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ABSTRACT OF THE DISSERTATION

A Computational Study of Story Narratives and Dynamics

in On-line Social Media

by

Ehsan Ebrahimzadeh Houlasou

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2018

Professor Vwani P. Roychowdhury, Chair

Social media has changed manners in which people access information, form their opinion

and act in real life. Therefore, there is an urgent need to design information retrieval sys-

tems to turn large scale unstructured users’ data into structured knowledge. Traditional text

summarization techniques and co-occurrence based topic models, however, cannot capture

the complex social dynamics that drive individual and group behaviors. On the other hand,

well-known models of narratives and legends that have been proven to be effective in cap-

turing story dynamics do not have a scalable machine learning formulation. The main goal

of this dissertation is to develop computational and statistical tools that can efficiently and

accurately extract multi-scale narrative structures from large-scale social media datasets.

In particular, a narrative is modeled as a ”Story Narratives Networks” comprised of nodes

that represent primary actants, which interact via a sequence of actions that define the

links in the network. One of the contributions of this dissertation is to determine distinct

actant groups in an unsupervised manner from contextual unstructured data. Each such

group consists of actors that have the same contextual role in the narrative. In order to

cluster actors, we construct low-dimensional sparse vector embeddings using dimensionality

reduction techniques such as Non-Negative Matrix Factorization (NMF). We propose an

exterior point method to solve the NMF problem, which constructs a solution based on a

suitably rotated optimal solution of the unconstrained matrix factorization problem. We

ii



evaluate the performance of our proposed algorithm and embedding-based clustering scheme

on two datasets, namely data from a discussion forum on parenting issues and a corpus of

tweets on user experience with contact-less payment methods.

Finally, towards understanding the dynamics in the evolution of stories, we study the problem

of detecting changes in the temporal evolution of the user activities. We formulate this

problem in a transient change point detection setting and design a statistical test to detect

the change based on the number of user activities observed so far, with minimum expected

delay under a controlled measure of false alarm. We evaluate the change detection method

on a corpus of tweets related to Super Bowl 2015.
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CHAPTER 1

Introduction

1.1 Overview

The growing adoption of on-line social media as the primary source of obtaining and sharing

information, on the one hand, and recent advancements in large scale data analytics, on the

other hand, have overhauled the way large scale sociological studies are performed. Social

media users are no longer just silent observers of the “Stories” but rather, through expressing

their own take of the story in social media, they add a new dimension to how stories are

developed. As such, this collective social behavior has contributed to the recent advent of

notions like “trending stories” or “fake news” in the vocabulary of social network analytics.

On-line social media is indeed a new lens to study, at Internet scale, how people’s opinions

are formed, expressed, and evolved over time. Users have different, sometimes opposing,

viewpoints about the same subject, event or story and this is reflected in the subjective tone

of their expressions. Moreover, in contrast to expert-generated opinion pieces or summaries

that narrate the story in a standard and structured fashion, social media users use a variety

of different expressions to refer to the same semantic concept/event or they may even ignore

some aspects of the story and express themselves in a much less structured fashion.

In this dissertation, we seek to address the following question: Is it possible to find consensus

models for a holistic semantic analysis of an on-line story based on aggregation of social media

posts? In other words, can we find a unified view of all the partial information surfaced in

unstructured social media posts about an on-line story in a structured form? We address

these questions with an affirmative answer by developing models towards characterizing a

structured information network where nodes, which represent objects with different entity
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types, are linked via edges that represent relationships with different relation types, which we

refer to as story narrative network. Supervised machine learning that require large amount

of human annotated corpus specific data fall short in solving this problem. This defines a

wide array of challenges for unsupervised or distantly supervised approaches that leverage

the structures present in the problem, and richness of the data in terms of the redundancy of

information. In this work, we develop information retrieval algorithms that take advantage of

such structures and information redundancies by transforming unstructured data to models

suitable for machine learning algorithms.

A common theme that appears in all of the problems we study in this work is a form of

“sparse” structure in the problem. The following observations capture such sparse structures

in different scenarios:

• Entities appear only with a small set of relation phrases

• User networks are sparsely connected

• A social media post is comprised of only a small number of narrative contexts/topics

• The changes in the statistical behavior of the user activities are rare

• There are a only small number of terms that contribute to determining the alignment

of a post with respect to the narrative

Throughout the dissertation, we make some important assumptions in terms of temporal

evolution of the underlying ground truth and the data. In the first part of the dissertation,

when dealing with characterizing the aggregate story network or the major entities, a.k.a.

actants, we assume that the ground-truth story network is static, thereby neglecting the

temporal changes in the story narrative. Moreover, we are oblivious to the sequencing of

the relationships in the story network and the temporal order in which comments have

appeared. In the second part, however, we touch upon characterizing some aspects of the

temporal development of the story. Namely, we are interested in understanding the temporal

changes in the evolution of activities around a story. Another major aspect of this work,
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which is particularly relevant to these sequential problems, is sample efficiency. That is, in

an adaptive sequential algorithm for a specific learning task, we can basically use less data

samples as we learn about the structure of the problem over time.

When possible, we show how the theoretical frameworks and the computational tools we

develop for the story analysis problems branch out to a wider range of problems in infor-

mation retrieval. For example, we demonstrate how factorization techniques we develop for

the entity resolution problem can be used for designing personalized search engines. The

running examples throughout the dissertation, however, are problems in narrative analysis

for on-line stories.

1.2 Motivation and Problem Statement

In this section, we briefly motivate the problems studied in this work within the framework

of story narrative analysis and discuss our solutions in general terms. We leave the formal

problem statement and detailed discussions to the respective chapters.

1.2.1 Characterizing Significant Entity Groups in a Story

One of the major challenges towards characterizing the story narrative and understanding

the underlying dynamics in a corpus of text is the task of entity recognition. Entity resolution

is the problem of identifying, matching, and merging references corresponding to the same

entity within a dataset. Traditional entity recognition rely on external knowledge bases,

fully or partially, to resolve the type of candidate mentions. The standard approach is to

first define a set of types that the entities should be mapped to, then map a fraction of

the candidate entities to the corresponding types using an external knowledge base, and

finally disambiguate the type of the other entities based on the relationships in which they

co-occur with already tagged entities. However, a fundamental challenge in domain-specific

text corpora where entities are not necessarily mappable to knowledge base entries, is that

the type categories might not be known a priori or the learner does not have access to a

set of seed entities with known type labels. Therefore, the learner has to group entities of
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similar types by essentially dropping the knowledge base supervision.

We formulate this problem in a multi-view clustering framework. We first generate candidate

entity and relation mentions based on semantic and syntactic features of the tokens in text.

Specifically, we extract relation triplets that connect a pair of entity mentions with a relation

verb. We then find low dimensional distributed representations, aka embeddings, for entity

mentions by factorizing suitably constructed matrices from extracted relation triplets.

The embedding idea is proved promising in a variety of prediction tasks in text mining,

including relational learning. In this work, however, we use vector embeddings of the entity

mentions to cluster semantically similar entities in the same group. This requires the embed-

ded vectors to have certain structural properties, namely sparsity. To impose sparse structure

on entity embeddings, we consider non-negativity constraint on the factor matrices in the

matrix factorization objective. To solve the non-negative matrix factorization(NMF) prob-

lem, we propose an exterior point method, which constructs a solution for the NMF problem

based on a suitably rotated optimal solution of the unconstrained matrix factorization prob-

lem. We evaluate the performance of our proposed NMF algorithm and embedding-based

clustering scheme on two datasets, namely vaccination related data from a discussion forum

on parenting issues and a corpus of tweets on user experience with contact-less payment

methods.

1.2.2 Detecting Statistical Changes in the Evolution of User Activities

Characterizing the underlying dynamics in the evolution of the story narratives in a social

media setting is not a well-defined problem in general. To make the problem concrete, let us

assume that we are only interested in detecting ”major changes” in the temporal evolution

of the story. These changes can reflect in the temporal evolution of the story narrative in

terms of the textual content of the users’ posts as well as the frequency of the activities

irrespective of the textual content. Let us focus only on the latter.

Consider an on-line micro-blog setting, where users post textual pieces about an event. As

our running example, let us take Twitter as the on-line platform and let us refer to each post
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as a tweet. Each tweet is indexed by the time it is posted. Let us also assume that each

tweet contains a number of hash-tags, which serve as textual signatures that contextualize

the subject of the tweet. Therefore, the total number of tweets that contain a particular

hash-tag that is related to the event can be regarded a measure of user activity on the

subject. Therefore, a problem of interest in characterizing the temporal evolution of the

user activities is to quickly detect statistical changes in the distribution of the number of

activities on the hash-tag. This change in the distribution can reflect a major event related

to the subject of the study.

A major challenge in this problem is the transient nature of this change, meaning that the

change has to be identified before change period, which is assumed to be short compared to

the whole observation window, is over. Thus, we can view this problem as a characterizing

a trade-off between quick detection of the change versus reliability of the decision.

We formulate this problem in a transient change point detection setting where the objective

is to design a statistical test to detect the change, if present, based on the sequence observed

so far with minimum expected delay and a controlled measure of false alarm. Since obtaining

all the tweets in every single time instance is costly, we add an additional constraint on the

number of time instances that the statistic of interest is observed. We evaluate the change

detection framework on a corpus of tweets related to Super Bowl 2015. In chapter 5, we

discuss this problem in details.

1.2.3 Organization and Summary of Contributions

In the first part of the dissertation, we develop models towards characterizing story narrative

network. In particular, in order to characterize groups of entities with contextually similar

role in the story narrative network, we attribute distributed vector representations, aka

embeddings, to entity mentions that appear in extracted relations from users’ posts, and

then by clustering the embedded vectors, we partition the entities into groups.

In chapter 2, we propose an embedding approach based on explicit factorization of suitably

generated entity-relation matrices that capture the contextual role of an entity mention
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as a subject and an object in a relationship. In order to obtain interpretable embedding

vectors with improved clustering behavior, we impose sparse structure on the embeddings

by considering a non-negativity constraint on the factor matrices in the matrix factorization

formulation.

In chapter 3, we propose a new exterior point method to solve the Non-Negative Matrix

Factorization(NMF) problem, based on the geometry on the optimization landscape of the

unconstrained matrix factorization problem. Finally, we apply K-means clustering on the

obtained embedded vectors to cluster the entities into groups.

In chapter 4, we evaluate the performance of our proposed algorithm and embedding-based

clustering scheme on two datasets, namely data from a discussion forum on parenting issues

and a corpus of tweets on user experience with contact-less payment methods. It is shown

that our exterior point method has a significantly better sparsity properties over the con-

sidered models as well as better prediction performance over the celebrated multiplicative

update rules method for solving NMF. Moreover, we show that the clusters obtained by our

method can very well recover the underlying ground truth groups in the studied datasets and

it is computationally verified that our NMF-based embedding approach has superior clus-

tering performance over embeddings obtained by the optimal matrix completion approach

based on SVD.

