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Blepharospasm (sometimes called “benign essential blepharospasm,” BEB) is one of

the most common focal dystonias. It involves involuntary eyelid spasms, eye closure,

and increased blinking. Despite the success of botulinum toxin injections and, in some

cases, pharmacologic or surgical interventions, BEB treatments are not completely

efficacious and only symptomatic. We could develop principled strategies for preventing

and reversing the disease if we knew the pathogenesis of primary BEB. The objective

of this study was to develop a conceptual framework and dynamic circuit hypothesis

for the pathogenesis of BEB. The framework extends our overarching theory for the

multifactorial pathogenesis of focal dystonias (Peterson et al., 2010) to incorporate a

two-hit rodent model specifically of BEB (Schicatano et al., 1997). We incorporate in the

framework three features critical to cranial motor control: (1) the joint influence of motor

cortical regions and direct descending projections from one of the basal ganglia output

nuclei, the substantia nigra pars reticulata, on brainstem motor nuclei, (2) nested loops

composed of the trigeminal blink reflex arc and the long sensorimotor loop from trigeminal

nucleus through thalamus to somatosensory cortex back through basal ganglia to the

same brainstem nuclei modulating the reflex arc, and (3) abnormalities in the basal

ganglia dopamine system that provide a sensorimotor learning substrate which, when

combined with patterns of increased blinking, leads to abnormal sensorimotor mappings

manifest as BEB. The framework explains experimental data on the trigeminal reflex blink

excitability (TRBE) from Schicatano et al. and makes predictions that can be tested in

new experimental animal models based on emerging genetics in dystonia, including the

recently characterized striatal-specific D1R dopamine transduction alterations caused

by the GNAL mutation. More broadly, the model will provide a guide for future efforts to

mechanistically link multiple factors in the pathogenesis of BEB and facilitate simulations

of how exogenous manipulations of the pathogenic factors could ultimately be used to

prevent and reverse the disorder.
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INTRODUCTION

The ability to keep your eyes open is an obvious prerequisite for
vision, but even this simple function is dramatically impaired
in blepharospasm (“benign essential blepharospasm,” BEB).
BEB is characterized by involuntary eye closures that impair
many activities of daily living, including driving, reading, and
walking. There is visual impairment in an estimated 50–70% of
patients, and in severe cases BEB causes functional blindness.
The pathophysiology of BEB is not well understood. Possible
environmental factors include keratitis, dry eyes, greater sunlight
exposure, and blepharitis (Digre, 2015). Many patients complain
of photophobia. BEB remits in less than 1% of patients, and
leads to significant social disability and decreased quality of
life. Many oral medications have been tried, but they are
minimally effective (Eftekhari et al., 2015). Some medications
have undesirable side effects, producing Parkinsonism or blurred
vision. Botulinum neurotoxin (BoNT) injections have become
the mainstay treatment for BEB. But the injections are costly and
must be repeated every 3–4 months in perpetuity. In some cases
they also produce transient adverse side effects, including ptosis
and diplopia. Over 70% of patients report difficulties driving
and reading 2 or more weeks before the next injection, and
over time some patients develop resistance to the toxin (Esposito
et al., 2014). Patients refractory to BoNT have surgical options,
including deep brain stimulation (DBS) or myectomies. But the
myectomies for BEB are among the most challenging procedures
in oculoplastic surgery. For some surgical patients, the procedure
does not necessarily supplant the need for continued BoNT
injections. As a result of incomplete treatment efficacy, for many
patients BEB leads to a lifetime of chronic disability, occupational
failure, social withdrawal, and depression. We could develop
principled strategies for preventing and reversing the disease if
we knew the pathogenesis of BEB.

In this paper, we develop a conceptual framework and
dynamic circuit hypothesis for the pathogenesis of BEB. Section
Conceptual Framework lays out the conceptual framework
based on concepts of sensorimotor plasticity and “2-hit” models
for the pathogenesis of dystonia, and BEB in particular. In
Section Dynamic Circuit Hypothesis for the Pathogenesis of
BEB we build on the conceptual framework to formulate a
basal ganglia-based circuit hypothesis that explains Schicatano
et al.’s 2-hit rodent model of BEB, including the temporal
dynamics of the pathophysiology at two time scales. In
Section Computational Model Design Considerations we discuss
strategies for developing computational models based on
the hypothesis. In Section Broader Significance we conclude
with the significance of our framework for broader research
efforts to improve treatments for BEB and other focal
dystonias.

