification plays an important

role in many practical problems, including but not limited to accurate pricing, abnormal

behavior detection. Accurate identification of the consumer types can also help estimate

their future consumption which can further help the power companies balance the load of

power grids and manage the demand and supply. However, existing user type classification

frameworks mainly focus on imputing classification accuracy, see e.g., [34]. While the user

consumption patterns can be used for classifying the user types, it may also lead to potential

bias due to underlying correlation between users’ consumption patterns and their sensitive

attributes such as locations, building sizes. Since user type identification typically faces

with customers from more than one category, the corresponding cross-entropy loss can be

written as

L(θ;D) = − 1

|D|

K∑
i

∑
x∈D

1y=ilog(Fi(x; θ)), (3.9)

where F (x; θ) ∈ RK and y ∈ {1, . . . , K}, with K denoting the number of classes. And 1y=i

is the identify function, which returns value 1 if y = i, meaning the input data belongs to

class i. And Fi(x; θ) denotes the ith entry of F (x; θ) which provides the predicted probability

of x being class i. In user type identification task, x represents the load time-series data and

y represents user types. The sensitive attribute z denotes the geographical location of the

user. In this case the output of last fully connected layer is a vector of size K, f(x) ∈ RK .

Hence the distance to the decision boundary for class i, 1 ≤ i ≤ K, is the ith entry of f(x),

denoted as fi(x).
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3.3.1 Accuracy Parity Regularizer

Faced with multiple user classes, the accuracy parity regularizer also needs to be designed for

multiple user classes. Specifically, the accuracy parity regularizer can be written as follows:

RAP =

(
1

|D|
∑

(z − z̄)g(y,x)

)2

=

[
1

|D|
∑

(z − z̄)max
(
0, (fŷ(x) − fy(x))

)]2
. (3.10)

Since the final decision is based on the maximum value of f(x) , fŷ(x), denotes the ŷth entry

of f(x), is greater than any other value in the vector, fŷ(x) ≥ fi(x),∀i ∈ {1, . . . , K}. The

term contributes to the sum only when the predicted label mismatches the true label. Due to

the fact that fŷ(x)− fy(x) ≥ 0, and the equality holds if ŷ = y, meaning the predicted label

correct. Therefore, max(0, (fŷ(x)− fy(x))) = fŷ(x)− fy(x), and the max operation can be

removed. The problem can be formulated as Equation 3.5 with loss function in Equation 3.9

and the regularization RAP in Equation 3.10.

3.3.2 Equal Opportunity and Predictive Equality Regularizers

For equal opportunity and predictive equality regularizers, we treat every class as a one versus

K−1 binary classification problem and aggregate the regularization term for K classes. For

each class, the two penalizers are similar to Equation 3.6 and Equation 3.7 except that the

distance to the decision boundary is fi(x) instead of f(x). Then the EO and PE regularizer

for multiple classes can be written as:

RPE,i =

(∑
z=0,y ̸=i fi(x)

Nz=0,y ̸=i

−
∑

z=1,y ̸=i fi(x)

Nz=1,y ̸=i

)2

, RPE =
β1

K

∑
i=0,...,K−1

RPE,i; (3.11)

REO,i =

(∑
z=0,y=i fi(x)

Nz=0,y=i

−
∑

z=1,y=i fi(x)

Nz=1,y=i

)2

, REO =
β2

K

∑
i=0,...,K−1

REO,i. (3.12)
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Upon adding the EO and PE regularizers, the problem can be formulated as Equation 3.8

by employing the loss in Equation 3.9 and the regularization REO, RPE in Equation 3.11,

Equation 3.12.

3.4 Experiments

In this section, experimental results for high-load indication and user type identification are

presented to evaluate the proposed fairness-aware framework. Specifically, details of data

preprocessing and experimental settings will be clarified.

Dataset: The data was obtained from the database “Commercial and Residential Hourly

Load Profiles for TMY3 Locations in the United States” [23]. It consists of hourly collected

load profile data for 16 different commercial building types and residential buildings. The

commercial buildings data is based on the DOE commercial reference building models and

the residential buildings data is based on the Building America House Simulation Protocols.

Specifically, the data consists 7 types (classes) of commercial buildings in several cities in

the US. The input feature x is the load information of a building.

3.4.1 Fariness-aware Measurements

In order to evaluate fairness performance, the equal opportunity (EO), predictive equality

(PE) and accuracy parity (AP) measures are used, with ∆EO := |P (ŷ = 1|y = 1, z =

1) − P (ŷ = 1|y = 1, z = 0)|, ∆PE := |P (ŷ = 1|y = 0, z = 1) − P (ŷ = 1|y = 0, z = 0)|.

Similarly, AP measures the difference between two subgroups’ accuracy: ∆AP = |P (ŷ =

y|z = 0) − P (ŷ = y|z = 1)|. For the user type identification task, although the number

of classes increases, the ∆AP stays the same. In order to measure the EO fairness among

multiple classes, taking every class as a binary classification case and weighted aggregate the
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difference between two subgroups’ TPR as EO measurement: ∆EO =
∑K

i wi∆EO,i where

∆EO,i = |TPRy=i,z=0 − TPRy=i,z=1| and TPRi = P (ŷ = i, y = i)/P (y = i). Similarly, the

PE measurement for multiple classes is defined as ∆PE :=
∑K

i wi∆PE,i where ∆PE,i =

|FPRy=i,z=0 − FPRy=i,z=1| and FPRi = P (ŷ = i, y ̸= i)/P (y ̸= i). The weight of each

class, wi := Ni

N
, is based on the distribution of each class across the dataset, Ni is the

number of samples in class i and N is the total number of samples.

3.4.2 High Load Indication

The task here is predicting next hour load status of the building based on its history loading

pattern. We use the long short-term memory(LSTM) network as the first layer of the model.

LSTM is an artificial recurrent neural network (RNN) architecture that can provide an

internal memory for the networks. The output of the LSTM goes through 3 fully connected

layers with ReLU activation function in hidden layers and Sigmoid in the last layer to get

the final result. The load information of a building in the last 12 hours is denoted as x. The

high load status of water heat load in the next time hour is indicated as y: If it is high load,

y = 1; otherwise, y = 0.

Table 3.1 and Table 3.2 list the results where building type and building location are treated

as sensitive attributes respectively. Specifically, In Table 3.1, z = 0 represents large building;

z = 1 represents small building. In Table 3.2, z denotes which state the building is in: z = 1

indicates the building is in New York, z = 0 for buildings in California. All algorithms were

run with training and test ratio of 4 : 1 where a random set of periodic loading sequences is

sampled from the original dataset. Experimental results were averaged over 4 random runs.

Table 3.1 and Table 3.2 list the results evaluated on testing set in terms of accuracy(Acc),

∆PE, ∆EO and ∆AP . In each row, the number in the first column refers to the equation

used for training. Equation 3.1 represents the vanilla logistic classifier. Equation 3.5 and
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Equation 3.8 are trained with the corresponding regularizers. It can be observed from Ta-

ble 3.1 and 3.2 that the proposed regularizers improve the fairness without degrading the

classification performance.

Table 3.1: Performance of high load indication with building type as the sensitive attribute.

Acc(%) ∆PE(e
−2) ∆EO(e

−2) ∆AP (e
−2)

Equation 3.1 87.04±0.5 5.6±1.2 8.3±3.3 1.25±0.7

Equation 3.5 87.6±1.2 4.7±1.5 9.8±5.1 0.45 ±0.4

Equation 3.8 87.8±0.5 5.1 ±2.1 7.7 ±4.0 1.3±0.6

Table 3.2: Performance of high load indication with building location as the sensitive at-
tribute.

Acc(%) ∆PE(e
−2) ∆EO(e

−2) ∆AP (e
−2)

Equation 3.1 87.04±0.5 6.03±1.2 8.6±3.2 3.5±1.4

Equation 3.5 87.12±1.5 5.79±1.9 8.4±2.5 2.2±1.3

Equation 3.8 86.76±1.1 5.3±1.5 5.5±3.7 2.3±1.0

3.4.3 User Type Identification

The user type identification task is using the loading pattern of the buildings’ previous

T hours to determine the type of the building. Correct user type identification can as-

sist the smart power system for multiple tasks, such as the power management, demand

prediction[34]. The neural network contains 4 fully connected layers with ReLU activation

function in hidden layers and Softmax in the last output layer.

In Table 3.3, z denotes which state the building is in: z = 1 means that the building is in New

York, z = 0 means that the building is in California. In this task, x is the load information

of a building in the last 8 hours and y ∈ {0, . . . , 6} represents 7 types of buildings.

The vanilla logistic classifier in Equation 3.9 results more unfairness compared with the

regularized model. In Table 3.3, the regularizers ensure the fairness during the training

without performance loss. The AP regularizer in Equation 3.5 even hugely improves the

overall performance.

18



Table 3.3: Performance of building classification with building location as the sensitive
attribute.

Acc(%) ∆PE(e
−3) ∆EO(e

−2) ∆AP (e
−2)

Equation 3.9 88.97±3.4 9.4 ±3.1 4.55±1.9 4.18±1.3

Equation 3.5 92.9±2.4 3.1±0.6 1.22±0.5 0.95±0.51

Equation 3.8 89.72±3.4 7.0±3.0 3.36±1.8 2.97±1.3

(a) Accuracy and ∆AP vs β2. (b) Accuracy and ∆EO vs β2.

Figure 3.1: Impact of equal opportunity and predictive equality regularizers. The weight of
REO is represented as β2, and β1 = 0.8β2.

3.4.4 Impact of Fairness Regularizers

Though fine-tuning the weights of two regularizers could let the model ensure the fairness

while having little impacts on final performance, increasing the weights which strengthens

the fair constraints will probably hurt the overall performance. In this section, we will

tune the weights of regularizers and study the effect of fairness regularizers on the accuracy

performance.

The impact of EO regularizer shows as Figure 3.1a and Figure 3.1b. While the weight of EO

regularizer increases, the fairness measurements(∆AP and ∆EO) decrease and the accuracy

also decreases. The impact of AP regularizer shows as Figure 3.2a and Figure 3.2b. The

fairness measures firstly decreases with increasing weight while the accuracy performance

is not hurt at all. However, when the weight is larger than 50, the accuracy decreases and
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(a) Accuracy and ∆AP vs α. (b) Accuracy and ∆EO vs α.