In the second part of the dissertation, we switch gears to study problems related to the

temporal evolution of story narratives. In chapter 5, we study the problem of detecting

changes in the temporal evolution of the user activities and formulate this problem in a

transient change point detection setting and applied a statistical test to detect the change

based on the number of user activities observed so far, with minimum expected delay under

a controlled measure of false alarm. We evaluate the change detection method on a corpus

of tweets related to Super Bowl 2015. We show that our method is able to detect the start

of the game reliably and effectively within less than a minute from the start of the game.

Finally, in chapter 6 we make some concluding remarks and point out some of the future

directions that we would like to follow up on.
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CHAPTER 2

Entity Resolution Problem

2.1 Motivation

In recent years, social media has turned into the primary source of data for much of our

insight to the society, from trending topics to behavioral patterns of small and large groups

such as circles of friends or a city’s residents. One particular area of interest is the analysis

of the underlying stories and interactions amongst real world entities through their trace in

the social media. Given the scale of such data, it is practically impossible to curate a set of

cherry picked user posts to represent a holistic view of the interactions amongst the entities

involved in a story. Moreover, summarizing large text corpora in the form term co-occurrence

topics does not provide a refined view of the interactions in a story. Therefore, there is an

indispensable need for large scale methods that can aggregate pieces of information present in

different posts and provide a holistic view of the story narratives in a structured form. In this

work, we address this problem by introducing a network structure that describes interactions

among major entities involved in a story. Formally, a story narrative network is a structured

information network where nodes, which represent objects with different entity types, are

linked via edges that represent relationships with different relation types. Before we start

our formal discussion let us start with defining some terminology that we will frequently be

using all over this work.

• Entity: An entity is a real world object, such as a person, place, organization, etc.

that is recognizable by a human agent. Entities can also be abstract, such as entities in

a novel or word senses in the context of linguistics. In the context of story narratives,

we are interested particularly in entities that take part in forming the narrative. The
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entities may be known for some domains, while in others, they need to be discovered.

• Mention: A mention, aka reference, is a token span surfaced in the data, which refers

to an entity. Usually, entity mentions need to be extracted from textual documents in

the corpus. Surface words that refer to the actual entities of the story are examples

of a mention(reference). They are likely to appear in certain syntactic forms, such as

subject or object of the sentences in text corpora. Mapping such references to entities

is a fundamental challenge that we deal with in this work, that we will formally define

as the entity resolution task. A fundamental assumption that we make in this work is

that mentions with the same surface word refer to the same entity. This assumption

may not be true in certain text corpora where there exist different entities that might

appear in text with the same surface token. For example, two entities that have the

same family name that are mentioned in different documents via their family name

only.

• Relationship: When multiple mentions(references) are observed together in a context

that forms an interaction or link, specified for the task, such co-occurrence is called a

relationship between those references. In the context of stories, a relationship refers to

a tuple that describes how two or more entity mentions are related. Co-occurrences

usually happen as a result of ties or links between the underlying entities. We some-

times use the term relationship to refer to these ties between entities as well.

• Attribute: An attribute is an observed property of an individual mention, for example

the word tokens that co-occur with a mention in the same sentence. These attributes

can be used as complimentary information about entities or relationships that can be

used for the resolution task.

• Actant: A group, aka an actant, is a collection of entities that serve the same or

similar purpose in the setting we study and have close ties between themselves. In the

context of story narrative models, we specifically refer to these groups of entities that

have the same contextual meaning as actants. Such groups are only observed indirectly

through co-occurrences that mostly happen between references to entities that belong
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to the same group. The observed co-occurrence relations in the data provide evidence

for discovering the group structures among the entities, and the group evidence in turn

helps in improved resolution of the references.

One of the major challenges towards characterizing the story narrative and understanding

the underlying dynamics in a corpus of text is the task of entity recognition. Entity resolution

is the problem of identifying, matching, and merging references corresponding to the same

entity within a dataset. In the context of story narrative analysis, entity resolution is the

task of mapping entity mentions that have a similar contextual role in the story to their

corresponding actant group. In this chapter, we formalize this problem and take a machine

learning approach based on finding distributed vector representations for entities to cluster

similar entities that belong to the same group. The chapter is organized as follows. We

first formally define the type of relations that we deal with in this work. We then formalize

the entity resolution problem in the context story narrative analysis followed by our data

model as suitably defined entity relation matrices. We then describe our entity and relation

embedding approach as explicit factorization of the defined matrices and show how such

learned representations can be used for clustering entity mentions with contextually similar

roles in the story. Finally we provide a comprehensive overview of the prior art in entity

resolution and embedding-based approaches to that.

2.2 Entity and Relation Mentions

Given a corpus of unstructured text, we generate candidate mentions based on semantic and

syntactic features of the words in the text. Specifically, we extract semantic structures in

the form of certain paths in dependency parse trees of all sentence tokens in the corpus. The

main type of dependency paths that we use in this work, which in turn reflect action-based

relationships between the entities, starts with the token that is tagged as the subject of the

sentence, if present, linked to the verb token that it is connected to and finally the object

token that is connected to the verb. We describe this structure in more details in Chapter 4.

Some other works use Semantic Role Labeling(SRL) [1] or use segmentation methods that
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adopt a probabilistic approach based on a set of tagged instances [2].

To start our formal discussion, we define the specific form of relationships that we consider

in this work. An entity mention m is a token span in text which represents an entity e. An

assertion or a relation instance is a tuple (m1,m2, · · · ,mS, v) that represents some type of

relation between multiple entities {m1, · · · ,mk} through some relation phrase v.

In this work, we focus only on binary relations, i.e., (ms,mo, v). Thus, assertions will be

expressed as (ordered) triplets

T = {(m(i)
s ,m

(i)
o , v

(i))}Ni=1,

of entities mentions m
(i)
s and m

(i)
o and the relation phrase r(i). Let us also define the set of

potential entities M as

M = {m | (m,m′, v) ∈ T or (m′,m, v) ∈ T

for some entity mention m′ and some relation verb v} ,

and the set of all relation verbs as

V = {v | (m,m′, v) ∈ T for some entity mentions m,m′} .

2.3 Problem Statement

In this section, we formally define the entity resolution problem in narrative discovery setting.

Suppose that a corpus of text along with a set of relationship triplets extracted from the

corpus in the form T = {(m(i)
s ,m

(i)
o , v(i))}Ni=1 are given; with entity mention set M and

relation mentions V as defined above. Suppose also that the set of actual entities that the

mentions refer to also belongs to the entity set M. Then, given a portioning of the entities

E = ∪ki=1Ei

into k ground truth groups Ei ∈M, the objective is to find a clustering

C = ∪k′i=1Ci
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of M into k′ groups such that a clustering measure D(E , C), which evaluates a divergence

between the two partitions, is minimized. Note that the set the set of actual entities E and

the underlying ground truth grouping of them is unknown to the learner. This is why the

performance is measured in terms of the divergence between the learner’s clustering and

the underlying ground truth. Note also that we are interested in a hard clustering of the

entity mentions into groups, while in some applications an entity can be long to a number

of different cluster groups. Moreover, in our problem, entity mentions with the same surface

name are all mapped to the same entity.

Note that a parallel problem objective is to design an evaluation scheme to determine how

likely it is for a given triplet (ms,mo, v) with ms,mo ∈M and v ∈ V to be a valid relation.

In fact, most of the literature in multi-relational learning focus on this objective. Generally,

there is a trade-off between the accuracy in the prediction model and interoperability of the

model, as recognized by [3].

2.4 Data Representation

Recall that a triplet (mi,mj, vk) simply means that the i-th entity mention and the j-th

entity mention have the k-th relation. In our data model, we aim to represent each mention

with two representations, one based on its appearance in the subject role and another one

for its representation in the object role in the extracted triplets

T = {(m(i)
s ,m

(i)
o , v

(i))}|T |i=1.

In order to do so, we construct two matrices, namely left(resp. right) entity relation matrix,

which encode the number of occurrences of a subject(resp. object) entity with all the verbs

in V . Let us denote the right entity relation matrix by XR ∈ R|M|×NR , and the left entity

relation matrix by XL ∈ R|M|×NL . Formally, the left and right relation matrices can be

defined as follows.

XL[i, j] =
∣∣∣ {(mi,m, vj) | (mi,m, vj) ∈ T , such that m ∈M}

∣∣∣,
XR[i, j] =

∣∣∣ {(m,mi, vj) | (m,mi, vj) ∈ T , such that m ∈M}
∣∣∣ (2.1)
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The left entity relation matrix only carries the information about the co-occurrence of subject

entity mentions with all the possible relationship mentions and this is regardless of the entities

that appear on the right hand side of the corresponding relations as the object entities. By

the same token, the right entity relation matrix only carries the information about the co-

occurrence of object entity mentions with the possible relationship mentions.

These matrix representations can be regarded as projections of a 3-way tensor X whose

dimensions represent the left hand side entities, the right hand side entities and the relation-

ships, explicitly defined

Xi,j,k = number of occurrences of (mi,mj, vk)

Although the tensor model encodes all the information present in the set of entity triplets T ,

we argue that such projection, which throws away the information about the co-occurring

entities can serve as an inherent regularization in the model, yielding feature vectors for

entities that capture how likely is an entity to co-occur with a relation phrase.

In construction of the right and left matrix, we note that due of the imbalance in the

occurrence of different relation mentions with an entity mention, the reconstruction of the

matrix comprise of plain co-occurrence frequencies might lead to skewed representations for

the embedding that do not capture the essential distributed characteristics of the entity and

relation mentions.

In the literature of co-occurrence based context representation, in order to put more emphasis

on the objects that are more representative of a context, the idea of Term Frequency-Inverse

Document Frequency (TF-IDF) is the standard technique to assign higher values to signif-

icant objects in a context that do not occur in many other contexts. Specifically, TF-IDF

measures seek to find keywords of a document by evaluating each word’s frequency in the

document and its frequency in all documents of the corpus. For document set D, a word t,

and a document d ∈ D, if ft,d is the frequency of t in d and nt,D is the number of documents

in D that contain t, a popular pair of ”term frequency” and ”inverse document frequency”
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functions used to calculate TF-IDF are defined as:

TFt,d =
ft,d

maxd∈D t, d

IDFt = log
|D|
nt,D

Then TF -IDFt,d is simply equal to the product TFt,d.IDFt,d. The ”term frequency” mea-

sure assigns higher value to words that are more frequent in the current document. The

”inverse document frequency” seeks to diminish the importance of common words that oc-

cur frequently in every document. The result is that TF-IDF boosts significant words of a

document by finding relatively rare words that are frequent in the current document. These

words carry the most information about the document’s meaning. One may use any other

pair of functions that imply the same idea. For instance, another definition of TF and IDF

can be written as:

TFt,d = 1 + log ft,d

IDFt = log

(
1 +

|D|
log nt,D

)
Inspired by this observation we define a refined measure for entity-relation co-occurrence

that better captures the significance of a relation mention for an entity mention and vice

versa.