CONCEPTUAL FRAMEWORK

Sensorimotor Plasticity and the
Hyperexcitable Blink Reflex
BEB is associated with enhanced plasticity in the overall
circuits mediating blink sensorimotor function. A broad body of

research into BEB suggests that the disease involves disordered
sensorimotor integration (Feiwell et al., 1999; Berardelli and
Curra, 2002). One of the most consistent specific findings
is hyperexcitability in the blink reflex (Hallett, 2002). This
is most notable in the late component of the blink reflex,
measured with rectified electromyography of the orbicularis oculi
(OO) muscles in response to stimulation of the supraorbital
branch (SO) of the trigeminal nerve (Berardelli et al., 1985).
The hyperexcitability has been attributed to abnormalities
in sensorimotor brainstem loops (Gómez-Wong et al., 1998;
Gong et al., 2003), possibly involving some form of positive
feedback (Nguyen and Kleinfeld, 2005). These circuits exhibit
remarkable plasticity, which in the non-pathological case
provides an adaptive mechanism for coping with ophthalmic
challenges such as dry eye by increasing blink rates to
maintain corneal health. This plasticity can be experimentally
manipulated with high-frequency stimulation of the trigeminal
nerve temporally coordinated with reflex blinks (Mao and
Evinger, 2001). Interestingly, this form of experimentally-
induced plasticity of the overall blink reflex circuit is enhanced
in BEB patients (Quartarone et al., 2006a). The notion of
abnormal, maladaptive plasticity is gaining broader interest
in the dystonia community (Berardelli et al., 1998; Hallett,
1998, 2001, 2006; Sanger and Merzenich, 2000; Altenmüller,
2003; Quartarone et al., 2006b, 2009; Rosenkranz et al.,
2007; Torres-Russotto and Perlmutter, 2008), including in BEB
research.

The “2-hit” Model for Dystonia
Several investigators (Topp and Byl, 1999; Sanger andMerzenich,
2000; Hallett, 2002; Quartarone et al., 2006b, 2008; Torres-
Russotto and Perlmutter, 2008; Peterson et al., 2010) have
suggested that two factors jointly underlie the pathophysiology
of dystonia: “environmental” factors like peripheral injury or
repetitive use and subtly abnormal biological substrates of
plasticity. That both factors may be necessary is consistent with
the findings of reduced penetrance in the genetic contributions
to most forms of dystonia, and only limited data thus far
for a genetic contribution in BEB (Misbahuddin et al., 2002;
Defazio et al., 2003, 2007; Clarimon et al., 2007). As a specific
instance of the “2-hit” theme, we previously postulated that
a combination of abnormal patterns of sensorimotor state
space utilization and abnormal dopaminergic signaling in the
striatum could induce pathological reinforcement learning that
leads to dystonia (Peterson et al., 2010). Evidence specific to
BEB, as laid out in the next section, suggests that this applies
to BEB.

A Version of the “2-hit” Model for BEB
Some of the strongest evidence to date for this “two-factor”
concept implicates ophthalmic and dopaminergic factors in the
development of BEB (Evinger, 2013, 2015). BEB is frequently
associated with ophthalmic challenges, such as irritation, injury,
dry eye, or other diseases of the anterior segment of the eye
(Elston et al., 1988; Pita-Salorio and Quintana-Conte, 1988;
Hallett, 2002; Martino et al., 2005). Dry eye increases blink
oscillations (Evinger et al., 2002), and experimentally-produced
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lesions that reduce eyelid motility induce a mild dry eye (Evinger,
2005) and increase blink reflex excitability (Schicatano et al.,
1997, 2002). The most common interpretation is that these
ophthalmic challenges induce an adaptive increase in OO drive
to compensate for lid weakness. This adaptive process is a
natural means of maintaining proper function, but may become
maladaptive in BEB (Evinger and Manning, 1988). Interestingly,
even a transient trigger can lead to a persistent problem, because
lid closure spasms persisted even after full recovery of facial nerve
function (Evinger, 2005).