Figure 3.2: Impact of accuracy parity regularizer. The weight of RAP is represented as α.

two fairness measurements both increase. The AP regularizer has less impact than EO

regularizer when the accuracy is high due to the following possible reason: the penalty of

AP regularizer of a subgroup only considers the cases that are mis-classifed; based on the

expression of Equation 3.7, the EO regularizer takes all cases into consideration no matter

the prediction is correct or not. When the model has very high accuracy, the penalty from

AP regularizer is small which makes its weight less sensitive than EO regularizer.

3.5 Summary

In order to achieve more fair results in power systems, existing machine learning schemes

need to introduce additional bias-mitigating schemes before they can be readily applied to

the grids. To this end, the present work first examined and showcased the existing bias in

directly applying Neural Network models, then two types of regularizers were introduced

to promote fairness in user classification tasks. The proposed regularizers could indeed

improve the fairness without significant performance loss. The proposed regularizers could

be readily used in other tasks not limited to user classification, e.g., abnormality detection,

theft detection.
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Chapter 4

Long-term Fairness for Real-time

Decision Making

In this chapter, we investigate the problem of energy management in power grids, which is

formulated as a constrained online optimization problem where the overall utility is optimized

in the presence of the long-term fairness constraint. We focus on a special case in power grids’

peer-to-peer (P2P) electricity market [25, 22, 18]. We develop an online algorithm that solves

the problem ‘on the fly’. While we use the energy management problem in P2P electricity

market as a case study, our method can be extended to other decision-making scenarios with

long-term fairness concerns, such as the resource allocation problem in network systems [30].

The chapter is organized as follows: Section 4.2 introduces the problem formulation and per-

formance metrics of the decision-making system. Section 4.3 proposes the online algorithm

that is proven to achieve sub-linear dynamic regret and sub-linear accumulated unfairness

under convexity assumptions. Section 4.5 introduces the energy management problem in

P2P electricity market and the numerical tests are presented in Section 4.7 to evaluate the

performance of the proposed method.
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4.1 Introduction

As machine learning (ML) techniques are increasingly incorporated within power grids there

is a growing need to understand the fair behaviors of the ML-based decision-making systems.

In applications that require real-time decision-making, different fairness objectives naturally

arise, including the instantaneous fairness objective that aims to ensure fairness at every

time slot, and the long-term fairness objective that aims to ensure fairness over a time

horizon. At present, most approaches focused on the fairness implications of decisions made

instantaneously in which long-term effects and system level dynamics are not considered.

However, in practice, decision-making systems are usually operating in a dynamic manner

such that the decision-maker makes decisions over a period of time. The difficulty of achieving

long-term fairness is understandable: Long-term dynamics are hard to assess and they do

not align with the traditional supervised ML framework that uses fixed data sets [4]. There

is a growing need to understand long-term fairness due to its flexibility and applicability to

real-world systems [31, 22, 18, 38].

Some recent works study the long-term impact of fairness in various applications, such as

[4, 10, 36, 44, 39]. Most fairness definitions are studied in the ecosystems and focus on clas-

sification settings. However, in many real cyber-physical systems, the decisions are strictly

constrained by physical limitations and most of them cannot be represented as a classifica-

tion task, such as [30, 6, 7]. For achieving long-term fairness, most approaches focus on the

problems with dynamic costs but time-invariant fairness constraints but do not consider the

problem with time-varying fairness constraints. However, the fairness constraint might vary

with the dynamics of the systems and decisions [44]. The present work aims to introduce

a novel framework to ensure long-term fairness in dynamic decision-making systems with

time-varying fairness constraints.

22



4.2 Problem Formulation

Machine learning has been increasingly incorporated within decision-making systems, espe-

cially in ecosystems and cyber-physical systems. Such increasing popularity also leads to

a growing need arises to understand the trustworthiness of ML-based decision-making sys-

tems [29]. Most approaches to understanding and improving fairness focus on instantaneous

settings, which do not consider long-term concepts. However, in applications that require

real-time decision-making, a more general long-term fairness criterion needs to be developed

and taken into consideration.

Specifically, at each time slot t, a decision maker makes an decision xt from a set Xt ⊆ X ∈

Rn, and observes a loss function ft(·): Rn → R. In addition, there are two groups D0 and D1

determined by the sensitive attribute z ∈ {0, 1} of individuals in each group. The decision

maker incurs a loss ft(xt). The set X is assumed to be known and fixed. Fairness is ensuring

unbiased and equitable outcomes for different groups, D0 and D1. Specifically, it can be

formulated as a time-varying constraint made by a time-varying function gt(·) : Rn → R,

which is driven by the unknown dynamics in various applications and computed from specific

fairness metrics. For instance,

gκt (xt) := (Ω(D0,xt)− Ω(D1,xt))
2 − κ, (4.1)

where Ω(D0,xt) denotes the performance metric computed on group D0 and the decision

xt. And gκt (xt) can be used to define an instantaneous time-varying constraint gκt (xt) ≤ 0

which bounds the disparity induced by the decision xt between two groups by κ > 0. For

example, in ecosystems such as bank loans and college admissions, the decision makers aim

to decide whether approve or reject applications from a stream of individuals [4]. In this case,

xt denotes the set of binary decisions for individuals considered at t. The decision maker

minimizes loss function ft(xt) subjects to instantaneous demographic parity(DP) constraints
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at every time slot [5], [39]. Specifically, at each time slot t, decisions should be made such

that individuals from different sensitive groups have similar probabilities of being approved,

i.e., gκt (xt) := (P (qt(d ∈ D0,xt) = 1)− P (qt(d ∈ D1,xt) = 1))2 − κ ≤ 0, where qt(d ∈ D0,xt)

denotes the predicted outcome of individual belonging to sensitive group D0 based on current

decision xt, Ω(Di,xt) = P (qt(d ∈ Di,xt) = 1) denotes the probability of being approved for

individuals Di and κ ∈ [0, 1]. The sensitive attributes can denote the properties of individuals

such as male/female and white/non-white.

In the instantaneous fair setting, the decision maker minimizes cost function subjects to

instantaneous fairness constraints at every time slot.

min
xt∈Xt,∀t∈{1,··· ,T}

T∑
t=1

ft(xt) s.t. [xt]
T
t=1 ∈ GI

T , (4.2)

where T is the time horizon, [xt]
T
t=1 = [x1,x2, · · · ,xT ] denotes the decision trajectory which

contains a sequence of instantaneous decisions over the time horizon T , and GI
T denotes the

instantaneous fairness constraint defined as

GI
T =

{
[xt]

T
t=1

∣∣∣∣gκt (xt) ≤ 0, ∀t ∈ {1, · · · , T}
}
. (4.3)

To consider long-term fairness, one intuitive attempt would be aggregating the instantaneous

fairness violation as the constraint,
∑T

t=1 g
κ
t (xt) ≤ 0. However, such direct aggregation

cannot ensure fairness in the long term. In the example of college admission, where one tries

to equalize DP measure between two groups, the constraint
∑T

t=1 g
κ
t (xt) ≤ 0 with gκt (xt) :=

(P (qt(d ∈ D0,xt) = 1)− P (qt(d ∈ D1,xt) = 1))2−κ cannot ensure that the average DP goes

to zero over time: limT→∞
1
T

∑T
t=1 [P (qt(d ∈ D0,xt) = 1)− P (qt(d ∈ D1,xt) = 1)] = 0. To

address this problem, we redesign the constraint set from a long-term perspective as
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GL
T =

{
[xt]

T
t=1

∣∣∣∣∣
T∑
t=1

gt(xt) = 0

}
, (4.4)

where

gt(xt) := Ω(D0,xt)− Ω(D1,xt).

For the college admission example, gt(xt) = P (qt(d ∈ D0,xt) = 1)− P (qt(d ∈ D1,xt) = 1).

Note that enforcing
∑T

t=1 gt(xt) = 0 is different from restricting xt in every time slot to

satisfy gt(xt) = 0. The long-term fairness constraint allows the online decision maker to

adapt online decisions to the environment dynamics, in the sense that it is tolerable to

instantaneous violations, e.g., gt(xt) ≤ 0 or gt(xt) ≥ 0. This implies that the instantaneous

fairness violations can be compensated by future decisions.

In the long-term setting, the goal is to find a set of consequent decisions that minimizes the

aggregate loss and ensures the fairness constraints are satisfied in the long term, shown as

min
xt∈Xt,∀t∈{1,··· ,T}

T∑
t=1

ft(xt) s.t. [xt]
T
t=1 ∈ GL

T . (4.5)

However, solving the problem in (4.5) offline requires the information over the entire time

horizon which is not practical in real scenarios. And at time slot t, previous decisions

[x0, · · · ,xt−1] cannot be changed after receiving latest information, ft(xt). Instead, the

problem needs to be solved online: At each time slot t, the decision xt needs to be made

only according to current and inherited information.
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4.3 Method

The present section proposes an online algorithm that outputs the decision xt only requires

the previous time slot information.

Note that long-term fairness constraint [xt]
T
t=1 ∈ GL

T (4.4) can be equivalently written as two

inequality constraints and the problem (4.5) is equivalent to

min
xt∈Xt,∀t

T∑
t=1

ft(xt) s.t.
T∑
t=1

gt(xt) ≤ 0,
T∑
t=1

−gt(xt) ≤ 0. (4.6)

Hence, the instantaneous problem at time t can be written as

min
xt∈Xt,

ft(xt) s.t. gt(xt) ≤ 0, − gt(xt) ≤ 0. (4.7)

Let λ1,t, λ2,t ≥ 0 denote the Lagrange multipliers associated with the time-varying con-

straints. The online Lagrangian of Equation 4.7 can be written as

Lt(xt, λ1,t, λ2,t) = ft(xt) + λ1,tgt(xt) + λ2,t(−gt(xt)). (4.8)

Given the previous primal iterate xt−1 and current dual iterates λ1,t, λ2,t at each time slot t,

instead of taking the exact gradient step, the current decision xt can be obtained by solving

the following optimization problem:

xt = min
x∈Xt

∇ft−1(xt−1)
⊤(x− xt−1) + λ1,tgt−1(x) + λ2,t(−gt−1(x)) +

||x− xt−1||2

2α

= min
x∈Xt

∇ft−1(xt−1)
⊤(x− xt−1) + λ⊤

t ḡt−1(x) +
||x− xt−1||2

2α
, (4.9)

where α is a positive step size, λt := [λ1,t, λ2,t]
⊤, ḡt(x) := [gt(x),−gt(x)]

⊤, and ∇ft−1(xt−1)

is the gradient of primal objective ft−1(x) at xt−1. Equation 4.9 tries to minimize the fair
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constraint violation by taking a modified descent step, and ||x−xt−1||2
2α

is a proximal term.