Before introducing our proposed entity-relationship significance measure, let us define some

notations to describe co-occurrence between entity mentions and relations. We define the

set of relation mentions that co-occur with a subject entity mention as

VLm = {v | (m,m′, v) ∈ T for some entity mention m′}

and the set of subject entities that concur with a relation mention as

ML
v = {m | (m,m′, v) ∈ T for some entity mention m′}
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We treat each entity as a bag of relation mentions that co-occur with it in some relation in

T . Therefore for each relation phrase v ∈ VLm, we can define a notion of term frequency as

TFL
v,m = log(1 + sLv (m)) (2.2)

where sLv (m) is the co-occurrence score of an entity mention m with respect to the relation

mention v as

sLv (m) =
∑
m′∈M

1(m,m′,v)∈T (2.3)

Based on this score, we define the collection of all left co-occurrence scores of the relation

mention v as

SLv = [sLv (m)]m∈ML
v

Given this collection, we can define a notion of inverse document frequency(IDF) in terms of

a rank attributed to an entity mention with respect to a relation mention. A natural choice

for the rank function is the usual rank of an entity with respect to the sLv (m) score; that is

RankLv (m) = rank of m ∈Mv in SLv , (2.4)

which amounts to the overall TF-IDF score

TF-IDFL(v,m) =
TFL

v,m

RankLv (m)

However, this notion of rank may dump the low ranked entities in the collection SLv too

much. Thus, we define a quantized rank, which scales down the rank of an entity based on

its position in the ranked collection SLv . To exemplify such a function, we consider

Q-RankLv (m) =

√
1 + RankLv (m) / w (2.5)

for some fixed, window size w, which can depend on the size of the collection SLv . This

amounts to a final TF-IDF scoring

TF-IDFL(v,m) =
TFL

v,m

Q-RankLv (m)
(2.6)
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Note that we can define all these measure for the right entity-relation matrix in a similar

fashion.

Thus, from now on, when we refer to the left matrix XL ∈ R|M|×NL , we mean the matrix

that is populated with values defined in 2.7. Similarly for the right matrix XR ∈ R|M|×NR ,

we have

XR[i, j] = TF-IDFR(vj,mi), (2.7)

for mi ∈M and vj ∈ V .

2.5 Latent Factor Model: Explicit Matrix Factorization

In order to cluster entity mentions into groups that contextually have the same a similar

meaning, we adopt an approach based on finding low dimensional latent embeddings for the

mentions. In essence, the idea is to capture complex structural properties of the objects of

interest by finding distributed vector representations, a suitable function of which describes

the observed data. Similar mentions can then be clustered by clustering the respective latent

vector representations. The embedding idea is proved efficient, both in terms of prediction

accuracy, outperforming supervised models, and efficiency in terms of the scalability of the

learning process.

Given the matrix data model, presented in the previous section, we define a latent factor

model that describes the observed data based on the latent embeddings for the constituent

entity and relation mentions. Specifically, we assume that the entries in the the above

matrices are noisy samples from some ground truth value generated as a function of the

embedding vectors. Let the entity mention mi be associated with some latent representations

uLmi ,u
R
mi
∈ Rr. Note that uLmi captures the properties of mi as a subject mention in T and

uRmi captures the properties of mi as an object mention in T . By the same token, the relation

verb vj is associated with some latent factors vLvj ,v
R
vj
∈ Rr which capture the properties of

the token as combined with subject and object mentions respectively.

Then, the ground truth value for entry XL[i, j] is generated as a noisy version of f(uLmi ,v
L
vj

),
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for some function f . Likewise, the entries of the right entity relation matrix are functions of

the corresponding object embeddings of the entity mentions and right hand side distributed

representations of the relation mentions. The following plate representation demonstrates

how such latent representations amount to generating the observed values in the left and

right relation matrices.

Figure 2.1: Plate Representation for the Latent Matrix Model

Next, we specify the choice of the function f(·) to be the inner product of the entity and

relation embedding arguments, that is

XL[i, j] = 〈uLmi ,v
L
vj
〉+ εLij

XR[i, j] = 〈uRmi ,v
R
vj
〉+ εRij (2.8)

An important assumption that we make about unobserved pairs is that the corresponding

embedding vectors for the entity and relation mentions should estimate a zero value. Fol-

lowing this assumption, for any triplet (mi,mj, vk) with mi,mj ∈ M and vk ∈ V , we can

define a scoring function of the following form

S((mi,mj, vk)) = `(XL[i, j], 〈uLmi ,v
L
vj
〉) + `(XR[i, j], 〈uRmi ,v

R
vj
〉), (2.9)

for some loss function `(·, ·) : R × R → R Note that, this scoring function can in turn be

used as a confidence measure for a relation triplet to be a valid relation.
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Note that such latent factor model can be understood as factorizing each of the right and

left entity relation matrices into two lower dimensional matrices, as demonstrated in the

following figure.

Figure 2.2: Latent Embedding Model as Matrix Factorization

2.6 Learning Latent Embeddings: Non-Negative Matrix Factor-

ization

We now describe how to learn the parameters of the proposed latent factor model. Note

that, for each relation and entity mention, we have to learn two vector representations; that

is the parameters of the model are

θ = {uLm,uRm,vLv ,vRv |m ∈M, v ∈ V}, (2.10)

where uLm,u
R
m,v

L
v ,v

R
v ∈ Rr. Following a matrix representation,

θ = {UL,UR ∈ R|M|×r,VL,VR ∈ R|V|×r},

where each row of the matrices above represents right/left hand side representation of an

entity/relation mention.

In order to learn the parameters of the model, we define an optimization objective based

on the scoring function defined earlier. Specifically we learn the parameters of the model

by solving the following regularized matrix factorization objective. We only specify the

optimization for the left entity relation matrix and the left hand side representation of the
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entity and relation mentions. The formulation for the right hand side follows similarly. In

order to learn the parameters (UL,VL), we solve

min
U∈R|M|×r
V ∈R|V|×r

L(XL,UV
T ) + ρ(U ,V ), (2.11)

where L(·, ·) is a strongly convex loss function and ρ(·, ·) is a regularization function to

impose structural assumptions on the embeddings.

Here, we note that the underlying entity relation matrices are very sparse. Therefore, since

we aim to use the obtained embeddings of the entity mentions to cluster semantically similar

entities, we require the embedded vectors to have certain structural properties, namely spar-

sity. In order to impose sparse structure on entity embeddings, we consider non-negativity

constraint on the factor matrices in the matrix factorization objective. The reason why, such

non-negativity constraint can be used as a surrogate to sparsity is described in details in the

next chapter. Therefore, the learning objective simply becomes

min
U∈R|M|×r+

V ∈R|V|×r+

L(XL,UV
T ). (2.12)

To solve the non-negative matrix factorization(NMF) problem, we propose an exterior point

method, which constructs a solution for the NMF problem based on a suitably rotated

optimal solution of the unconstrained matrix factorization problem, which we detail in the

next chapter.

2.7 Using Embeddings for Clustering

Let {um}m∈M be the set of entity mention embeddings. Note that in our methods, we have

two distinct embeddings for an entity mention that characterize its behavior as a subject

and an object in relationships separately. Therefore, the overall distributed representation

of an entity will be the concatenation of the two representations, that is

um = uLm||uRm
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where uLm and uRm represent the right hand side and the left hand side representations for

entity m ∈M and the concatenation operator is denoted by ||.

Given these embeddings, one can use a variety of different clustering algorithms to assign

similar entity mentions to the same group. Since the obtained embeddings are supposedly

sparse vectors in a Euclidean space, we use K-means clustering as our method of choice.

Defining U = UL||UR, the K-means clustering problem can be expressed as

min
G≥0

GTG=I

TR(GTUTUG).

Finally, we note here that the distributed representations learned by our method to cluster

entity mentions are only based on the relationships that the mentions appear in. However,

one can incorporate other embeddings of the entity mentions that capture other types of

information that we have about the entities.

For example in order to incorporate the co-occurrence information of the mentions from text,

one can characterize topic/co-occurrence embeddings of the entities similarly to the relation

embeddings. Specifically one can use word vector representations [4, 5]as co-occurrence em-

beddings or we can use a topic modeling algorithm to embed the mentions in a topic space.

We also note that in order to combine different embeddings of the entity mentions we have

to use appropriate normalization and and weighting.

2.8 Evaluating the clustering results

Given a set M of N elements S = {m1,m2, · · ·mN}, consider two partitions of a set of M,

namely C = {C1, C2, . . . , CK} with K clusters, and E = {E1, E2, . . . , EJ} with J clusters.

Note that we are considering a hard clustering of the set M, which means that the groups

in each partition are pairwise disjoint; Ui ∩ Uj = Vi ∩ Vj = ∅, for all i 6= j.

We also assume that the portions are complete; that is ∪Ki=1Ci = ∪Jj=1Ej =M.

The mutual information of cluster overlap between C and E can be summarized in a matrix

N ∈ RK×J , where N [i, j] denotes the number of objects that are common to clusters Ci
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and Ej.

Suppose an object is picked at random from M; the probability that the object falls into

cluster Ci is Pi = |Ci|
N

Then, the entropy associated with the partitioning C is:

H(C) = −
K∑
i=1

Pi logPi

Similarly, the entropy of the clustering E can be calculated as:

H(E) = −
J∑
i=1

P ′i logP ′i

where P ′j = |Ej|/N .

The Mutual Information (MI) between two partitions can be computed as

I(C; E) =
K∑
i=1

J∑
j=1

Pi,j log
Pi,j
PiP ′j

where Pi,j denotes the probability that a point belongs to both the cluster Ci in C and cluster

Ej in E ; that is Pi,j =
|Ci∩Ej |
N

. Mutual Information is a non-negative quantity upper bounded

by the entropies H(C) and H(E). It quantifies the information shared by the two partitions

and thus can be employed as a clustering measure.

We can also define the Conditional Entropy of a partition given another one as

H(C|E) = −
K∑
i=1

J∑
j=1

Pi,j log
Pi,j
P ′j

The Homogeneity score of a partition C given the ground truth partitions E is then defined

as

h(C; E) = 1− H(C|E)

H(C)
.

By the same token, the completeness score of a partition C given the ground truth partitions

E is defined as

c(C; E) = 1− H(E|C)
H(C)

.
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Rosenberg and Hirschberg [6] further define V-measure as the harmonic mean of homogeneity

and completeness

v(C; E) =
2h(C; E)c(C; E)

h(C; E) + c(C; E)
.

2.9 Related work and Future Directions

In this section, we review the related works to our entity resolution problem. We first provide

a brief survey on the other information retrieval problems. We then review the generic

approaches to the problem, namely i) the supervised approach, where the objective is to

predict the type of an entity or relation mention based on a training set, ii) the generative

approach, where the objective is to describe the relation generating procedure in a Bayesian

paradigm, iii) Similarity clustering based approach, where the relation information is used as

feature vectors based on which a similarity score can be defined between two entity mentions,

and iv) embedding-based approach, where the objective is to associate low dimensional

latent distributed representations to entity and relation mentions that capture their behavior

in relationships. Finally, we provide a structured review of the prior art in embedding

based relational learning, and show how our approach can be viewed as an instance of such

formulation. We conclude by a few concluding remarks.

2.9.1 Entity Resolution in Other Domains

Entity resolution is the problem of identifying, matching, and merging references correspond-

ing to the same entity within a dataset. It lies in the core of many other information retrieval

problems in a number of different domains. In the following we summarize some of the major

domains in which the entity resolution comes forth as an essential task for understanding

the underlying structures in the problem.