Dopamine (DA) also likely plays a subtle but significant
role in BEB. The dopamine system is implicated as a potential
factor in many different forms of dystonia (Augood et al.,
1999, 2004; Perlmutter and Mink, 2004; Breakefield et al., 2008;
Wichmann, 2008; Peterson et al., 2010). In tardive dystonia
(e.g., due to neuroleptics that block DA receptors), the initial
presentation is commonly BEB. Decreased DA increases blink
durations and the trigeminal reflex blink excitability (TRBE;
Basso et al., 1993; Esteban, 1999; Peshori et al., 2001). Eye disease
increases dramatically with age, especially in 40–60 year olds,
a period coincident with decreased production of DA in the
SNc and coincident with the typical age of BEB onset (Martino
et al., 2005). BEB symptoms respond to apomorphine, a non-
selective DA agonist (Cattaneo et al., 2005). BEB has been
associated with polymorphisms in the gene that codes for the
D5 dopamine receptor (Misbahuddin et al., 2002). Dopamine
mediates nicotine’s influence on the blink reflex (Evinger et al.,
1993), and there is decreased binding of the D2-family of striatal
DA receptors in BEB (Perlmutter et al., 1997; Horie et al.,
2009).

A Rodent Model of BEB
In a rat model of BEB, Schicatano et al. (1997) demonstrated that
the joint contribution of ophthalmic and dopaminergic factors
could be critical in the pathogenesis of the disorder. Specifically,
they found that only the combination of dopaminergic and
ophthalmic factors dramatically increased blink reflex excitability
and recapitulated the symptoms of BEB. They combined a
weakening of the orbicularis oculi muscles that increased
spontaneous blink rate with a subclinical 6-OHDA lesion of the
dopamine system in the basal ganglia. They tested the animal’s
trigeminal reflex blink excitability (TRBE). The blink reflex is
commonly quantified with rectified EMG of the orbicularis
oculi (OO) muscles. The first burst of EMG, called the “R1,”
precedes the blink and is ipsilateral to the stimulus. The second
burst of EMG, called the “R2,” coincides with the blink and is
bilateral. The TRBE is measured by the relative change in the
magnitude of the R2 component of the blink reflex to a “test”
SO stimulus at least 50 ms after an equivalent conditioning
stimulus.

TRBE =

∫
R2test∫

R2condition
(1)

The effects on the physiological measures of TRBE are depicted
in Figure 1 and summarized in Table 1. Only the animals with
both factors manipulated exhibited an approximately 4-fold
increase in the TRBE. They also exhibited spontaneous lid closure

FIGURE 1 | Orbicularis oculi EMG responses to paired pulse

stimulations (“condition”, “test”) to the supraorbital branch (SO) of the

trigeminal nerve. The R2 response component is labeled only for the test

stimulus. (OO EMG is rectified, amplitude given in arbitrary units; all adapted

from Schicatano et al., 1997). (A) Healthy animal, prior to OO and 6-OHDA

lesions (from Schicatano Figure 2A top panel; solid and dotted responses are

on separate, sequential days). (B) After OO weakening (from Schicatano

Figure 2A bottom panel). (C) After minor 6-OHDA lesion (from Schicatano

Figure 3A, temporally scaled to approximate stimulus timing in A,B). (D) After

minor 6-OHDA lesion and approx. 20 days after OO weakening (from

Schicatano Figure 3B, temporally scaled as in C). Note lid closure spasms

(LCS) after test R2.

spasms, mimicking the symptoms of BEB in humans. Neither
of the individual manipulations in isolation created the BEB
phenotype.
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TABLE 1 | scenario-specific OO physiology.

TRBE Lid closure spasms (LCS)

(R2 test /R2 cond) Reflex ? Spontaneous ?

Healthy <1 – –

Weakened OO 1 – –

6-OHDA 1 – –

6-OHDA + weakened OO 4 Yes Yes

DYNAMIC CIRCUIT HYPOTHESIS FOR THE
PATHOGENESIS OF BEB

The Hypothesis
The experiments by Schicatano et al. opened a door into a
mechanistic model of BEB that had some phenotypic validity
relative to the human condition. However, the study also
raised questions that remain unanswered to this day. They
suggested that the dopamine deficit in the basal ganglia created
a “permissive condition” by reducing the inhibition on the
trigeminal reflex circuit. However, it remains a mystery how the
ophthalmic and dopaminergic factors could interact to produce
the increased TRBE and the expression of BEB. For example, at
the short time scale, it is not clear why this disinhibition would
be selective for the R2 response to only the test stimulus, and not
the preceding conditioning stimulus.