After the decision xt is made, ft(xt) and gt(xt) are revealed. Then the dual ascent step

updates as:

λ1,t+1 = max(0, λ1,t + µ∇λ1,tLt(xt, λ1,t, λ2,t)) = max(0, λ1,t + µgt(xt)), (4.10)

λ2,t+1 = max(0, λ1,t + µ∇λ2,tLt(xt, λ1,t, λ2,t)) = max(0, λ2,t − µgt(xt)), (4.11)

where µ is a positive step size, λ1,t, λ2,t ≥ 0. And ∇λ1,tLt(xt, λ1,t, λ2,t)) = gt(xt) and

∇λ2,tLt(xt, λ1,t, λ2,t) = −gt(xt) are the gradients of (4.8) with respect to λ1,t and λ2,t.

Note that updating λt and making decision xt only require the previous time slot’s informa-

tion, ft−1(xt−1) and gt−1(xt−1). The overall algorithm is summarized as Algorithm 1.

Algorithm 1

1: for t = 1, 2, . . . do
2: λt = [λ1,t, λ2,t]

⊤, ḡt(x) = [gt(x),−gt(x)]
⊤

3: observe constraint gt−1(xt−1)

4: xt = minx∈Xt ∇ft−1(xt−1)
⊤(x− xt−1) + λ⊤

t ḡt−1(x) +
||x−xt−1||2

2α

5: observe current cost ft(xt) and constraint gt(xt)
6: λ1,t+1 = max(0, λ1,t + µgt(xt))
7: λ2,t+1 = max(0, λ2,t − µgt(xt))
8: end for

4.4 Performance Analysis

In this section, two metrics will be introduced to measure the performance and fair violations

of online decisions in the dynamic setup: dynamic regret and dynamic fairness [20], [3]. Then

we will show that the dynamic regret and dynamic fairness are both sub-linearly increasing.
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4.4.1 Performance Metrics

Firstly, we introduce dynamic regret which measures the performance:

RT :=
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ), (4.12)

where [x∗
t ]

T
t=1 = [x∗

1, · · · ,x∗
t , · · · ,x∗

T ] are obtained as:

x∗
t = arg min

xt∈Xt

ft(xt) s.t. gt(xt) = 0. (4.13)

To evaluate the feasibility of online decisions, dynamic fairness is introduced to measure the

accumulated fairness violation of constraints, which is defined as:

FT :=
T∑
t=1

gt(xt). (4.14)

The definition in Equation 4.14 assumes that the instantaneous fair violation(e.g. gt(xt) ≤

0) can be compensated by future decisions with opposite violations(e.g. gt+1(xt) ≥ 0).

In the cases of cyber-physical systems, such as energy management in power grids and

resource allocation in networks, since there usually exist other types of constraints, such

as transmission limitations for power grids [12], introducing long-term constraint offers the

flexibility to avoid significant increases in ft(xt) compared with meeting the instantaneous

constraint at each time slot.

An ideal algorithm should achieve both sub-linear dynamic regret and sub-linear dynamic

fairness on the long-term average, i.e., limT→∞
RT

T
= 0 and limT→∞

FT

T
= 0.
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4.4.2 Performance Bounds

We assume that the following conditions are satisfied:

Assumption 1 : For every t, the cost function ft(x) and the time-varying fairness constraint

gt(x) are convex.

Assumption 2 : For every t, ft(x) has bounded gradient on X , ||∇ft(x)|| ≤ G,∀x ∈ X ; and

gt(x) is bounded, ||ḡt(x)|| ≤
√
2M .

Assumption 3 : The radius of the convex feasible set X is bounded, ||x−y|| ≤ R, ∀x,y ∈ X .

And the decision xt is selected from a convex set Xt ⊆ X ∈ Rn.

Assumption 4 : There exists a constant ϵ > 0, and two interior points x̃t and ˜̃xt such that

gt(x̃t) ≤ −ϵ and gt(˜̃xt) ≥ ϵ,∀t.

Assumption 5 : The constant ϵ in Assumption 4 satisfies ϵ > V̄ (g), which is the point-wise

maximum variation of the time-varying constraints and is defined as

V̄ (g) = max
t∈T

max
x∈X

|gt+1(x)− gt(x)|.

Based on assumptions 1 and 3, problem (4.6) is an online convex optimization (OCO) prob-

lem. Firstly, the following theorem states the upper bound and lower bound of dynamic

fairness for Algorithm 1.

Theorem 1: Under Assumptions 1-5, using Algorithm 1 with dual variable initialization as

λ1 = 0, the λ1,t and λ2,t are bounded by

λ1,t, λ2,t ≤ λ̄ := 2µM +
2GR + R2

2α
+ µM2

ϵ− V̄ (g)
, (4.15)

and the dynamic fairness of Equation 4.14 is bounded by

−2M −
2GR
µ

+ R2

2µα
+M2

ϵ− V̄ (g)
≤ FT ≤ 2M +

2GR
µ

+ R2

2µα
+M2

ϵ− V̄ (g)
. (4.16)
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Proof of Theorem 1: See Appendix A.3.

Under the conditions on the time-varying constraint, Theorem 1 shows that FT depends

on primal and dual stepsizes and |FT | is in the order of O( 1
µ
) with fixed primal stepsize α.

Thus, a larger dual stepsize is beneficial for the long-term fairness constraint.

We further bound the dynamic regret of Equation 4.12 in the next theorem.

Theorem 2: Under Assumptions 1-5, using Algorithm 1 with dual variable initialization as

λ1 = 0, the dynamic regret of Equation 4.12 is upper bounded by

RT =
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t )

≤ R

α
V ({x∗

t}Tt=1) +
R2

2α
+ |λ̄|V ({ḡt}Tt=1) + µM2T +

αG2T

2
+

µM2

2
, (4.17)

where V ({x∗
t}Tt=1) and V ({ḡt}Tt=1) denote the accumulated variations of the minimizers x∗

t

and the fairness constraints at every time slot, which are defined as follows:

V ({x∗
t}Tt=1) :=

T∑
t=1

V (x∗
t ) =

T∑
t=1

||x∗
t − x∗

t−1||, (4.18)

V ({ḡt}Tt=1) :=
T∑
t=1

V (ḡt) =
T∑
t=1

max
x

||ḡt+1(x)− ḡt(x)||. (4.19)

Proof of Theorem 2: See Appendix A.4.

It can be observed that the dynamic regret RT is bounded by the primal stepsize, dual step-

size and accumulated variations of instantaneous minimizers V ({x∗
t}Tt=1) and time-varying

constraints V ({ḡt}Tt=1). The upper bound could be small while choosing appropriate primal

and dual stepsizes.

Under Assumptions 1-5 and without knowledge of variations(V ({x∗
t}Tt=1) and V ({ḡt}Tt=1)),

according to Theorems 1-2, if the primal and dual stepsizes are chosen as α = µ = O(T− 1
3 ),
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then the dynamic fairness and regret can be bounded as

|FT | = O(T
2
3 ),

RT = O
(
max

{
V ({x∗

t}Tt=1)T
1
3 , V ({ḡt}Tt=1)T

1
3 , T

2
3

})
.

If the variations, V ({x∗
t}Tt=1) and V ({ḡt}Tt=1), are known, the primal and dual stepsizes can

be chosen as

α = µ =

√
max {V ({x∗

t}Tt=1), V ({ḡt}Tt=1)}
T

,

then the regret can be bounded by

RT = O
(
max

{√
V ({x∗

t}Tt=1)T ,
√

V ({ḡt}Tt=1)T

})
,

and the dynamic fairness is bounded as

FT = O
(
max

{
T

V ({x∗
t}Tt=1)

,
T

V ({ḡt}Tt=1)

})
.

Proof: See Appendix A.4.1.

Although the dynamic benchmark x∗
t for regret in (4.12) is got through Equation 4.13,

[x∗
t ]

T
t=1 is not the optimal solution to problem (4.5). Instead, the optimal solutions can

be obtained as the offline optimal solutions of Equation 4.5, denoted as [xoff
t ]Tt=1, which

requires the information over the entire time horizon. In the implementations, especially the

time-varying setting, solving Equation 4.13 frequently fails, so we use xoff
t as the dynamic

benchmark for some experiments and the offline dynamic regret is computed as

Roff
T =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
off
t ),
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where the superscript denotes the dynamic benchmark is xoff
t . SinceRoff

T = RT+
∑T

t=1 ft(x
∗
t )−∑T

t=1 ft(x
off
t ) ≥ RT , the upperbound of Roff

T is larger than the upperbound shown in Equa-

tion 4.17. We will further discuss the upperbound of the offline dynamic regret in Appendix

A.5.

In this section, we present that dynamic regret and cumulative fair violation increase sub-

linearly under Assumptions 1-5 while choosing suitable primal and dual stepsizes.

4.5 Application: Peer-to-peer Electricity Market

Algorithm 1 can be applied in various applications which require making decisions on the fly

while taking into account long-term fairness. For example, resource allocation in networks

and energy management in power grids. In this section, we focus on a special case in power

grids’ peer-to-peer (P2P) electricity market [25],[31],[18]. We formulate the energy manage-

ment problem in the peer-to-peer electricity market as an online optimization problem like

(4.5). Besides the objective function and long-term fairness constraints, there are additional

constraints inherited from the physical limits of the system.

Specifically, consider the P2P network with N nodes which are responsive to grid conditions

such as energy prices, local energy supply and demand [18]. All nodes are divided into 2

groups two D0 and D1 based on their sensitive attributes. Per time t, node i, corresponding

to client i, has demand dit and supply sit. Each client has surplus or deficit as hi
t = sit − dit.