• In Data Base systems, Entity Resolution (ER) is the task of identifying all records in a

database that refer to the same underlying entity. A related problem that is extensively

studied in the literature on relation discovery is to identify whether a relation can be
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added to the data-base. Given a predefined database schema, the traditional supervised

approach to determine whether candidate entities extracted from the text corpora have

a particular relations is to learn a classifier based on clues in the textual data in the

form of patterns between the occurrences of two candidate mentions in the documents.

In order to incorporate the existing known facts in the data based in the learning

process a variety of distant supervision methods are proposed [7–9]. A more recent

approach is to bring in also the existing facts from an external knowledge to build upon

a richer set of seed relationships [2, 10, 11]. Such approaches can guide using a similar

approach in the entity resolution problem in the context of story narrative analysis.

For example, when the some of the actant groups, type of some of the entity mentions

or the type of their relationships are known a priori.

• Knowledge-Base Construction: Web-scale knowledge bases (KBs) provide a structured

representation of human knowledge in a variety of domains. Popular examples of knowl-

edges bases include DBPedia [12], Freebase [13] and the Google Knowledge Vault [14].

Knowledge-bases are used in a number of information retrieval applications such as

recommender systems, question answering, and query rewriting for search. Identifying

the relationship between entities from free text is key to acquiring new facts to increase

the coverage of a structured knowledge base. As we will discuss in more details, the

predominant approach for understanding knowledge base graphs is to find low dimen-

sional distributed representations(embeddings) for nodes(and links in the graph). A

comprehensive review on knowledge graph embedding techniques can be found in [15].

• Link Prediction: In statistical relational learning, the link prediction problem is to

determine whether two entities in an information network are connected. Knowledge-

base construction can be viewed as an instance of link prediction. In social networks,

the link prediction problem is to infer which new interactions among users are likely to

form in the near future, given a snapshot of a social network in the previous times [16].

• Sense Disambiguation: Sense identification and disambiguation are long standing prob-

lems in natural language processing. Sense Identification is an essential aspect of the
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of synonymy analysis, where different words can be used to refer to the same sense.

Sense Disambiguation, however, deals with polysemous words that can correspond to

multiple senses.

• Citation Networks: Document retrieval, specifically in the context of academic papers,

is an important information retrieval problem, where the objective is to rank documents

with respect to a query by estimating the probability of relevance for each document.

Methods based on citation counting has been the primary approach for academic paper

retrieval. In [17], a relation-based mathod is proposed for building structural retrieval

results for academic literatures in order to uncover the relationships of the retrieval

results.

• Familial Networks: Familial networks consist of the members of a family together

with their relations. Such networks are prevalent in family health history applications,

genealogy, areal administrative records. Given partial views of a familial network as

described from the point of view of different people in the network the entity resolution

problem in a familial network is to reconstruct the underlying familial network from

these perspective partial views [18].

2.9.2 Generic Approaches to Entity Resolution

The entity resolution problem is framed as a classification problem with a given a set of

training data in a supervised setting. Formally, the entity classification(typing) problem can

be summarized as follows: given a sentence S with the annotated pairs of entity mentions m1

and m2, the problem is to identify the type of the entity mentions m1 and m2. By the same

token relation classification problem is to determine whether there is relation (and if so, of

what type) between entity mentions m1 and m2. In the supervised setting, this problem is

studied as a multi-classification problem and it has yield relatively high performance [7, 19]

For such methods to perform well, complex features should be extracted from the text. A

variety of techniques are used to design lexical level features, such as parsing tree features

and POS tags, sentence level features, such as contextual information about co-occurrence
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of the words, and word features, which are a combination of word’s vector representation

learned from external datasets [4, 5] and the vector representations of the words in context,

in a certain window. [20–22] . Feature-based methods suffer from the problem of choosing a

suitable feature set when converting the structured representation into feature vectors.

The major drawback of supervised models though is the necessity of labeled data. Knowledge-

bases are usually domain specific and may not provide much useful information about the

entities in the corpus. Moreover, in many applications entity types are highly context specific

and may not necessarily correspond to the entity types preset in knowledge bases. Therefore,

it is inevitable to develop unsupervised models for this task.

Yao et al. [23] propose generative probabilistic models that model the relation phrase in

a relation triplet by the surface syntactic dependency path between the pair of relation

mentions. In their model, entity type constraints extracted from a knowledge base are used

along with features on the dependency path between the entity mentions.

The final objective is to find a clustering over observed relation paths such that expressions

in the same cluster have the same semantic relation type. Specifically, they proposed variants

of Latent Dirichlet Allocation(LDA) [24], the celebrated generative topic model to describe

how documents are generated as bags of words from a set of latent distributions on words,

called topics. At the document level a multinomial distribution is drawn over a fixed number

of relation types |V |, denoted by θ, from a pripor Dir(α). A document consists of a bag

of relation tuples. Each relation tuple is drawn from a relation type topic distribution

Multi(θ) selected by a latent relation type indicator variable. Specifically, relation tuples are

generated using a collection of independent features {f} drawn from the underlying relation

type distribution φr,f . The model is describe via the following plate notation.
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Figure 2.3: Plate Representation for REL-LDA model

A related relation extraction system is proposed in [25], referred to as Discovery of Infer-

ence Rules from Text (DIRT), which aims to discover different representations of the same

semantic relation using distributional similarity [26] of dependency paths.

The problem of such generative models is their scalability, which becomes prohibitive in

large scale applications. Also due to the large number of parameters of the model, the

data requirements of such methods are also prohibitive. The modern approach to entity

resolution is to associate the entity and relation mentions with low dimensional distributed

representations that capture the complex behavior of such objects. In a data-rich setting,

by taking the ambient dimension of the distributed representations(aka embeddings) large

enough, many of the complex structural properties, such as hierarchical relationships between

different objects can be captured in the flattened real representations. The embedding

approach is proved promising in a variety of different predictive tasks in natural language

processing. The underlying principle of most of these methods is to find a factorization of the

matrix/tensor in a low dimensional space and use the obtained factors as low dimensional

embeddings of the entities. Models based on tensor factorization [27,28] are proved efficient

in terms of scalability. In a predictive setting, factorization based methods are outperformed
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by energy based models [29–31]. These methods represent entity mentions as low-dimensional

embeddings and relations as linear or bilinear operators on them. Another big advantage

of such methods is that the models can be trained using stochastic approximation methods,

which speeds up the optimization and makes the task practically online. Such scalability

properties are desirable to high dimensional applications.

While such latent representations are usually used to predict unknown relationships between

new pairs of entities and relation phrases, in this work, we take advantage of the obtained

embeddings to cluster similar entities.

2.9.3 Embedding-based Models

2.9.3.1 Data Model and Latent Factor Model: Tensors

Before we start the discussion, we present the data model that most of the embedding-based

approaches have adopted. In order to encode the set of all triples

T = {(m(i)
s ,m

(i)
o , v

(i))}|T |i=1,

a 3-way tensor X captures all the information in T , where the dimensions of the tensor

represent the left hand side entities, the right hand side entities and the relationships.

Figure 2.4: Tensor Representation of the Triplets
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Particularly,

Xi,j,k = number of occurrences of (mi,mj, vk).

Depending on the application and the assumptions on the underlying ground truth, different

tensor latent tensor models are defined. For example, in a knowledge base construction or

link prediction application, the entries of the tensor will be binary encoding of whether the

triplet exits or not.

In a latent factor model, the entries in the tensor encoding of the data can be regarded

as noisy samples from some underlying ground truth, which is in turn generated by latent

factors corresponding to the constituent entity and relation mentions. Formally, let ami , amj ,

and Wvk encode latent representations for i-th left entity mention, j-th right entity mention,

and k-th relation respectively. Then, Xi,j,k is a noisy observation of f(ami ,amj ,Wvk), for

some positive valued function f .

Figure 2.5: Plate Representation for the Latent Tensor Model
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2.9.3.2 Explicit Matrix factorization

A natural way, similar to our approach, to learn latent embeddings for entity and relation

mentions is through factorizing the the data tensor. PARAFAC model is one of the oldest

models for tensor factorization, which can be regarded as a simple generalization of matrix

factorization [28, 32, 33]. In this model, a three dimensional tensor X ∈ R|M|×|M|×|V| is

factorized via three matrices A ∈ R|M|×d,B ∈ R|M|×d, and C ∈ R|V|×d, so that every entry

of the data tensor is generated by the following generalized dot product of the factor matrices,

X̂i,j,k =
d∑
r

Ai,rBj,rCk,r.

Particularly, PARAFAC solves the following optimization problem

min
A,B,C

D(X ; X̂ ),

for some appropriate divergence measure D(·; ·).

Figure 2.6: PARAFAC model

There are a number of different ways to explicitly factorize a tensor into latent components.

Nickel et al. propose RESCAL [27], a tensor factorization model where the tensor factor-

ization can be reduced to a number of low rank matrix factorizations that share a common

factor matrix that encodes low dimensional distributed representations for entities. More

precisely let Xk be the k-th frontal slice of the tensor(that is the slice corresponding to

relation vk). The RESCAL model seeks to find factorizations in the following form

Xk ∼ ARkA
T ,
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where A ∈ R|M|×r represents r dimensional latent representations for entity mentions, and

Rk ∈ Rr×r is an asymmetric square matrix that represents the interactions between the

latent representations of the entities corresponding to the k-th relation.

In order to learn the latent representations for entities and the relationships the RESCAL

model solves the following optimization problem

min
A,Rk

|V|∑
k

||Xk −ARkA
T ||2F + λ(||A||2F +

∑
k

||Rk||2F )

Note that the first term is the reconstruction error for predicting the known values in the

tensor and the regularization terms correspond to smoothness penalties for the embedding

matrices.

RESCAL is a special form of Tucker decomposition [34] operating on a 3-dimensional tensors.

It can also be regarded as a relaxed form of DEDICOM [35].

Note that although the problem is strongly convex on each of the optimization variables, it

is a non-convex optimization problem when all the variables A and all R’s are considered

together.

Using block coordinate descent by fixing A and Rk alternatively, the following iterative

update equations are can be obtained

A←

[∑
k

XkART
k + X T

k ARk

][∑
k

Bk +Ck + λI

]−1

where Bk = RkA
TART

k and Ck = RT
kA

TARk

and

vec(Rk)←
(
[ZTZ + λI

)−1
ZTvec(Xk),

where Zt = A
⊗
A, with

⊗
denoting Kronecker product.