We hypothesize that the propagation delays associated
with the long loop—from brainstem to thalamus_VPN to
somatosensory cortex to striatum to SNr back to brainstem—
in combination with an altered input/output weight matrix in
the striatum, selectively disinhibits the R2 response in the TRBE.
Furthermore, at the long time scale, there were multi-day delays
between the DA and ophthalmic interventions and when the
TRBE was tested. Presumably these were to enable the animals
to recover from surgeries. However we hypothesize that those
multi-day delays also allow for slower circuit plasticity to reshape
the weight matrix central to the action selection function of the
striatum, such that instantaneous basal ganglia outflow to the
blink circuitry in the brainstem becomes contingent upon recent
periocular activity in a pathological fashion.

A BG Role in BEB
Brain Regions Implicated in BEB
A wide array of evidence implicates regions outside of the
brainstem in BEB. BEB is associated with abnormal gray matter
volume (Etgen et al., 2006; Obermann et al., 2007; Martino et al.,
2011) and glucose metabolism (Eidelberg et al., 1998; Hutchinson
et al., 2000) in the cerebellum, the basal ganglia, and the cortex.
Many cortical areas, virtually all of which have projections to the
basal ganglia, are involved in facial muscle control (Morecraft
et al., 2001, 2004; Sohn et al., 2004; Gong et al., 2005) including
blinking (Baker et al., 2003; Evinger and Perlmutter, 2003). Some
set of “higher” brain regions are also implicated in modulating
the blink reflex, because stimulus anticipation influences the
blink reflex (Ison et al., 1990).

BEB and the BG
Strokes involving the striatum can produce BEB (Grandas
et al., 2004). In BEB patients, striatal volumes are abnormal
(Etgen et al., 2006; Obermann et al., 2007) and metabolism is
higher than normal (Esmaeli-Gutstein et al., 1999). BEB patients
also exhibited differential recruitment of specific subregions of
striatum during lid closing spasms compared to control subjects
engaged in frequent blinking (Schmidt et al., 2003). In contrast,
the frontal cortex and cerebellum did not exhibit differential
recruitment in the two groups. Likewise, a manual sensorimotor
control task induced greater activation in BEB patients than in
controls in the basal ganglia but not in the cortex (Obermann
et al., 2008). A basal ganglia abnormality in BEB would also be
consistent with the higher incidence of OCD symptoms in BEB
than in hemifacial spasm (Broocks et al., 1998) and the higher
incidence of OCD in primary focal dystonias overall compared
to the general public (Cavallaro et al., 2002). Finally, deep brain
stimulation of the globus pallidus internal segment (GPi), one of
the primary output structures of the basal ganglia, also reduces
blink reflex excitability (Tisch et al., 2006).

BG Outflow and the Blink Reflex
The basal gangliamodulate the blink reflex (Berardelli et al., 1985;
Evinger and Manning, 1993). The GPi is the primary output
nucleus in the basal ganglia and it is commonly associated with
somatotopic musculoskeletal motor function. The substantia
nigra pars reticulata (SNr), is another key output nucleus in the
basal ganglia. The SNr has descending outputs to, among other
targets, the superior colliculus (SC). This pathway modulates
peri-ocular motor function. Although the exact nature of how
the BG influence the blink reflex remains uncertain, Basso (Basso
and Evinger, 1996) postulated the sequential chain depicted in
Figure 2, namely that increased SNr activity leads to increased
inhibition of SC, leading to decreased excitation of the nucleus
raphe magnus and decreased inhibition of trigeminal blink
reflex circuits. This is consistent with evidence showing that SC
stimulation suppresses the blink reflex (Gnadt et al., 1997) and
that the SC is hypometabolic on FDG-PET in BEB (Emoto et al.,
2010). Indeed, the pathway from SNr to the trigeminal nucleus
has long been suspected to be involved in BEB (Hotson and
Boman, 1991).

Nested Loops
We suggest that the ascending trigemino-thalamocortical,
and then corticobasal ganglionic, pathways, may mediate the
differential response to the second (“test”) versus the first
(“condition”) stimuli that underlies the TRBE, as depicted in
Figure 3. This is consistent with the typically 50ms or greater ISIs
used in paired pulse paradigms, given that somatosensory evoked
potentials are detectable in the cortex with approx. 20 ms latency.
The R2 component is influenced by descending projections from
cortex and the basal ganglia (Esteban, 1999), likely involving
sensory pathways including thalamus_VPN and the S1 cortical
area, as evidenced by stroke cases (Kimura et al., 1985; Chia, 1997;
Spissu et al., 2004). The basal ganglia-thalamocortical loops have
been suggested to modulate the TRBE (Tisch et al., 2006) and to
be involved in BEB (Colosimo et al., 2010).
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FIGURE 2 | Basal ganglia to brainstem pathways influencing reflex

blinks. Abbreviations: GPe, globus pallidus external segment; GPi, globus

pallidus internal segment; NRM, nucleus raphe magnus; OO, orbicularis oculi;

SC, superior colliculus; SNc, substantia nigra pars compacta; SNr, substantia

nigra pars reticulata; SPN, spiny projection neurons; SpV, spinal trigeminal

nucleus; STN, subthalamic nucleus; V, trigeminal ganglion, VII, facial motor

nucleus.