The client i will be considered as a producer at time t if hi
t ≥ 0; otherwise client i will be

considered as a consumer since hi
t ≤ 0. The decision Xt is an N ×N matrix with the (i, j)th

entry representing the trade between node i and j. Specifically, if Xij
t > 0, it denotes client

i sells Xij
t units of energy to client j; otherwise, client i buys energy from client j. Assuming

the price of unit energy traded in P2P electricity market eijt ,∀i, j ∈ N is cheaper than the
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price of utility company p, consumers will buy electricity from producers in the P2P market

first then buy electricity from utility companies.

The goal is to minimize the total cost to satisfy the supply-demand balance for all consumers.

Therefore, the decision maker tends to satisfy consumers with lower costs first due to their

convenient locations or advanced power transmission system, and the advantageous group

would potentially have a higher satisfaction rate in P2P market transactions. To ensure

fairness in the long run, each group should have a similar satisfaction rate on average.

Hence, the set GI
T is formulated as

GI
T =

[Xt]
T
t=1

∣∣∣∣gκt (Xt) =

 1

|D0|
∑

i∈D0∩wc
t

∆i,−
t

dit
− 1

|D1|
∑

i∈D1∩wc
t

∆i,−
t

dit

2

− κ ≤ 0

 .

The set GL
T is formulated as

GL
T =

[Xt]
T
t=1

∣∣∣∣ T∑
t=1

gt(Xt) =
T∑
t=1

 1

|D0|
∑

i∈D0∩wc
t

∆i,−
t

dit
− 1

|D1|
∑

i∈D1∩wc
t

∆i,−
t

dit

 = 0

 .

And the cost function ft(Xt) is

ft(Xt) =
1

|wc
t |

−
∑
i∈wc

t

(
(hi

t −
∑
j∈N

Xt)p+
∑
j∈N

eijt Xt

)
−
∑
j∈wc

t

∑
i∈N

γDjiXji
t

 ,

where p is the unit price of energy trading with the utility company, eij denotes the trading

price between client i and j in the P2P electricity market, D denotes the time-invariant power

transfer distance matrix can be obtained from the grid (Appendix A.6) and γ denotes the

unit price of the transmission line utilization fee. The whole turn −
∑

j∈wc
t

∑
i∈N γDjiXji

t

computed the total transmission line utilization fee. The objective function attempts to

minimize the total cost to purchase enough energy to satisfy the supply-demand balance for

all consumers. The overall online optimization problem can be viewed as the following:
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min
Xt∈Xt,∀t

T∑
t=1

ft(Xt) s.t. [Xt]
T
t=1 ∈ GL

T , (4.20)

where

Xt :=



Xt ∈ RN×N (4.20a)

0 ≤ Xij
t ≤ hi

t, ∀i ∈ wp
t ,∀j ∈ {1, · · · , n} (4.20b)

hi
t ≤ Xij

t ≤ 0, ∀i ∈ wc
t ,∀j ∈ {1, · · · , n} (4.20c)

0 ≤
∑

j∈Ni
Xij

t ≤ hi
t, ∀i ∈ wp

t (4.20d)

hi
t ≤

∑
j∈Ni

Xij
t ≤ 0, ∀i ∈ wc

t (4.20e)

Xt +X⊤
t = 0 (4.20f)

−ρlmax ≤ ρl(Xt) ≤ ρlmax ∀l ∈ {1, · · · , Nl} (4.20g)

gκt (Xt) <= τ (4.20h)



.

The definition of Xt is the physical constraints of the P2P electricity market. Constraints

(4.20b) and (4.20c) guarantee that producers only sell energy and consumers only buy energy,

and (4.20d) and (4.20e) make sure that producers will not sell more than their redundancy

and consumers will not buy more than their deficit. Thus, after P2P trading, for consumer

i ∈ wc
t , it has deficit ∆

i,−
t = sit−dit−

∑
j∈N = hi

t−
∑

j∈N Xij
t ≤ 0. Constraint (4.20f) represents

the equal trading volume and offsetting purchase and sell. Constraint (4.20g) denotes the

flow constraint which avoids the energy flow exceeding transmission line capacity (details

in Appendix A.6). Constraint (4.20h) prevents very unfair outcomes, τ is a larger constant

than κ, τ > κ.

The numerical experiments on synthetic data and real dataset are presented in Section 4.7.
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4.6 Conclusion

In practice, decision-making systems are usually operating in a dynamic manner and po-

tential unfairness is a concern. The sole pursuit of the overall performance may lead to

unfair results. In order to achieve fair results in decision making scenarios, such as energy

management, there is a growing need to understand long-term fairness due to its flexibility

and applicability. In this paper, we investigate the problem of long-term fairness for decision

making where the overall utility is optimized in the presence of the long-term fairness con-

straint. The present paper proposes an online algorithm that is proven to achieve sub-linear

dynamic regret and sub-linear dynamic fairness. The experimental results for the energy

management case show that the proposed method could indeed guarantee long-term fairness

without significant performance loss.

4.7 Experiments

In this section, we test the proposed algorithm on the P2P electricity market application in

the 14-bus grid system.

Datasets and Settings: The experiments are carried out on synthetic data and real data

from California ISO Open Access Same-time Information System (OASIS). Fourteen nodes

are divided into 2 groups by their locations in the power grids. In the synthetic data, we

assume that the average trading price within the same group is a little cheaper than the

average trading price between the two groups.

1. Random: The supply and demand of each client at every t are randomly generated

according to predefined random distributions. The supply and demand of each client at every

t are randomly generated according to predefined time-invariant distributions. The supply

35



comes from two renewable energy sources: Solar power and wind power. More specifically,

solar power generation follows a normal distribution and wind power generation follows a

uniform distribution.

2. Time-varying: The supply and demand of each client at every t are generated as cosine

functions, e.g., sit := ai + bicos(πt) + ct where ai and bi are two constants for client i and

ct ∼ N (0, σ2) is a small noise centered at zero. This setting of supply and demand satisfies

the assumptions in section 4.4.

3. OASIS: The supply and demand of each client at every t are pre-processed real data

from OASIS. OASIS contains hourly total demand and supply. At each time t, based on the

Dirichlet distribution, three distributions for demand, wind power supply and solar power

supply are randomly generated. Then assign demand and supply to each node according to

distributions.

Baseline: In each setting, we compare the results of three different approaches:

•Long-term: Solve the problem in Equation 4.5 through Algorithm 1.

•Instantaneous: Solve the problem in Equation 4.2 at each time slot:

xt = arg min
x∈Xt

ft(x) s.t. gκt (x) ≤ 0.

•Offline: Solve the problem in Equation 4.5 offline.

Evaluation Metrics

To demonstrate our method, we will present the time-average cost, dynamic regret and
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dynamic fairness. We further introduce the averaged absolute fair violation(A2FV ) as

A2FV =
1

T

T∑
t=1

|gt(xt)|.

4.7.1 Random Setting

Firstly, the performance of the proposed method is evaluated on randomly generated syn-

thetic data. With time horizon T = 200 and constant stepsizes, µ and α in Algorithm 1,

the results are shown as Figure 4.1 and Figure 4.2. It shows that our method can achieve

both sub-linear regret and dynamic fairness on the long-term average. In this case, the time

average cost of our method is slightly higher than the instantaneous solution. Firstly, the

instantaneous optimal solution benefits from the κ > 0 but it leads to the linear increase

on FT as Figure 4.2a. Secondly, it is worth mentioning that the dynamic regret may not

be sub-linear in this case theoretically since there is no guarantee that Assumption 5 holds.

But experimental results still show that our method still can ensure long-term fairness with

acceptable performance loss in this case. Figure 4.2a also confirms that aggregating instanta-

neous fairness constraints cannot ensure the fairness in the long term. Figure 4.2b shows that

our method allows violations in each time slot but enforces long-term fairness by adapting

the decisions to the environment dynamics.

4.7.2 Time-varying Setting

In this section, we investigate how our method performs on time-varying demand and supply

of each client at every t. With time horizon T = 100 and constant stepsize, the results are

shown as Figure 4.3 and Figure 4.4.
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(a) Results of the random setting, time-
averaged costs, µ = 1e4, α = 0.5.

(b) Results of the random setting, dynamic
regrets, µ = 1e4, α = 0.5.

Figure 4.1: Experimental results of random setting, time-averaged costs and dynamic regrets,
µ = 1e4, α = 0.5.

(a) Results of the random setting, dynamic
fairness, µ = 1e4, α = 0.5.

(b) Results of the random setting, dynamic
A2FV , µ = 1e4, α = 0.5.

Figure 4.2: Experimental results of random setting, dynamic fairness and A2FV , µ =
1e4, α = 0.5.
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(a) Results of the time-varying setting, time-
averaged costs, α = 0.5.

(b) Results of the time-varying setting, time-
averaged dynamic regrets, α = 0.5.

Figure 4.3: Experimental results of time-varying setting, time-averaged costs and dynamic
regrets, α = 0.5.

(a) Results of the time-varying setting: dy-
namic fairness, α = 0.5.

(b) Results of the time-varying setting,
A2FV , α = 0.5.

Figure 4.4: Experimental results of time-varying setting dynamic fairness and A2FV , α =
0.5.
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In this setting, the instantaneous approach that solves the problem in Equation 4.2 fails

frequently and usually cannot survive over 15 iterations. While increasing the value of µ,

the average cost increases and |FT | decreases. It can be concluded that the parameter µ

controls the strength enforcing the long-term fairness. If the stepsize is initialized with a

small value and λ is initialized as 0, the cost could be better than the offline decisions in a

short-term period due to the fair violations at the first few iterations. For better long-term

fairness (smaller upper bound of |FT |), the algorithm can sacrifice the utility by increasing

dual stepsize. The experimental results show that the sub-linear dynamic regret and sub-

linear dynamic fairness are guaranteed in the long run with fixed stepsizes.