Since each relation phrase only connects certain subsets of entities that belong to some

”compatible types” with respect to the relationship, [36] proposes to incorporate the type

information of the entities and relationships into the factorization process. They argue that

incompatible entity-relations incurs unnecessary computations in each optimization step and

by choosing values for the incompatible entries, the quality of training is reduced. Therefore,
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they propose the following alternative optimization which only deals with compatible entities

with the relationships. let Lvk andRvk be the set of left hand side and right hand side entities

with a compatible type to the k-th relation. That is, (mi,mj, vk) is a feasible triple if and

only if mi ∈ Lvk and mj ∈ Rvk . Correspondingly, let ALk and ARk denote the sub-matrices

of A that consists of rows associated with Lvk and Rvk , respectively. By the same token,

let X L,Rk denote the sub-matrix of Xk that corresponds only to entities in Lvk and Rvk . [36]

solves the following optimization problem

min
A,Rk

|V|∑
k

||X L,Rk −ALkRkA
R
k

T ||2F + λ(||A||2F +
∑
k

||Rk||2F )

Note that RESCAL scales linearly with the number of entities, linearly with the number of

relations, and linearly with the number of known facts, but it scales cubical with regard to

the rank of the factorization.

In [37], theoretical bounds are developed on the factorization rank and they propose a similar

model to RESCAL with an extra additive term to address the scalability problem.

2.9.3.3 Neural embedding approach

One can view learning the embeddings, as learning weights of a shallow neural network,

where the first set of weights projects a pair of input entity mentions to low dimensional

vectors in the middle layer, and in the last layer the latent representations in the middle

layer are combined to a scalar for comparison via a scoring function with relation-specific

parameters. Each input entity mention is then represented as a high-dimensional vector,

usually a “one-hot” index vector while it can be a dense high dimensional feature vector.

Specifically, let xm be a one-hot encoding representation of the entity m. Entity mention

embeddings then can be represented as

as = f(WMxms)

ao = f(WMxmo), (2.13)

where f can be a linear or non-linear function, and WM is a parameter matrix, which can
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be randomly initialized or initialized using pre-trained vectors, like word vectors obtained

by word2vec [4] or [5].

The choice of the embedding for the relation mention becomes explicit in the form of the

scoring function for each relation triplet (ms,mo, r). The scoring functions adopted in the

literature, such as DistMul [38], Neural tensor network (NTN) model [31], TransE [30] and

Distance [29], can be unified based on a basic linear transformation or a bilinear transforma-

tion or a combination of both. When describing each algorithm, we will specify the choice

of representation for the relation phrase and the corresponding scoring function.

In [38], the following bilninear scoring function is adopted

gDM(ms,mo, v) = asWvao (2.14)

where Wv is a diagonal matrix that represents the distributed embedding of the relation

phrase v. This model can be viewed as special case of the RESCAL [27] scoring function

where the relation matrix Wv is not constrained to be diagonal. Considering the diagonal

constraint on the relation matrix Wv, this scoring function is essentially equivalent to

gDM(ms,mo, v) = aTv (as � ao), (2.15)

with av being a vector representation for the relation phrase v. Note that this scoring

function is similar to the PARAFAC model [32].

The neural network parameters of can be learned by minimizing a margin-based ranking

objective, which encourages the scores of positive relation triplets to be higher than the

scores of any negative relation triplets. In most of the applications, only positive triplets are

observed in the data. Given a set of positive triplets T , negative examples can be constructed

by corrupting either one of the relation arguments. The set of negative examples can be

defined as

T ′ = {(m′,mo, v) | m′ ∈M, (ms,mo, v) ∈ T }

∪ {(m′,mo, v) | m′ ∈M, (ms,mo, v) ∈ T } (2.16)
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The margin-based ranking objective can then be defined as

J (θ, T , T ′) =
∑

(ms,mo,v)∈T

∑
(m′s,m

′
o,v)∈T ′

max(0, 1− g(ms,mo, v) + g(m′s,m
′
o, v)) (2.17)

where θ is the set of parameters of the model. Note that in the case of the DistMul algorithm

θDM = {{Wv | v ∈ V},WM} = {am,av||m ∈M, v ∈ V} (2.18)

Neural tensor network (NTN) model is introduced in [31] to predict new relationship entries

that can be added to a database, given a set of existing relations.

The scoring function for a relation triplet (ms,mo, v) in NTN is defined as

gNTN(ms,mo, v) = uTf(aTsW [1:k]
v ao + Vv

 as
ao

+ bv), (2.19)

where f(·) is a standard non-linear function like hyperbolic tangent function,W [1:k]
r ∈ Rd×d×k

is a tensor that represents weights specific to relation v and the bilinear tensor product

aTsW
[1:k]
v ao results in a vector h, where

h[i] = aTsW [i]
v ao

with W [i]
v being the i-th frontal slice of the tensor W [1:k]

v ∈ Rd×d. The remaining parameters

for relation v are the standard form of a neural network, with u ∈ Rk and V ∈ Rk×2d and

bv ∈ Rk.

In order to train the parameters of the model

θNTN = {{u,Wv,Vv, bv}v∈V , {am}m∈M} ,

they minimize the contrastive max-margin objective as defined in 2.17. The model is then

trained by taking gradients with respect to the parameters and is solve by a first order

method, specifically mini-batch L-BFGS.

Bordes et al. [29] propose a model to learn to representations for elements of a knowledge

base in a low dimensional embedding vector space. For a relationship triplet (ms,mo, v),

their scoring function is defined as

gEM(ms,mo, v) = ||Wv,Las −Wv,Ras||1 (2.20)
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where for a given relation type v, matrices Wv,L,Wv,R ∈ Rd×d are specific similarity mea-

sure that captures the characteristics of the relation. The above loss function can in fact

be modeled as a neural network, specifically a generalization of a siamese network [39],

conventionally takes a pair of inputs learns a similarity measure between them.

In order to train the parameters of the model

θEM = {{Wv,L,Wv,R}v∈V , {am}m∈M} ,

they minimize the contrastive max-margin objective as defined in 2.17 using stochastic gra-

dient descent.

In [40], in attempt to maintain the scalability while preserving the capability of handling

asymmetry in relationship scoring, they argue that the standard dot product between em-

beddings can be a very effective composition function if complex embeddings are used.

Specifically they propose the following scoring function

gCE(ms,mo, v) = Re(asav, āo) (2.21)

where āo is the conjugate of the complex vector ao.

In order to train the parameters of the model

θCE = {{av}v∈V , {am}m∈M} ,

they minimize the contrastive max-margin objective as defined in 2.17.

Another novel way to handle antisymmetry is via the Holographic Embeddings (HolE) model

by [41]. In HolE the circular correlation is used for combining entity embeddings, measuring

the covariance between embeddings at different dimension shifts. This generally suggests

that other composition functions than the classical tensor product can be helpful as they

allow for a richer interaction of embeddings. Specifically, they define their scoring function

as

gHolE(ms,mo, v) = aTv ( ¯F−1[F [as]�F [ao]]), (2.22)

33



where F [·] and F−1[·] denote the Fourier transform and its inverse respectively. In order to

train the parameters of the model

θHolE = {{av}v∈V , {am}m∈M} ,

they minimize the contrastive max-margin objective as defined in 2.17.

2.9.3.4 Bayesian Clustered Tensor Factorization

Unlike most of the other approaches that aim only at making predictions whether particular

unobserved relations are likely to be true, Sutskever et al. [3] propose a model to discover

interpretable structures in the data. Although, they are not particularly interested in clus-

tering similar entities,

Specifically, they introduce the Bayesian Clustered Tensor Factorization (BCTF) model,

which embeds a factorized representation of relations in a nonparametric Bayesian clustering

framework. They define a joint distribution over the truth values of all conceivable relations.

Formally, for each entity mention m ∈ M, similar to our model, the model maintains two

vectors am,L,am,R ∈ Rd, and for each relation v ∈ V it maintains a matrix Vv ∈ Rd×d, where

d is the dimensionality of the model.

Then, for any triplet (ms,mo, v), the probability that such triplet is an actual relationship

can be expressed as

P(T (ms,mo, v) = 1|θ) =
1

1 + exp(−aTms,LVvamo,R)
(2.23)

where θ encodes the set of all the parameters of the model. θ can then be learned by

minimizing a penalized log-likelihood

∑
(ms,mo,v)∈T

− logP(T (ms,mo, v) = 1|θ) + ρ(θ) (2.24)

In order to make the model fully Bayesian, they next define a prior over the vectors am,L,am,R ∈

Rd for m ∈ M and the matrices Vv for v ∈ V . In fact the prior distribution is defined over

partitions of objects and partitions of relations via the Chinese Restaurant Process. For a
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given partition, each cluster C of entity mentions or relation verbs has a different mean and

covariance, which implies that objects within a cluster have similar distributed representa-

tions. Therefore the joint distribution of data and model variables is given as

P(T , θ, C, α, γ) = P(T |θ)P(θ|C, α)P(C|γ)P(α, γ) (2.25)

where the observed data T is a set of triples with ground truth value 1; the variable C =

{Cm, Cv} contains the cluster assignments (partitions) of the objects and the relations; the

model variables θ = {am,L,am,R,Vv} for m ∈ M and vinV consists of the distributed

representations of the objects and the relations and {α, γ} are model parameters.

Finally they specify the distributions in 2.25 and infer the model parameters via Gibbs

Sampling.

2.9.4 Matrix Factorization based Approach

The most similar embedding method in the literature is the universal schema approach in [10]

based on matrix factorization Their goal is to develop a model that can estimate, for a given

relation a triplet (ms,mo, v) if the relationship holds, that is for some binary truth function

T , T (ms,mo, v) = 1. In order to do so, they define another representation of the relationship

triplets (ms,mo, v) ∈ T as

O = {< t, v > | t = (ms,mo) for all (ms,mo, v) ∈ T },

and adopt a matrix factorization based approach. Specifically, like [3], they define a likelihood

for each entity triplet

P(T (< t, v >) = 1|θt,v) =
1

1 + exp(−θt,v)
, (2.26)

where θt,v is defined as a superposition of different terms specified as follows.

Letting at and av represent latent vectors in a lower dimensional space for the entity pair t

and relation verb v, the first component of θ can be defined as the dot product of the two

latent representations, that is

θF<t,v> = 〈at,av〉 (2.27)
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Notice that there is no per-relation weight in the dot product above. We will remark that

the multiplicity of the relations can be incorporated here as weights for each term.

Inspired by the item-based collaborative filtering idea [42], the second component is defined

as

θN<t,v> =
∑

<t,v′>∈T

wv,v′ , (2.28)

where wv,v′ corresponds to a directed association strength between relations v and v′.

Finally, given a relationship triplet (ms,mo, v), the third component of θ is comprised of

two terms that account for latent representations for each entity as well as separate la-

tent representation for the right hand side and left hand side effect of the relation verb v.

Specifically,

θE(ms,mo,v) = 〈ams ,av,L〉+ 〈amo ,av,R〉, (2.29)

where ams and amo are respectively latent representations for the left and right entity men-

tions; and av,L and av,R are representations for the right hand side and left hand side.