Action Selection Learning
Dopamine Function in the Basal Ganglia is Abnormal

in BEB
There is decreased binding of the D2-family of DA receptors in
striatum in cranial dystonia, including BEB (Perlmutter et al.,
1997; Horie et al., 2009). Basal ganglia dopamine also mediates
nicotine’s influence on the blink reflex (Evinger and Manning,
1993; Evinger et al., 1993).

Dopamine Function in the Basal Ganglia Mediates

Sensorimotor Learning
The classic clinical models of the basal ganglia in movement
disorders highlight the static role of dopamine (Gale et al., 2008).
For example, dopamine levels influence the relative activation of
the “go” D1-family receptor dependent pathway and the “no go”
D2-family receptor dependent pathways in the hypokinetic vs.
hyperkinetic features of movement disorders. In another model,
these pathways are combined with the divergent excitation from

the subthalamic nucleus (STN) to create surround inhibition
that improves the relative selectivity attributed to specific action
plans. However, the dynamic influence of dopamine in the basal
ganglia is an underappreciated factor in dystonia research (Utter
and Basso, 2008), and may play a critical role in the pathogenesis
of the disease. In fact, some investigators have suggested that the
classic view of the basal ganglia role in motor modulation may
in fact be secondary to a more general purpose role in learning
(Wickens, 2009). Striatal synaptic plasticity plays an important
role in sensorimotor learning (Graybiel et al., 2000; Pisani et al.,
2005; Yin and Knowlton, 2006; Kreitzer and Malenka, 2008;
Horvitz, 2009). Much of that research has implicated plasticity
specifically in corticostriatal synapses (Kreitzer and Malenka,
2008). The striatum is a dominant recipient of projections from
SNc DA cells; DA markers in the striatum are among the
densest in the nervous system (Lavoie et al., 1989). Corticostriatal
potentiation is correlated with learning rate in an intracranial
self-stimulation paradigm involving stimulation of SNc DA
neurons (Reynolds et al., 2001) and this was interpreted as a
cellular instantiation of sensorimotor learning, i.e., how context-
sensitive motor behavior is shaped (Reynolds et al., 2001;
Wickens et al., 2003).

The Basal Ganglia Likely Play a Critical Role in

Mediating the Interaction of the Ophthalmic and

Dopaminergic Factors in BEB
The plasticity of the corticostriatal synapse is a function of
not only dopaminergic afferents from SNc but also inputs
from cortex and the output of the striatal projection cells,
the spiny projection neurons (SPNs). Because the striatum
receives convergent input from most of the cerebral cortex, it
is positioned to integrate broadly defined sensory and motor
plan information. By virtue of its direct and indirect projections
to basal ganglia outputs, the striatum also influences how the
basal ganglia modulate transitions to future “actions” (Yin,
2016). Behavior involves sampling the space of “state-to-action”
mappings. In this context, “state” refers to the instantaneous
combination of sensory representations and possible motor
plans encoded in cortex. “Action” refers to the “next action”
biases determined by BG output. “Mappings” refers to how
action biases are formulated from states. The state-to-action
mapping is used in a continuous fashion iterated over time.
Importantly, the mapping is also potentially updated in a
continuous fashion and updates depend in part on which
state/action combinations are used. In this framework, the
brainstem and associated cerebellar circuits that mediate the
adaptive response to peripheral ophthalmic challenges induce
a shift in how the “state-to-action” space is sampled, or
“used.” In the simplest example, dry eye can evoke increased
blinking, whereby the associated sensory-motor “space” is
sampled more frequently. Indeed, repeated use is a requisite for
many forms of learning, particularly the forms of procedural
learning for which the basal ganglia has long been implicated.
In summary, specific forms of “use” and dopamine function
conspire in the basal ganglia to influence sensorimotor map
formation.
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FIGURE 3 | Simplified schematic of the TRBE, overlaid with signaling cascades including not only short loops in brainstem but also long loops

through suprasegmental structures. The conditioning stimulus evokes suprasegmental responses through thalamus, cortex, and basal ganglia output pathways

back to trigeminal reflex circuits in brainstem [stimulus artifact omitted].