4.7.3 OASIS

In addition to synthetic data generated under 2 different settings, we also consider real-world

data in simulating. We collect one week’s demand, supply and price starting on 2023 January

1st at 7:00 am and ending on 2023 January 8th at 7:00 am from 14 nodes on California ISO

Open Access Same-time Information System (OASIS). Fourteen nodes are randomly divided

into 2 groups. The supply comes from 2 kinds of renewable energy sources (RES): Solar

power and wind power [18]. The data contains hourly information about the total demand,

supply and unit price of each node buying energy. The total demand is much larger than

the supply of RES since the energy market is still dominated by traditional energy, so we

only count 15% of it as the demand of the P2P electricity market. With the one-week time

horizon and decreasing stepsize, the results are shown as Figure 4.5 and Figure 4.6.

In Figure 4.5, the sharp increase in average cost is due to a huge decrease in wind power sup-

ply during that period. It implies that even the long-term fairness constraint,
∑T

t=1 gt(xt) =

0, is still very restricted in some real scenarios even solving it offline. In order to achieve

more fair results in dynamic decision-making systems with a lot of uncertainty, there is a
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Figure 4.5: Results of OASIS data, time-averaged costs.

(a) Results of OASIS data, dynamic fairness. (b) Results of OASIS data, A2FV .

Figure 4.6: Experimental results of OASIS, dynamic fairness and A2FV .

growing need to understand long-term fairness due to its flexibility and applicability. In the

Figure 4.6a, we can observe that gt(xt) oscillates around 0 in some periods because we cannot

identify which group of nodes is the advantaged group in this setting. Though the violation

of each time slot is much huger than the instantaneous solution with gκt (xt), our method still

can achieve sub-linear increase in dynamic fairness which guarantees the long-term fairness

constraint.
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4.8 Conclusion

In practice, decision-making systems are usually operating in a dynamic manner and po-

tential unfairness is a concern. The sole pursuit of the overall performance may lead to

unfair results. In order to achieve fair results in decision making scenarios, such as energy

management, there is a growing need to understand long-term fairness due to its flexibility

and applicability. In this paper, we investigate the problem of long-term fairness for decision

making where the overall utility is optimized in the presence of the long-term fairness con-

straint. The present paper proposes an online algorithm that is proven to achieve sub-linear

dynamic regret and sub-linear dynamic fairness. The experimental results on the energy

management case show that the proposed method could indeed guarantee long-term fairness

without significant performance loss.

4.9 Summary

In this chapter, we investigate the problem of energy management in power grids where the

overall utility is optimized in the presence of the long-term fairness constraint. In order to

achieve fair results in decision making in power systems, such as energy management, there

is a growing need to understand long-term fairness due to its flexibility and applicability.

We propose an online algorithm that is proven to achieve sub-linear dynamic regret and

sub-linear dynamic fairness. The experimental results show that the proposed method could

indeed guarantee the long-term fairness constraint without significant performance loss.
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Chapter 5

Discussion and Conclusion

Fairness-aware machine learning has emerged as a critical consideration in various domains.

Ensuring fairness becomes crucial as machine learning algorithms are utilized for decision-

making processes that affect the distribution and management of electricity resources. In the

context of power grids, fairness-aware machine learning aims to address possible disparities

and biases that arise in the allocation of energy resources, demand response programs, etc.

To summarize, this thesis is a study to explore a suite of fairness-aware machine learning in

power grids. By integrating fairness metrics and considerations into the design and training of

machine learning models, it becomes possible to promote equitable outcomes and mitigate

the risk of discriminatory practices. Power grid datasets may suffer from inherent biases

and imbalances, such as historical inequalities in electricity access or biased data collection

practices. Fairness-aware machine learning techniques need to address these biases during

data preprocessing and model training. Another challenge in fairness-aware machine learning

for power grids is defining appropriate fairness metrics that align with the specific context

and societal values. The choice of fairness metric depends on various factors, such as different

goals of power grid application, the types of available data and various ethical considerations
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related to the resource distribution and opportunities.

In the first work, we propose accuracy parity, equal opportunity and predictive equality

regularizers to mitigate the unfairness, which can be used for different classification tasks in

power grids.

In order to achieve more fair results in dynamic decision making in power systems, there

is a growing need to understand long-term fairness due to its flexibility and applicability.

We propose an online algorithm that is proven to achieve sub-linear dynamic regret and

sub-linear accumulated unfairness under convexity assumptions. We focus on a simple time-

varying P2P electricity market are presented to validate the effectiveness of the proposed

framework by testing it on synthetic and real data.

In conclusion, fairness-aware machine learning is still at the beginning stage in power grids.

By addressing bias and developing algorithms, fairness-aware machine learning can help

build more efficient and trustworthy smart power systems.

5.1 Future Work

As the importance of fairness is increasingly recognized in the power system, it is a chal-

lenge to integrate the existing schemes in power grids with advanced fairness-aware machine

learning techniques. Due to the varieties of applications in power grids, [24, 32, 37, 27, 22],

task-specific fairness metrics are necessary. The invented algorithms should account for the

unique characteristics and constraints of power grid systems, such as real-time constraints

and network constraints.

Combing fairness-aware machine learning with optimization techniques, game theory, or

economic models is another important direction worthy of research. Such approaches could
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optimize fairness objectives while considering system-level constraints, resource allocation

efficiency, and economic incentives.

Furthermore, defining fairness in power grids is an open question. Measuring fairness by

metrics may be an oversimplification of the problem. In reality, fairness is not a technical

nor statistical concept; satisfying fairness metrics does not necessarily meet equity goals in

practice [38].

There is an increasing number of applications in power systems, where data are collected from

non-Euclidean domains and represented as graph-structured data with high-dimensional fea-

tures and interdependence among nodes. The complexity of graph-structured data has

brought significant challenges to the existing machine learning frameworks in power sys-

tems defined in Euclidean domains. Graph neural network(GNN) is a powerful framework

for analyzing and modeling graph-structured data, providing benefits for various applications

in power grids involving graph-structured data [16]. However, current GNN frameworks in

power grids do not consider fairness issues. Many fairness learning techniques cannot be

directly applied to the GNN frameworks due to the complexity of graph-structured data.

How to make GNNs contribute to fairness in power grids is a problem worthy of research.

Large-scale deployment of machine learning models relies on how trustworthy the model is.

To achieve this goal, fairness is a key component of building trust in systems. Ensuring fair-

ness in algorithms and decision-making processes is crucial for establishing trustworthiness.

In the power grids, such a complex large system, many issues deserve further investigation

in order to make fair-aware machine learning systems more useful. Fairness-aware machine

learning has the potential to revolutionize decision-making processes in power grids, promot-

ing equitable energy distribution, load management, and resource allocation.
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Appendix A

A.1 Proof of Lemma 1

Lemma 1 The difference between the dual variables of two successive iterates |λ1,t+1−λ2,t+1|

can be upper bounded by

|λ1,t+1 − λ2,t+1| ≤ λ̄ := 2µM +
2GR + R2

2α
+ µM2

ϵ− V̄ (g)
. (A.1)

Proof:

Based on the updating rule of Equation 4.10 and Equation 4.11, we have

|λ1,t+1|2 = |max(0, λ1,t + µgt(xt))|2

≤ |λ1,t + µgt(xt)|2

= |λ1,t|2 + 2µλ1,tgt(xt) + µ2|gt(xt)|2,

|λ2,t+1|2 = |max(0, λ2,t − µgt(xt))|2

≤ |λ2,t + µgt(xt)|2

= |λ2,t|2 − 2µλ2,tgt(xt) + µ2|gt(xt)|2.
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Reorganizing the terms leads to

∆(λ1,t) :=
|λ1,t+1|2 − |λ1,t|2

2
≤ µλ1,tgt(xt) +

µ2

2
|gt(xt)|2, (A.2a)

∆(λ2,t) :=
|λ2,t+1|2 − |λ2,t|2

2
≤ −µλ2,tgt(xt) +

µ2

2
|gt(xt)|2. (A.2b)

Combining the two inequalities results in

∆(λt) :=
||λt+1||2 − ||λt||2

2
≤ µλ⊤

t ḡt(xt) + µ2|gt(xt)|2. (A.3)

where λt = [λ1,t, λ2,t]
⊤ and ḡt(x) = [gt(x),−gt(x)]

⊤. Based on the update in Equation 4.9,

i.e., xt+1 = minx∇ft(xt)
⊤(x− xt) + λ⊤

t ḡt(x) +
||x−xt||2

2α
, the following inequality hold for x̃

∇ft(xt)
⊤(xt+1 − xt) + λ⊤

t+1ḡt(xt+1) +
1

2α
||xt+1 − xt||2

≤∇ft(xt)
⊤(x̃t − xt) + λ⊤

t+1ḡt(x̃t) +
1

2α
||x̃t − xt||2.

In the case when λ1,t+1 ≥ λ2,t+1, the right-hand side can be equivalently written and bounded

as follows

∇ft(xt)
⊤(x̃t − xt) + λ⊤

t+1ḡt(x̃t) +
1

2α
||x̃t − xt||2

= ∇ft(xt)
⊤(x̃t − xt) + (λ1,t+1 − λ2,t+1)gt(x̃t) +

1

2α
||x̃t − xt||2

(a)

≤ ∇ft(xt)
⊤(x̃t − xt)− ϵ(λ1,t+1 − λ2,t+1) +

1

2α
||x̃t − xt||2

= ∇ft(xt)
⊤(x̃t − xt)− ϵ|λ1,t+1 − λ2,t+1|+

1

2α
||x̃t − xt||2, (A.4)
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where (a) is true do to assumption 4. Rearranging terms in Equation A.4,

λ⊤
t+1ḡt(xt+1)

≤∇ft(xt)
⊤(x̃t − xt)−∇ft(xt)

⊤(xt+1 − xt)− ϵ|λ1,t+1 − λ2,t+1|

+
1

2α
||x̃t − xt||2 −

1

2α
||xt+1 − xt||2

(a)

≤||∇ft(xt)||||x̃t − xt|| − ||∇ft(xt)||||xt+1 − xt|| − ϵ|λ1,t+1 − λ2,t+1|

+
1

2α
||x̃t − xt||2 −

1

2α
||xt+1 − xt||2

(b)

≤2GR− ϵ|λ1,t+1 − λ2,t+1|+
R2

2α
, (A.5)

where (a) comes from Cauchy–Schwarz inequality and (b) results from assumptions 2 and 3.