Finally by setting

θ = θF + θN + θE,

they aim to learn the model, parametrized by weights and latent component vectors, using

a maximum likelihood approach. In order to avoid only learning positive facts, one has to

bring in negative samples, which is usually done through sampling a set of unobserved facts

similar to distant supervision approaches. In [10], they define the objective as follows. For

every observed assertion < t+, v >∈ T , they choose all(or sample a number of) unobserved

assertions < t−, v > 6∈ T . Since the objective is to have

P(T (< t−, v >) = 1) < P(T (< t+, v >) = 1)

for all relation verbs v ∈ V and positive and negative assertions, they aim to maximize the

following objective ∑
<t+,v>∈T

∑
<t−,v>6∈T

log(σ(θt+,v − θt−,v)) (2.30)

This objective can simply be learned using (stochastic) gradient descent.
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2.9.5 Future Directions

In nearly all the prior work that we described in the previous sub-section in great details,

the embedded representations are used towards a prediction task as to whether a given

relation triplet (ms,mo, v) is a valid relation. In the entity resolution problem, however,

we are interested in clustering similar mentions based on their corresponding distributed

representations. There is, however, a fundamental trade-off between the predictive ability of

a model and its interoperability, which translates to structural properties of the embeddings,

which in turn ease the clustering task. The problem of interest that we seek to investigate

in the future work is to take advantage of the efficiency of the neural embedding approaches,

both in terms of the freedom to have nonlinear scoring function that leads to a better

predictive performance and the scalability of the learning procedure due to its online nature,

while brining some structure to the learned embeddings.

For example, given a neural-embedding approach with parameters

θ = {{Wv}v∈V , {am}m∈M} ,

and some scoring function g(ms,mo, v) for a relation triplet, and a set of ground truth

relation triplet T , we can learn the parameters of the model with an appropriately regularized

optimization objective in the following form

J (θ) =
∑

(ms,mo,v)∈T

∑
(m′s,m

′
o,v)∈T C

max(0, 1− g(ms,mo, v) + g(m′s,m
′
o, v)) + λρ(θ), (2.31)

where ρ(θ) is an appropriately chosen regularization function to impose a desired property on

the embeddings. For example an `1 norm regularization on the entity mention embeddings

can lead to sparse representations for the entity embeddings as desired in our application.
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CHAPTER 3

Structured Matrix Completion

3.1 Introduction

3.1.1 Motivation

As discussed in the previous chapter, our approach to clustering entity mentions with sim-

ilar contextual role is based on finding distributed representations(embeddings) for entity

mentions that carry the relational information in the extracted relation triplets. We then

proposed to identify such representations via reconstructing the left and right entity rela-

tion matrices, which capture the role of each mention as a subject and object, receptively.

We argued that an approach based on explicit factorization of the ground truth matrices

that takes into account the sparsity of the resulting factors serves this purpose. We then

argued to that containing the factors to be non-negative and formulating the factorization

problem as Non-Negative Matrix Factorization(NMF) can lead to sparse representations for

the embeddings. In this chapter, we study the problem of structured matrix factorization

and its non-negativity constrained variant (NMF problem) in details. We start our formal

discussion by noting the structural assumptions on the ground truth matrices.

Traditionally, the only structural assumption that is taken into account in matrix factor-

ization problems is the low rank property of the ground truth matrix, which is explicitly

modeled in the factorization objective. However, in many practical problems, specifically in

the context of relational learning, the ground truth matrices meet stronger structural prop-

erties, for example sparsity. Moreover, we are interested in promoting a structure geared

towards the clustering task that we are primarily interested in, on the factor matrices.
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In order to impose structures such as sparsity or smoothness on the factor matrices, there are

several approaches that impose a norm constraint or a regularization penalty on the factor

matrices along with the approximation loss [43–45]. Another commonly used approach to

obtain sparse and interpretable factor matrices is to consider a non-negativity constraint

on the factor matrices. This approach popularized by the observations in [46] that such

constraints lead to a part-based decomposition of a dataset of facial images.

In this chapter we study the non-negative matrix factorization problem in detail and propose

a new exterior point method to solve this problem based on the recent results in character-

izing the global landscape of the unconstrained matrix factorization problem [47]. Our

proposed method leads to sparser representations than the state of the art NMF methods

while maintaining a competitive or better prediction accuracy. The factor matrices obtained

from solving NMF will in turn be used as low dimensional representations for a subsequent

clustering task. before, we start our formal discussion, we define some notations that we will

use throughout this chapter.

3.1.2 Notation

Vectors and matrices are denoted by bold-face lowercase and uppercase letters, respectively.

The i-th row and j-th column of a matrix X are represented by Xi∗ and X∗j, respectively.

By the same token, the set of rows and columns of a matrix X corresponding to an index

set Ω are represented by XΩ∗ and X∗Ω, respectively. The Euclidean norm of any vector

v is denoted by ‖v‖2. For any arbitrary matrix X, we use ‖X‖2 and ‖X‖F to denote its

spectral and Frobenius norms, respectively. Moreover, given a positive number p ≥ 1, ‖X‖2,p

will denote the row-wise `2,p norm of X, which is defined as ‖X‖2,p = (
∑p

i=1 ‖Xi∗‖p2)
1/p

.

Assuming that X is a rank-r matrix, σ1(X) and σr(X) will denote its maximum and

minimum singular values, respectively. We denote a function with two matrix arguments,

f(U ,V ), with U ∈ Rn×m and U ∈ Rn×m, also by the lifted variable f(W ), where W = U
V

. For a scalar function f(·) with a matrix variable X ∈ Rn×m, the gradient is defined

as ∇f(X)[i, j] = ∂f(X)
∂X[i,j]

, for i ∈ {1, 2, · · · , n} and j ∈ {1, 2, · · · ,m}. The Hessian of f(·)
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can be expressed in multiple ways: ∇2f(X) can be viewed as an mn × mn matrix with

[∇2f(X)](i, j) = ∂2f(X)
∂x[i]∂x[j]

, for i, j ∈ {1, 2, · · · ,mn}, where x[i] is the i-th coordinate of the

vectorization ofX. Equivalently, it can be expressed as the bilinear form [∇2f(X)](A,B) =∑
i,j,k,l

∂2f(X)
∂X[i,j]∂X[k,l]

A[i, j]B[k, l], for any A,B ∈ Rn×m. For a scalar function with a vector

argument f(x), the directional derivative of f(·) in the direction of the column vector u

is defined as Duf = 〈u,∇f〉. Moreover Dv(Duf) = Dv(〈u,∇f〉) = vT∇2fu; thereby

[∇2f(x)](u,v) = vT∇2fu = Dv(Duf).

3.2 Non-Negative Matrix Factorization: A Brief Overview

Consider the regularized matrix factorization objective with the non-negativity constraint

on the factors, that is

min
U∈Rn×r
V ∈Rm×r

L(X∗,UV T ) + ρ(U ,V ), (3.1)

subject to U ≥ 0 and V ≥ 0,

where X∗ is the ground truth matrix, to be estimated by multiplication of the low dimen-

sional factor matrices U ∈ Rn×r and V ∈ Rm×r. The choice of the loss function L(·, ·)

depends on the prior knowledge about the data and the desired statistical interpretation of

the approximation noise.

A popular choice, as discussed in the unconstrained matrix completion problem, is to adopt

Frobenius norm, which due to its quadratic form and strong convexity leads to more tractable

optimization problems, that is

L(X∗,UV T ) =
1

2

∥∥UV T −X∗
∥∥2

F
.

Statistically, minimizing this loss function can be seen as a maximum likelihood estima-

tor where the approximation error is due to additive Gaussian noise. In other words, the

generative model for the data can be expressed as

X∗ = U ∗V ∗T + E ,
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where E ∈ Rm×n is a matrix with i.i.d Gaussian entries.

A major drawback of this loss function, as we will extensively discuss in a later section is

that the gradients of the loss depend on the scales of factor matrices, which leads to technical

difficulties in the optimization, including a large number of iterations.

Another widely used loss function in the NMF literature is the Generalized Kullback-Leibler

Divergence defined as follows

L(X∗,UV T ) = X∗ � ln
(
X∗ �UV T

)
+X∗ −UV T

where � and � are Hadamard(element-wise) multiplication and division respectively. Min-

imizing this loss function is equivalent to using Expectation Maximization (EM) algorithm

for a maximum likelihood problem on Poisson processes [48].

In our study, we do not consider any regularization function in 3.1, and our objective has

the following simple form

min
U∈Rn×r
V ∈Rm×r

1

2

∥∥UV T −X∗
∥∥2

F
, (3.2)

subject to U ≥ 0 and V ≥ 0,

recognizing that the problem does not necessarily admit a unique solution.

Suppose that (U ∗,V ∗), is an optimal solution for the NMF problem. As discussed in the

earlier sections, without constraining the geometry of the problem, any pair (U ∗R,V ∗R−1)

will have the same objective value. In order for the transformed pair to be a solution for

NMF, U ∗R, and V ∗R−1 both have to be non-negative.

If a nonsingular matrix and its inverse are both nonnegative, then the matrix is a generalized

permutation. That is, R can be expressed asR = PS, where P is a permutation matrix and

S is a scaling matrix. Note, however, that for the transformed matrices to be non-negative

the transformation matrix R need not to be generalized permutation or even nonnegative.

Thus, we cannot conclude that the NMF problem has a unique solution up to permuta-

tion and scaling and in this sense the non-negativity constrain alone does not guarantee

uniqueness of the solution unless the data satisfies additional structural properties.
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A necessary and sufficient condition for the uniqueness of NMF solution is called boundary

close condition, detailed discussions about which can be found in [49–51]. Geometrically , the

NMF problem can be viewed as finding a simplicial cone encompassing all the data points in

the positive orthant. In [52], Vavasis defined exact NMF, where it is assumed that underlying

ground truth matrix X∗ is rank r matrix with non-negative values and the problem is to

determine whether it admits a factorization X∗ = U ∗V ∗T for some non-negative matrices

U ∗ ∈ Rn×r
+ and V ∗ ∈ Rm×r

+ or not. By showing the equivalence of this problem with a

problem in polyhedral combinatorics, he proves that exact NMF it is NP-hard, although

there exists a polynomial-time local search heuristic for it. Tied to the exact NMF problem,

is the notion of Non-negative Rank, which refers to the rank r of the ground truth matrix

X∗ if it admits an exact NMF factorization.

The standard interpretation of the NMF problem is to view data points represented in

columns of the ground truth matrix X∗ and understand columns of the first factor matrix

U as basis vectors or latent components, a linear combination of which with coefficients

taken from rows of the factor matrix V can reconstruct the data.

It is in fact due to the non-negativity of the factors that one can interpret basis ele-

ments(parts), the columns of U , in the same way as the data and interpret weights, in

the rows of V as activation coefficients.

In our study, however, we view the ground truth matrix as a relational mapping between two

sets of objects represented in rows and columns respectively. That is, each row object(entity

mention) has a representation in terms of column objects(relation mentions) and each col-

umn object has a representation in terms of row objects. Each factor in turn yields lower

dimensional representations for one of the sets of objects, which together reconstruct the

observed relational matrix and can in turn be used for finding similar objects in each set.
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Figure 3.1: NMF viewed as a data reduction scheme with part-based interpretations and a

dimensionality reduction embedding technique

To start the discussion on solving the NMF problem , let us first consider a compact form

by defining the vertical concatenation of the factor matrices W =

 U
V

 as a new variable.