COMPUTATIONAL MODEL DESIGN
CONSIDERATIONS

Based on our circuit hypothesis, we outline in this section
suggestions for designing corresponding computational models.
An important aspect will be to model network-level plasticity
in the basal ganglia to simulate how the two factors lead to
the hyperexcitable blink reflex in BEB. We suggest development
of a computational model of dopamine-mediated plasticity in
the basal ganglia network that can be tested with the data
from Schicatano’s animal model of BEB (1997). A neuronal
network model of the cortico-basal ganglia circuits mapping
sensory and motor plan states to motor outputs is depicted in
Figure 2.

Model Architecture
The model network includes cortex encoding generalized state
information (including somatosensory and motor plan), the
conjunction of direct and indirect striatal-pallidal pathways as
mappings from “states” to “action modulations” in SNr, and
dopaminergic input from the substantia nigra pars compacta
(SNc). Several components of the basal ganglia network are
omitted for simplicity, including striosomes, their projections to
SNc, and projections from cortex to STN.

Beyond a general cortical representation of state information,
it may be worth including primary motor cortex (M1) as a
separate node. It is a point of convergence for cortico-cortical,
cerebello-thalamocortical, and BG-thalamocortical networks. It
has a key role in other long-loop reflexes, such as the long-
latency stretch reflex implicated in skeletal muscle spasticity, and
pathophysiology in M1 may be sufficient to cause some features
of dystonia as illustrated by M1 simulations accelerated with

customized hardware (Sohn et al., 2015). However, for forms
of dystonia where altered dopamine signaling is implicated, we
need a better understanding of the relative importance of striatal
versus cortical dopamine-mediated plasticity in modifying action
selection. Regardless of the influence of dopamine in cortex, the
exquisitely timed overlay of motor cortex and SNr/brainstem
projections to the trigeminal nucleus will need to be elucidated
to fully understand how the blink reflex excitability is modulated
in BEB.

Historically a majority of theoretical and computational
models of dopamine’s role in BG circuitry have omitted or
downplayed the STN and GPe. Yet there is mounting evidence
for their critical role in BG physiology and they do receive
dopaminergic innervation from SNc. However, the role of
dopamine receptors in their physiology is relatively understudied
compared to the striatum, and we are unaware of literature on
how dopaminemodulates synaptic plasticity in the STN andGPe.
Furthermore, it is not known whether the D2 dopamine receptor
binding in focal dystonias that is altered in striatum is also altered
in STN and GPe. Neverthless, altered dopamine signaling in
these nuclei could contribute to BEB pathophysiology by way
of the SNr and the SNr’s brainstem targets in at least two non-
mutually exclusive ways. First, altered activity in the divergent
glutamatergic projection from STN to SNr could induce a global
excitation of SNr that would disinhibit downstream targets in
brainstem. Indeed deep brain stimulation of STN for Parkinson’s
disease (PD) can alleviate (or, paradoxically for some patients,
induce) apraxia of lid opening, a symptom common in isolated
blepharospam (Weiss et al., 2010). A clearer understanding of the
mechanisms awaits a clearer understanding of the mechanism of
action of DBS itself, as the relative contribution of activation of
cell bodies and fibers of passage remains unclear. Second, there
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is evidence that the altered dopamine signaling of Parkinsonism
leads to pathological oscillations in the STN-GPe loop. As a
result, there would be a disruption in the normal temporal
patterns of STN output to SNr, again cascading to altered
signaling in the brainstem targets downstream of SNr. With the
evolution of synergistic experimental and theoretical work on
that basal ganglia subcircuit and DBS mechanisms of action, they
should be incorporated into models of the broader basal ganglia
network.

Model Neurons
A network model will need to be sufficiently computationally
efficient to be able to simulate the effect of dopamine-mediated
plasticity of corticostriatal synapses over protracted periods of
sensorimotor “use.” Thus the model should use biologically
realistic but computationally efficient spiking neurons, as for
example the variants on the Izhikevich neuron (Izhikevich, 2003)
used by Gurney et al. (2015).