Similarly, in the case when λ1,t+1 ≤ λ2,t+1, the following holds

∇ft(xt)
⊤(xt+1 − xt) + λ⊤

t+1ḡt(xt+1) +
1

2α
||xt+1 − xt||2

≤ ∇ft(xt)
⊤(˜̃xt − xt) + λ⊤

t+1ḡt(˜̃xt) +
1

2α
||˜̃xt − xt||2

= ∇ft(xt)
⊤(˜̃xt − xt) + (λ2,t+1 − λ1,t+1)(−gt(˜̃xt)) +

1

2α
||˜̃xt − xt||2

≤ ∇ft(xt)
⊤(˜̃xt − xt)− ϵ(λ2,t+1 − λ1,t+1) +

1

2α
||˜̃xt − xt||2

≤ ∇ft(xt)
⊤(˜̃xt − xt)− ϵ|λ1,t+1 − λ2,t+1|+

1

2α
||˜̃xt − xt||2. (A.6)
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Rearranging terms in Equation A.6

λ⊤
t+1ḡt(xt+1)

≤∇ft(xt)
⊤(˜̃xt − xt)−∇ft(xt)

⊤(xt+1 − xt)− ϵ|λ1,t+1 − λ2,t+1|

+
1

2α
||˜̃xt − xt||2 −

1

2α
||xt+1 − xt||2

≤||∇ft(xt)||||˜̃xt − xt|| − ||∇ft(xt)||||xt+1 − xt|| − ϵ|λ1,t+1 − λ2,t+1|

+
1

2α
||˜̃xt − xt||2 −

1

2α
||xt+1 − xt||2

≤2GR− ϵ|λ1,t+1 − λ2,t+1|+
R2

2α
. (A.7)

Combining Equation A.5 and Equation A.7 leads to

λ⊤
t+1ḡt(xt+1) ≤ 2GR− ϵ|λ1,t+1 − λ2,t+1|+

R2

2α
. (A.8)

Hence, Equation A.3 can be re-written as follows by adding and subtracting µλ⊤
t+1ḡt(xt+1)

∆(λt+1)

≤µλ⊤
t+1ḡt+1(xt+1)− µλ⊤

t+1ḡt(xt+1) + µλ⊤
t+1ḡt(xt+1) + µ2|gt+1(xt+1)|2

(a)

≤µλ⊤
t+1(ḡt+1(xt+1)− ḡt(xt+1)) + µ(2GR− ϵ|λ1,t+1 − λ2,t+1|+

R2

2α
) + µ2M2

=µ(λ1,t+1 − λ2,t+1)(gt+1(xt+1)− gt(xt+1))− ϵµ|λ1,t+1 − λ2,t+1|+ 2µGR +
µR2

2α
+ µ2M2

(b)

≤µV̄ (g)|λ1,t+1 − λ2,t+1| − µϵ|λ1,t+1 − λ2,t+1|+ 2µGR +
µR2

2α
+ µ2M2, (A.9)

where (a) results because of Equation A.8 and (b) holds due to Cauchy-Schwarz inequality

and Assumption 5.

Note that Lemma 1 holds at t = 1 since λ1 = 0. Assume that (A.1) holds for all time slots
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up till t+ 1, and t+ 2 is the first time slot that (A.1) does not hold. Then we have

|λ1,t+1 − λ2,t+1| ≤ 2µM +
2GR + R2

2α
+ µM2

ϵ− V̄ (g)
, (A.10a)

|λ1,t+2 − λ2,t+2| ≥ 2µM +
2GR + R2

2α
+ µM2

ϵ− V̄ (g)
. (A.10b)

Hence, it holds that

|λ1,t+1 − λ2,t+1|

≥|λ1,t+2 − λ2,t+2| − |(λ1,t+1 − λ2,t+1)− (λ1,t+2 − λ2,t+2)|

≥|λ1,t+2 − λ2,t+2| − |(λ1,t+1 + µgt+1(xt+1)− λ1,t+1)− (λ2,t+1 − µgt+1(xt+1)− λ2,t+1)|

=|λ1,t+2 − λ2,t+2| − |2µg1,t+1(xt+1)|
(a)

≥
2GR + R2

2α
+ µM2

ϵ− V̄ (g)
,

where (a) holds due to Equation A.10b and Assumption 2. Substituting it into (A.9) and

combining with Assumption 5 arrives at ∆(λt+1) =
λ2
1,t+2+λ2

2,t+2−λ2
1,t+1−λ2

2,t+1

2
≤ 0, which can

be written as

(λ1,t+2 + λ1,t+1)(λ1,t+2 − λ1,t+1) ≤ (λ2,t+2 + λ2,t+1)(λ2,t+1 − λ2,t+2). (A.11)

If gt+1(xt+1) > 0, the updating rule in Equation 4.10 leads to λ1,t+2 − λ1,t+1 = µgt+1(xt+1)

and Equation 4.11 implies 0 ≤ λ2,t+1 − λ2,t+2 ≤ µgt+1(xt+1). Substituting them into Equa-

tion A.11 leads to

(λ1,t+2 + λ1,t+1)µgt+1(xt+1) ≤ (λ2,t+2 + λ2,t+1)µgt+1(xt+1),

which is equivalent to λ1,t+2 + λ1,t+1 ≤ λ2,t+2 + λ2,t+1. Furthermore, since λ1,t+2 + λ1,t+1 =
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2λ1,t+1 + µgt+1(xt+1) and λ2,t+1 + λ2,t+2 ≤ 2λ2,t+2 + µgt+1(xt+1), we have

2λ1,t+1 + µgt+1(xt+1) ≤ 2λ2,t+2 + µgt+1(xt+1),

which implies λ1,t+1 ≤ λ2,t+2 and henceforth λ1,t+2 ≤ λ2,t+1.

Due to λ1,t+1 ≤ λ2,t+2 ≤ λ2,t+1, λ1,t+1 ≤ λ1,t+2 ≤ λ2,t+1 and non-negativity of λ1,t+1, λ2,t+1,

λ1,t+2, λ2,t+2, we have

|λ1,t+1 − λ2,t+1| ≥ |λ1,t+2 − λ2,t+2|,

which contradicts the |λ1,t+1 − λ2,t+1| ≤ |λ1,t+2 − λ2,t+2|.

Similarly, if gt+1(xt+1) < 0, we have λ2,t+1 ≤ λ1,t+2 ≤ λ1,t+1 and λ2,t+1 ≤ λ2,t+2 ≤ λ1,t+1. Due

to the non-negativity of λ1,t+1, λ2,t+1, λ1,t+2, λ2,t+2, we can have |λ1,t+1 − λ2,t+1| ≥ |λ1,t+2 −

λ2,t+2| which contradicts the |λ1,t+1−λ2,t+1| ≤ |λ1,t+2−λ2,t+2|. To sum up, Lemma 1 can be

proved by contradiction.

A.2 Proof of Lemma 2

Let λ̄1, λ̄2 denote the max value of λ1,t, λ2,t across the whole time horizon, i.e., λ̄1 :=

maxt∈{1,··· ,T} λ1,t, λ̄2 := maxt∈{1,··· ,T} λ2,t.

Lemma 2: Let δ̄ := maxt∈{1,··· ,T} |λ1,t+1 − λ2,t+1|, the following equality holds

δ̄ = max(λ̄1, λ̄2), (A.12)

which implies that λ̄1 ≤ δ̄ ≤ λ̄, and λ̄2 ≤ δ̄ ≤ λ̄.

Proof of Lemma 2: By mathematical induction
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Proposition:

For time slot t, δ̄t = maxt |λ1,t+1−λ2,t+1| = max(λ̄1,t, λ̄2,t). λ̄1,t and λ̄2,t denote the maximum

value of λ1,t+1 and λ2,t+1 at time t and before time t.

Base case:

Since λ is initialized as 0, δ̄t = max(λ̄1, λ̄2) holds for t = 1, 2.

Inductive step:

Assume τ is the last time λ1,τ+1 = 0 or λ2,τ+1 = 0 holds, meaning λ1,t̃ > 0 and λ2,t̃ > 0

for all τ < t̃ < t. Hence, λ̄1,τ = maxt∈{1,··· ,τ} λ1,t+1 and λ̄2,τ = maxt∈{1,··· ,τ} λ2,t+1 which

are the maximum value of λ1,t and λ2,t at time τ and before time τ . We also have δ̄τ =

maxt∈{1,··· ,τ} |λ1,t+1 − λ2,t+1| = max(λ̄1,τ , λ̄2,τ ). Below, we will discuss 3 different cases:

λ2,t+1 = 0, λ1,t+1 = 0 and λ1,t+1, λ2,t+1 > 0.

Case 1: λ1,t+1 > 0 and λ2,t+1 > 0, then the maximum operations in Equation 4.10 and

Equation 4.11 would not be activated. So λ1,t+1 = λ1,τ+1+
∑t

t̃=τ+1 µgt̃ and λ2,t+1 = λ2,τ+1−∑t
t̃=τ+1 µgt̃.

If λ2,τ+1 = 0, then
∑t

t̃=τ+1 µgt̃ < 0 which leads to

λ1,t+1 ≤ λ1,τ+1,

λ2,t+1 ≤ λ1,τ+1.

Since λ1,τ+1 ≤ λ̄1,τ and λ̄1,τ ≤ δ̄τ , we have

λ1,t+1 ≤ δ̄τ , λ2,t+1 ≤ δ̄τ .

Due to their nonegativity,

|λ1,t+1 − λ2,t+1| ≤ δ̄τ .
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Similarly, if λ1,τ+1 = 0, then
∑t

t=τ+1 µgt > 0 which leads to

λ1,t+1 ≤ λ2,τ+1,

λ2,t+1 ≤ λ2,τ+1,

and hence λ1,t+1 ≤ δ̄τ , λ2,t+1 ≤ δ̄τ , and |λ1,t+1 − λ2,t+1| ≤ δ̄τ also holds due to the non-

negativity.

So δ̄t = δ̄τ = max(λ̄1,t, λ̄2,t) holds for t while λ1,t+1 > 0 and λ2,t+1 > 0. Since λ1,t̃+1 > 0 and

λ2,t̃+1 > 0 for all τ < t̃ < t, δ̄t̃ = δ̄τ also holds.