In this light, can be written as

min
W∈R(n+m)×r

f(W ), (3.3)

subject to W ≥ 0,

where f(W ) = f(U ,V ) = 1
2

∥∥UV T −X∗
∥∥2

F
. In order to get a general idea on the behavior

of the optimization problem 3.3, we first consider a similar one dimensional problem

min
x∈Rn

f(x)

subject to x ≥ 0,

The first order optimality conditions(a.k.a. Karush–Kuhn–Tucker (KKT) conditions) for

this problem are

xi ≥ 0

∇fi(x) ≥ 0

xifi(x) = 0,

for all 1 ≤ i ≤ n. By the same the K. K. T. conditions the non-negative matrix factorization

43



can be expressed as

∇f(W ) ≥ 0

W ≥ 0

∇f(W )�W = 0, (3.4)

where W =

 U
V

, and � represents Hadamard product and the gradient of f(W ) is given

as

∇f(W ) =

 (UV T −X∗)V

(UV T −X∗)TU


This observation partially justifies why the NMF problem inherently leads to sparse solutions.

As opposed to the unconstrained matrix completion problem, NMF does not admit a con-

vexification approach [53]. There is, however, a convexification approach via non-negative

nuclear norms to compute lower bounds for the nonnegative rank [54]. Non-negative matrix

factorization, like the unconstrained counterpart, is a non-convex problem. The global land-

scape of this problem, however, is not characterized and it may have several local minima

that are not global.

Therefore, iterative methods that sequentially solve the problem for disjoint blocks of vari-

ables are deployed. These blocks are chosen such that if the rest of the variables are fixed, the

problem turns into a tractable convex problem. This strategy is known as Block Coordinate

Descent(BCD) in the context of bound constrained optimization problems.

The most commonly adopted BCD approach to NMF is to take U and V as the underlying

blocks and solve
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Algorithm 1 Block Coordinate Descent with two blocks

Input: the ground truth matrix X∗

initial factors W =

 U0

V0

 with U0 ≥ 0 and V0 ≥ 0

repeat

solve Ut+1 = arg minU≥0

∥∥UV T
t −X∗

∥∥2

F

solve Vt+1 = arg minV ≥0

∥∥Ut+1V
T −X∗

∥∥2

F

Increment t

until some convergence criterion is met

return (Ut,Vt)

Each of the sub-problems in the above routine, e.g.

Ut+1 = arg min
U≥0

∥∥UV T
t −X∗

∥∥2

F
, (3.5)

are known as Non-Negative Least Square, which can be solved either exactly or approxi-

mately. If solved exactly, the convergence analysis of the block coordinate descent methods

guarantees that this iterative approach converges to a stationary point of the original prob-

lem, if each sub-problem has a unique solution [55]. Even if the solution of the sub-problems

is not unique, the convergence to a stationary point is guaranteed in [56] for two block

problems.

It is worth noting that solving the subproblems 3.5 exactly, which might actually be com-

putationally expensive, does not necessarily guarantee a faster convergence than heuristic

iterative approach that efficiently reduces the cost function in each iteration. In fact an

alternative iterative approach to solve 3.2, can be summarized simply as
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Algorithm 2 Heuristic iterative algorithm with two blocks

Input: the ground truth matrix X∗

initial factors W =

 U0

V0

 with U0 ≥ 0 and V0 ≥ 0

repeat

Find Ut+1 ≥ 0 such that
∥∥Ut+1V

T
t −X∗

∥∥2

F
≤
∥∥UtV

T
t −X∗

∥∥2

F

Find Vt+1 ≥ 0 such that
∥∥Ut+1V

T
t+1 −X∗

∥∥2

F
≤
∥∥Ut+1V

T
t −X∗

∥∥2

F

Increment t

until some convergence criterion is met

return (Ut,Vt)

The most popular approach to solve 3.2 in the NMF literature, which instantiates algorithm

2 with a heuristic that guarantees the non-negativity of a multiplicative update coefficient

for each entry of the factor matrices at each iteration, is the so called multiplicative update

rules proposed by Lee and Seung in [46]. This work was the first to draw attentions to

NMF as a dimensionality reduction technique with part-based interpretations. The Pseudo

code of the multiplicative updates procedure, which we henceforth call NMF-MUL, can be

summarized as follows

Algorithm 3 NMF-MUL to Solve NMF

Input: the ground truth matrix X∗

initial factors W =

 U0

V0

 with U0 ≥ 0 and V0 ≥ 0

repeat

Set Ut+1 = Ut �
[
X∗Vt �UtV

T
t Vt

]
Set Vt+1 = Vt �

[
X∗TUt � VtUT

t Ut

]
Increment t

until some convergence criterion is met

return (Ut,Vt)

Lee and Seung proved that Algorithm 3 is indeed an instance of the meta-algorithm 2
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and claimed that the sequence of the solutions converges to a stationary point. It is later

shown [57], however, that the fixed point of the algorithm 3 is not necessarily a stationary

point, i.e. it does not necessary meet all the K.K.T conditions 3.4.

Lee and Seung also mention that their algorithm is equivalent to the following gradient

updates

Ut+1 = Ut −
[
Ut �UtV

T
t Vt

]
�∇Uf(Ut,Vt)

Vt+1 = Vt −
[
Vt � VtUT

t Ut

]
�∇V f(Ut,Vt). (3.6)

A modified form of the above update rules were later used in [58] to prove convergence to a

stationary point, which we refer to as NMF-GRAD. In fact, the updates proposed by Lin [58]

are summarized in the following pseudo-code.

Algorithm 4 NMF-GRAD algorithm to solve NMF

Input: the ground truth matrix X∗

initial factors W =

 U0

V0

 with U0 ≥ 0 and V0 ≥ 0

positive constants σ > 0 and δ > 0

repeat

Set W̄t[i, j] =

 Wt[i, j] if ∇W f(Wt)[i, j] ≥ 0

max (σ,Wt[i, j]) if ∇W f(Wt)[i, j] < 0

for 1 ≤ i ≤ m+ n, 1 ≤ j ≤ r

Set Ut+1 = Ut −
{
Ūt � [ŪtV

T
t Vt + δ]

}
�∇Uf(Ut,Vt)

Set Vt+1 = Vt −
{
V̄t � [V̄tU

T
t Ut + δ]

}
�∇V f(Ut,Vt)

Increment t

until (Ut,Vt) is a stationary point

return (Ut,Vt)

There is huge literature on developing algorithms to solve NMF that we extensively discuss

in the appendix of this section. The proposed algorithms either improve the convergence

behavior of the NMF problem, for example guaranteeing convergence to a stationary point

or solving the sub-problems 3.5 to a better precision or encourage certain structures in the
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solution. In the next section, we propose a new algorithm for solving NMF that has improved

sparsity properties over the popular NMF-MUL and NMF-GRAD algorithms and even has

a slightly better convergence behavior, as verified by our experimental results in the next

chapter.

3.3 An Exterior Point Method for solving NMF

The premise of the non-negativity constraint in the NMF formulation is to serve as a sur-

rogate to sparsity in the factor matrices. The intuition behind this can be explained by

considering the K.K.T conditions and noting that the solutions should lie on the boundary

of the region. In other words, considering the geometry of the unconstrained matrix factor-

ization problem, the solution to the NMF problem tends to converge to a stationary point

of the unconstrained problem except that it would hit the boundaries of the feasible region.

In the light of this intuition, it is interesting to explore optimization methods that build

an NMF solution based on the stationary solutions for the unconstrained problem, based

on SVD, as characterized in Theorem 3.4.1 from [47] that is stated in the appendix section

of this chapter. In fact, one of the most common ideas in theoretical analysis of the non-

convex procedures is to start with a careful initialization that is already close to optimum.

It is shown [59] that after a clever initialization the problem is effectively strongly-convex,

implying that the problem be analyzed by standard convex optimization techniques.

The idea of using the optimal SVD solution for the unconstrained matrix factorization to

construct an initialization point for the NMF problem was first introduced in [60]. The

construction of the initial point in the feasible region is based on taking the positive part of

the products of the constituent right and left singular matrices. Our work, however, is based

on the recent insights on the global optimization landscape of the unconstrained problem [47]

and the intuition that the solutions of the NMF problem lie close to the boundary of the

positive orthant. Figure 3.2 demonstrates our approach for constructing an initialization

point for the NMF algorithm that lies in the positive orthant. It is based on finding a

suitably rotated stationary point of the unconstrained problem that is close to the positive
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orthant, in a sense defined later on, and then moving the obtained stationary point to the

feasible region(positive orthant), using a simple gradient method with constant step size. In

the following, we describe each step in details.

Figure 3.2: Illustration of the exterior point initialization scheme

3.3.1 Closets Optimal Solution to the Positive Orthant

Given a stationary point for the unconstrained factorization problem

min
U∈Rn×r
V ∈Rm×r

∥∥UV T −X∗
∥∥2

F
,

recall that the set of equally-footed factorizations for X∗, i.e. all orthogonal transformations

of (U ∗,V ∗), as defined in (3.21)

X ∗ := {(U ,V )|U = U ∗R and V = V ∗R, for R ∈ Or} ,

with Or := {O ∈ Rr×r : OTO = Ir}, are also stationary.

In order to find a suitably close solution to the positive orthant, we aim to find a pair (U ,V ),

that is also a stationary point of the unconstrained problem, with the least sum-aggregated

coordinate-wise distance to the positive orthant. Let (U ∗,V ∗) be a stationary point of the

unconstrained problem, as characterized in Theorem 3.4.1, based on the SVD of the ground
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truth matrix X∗. Recognizing that all rotations of the stationary points are also stationary,

we can find the closest solution to the feasible region, in the sense of total element-wise

distance, by solving the following the following optimization problem

min
ΥU∈Rn×r
ΥV ∈Rm×r
R∈Rr×r

1TnΥU1r + 1TmΥV 1r, (3.7)

subject to U ∗R+ ΥU ≥ 0 and V ∗R+ ΥV ≥ 0

ΥU ≥ 0 and ΥV ≥ 0

R ∈ Or

Note that in the optimization problem (3.7), the utility function is linear in the variables, as

well as all the constraints except the last one, concerning orthogonality of the transformation

matrix R, i.e.

RTR = Ir,

which is quadratic. In order to solve (3.7), we propose a sequential greedy approach that

solves a set of linear programs for columns of R sequentially. We recognize this greedy

solution is not necessarily optimal, however, we adopt this approximate solution for the next

steps.

In the following, we describe the LP approximation to solve (3.7) sequentially for columns of

R. Let ξUj := ΥU [:, j] ∈ Rn, ξVj := ΥV [:, j] ∈ Rm, and rj := R[:, j] ∈ Rr represent the j-th

column of ΥU and ΥV respectively. Note that the utility function is separable on columns

of ΥU and ΥV . Also, in the first set of constraints, the rj, the j-th column of R is only

related to the corresponding columns in ΥU and ΥV ; that is ξUj and ξVj . In order to account

for the quadratic constraint concerning orthogonality of R, when solving for the j-th column

of R we only have to make sure that it is orthogonal to all the previously obtained columns.