We advocate use of a model that incorporates known
information about both the overall BG circuitry and dopamine-
dependent synaptic plasticity rules. To our knowledge,
Gurney et al. (2015) is the most rigorous and representative
computational model incorporating these features available to
date. However, Gurney et al. used rate-based neurons to represent
a few channels in each of the BG nuclei outside of the striatum.
To ultimately facilitate linking the model to experimental data
on oscillations in the overall BG network, which have been
implicated in movement disorders pathophysiology (Schroll and
Hamker, 2016), one should use spiking neurons throughout
the model architecture. This direction will be facilitated not
only by continued advances in computational resources, but
also by expanded knowledge about how best to parameterize
features of dopamine-modulated synaptic plasticity at synapses
onto the other classes of neurons in the BG beyond SPNs in the
striatum. Thus, we advocate a staged approach, involving in the
first phase an approach analogous to that of Gurney et al., and
in a subsequent phase pending more complete experimental
data on DA-mediated synpatic plasticity, extending the use
of spiking model neurons to all of the other nodes in the
network.

Model Synaptic Learning Rules
Use of spiking neurons will allow the model to take advantage
of spike-timing dependent plasticity (STDP) rules for modifying
the strength of the glutamatergic input weights at the cortico-
striatal synapses on to spiny project neurons. Although such
models have been based on dopamine-dependent STDP rules
specific to D1- and D2-type dopamine receptor-containing SPNs
(Shen et al., 2008), there remains debate about how those in vitro
results, and manipulations of inhibition in the slice preparation,
map to the in vivo setting. Future advances in elucidating
those STDP rules for the corticostriatal synapse should be
closely monitored and incorporated into future models of striatal
network plasticity. One possibility is that a unified formulation
based on cytoplasmic calcium dynamics may emerge. A calcium-
based formulation for synaptic plasticity may resolve debates
about STDP rules and facilitate combining short- and long-term

plasticity. Though initially complex, such a formulation could,
in principle, be implemented with computationally efficient
approximations.

Model Inputs
For inputs, the ophthalmologic factor can be represented as either
modified somatosensory input from the trigeminal system, or
as increased blinking, or both. The OO muscle weakening is
suggested to be about “30%” (Evinger, 2005), consistent with
the fact that the OO muscle is innervated by the zygomatic and
temporal branches of facial nerve (Ouattara et al., 2004) yet only
the zygomatic branch is sectioned. As a result, the magnitude of
the eyelid proprioceptive signal represented by somatosensory
cortical input to the striatum should be reduced by 30% during
eye blinks after the OO-weakening lesion, and the frequency of
the blinks should be increased relative to the mean frequency
of naturally occurring blinks. These two modifications should be
done independently to evaluate the model’s separate sensitivity to
each.

Model Outputs
In terms of output, given the sequential chain of SNr influence
on the trigeminal blink reflex circuit mediating both the TRBE
and LCS, the model could use SNr output as a proxy for the
excitability of the late (R2 and later) components of trigeminal
blink system. In particular one could assay how SNr output
changes after the first (“conditioning”) stimulus as compared to
steady-state output patterns. Different scenarios based on the
TRBE physiology in Schicatano et al. (1997) are outlined in
Table 1.

Incorporating Clinical Features
The model should also accommodate the stipulated role of
the basal ganglia in mediating “state-to-motor” mappings and
how they account for the “state-dependent” sensory tricks
(“geste antagoniste”) known to ameliorate symptoms in some
BEB patients (Ragothaman et al., 2007): if certain parts of
the “state” space map to symptoms, the sensory trick can
put the patient in a different part of the “state” space that
does not map to motor symptoms. Similarly, BEB symptom
expression may be dependent upon the “motor plan” aspect
of “state,” as implied by cases where symptoms are induced or
ameliorated by speech (Martino et al., 2010). With these design
constraints, the model would unify the clinical observations of
sensory tricks and task-dependencies with the suggested role of
abnormal state-to-motor map learning in the development of
BEB. Finally, the model should also be designed to be able to
incorporate more precise characteristics of the patient phenotype
as they become available. As an example, our recent efforts
to leverage computer vision and machine learning technology
to analyze symptoms of BEB from patient video recordings
(Peterson et al., 2016) could be extended to examine the
temporal patterns of various aspects of periocular motor control
abnormalities, which would in turn serve as spatiotemporal
constraints on the motor outputs of the blink and blink-related
circuitry.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 March 2017 | Volume 11 | Article 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Peterson and Sejnowski Blepharospasm Pathogenesis: A Circuit Hypothesis