Case 2: λ1,t+1 = 0, then λ1,t+1 ≤ λ̄1,τ+1 due to the non-negativity of λ1. So we have λ̄1,t = λ̄1,τ

Based on the definition of λ̄2,t, we have

λ̄2,t = max(λ̄2,τ , λ2,t+1).

Then δ̄t can be written as

δ̄t = max(|λ1,t+1 − λ2,t+1|, δ̄τ )
(a)
= max(λ2,t+1, δ̄τ )

(b)
=max(λ2,t+1, λ̄2,τ , λ̄1,τ )

(c)
=max(λ̄1,t, λ̄2,t),

where (a) holds due to λ1,t+1 = 0, (b) holds due to δ̄τ = max(λ̄2,τ , λ̄1,τ ), and (c) holds since

λ̄2,t = max(λ̄2,τ , λ2,t+1), λ̄1,t = λ̄1,τ .

So δ̄t = max(λ̄1,t, λ̄2,t) holds while λ1,t+1 = 0.
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Case 3: λ2,t+1 = 0, similar to case 2, we have

λ̄2,t = λ̄2,τ ,

λ̄1,t = max(λ̄1,τ , λ1,t+1),

δ̄t = max(|λ1,t+1 − λ2,t+1|, δ̄τ ) = max(λ1,t+1, δ̄τ )

= max(λ1,t+1, λ̄1,τ , λ̄2,τ ) = max(λ̄1,t, λ̄2,t).

So δ̄t = max(λ̄1,t, λ̄2,t) holds while λ1,t+1 = 0.

Combining the three cases, δ̄t = max(λ̄1,t, λ̄2,t) also holds for t.

Conclusion:

Since both the base case and the inductive step hold, the statement λ̄d = max(λ̄1, λ̄2) holds

across the whole time horizon {1, · · · , T}.

A.3 Proof of Theorem 1

Using the recursion in (4.10) and (4.11), we have

λ1,T+1 ≥ λ1,T + µgT (xT ) ≥ λ1,1 +
⊤∑
t=1

µgt(xt), (A.13)

λ2,T+1 ≥ λ2,T − µgT (xT ) ≥ λ2,1 −
T∑
t=1

µgt(xt). (A.14)

Since λ̄1, λ̄2 denote the max value of λ1,t, λ2,t across the whole time horizon, i.e., λ̄1 :=

maxt∈{1,··· ,T} λ1,t, λ̄2 := maxt∈{1,··· ,T} λ2,t, the following inequalities hold
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T∑
t=1

gt(xt) ≤
λ1,T+1

µ
− λ1,1

µ
≤ λ1,T+1

µ
≤ λ̄1

µ
, (A.15)

T∑
t=1

gt(xt) ≥ −λ2,T+1

µ
+

λ2,1

µ
≥ −λ2,T+1

µ
≥ − λ̄2

µ
. (A.16)

Furthermore, from Lemma 2, we have λ̄1 ≤ λ̄ and λ̄2 ≤ λ̄. In addition, based on Lemma

1, λ̄ := 2µM +
2GR+R2

2α
+µM2

ϵ−V̄ (g)
. Substituting λ̄ into Equation A.15 and Equation A.16 leads to

T∑
t=1

gt(xt) ≤
λ̄1

µ
≤ λ̄

µ
= 2M +

2GR
µ

+ R2

2µα
+M2

ϵ− V̄ (g)
, (A.17)

T∑
t=1

gt(xt) ≥ − λ̄2

µ
≥ − λ̄

µ
= −2M −

2GR
µ

+ R2

2µα
+M2

ϵ− V̄ (g)
. (A.18)

Based on he definition in Equation 4.14, FT =
∑T

t=1 gt(xt), the proof is completed: −2M −
2GR
µ

+ R2

2µα
+M2

ϵ−V̄ (g)
≤ FT ≤ 2M +

2GR
µ

+ R2

2µα
+M2

ϵ−V̄ (g)
.

A.4 Proof of Theorem 2

ht(x) = ∇ft(xt)
⊤(x − xt) + λ⊤

t+1ḡt(x) +
||x−xt||2

2α
is 1/α-strongly convex [21], which implies

that

ht(y)− ht(x) ≥ ∇ht(x)
⊤(y − x) +

1

2α
||y − x||2.

Since xt+1 is the minimizer of the problem minx ht(x):

∇ht(xt+1)
⊤(y − xt+1) ≥ 0,∀y.
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Set y = x∗
t which is the optimal solution at time t as Equation 4.13:

x∗
t = arg min

xt∈Xt

ft(xt) s.t. gt(xt) = 0.

Then it leads to

ht(x
∗
t ) ≥ ht(xt+1) +

1

2α
||x∗

t − xt+1||2,

which is equivalent to

∇ft(xt)
⊤(xt+1 − xt) + λ⊤

t+1ḡt(xt+1) +
||xt+1 − xt||2

2α

≤∇ft(xt)
⊤(x∗

t − xt) + λ⊤
t+1ḡt(x

∗
t ) +

||x∗
t − xt||2

2α
− ||x∗

t − xt+1||2

2α
. (A.19)

Adding ft(xt) on both sides

ft(xt) +∇ft(xt)
⊤(xt+1 − xt) + λ⊤

t+1ḡt(xt+1) +
||xt+1 − xt||2

2α

≤ft(xt) +∇ft(xt)
⊤(x∗

t − xt) + λ⊤
t+1ḡt(x

∗
t ) +

||x∗
t − xt||2

2α
− ||x∗

t − xt+1||2

2α
(a)

≤ft(x
∗
t ) + λ⊤

t+1ḡt(x
∗
t ) +

||x∗
t − xt||2

2α
− ||x∗

t − xt+1||2

2α
(b)

≤ft(x
∗
t ) +

||x∗
t − xt||2

2α
− ||x∗

t − xt+1||2

2α
, (A.20)

where (a) is due to the convexity of ft(xt) and (b) comes from gt(x
∗
t ) = 0. Meanwhile, the

term ∇ft(xt)
⊤(xt+1 − xt) is given by

−∇ft(xt)
⊤(xt+1 − xt) ≤ ||∇ft(xt)||||xt+1 − xt||

≤ ||∇ft(xt)||2

2η
+

η

2
||xt+1 − xt||2

(c)

≤ G2

2η
+

η

2
||xt+1 − xt||2, (A.21)

60



where η is an arbitrary positive constant, and (c) holds due to Assumption 2. Combining

Equation A.20 and Equation A.21 and rearranging the terms, we have

ft(xt) + λ⊤
t+1gt(xt+1) ≤ft(x

∗
t ) + (

η

2
+

1

2α
)||xt+1 − xxt||2

+
1

2α
(||x∗

t − xt||2 − ||x∗
t − xt+1||2) +

G2

2η
. (A.22)

Setting η = 1
α
, we have η

2
− 1

2α
= 0, hence

ft(xt) + λ⊤
t+1gt(xt+1) ≤ ft(x

∗
t ) +

1

2α
(||x∗

t − xt||2 − ||x∗
t − xt+1||2) +

αG2

2
. (A.23)

Based on ∆(λt) ≤ µλ⊤
t ḡt(xt) + µ2|gt(xt)|2 (A.3):

∆(λt+1)

µ
+ ft(xt) ≤ft(xt) + λ⊤

t+1ḡt+1(xt+1) + λ⊤
t+1ḡt(xt+1)− λ⊤

t+1ḡt(xt+1) + µ2|gt(xt)|2

≤ft(x
∗
t ) +

1

2α
(||x∗

t − xt||2 − ||x∗
t − xt+1||2)+

λ⊤
t+1(ḡt+1(xt+1)− ḡt(xt+1)) + µ2|gt(xt)|2 +

αG2

2
(a)

≤ft(x
∗
t ) +

1

2α
(||x∗

t − xt||2 − ||x∗
t − xt+1||2)

+ |λ1,t+1 − λ2,t+1|V (g) + µM2 +
αG2

2
(b)

≤ft(x
∗
t ) +

1

2α
(||x∗

t − xt||2 − ||x∗
t − xt+1||2) + |λ̄|V (g) + µM2 +

αG2

2
,

(A.24)

where V (g) = max(0, gt+1(xt+1) − gt(xt+1)), (a) holds because of Equation A.8, (b) is true

due to Lemma 1. By adding and subtracting ||xt −x∗
t−1||2 in the ||x∗

t −xt||2 − ||x∗
t −xt+1||2,
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we have that

||x∗
t − xt||2 − ||x∗

t − xt+1||2

=||x∗
t − xt||2 − ||xt − x∗

t−1||2 + ||xt − x∗
t−1||2 − ||x∗

t − xt+1||2

=||x∗
t − x∗

t−1||||x∗
t − 2xt + x∗

t−1||+ ||xt − x∗
t−1||2 − ||x∗

t − xt+1||2

(c)

≤2R||x2
t − x∗

t−1||+ ||xt − x∗
t−1||2 − ||x∗

t − xt+1||2, (A.25)

where (c) holds since ||x∗
t − 2xt + x∗

t−1|| ≤ ||x∗
t − xt|| + ||xt − x∗

t−1|| ≤ 2R. Combining

Equation A.25 with Equation A.24 can arrive at

∆(λt+1)

µ
+ ft(xt) ≤ft(x

∗
t ) + |λ̄|V (g) + µM2 +

αG2

2

+
1

2α
(2R||x2

t − x∗
t−1||+ ||xt − x∗

t−1||2 − ||x∗
t − xt+1||2). (A.26)

Summing up over t = 1, 2, · · · , T

T∑
t=1

∆(λt+1)

µ
+

T∑
t=1

ft(xt)

≤
T∑
t=1

ft(x
∗
t ) +

1

2α

T∑
t=1

(||xt − x∗
t−1||2 − ||x∗

t − xt+1||2) +
R

α
V ({x∗

t}Tt=1)

+
T∑
t=1

|λ̄|V (gt(xt)) + µM2T +
αG2T

2

=
T∑
t=1

ft(x
∗
t ) +

1

2α
(||x1 − x∗

0||2 − ||x∗
T − xT+1||) +

R

α
V ({x∗

t}Tt=1)

+ |λ̄|
T∑
t=1

V (gt(xt)) + µM2T +
αG2T

2

≤
T∑
t=1

ft(x
∗
t ) +

1

2α
(||x1 − x∗

0||2) +
R

α
V ({x∗

t}Tt=1) + |λ̄|V ({gt}Tt=1) + µM2T +
αG2T

2
.

(A.27)
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Recall that V ({x∗
t}Tt=1) and V ({ḡt}Tt=1) are defined as Equation 4.19 and Equation 4.18, and

the fact that RT =
∑T

t=1 ft(xt) −
∑T

t=1 ft(x
∗
t ), by rearranging the terms of Equation A.27,

we have

RT ≤R

α
V ({x∗

t}Tt=1) +
||x1 − x∗

0||2

2α
+ |λ̄|V ({gt}Tt=1)

+ µM2T +
αG2T

2
−

T∑
t=1

∆(λt+1)

µ

≤R

α
V ({x∗

t}Tt=1) +
||x1 − x∗

0||2

2α
+ |λ̄|V ({gt}Tt=1)

+ µM2T +
αG2T

2
− ||λT+2||2

2µ
+

||λ2||2

2µ
(a)

≤R

α
V ({x∗

t}Tt=1) +
R2

2α
+ |λ̄|V ({ḡt}Tt=1) + µM2T +

αG2T

2
+

µM2

2
, (A.28)

where (a) holds since ||x1 − x∗
0|| ≤ R, |λT+2|2 ≥ 0, λ1 = 0 and ||λ2||2 = |λ1,2|2 + |λ2,2|2 =

(max(0, µg1(x1)))
2 + (max(0,−µg1(x1)))

2 ≤ µ2(g1(x1))
2 ≤ µ2M2.

A.4.1 Upper bounds

Let V + = max
{
V ({x∗

t}Tt=1), V ({ḡt}Tt=1)
}
. If the primal and dual stepsizes are chosen as

α = µ =
√

V +

T
. Then

|λ̄| := 2µM +
2GR + R2

2α
+ µM2

ϵ− V̄ (g)
= O

(√
T

V +

)
,

|FT | ≤
|λ̄|
µ

= O(
T

V +
) = O

(
max

{
T

V ({x∗
t}Tt=1)

,
T

V ({ḡt}Tt=1)

})
.
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Replace the λ̄ in Equation 4.17

RT ≤ R

α
V ({x∗

t}Tt=1) +
R2

2α
+ |λ̄|V ({ḡt}Tt=1) + µM2T +

αG2T

2
+

µM2

2

≤ R

α
V ({x∗

t}Tt=1) +
R2

2α
+ (2µM +

2GR + R2

2α
+ µM2

ϵ− V̄ (g)
)V ({ḡt}Tt=1)

+ µM2T +
αG2T

2
+

µM2

2

≤ R
√
V +T +

R2

2

√
T

V +
+O(

√
T

V +
)V + +

√
V +TM2 +

√
V +T

G2

2
+

√
V +

T

M2

2

:= O(
√
V +T ) = O

(
max

{√
V ({x∗

t}Tt=1)T ,
√

V ({ḡt}Tt=1)T

})
.

A.5 Upperbound of Roff
T

Based on the definition of Roff
T , we have

Roff
T =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
off
t )

=
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) +

T∑
t=1

ft(x
∗
t )−

T∑
t=1

ft(x
off
t )

=RT +
T∑
t=1

ft(x
∗
t )−

T∑
t=1

ft(x
off
t ). (A.29)

The term
∑T

t=1 ft(x
∗
t ) −

∑T
t=1 ft(x

off
t ) represents the difference between the performance of

instantaneous minimizers and the offline optimal solutions.

Consider the dual function of the instantaneous primal problem (4.7), which can be expressed
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by minimizing the online Lagrangian in (4.8) at time t

Jt(λ) := min
xt∈Xt

Lt(xt,λ)

= min
xt∈Xt

ft(xt) + λ⊤
t ḡt−1

= min
xt∈Xt

ft(xt) + λ1gt(xt) + λ2(−gt(xt)). (A.30)

The dual function of (4.6) over the entire horizon is

J (λ) := min
xt∈Xt,∀t

T∑
t=1

Lt(xt,λ)

=
T∑
t=1

min
xt∈Xt

Lt(xt,λ) =
T∑
t=1

Jt(λ). (A.31)

Since the problems (4.7) and (4.6) are both convex, Assumption 4 implies that strong duality

holds. Accordingly,
∑T

t=1 ft(x
∗
t )−

∑T
t=1 ft(x

off
t ) in Equation A.29 can be written as

T∑
t=1

ft(x
∗
t )−

T∑
t=1

ft(x
off
t ) =

T∑
t=1

max
λt

Jt(λt)−max
λ

T∑
t=1

Jt(λ). (A.32)

Then we establish
∑T

t=1 ft(x
∗
t ) −

∑T
t=1 ft(x

off
t ) can be bounded by the variation of the dual

function.

Define the variation of the dual function (A.30) from time t to t+ 1 as

V (Jt) := max
λ

|Jt+1(λ)− Jt(λ)|, (A.33)

and the total variation over the time horizon T as

V ({Jt}Tt=1) :=
T∑
t

V (Jt). (A.34)

65



Let t̃ denote any time slot in {1, · · · , T}, we have

T∑
t=1

max
λt

Jt(λt)−max
λ

T∑
t=1

Jt(λ)

≤
T∑
t

(Jt(λ
∗
t )− Jt(λ

∗
t̃ )) ≤ T max

t
{Jt(λ

∗
t )− Jt(λ

∗
t̃ )}. (A.35)

where λ∗
t ∈ argmaxλ Jt(λ) which is the instantaneous best solution for Equation A.30.

Then we will show that

max
t

{Jt(λ
∗
t )− Jt(λ

∗
t̃ )} ≤ 2V ({Jt}Tt=1).

Assume there exists a slot t0 that Jt0(λ
∗
t0
)− Jt0(λ

∗
t̃
) > 2V ({Jt}Tt=1). Then it implies that

Jt̃(λ
∗
t̃ )

(a)

≤ Jt0(λ
∗
t̃ ) + V ({Jt}Tt=1) < Jt0(λ

∗
t0
)− V ({Jt}Tt=1)

(b)

≤ Jt̃(λ
∗
t0
), ∀t̃ ∈ T,

where (a) and (b) come from maxt1,t2 |Jt1(λ)−Jt2(λ)| ≤ V ({Jt}Tt=1) since V ({Jt}Tt=1) is the

accumulated variation over T . Jt̃(λ
∗
t̃
) ≤ Jt̃(λ

∗
t0
) contradict that λ∗

t̃
is the maximizer of Jt̃(λ).

Therefore we have maxt{Jt(λ
∗
t ) − Jt(λ

∗
t̃
)} ≤ 2V ({Jt}Tt=1). Substituting to Equation A.32

and Equation A.35 leads to

T∑
t=1

ft(x
∗
t )−

T∑
t=1

ft(x
off
t ) ≤ 2V ({Jt}Tt=1).

Replacing the term
∑T

t=1 ft(x
∗
t )−

∑T
t=1 ft(x

off
t ) in Equation A.29 leads to

Roff
T = RT +

T∑
t=1

ft(x
∗
t )−

T∑
t=1

ft(x
off
t ) ≤ RT + 2V ({Jt}Tt=1).
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A.6 Flow constraint and Transmission utilization fee

The appropriate P2P market design should make it possible to have different prices for dif-

ferent transaction which implies that all market clients may account for preferences, different

valuations of electricity and differentiated network charges through the market. Hence, the

impact of each transaction on line flow constraints and cost are considered. Line flow con-

straints are added as a constraint of the objective function to model physical network in the

energy trading,

−ρmax
l ≤ ρl ≤ ρmax

l , (A.36)

where ρmax
l is the maximum capacity of line l.

A method to specify the share of each transaction in the line flow constraint is employing

Power transfer distribution factor (PTDF). PTDF is defined as “linear approximations of the

sensitivities of the active power line flows with respect to various variables” [17]. PTDF is

used to calculate flow of lines and indicate lines that used for power transfer in each individual

transaction [12, 26]. PTDF for line l shown by ϕij
l and indicates part of the generated energy

by seller i, which is transferred to buyer j through line l. ϕij
l can be obtained using

ϕij
l = ϕi

l − ϕj
l , (A.37)

where ϕi
l, ϕ

j
l are injection shift factors (ISF) in line l for node i and j respectively. ISF is an

approximation of the sensitivity matrix and quantifies the redistribution of power through

each branch following a change in generation or load in a particular node. The ISF matrix

is shown as Φ ∈ RNl×N where Nl denotes the number of lines. This matrix can be obtained

from diagonal branch susceptance matrix (B′), branch to node incidence matrix (A) and re-

duced nodal susceptance matrix (C). The PTDF matrix depends on the network structure

and is independent of the power flows through the network .
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Φ = B′AC−1, (A.38)

B′ = diag[b1, . . . , bNl
] ∈ RNl×Nl , (A.39)

A = [a1, a2, · · · , aNl
]⊤ ∈ RNl×N , (A.40)

C = ATB′A ∈ RN×N . (A.41)

In the matrix A, a⊤l
e.g.
= [1,−1, 0, · · · , 0] is the lth row, in which a line exists between the

first and second node.

With PTDF, the power transfer distance between consumer j and producer i can be obtained

as

Dij =
∑
l∈Nl

ϕij
l , D ∈ RN×N . (A.42)

With traded energy decision (Xt), the power flow in line l can be obtained by

ρl(Xt) =
∑
i∈wp

t

∑
j∈wc

t

ϕij
l x

ij
t , (A.43)

and the total line utilization fee can be calculated as

∑
i∈wp

t

∑
j∈N

γDijXij
t = −

∑
j∈wc

t

∑
i∈N

γDjiXji
t .

where wp
t denotes the clients who are producers in time slot t and Xij

t ≥ 0,∀i ∈ wp
t , j ∈ N ,

wc
t denotes the clients who are consumers in time slot t and Xji

t ≥ 0,∀j ∈ wp
t , i ∈ N .
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