Model Testing/Predictions
The model’s predictions for TRBE can be measured in
transgenic mouse models and the prediction of temporal
dynamics in the basal ganglia output can be recorded with
in vivo electrophysiological recordings in SNr. The transgenics
should take advantage of advances in dystonia genetics,
including the DYT1 gene and the more recently identified
DYT25 gene (GNAL; which codes for a subunit of the
G-protein mediating D1-type dopamine receptor signaling in
the striatum). The model will also provide a platform for
mechanistically integrating data about other potential factors
in the pathophysiology of BEB, including for example how
the roles of adenosine, acetylcholine, and endocannabinoids in
striatal synaptic plasticity could influence network plasticity in
the greater basal ganglia system. The combination of computer
model simulations and animal model experiments would provide
a rationale basis for further research into potential drug targets
for patients.

BROADER SIGNIFICANCE

The framework and hypothesis put forth here link the
specific patterns of adaptive “use” of the blink sensorimotor
system induced by ophthalmic challenges such as dry eye
to the repetitive sensorimotor learning functions of the
basal ganglia. By prioritizing model features required to
reproduce Schicatano’s experimental findings, we can begin
to develop an understanding of the circuit mechanisms by
which ophthalmic and dopaminergic factors interact in BEB
pathogenesis. Furthermore, the framework’s predictions in
the case of impairments to the striatal DA system provide
hypotheses that can subsequently be experimentally tested in
animal models with a variety of different protocols. As such,
it is a step toward integrating the largely separate bodies
of past research implicating local brainstem circuits and the
basal ganglia in BEB. There are currently no strategies for
preventing or curing BEB, and there are no treatment options
that are completely efficacious. If we understood the pathogenesis
of primary BEB we could develop principled strategies for
preventing and reversing the disease. To the extent that
a pathological sensorimotor learning process is part of the
pathogenesis of BEB, this line of research could help get
at the classic question of which aspects of pathophysiology
reflect primary versus secondary, compensatory processes in
dystonia, a matter prioritized in a recent update on BEB research
(Valls-Sole and Defazio, 2016).

If BEB develops due to the joint interaction of ophthalmic
and dopaminergic factors, the presence of either factor alone
could be a detectable susceptibility indicating amelioration of
that factor or proactive mitigation of the other factor to prevent
the onset of BEB. Unfortunately, among the focal dystonias, the
risk of spread in symptoms is among the highest in BEB (Weiss
et al., 2006; Abbruzzese et al., 2008). Thus the same strategies
used in preventing BEB onset in clinically normal but susceptible
individuals may also be applicable for minimizing the risk of

spread in existing patients with isolated BEB. Furthermore, if the
model accounts for how factors interact in the pathogenesis of
BEB, perhaps future investigations with the model can be used to
suggest how exogenous manipulations of those factors could be
used to renormalize “state to motor” mappings (as for example
with specific acutely and carefully coordinated combinations
of dopaminergic manipulations and sensorimotor retraining
loosely analogous to that used in the focal limb dystonias, Zeuner
and Hallett, 2003; Zeuner et al., 2005). If so, the model could
ultimately be used to simulate the interventions prior to clinical
use, helping to minimize risks to patients and maximize the
likelihood of producing a cure.

Importantly, the hypothesis and framework developed here
for BEB may also have broader relevance for other forms of
dystonia. The view of the ophthalmic-triggered adaptations as
changes in “use,” although under minimal if any volitional
influence, provides a conceptual link between BEB and the
focal task-specific dystonias, such as the focal hand dystonias
(writer’s cramp and musician’s dystonia). The superior colliculus,
a key node in the hypothesized BEB circuit, also mediates
basal ganglia influence over oral motor learning (Taha et al.,
1982), and so the circuits stipulated in the present model for
BEB may also be implicated in oromandibular and/or laryngeal
dystonia. Dystonia patients without BEB also exhibit increased
TRBE (Nakashima et al., 1990), suggesting that understanding
themechanisms producing an increased TRBEmay help improve
our understanding of the pathogenesis of other forms of dystonia.
Indeed, some of the same circuit mechanisms may be involved in
many different types of dystonia (Defazio et al., 2007; Obermann
et al., 2008), including even the generalized, childhood form
of dystonia associated with the DYT1 gene, given evidence for
reduced D2-family DA receptor availability in non-manifesting
DYT1 carriers (Asanuma et al., 2005) and dopamine system
abnormalities in DYT1 transgenic mice (Zhao et al., 2008).
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