Finally, we have to add a regularity constraint to avoid trivial solutions, like an all zeros

vector. In order to do so, we generate a fixed random vector s ∈ Rr and constrain each

column of R to have a positive inner product with that vector.
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The following linear program that is solved sequentially for j ∈ {1, 2, · · · , r} captures our

sequential formulation.

min
ξUj ∈Rn

ξVj ∈Rm
rj∈Rr

1Tnξ
U
j + 1Tmξ

V
j , (3.8)

subject to U ∗rj + ξUj ≥ 0 and V ∗rj + ξVj ≥ 0

ξUj ≥ 0 and ξVj ≥ 0

rTj s > 0

rTj ri = 0 for all i < j

Note that in formulating the optimization problem to find an optimal factor pair close to

the positive orthant, we could adopt another measure of closeness. For example, One could

aim for the closest solution to the positive orthant in the sense of maximum coordinate wise

distance. The corresponding set of linear programs in our sequential approach would look

the following

min
ξUj ∈Rn

ξVj ∈Rm
rj∈Rr

tU + tV , (3.9)

subject to U ∗rj + ξUj ≥ 0 and V ∗rj + ξVj ≥ 0

tU ≥ ξUj ≥ 0 and tV ≥ ξVj ≥ 0

rTj s > 0

rTj ri = 0 for all i < j

3.3.2 Projection into the Positive Orthant

Let us first introduce a simple ascent algorithm, to perturb a variable based on the direction

of its corresponding gradient vector, which will appear frequently throughout this section.
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Algorithm 5 Flat-Ascent/Descent Algorithm

Input: W ∈ R(m+n)×r

∇f(W ) ∈ R(m+n)×r

ascent constant δ ∈ R

Set W̄ [i, j] =

 W [i, j]−min{δ,W [i, j]} if ∇f(W )[i, j] ≥ 0 and W [i, j] ≥ 0

W [i, j] + δ otherwise

for 1 ≤ i ≤ m+ n, 1 ≤ j ≤ r

return Ŵ

In words, this flat ascent algorithm takes constant steps in the opposite direction of the

gradient when the point lies in the feasible region. When a point lies outside of the feasible

region, the algorithm pushes the point into the feasible region with constant steps, regardless

of the direction of the gradient.

Once a close enough optimal point to the positive orthant is found, by running a few iterations

of the flat ascent algorithm, we can obtain a projection of that optimal point onto the positive

orthant. As discussed earlier, by considering the K.K.T conditions of the NMF problem, such

a point should have a reasonably small prediction error.

After a small perturbation to push the point, which lies on the boundary of the feasible

region, inside the positive orthant, it can then be used as good initialization for an NMF

algorithm. The following pseudo-code describes the procedure to project an optimal solution

from outside the feasible region into the positive orthant via flat gradient updates.

52



Algorithm 6 Project into Positive Orthant via Flat Ascent

Input: the ground truth matrix X∗

initial factors W0 =

 U0

V0


Set δ = mini,j |W0[i, j]|

repeat

Compute ∇f(Wt) =

 ∇Uf

∇V f

 =

 (UtV
T
t −X∗)Vt

(UtV
T
t −X∗)TUt


Wt+1 = Flat-Ascent(Wt,∇f(Wt), δ)

Increment t

until Wt ≥ 0

return Wt

3.3.3 Gradient updates on the initial point

Once a good initialization point based on projecting an optimal point from the unconstrained

factorization problem onto the boundary of the feasible region is obtained, we apply a few

gradient steps to construct an NMF solution from this point.

Virtually any of the gradient algorithms discussed in the previous section can be used to

optimize the NMF cost using this initialization. We propose a very simple gradient algorithm

with adaptive flat step sizes to obtain a reasonably good NMF solution starting from this

initialization. Our algorithm leverages the inherent imbalance in the gradient of the loss

function. Consider the gradient of the Frobenius norm loss; that is

∇f(W ) =

 (UV T −X∗)V

(UV T −X∗)TU

 .
Clearly if one of the factors is scaled up by some factor κ > 1 and the other factor is scaled

down so thatUV T is fixed, it can immediately observed that this scaling is reflected inversely

in the gradient terms corresponding to the other factor. This provides an opportunity to

take loner steps by the gradient algorithm. The following figure provides a visualization of

this step.
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Figure 3.3: Constructing an NMF solution from the obtained initialization

A pseudo-code for the algorithm is provided in the following.
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Algorithm 7 Solving NMF with Flat Ascent

Input: the ground truth matrix X∗

initial factors W0 =

 U0

V0


initial ascent constant δ

Perturbation constant ε

Scaling constant κ

Number of outer iterations n1

Number of inner iterations n2

Step parameters β, σ

Set Ŵ = W0

for i ∈ {1, . . . , n1} do

if i mod 2 = 0 then

s = κ

else

s = 1
κ

end if

W0 = PerturbScale(Ŵ , ε, s)

δ0 = δ

for t ∈ {0, . . . , n2 − 1} do

Set Wt+1 = Flat-Descent(Wt,∇f(Wt), δt),

where δt = δt−1β
M , with M being the smallest integer that

f(Wt+1)− f(Wt) ≤ σ∇f(Wt)
T (Wt+1 −Wt),

end for

Ŵ = Wn2

end for

return Ŵ

In the above algorithm the perturb and scale step refers to simple operations of thresholding

the variable from below to the given value ε, and scaling the factors U and V by s and
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1
s

respectively. Note that in the algorithm, the ascent parameter is chosen in such a way

to guarantee a function decrease by a certain amount proportional to the gradient. This

guarantees the convergence of the algorithm to a stationary point using standard first order

arguments.

In the next chapter, we evaluate the performance of the proposed exterior point method

algorithm along with some of the other popular NMF optimization computationally on real

data.

3.4 Appendix

3.4.1 Global Landscape of the Unconstrained Matrix Factorization

Let us consider the regularized matrix factorization problem

min
U∈Rn×r
V ∈Rm×r

L(X∗,UV T ) + ρ(U ,V ), (3.10)

for a low rank matrix X∗, where L(X∗,UV T ) is a strongly convex loss function in U

and V individually and ρ(U ,V ) is a regularization term that is convex in both U and V .

Specifically, let us focus on the sum of squared entry-wise estimation error

L(W ) = L(X∗,UV T ) =
1

2

∥∥UV T −X∗
∥∥2

F
. (3.11)

Let us also define the balanced factors

U ∗ := A∗Σ∗1/2 ∈ Rn×r, and

V ∗ := B∗Σ∗1/2 ∈ Rm×r,

where

A∗Σ∗B∗T

is the (truncated) singular value decomposition (SVD) of the low-rank ground truth matrix

X∗.
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Following this representation, the ground matrix X∗ can be represented with a factorization

X∗ = U ∗V ∗T , with U ∗ ∈ Rn×r and V ∗ ∈ Rm×r to reflect the low rank assumption on X∗.

We note that for an optimal solution (U ∗,V ∗) of the un-regularized problem

min
U∈Rn×r
V ∈Rm×r

1

2

∥∥UV T −X∗
∥∥2

F
, (3.12)

any transformation of the form

(U ∗RU ,V
∗RV )

where RU ,RV ∈ Rr×r and RUR
T
V = Ir is also an optimal solution of 3.12. As such,

RU = cIr and RV = 1
c
Ir, where c can be arbitrarily large. To address this imbalance, the

standard approach is to add a regularizer to the utility function with to force the difference

between the Gram matrices of U and V as small as possible. In particular,

ρ(W ) = ρ(U ,V ) =
λ

4

∥∥UTU − V TV
∥∥2

F
, . (3.13)

where W =

 U
V

.

Thus, the overall regularized objective that we consider in the rest of this section can be

expressed as

min
U∈Rn×r
V ∈Rm×r

1

2

∥∥UV T −X∗
∥∥2

F
+
λ

4

∥∥UTU − V TV
∥∥2

F
, (3.14)

which can alternatively be written as

min
W∈R(n+m)×r

f(W ) , (3.15)

f(W ) = f(

 U
V

) = 1
2

∥∥UV T −X∗
∥∥2

F
+ λ

4

∥∥UTU − V TV
∥∥2

F

The gradient of f(W ) is then given as

∇Uf(U ,V ) = (UV T −X∗)V + λU(UTU − V TV ) (3.16)

∇V f(U ,V ) = (UV T −X∗)TU − λV (UTU − V TV ),
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which can equivalently be written as

∇f(W ) =

 (UV T −X∗)V

(UV T −X∗)TU

+ λŴŴ TW , (3.17)

where Ŵ =

 U

−V

.

The Hessian quadrature [∇2f(W )](∆,∆), with ∆ =

 ∆U

∆V

 ∈ R(n+m)×r(where ∆U ∈

Rn×r and ∆V ∈ Rm×r) can be expressed as [47]

[∇2f(W )](∆,∆) =
∥∥∆UV

T +U∆T
V

∥∥2

F
+ 2〈UV T −X∗,∆U∆T

V 〉+ [∇2ρ(W )](∆,∆),

(3.18)

where

[∇2ρ(W )](∆,∆) = λ〈ŴW , ∆̂T∆〉+ λ〈Ŵ ∆̂T ,∆W T 〉+ λ〈ŴŴ T ,∆∆T 〉. (3.19)

Let W ∗ be a global minimizer of the un-regularized objective. We note that W ∗ is still a

global minimizer of the regularized problem 3.14. The global minimum of ρ(W ) is 0, which

is achieved when U and V have the same Gram matrices, i. e. when W belongs to

E =
{
W | UTU − V TV = 0

}
. (3.20)

The following lemma from [47] shows that any critical point Ŵ of the regularized objective

3.13 belongs to E , meaning that U and V are balanced factors of their product.

Lemma 3.4.1. [47] Let Ŵ be a critical point of f(W ) = L(W )+ρ(W ), i.e. ∇f(Ŵ ) = 0;

then Ŵ ∈ E.

We next note that, even by considering a regularized objective, all rotations of an arbitrary

pair of factors (U ,V ) ∈ Rn×r ×Rm×r will attain the same objective value in 3.14. Thus the

set of global minimizers of the regularized objective can be expressed as

X ∗ := {(U ,V )|U = U ∗R and V = V ∗R, for R ∈ Or} , (3.21)
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where

Or := {O ∈ Rr×r : OTO = Ir} (3.22)

In the following we state the results from [47] that fully characterize the optimization land-

scape of the regularize matrix factorization objective 3.14 In order to characterize th set of

stationary points of 3.14, we first note that, without loss of generality, one can only focus on

stationary points where U and V are orthogonal. To see this, suppose that W is a station-

ary point of f(W ). By applying the Gram-Schmidt process, one can construct Ũ = UR

for some R ∈ Or where Ũ is orthogonal. By the same token, define Ṽ = V R. The nec-

essary condition for stationary points in Lemma 3.4.1,ŨŨT = Ṽ Ṽ T , is satisfied because

UUT = V V T . Also, it can be directly shown that W̃ is a critical point of f(W ), since

∇Ũf(W̃ ) = ∇Uf(W )R = 0

and

∇Ṽ f(W̃ ) = ∇V f(W )R = 0.

Moreover, for any ∆ ∈ R(n+m)×r, we have

[∇2f(W )](∆,∆) = [∇2f(W̃ )](∆R,∆R),

implying that the Hessian information is preserved.

The following lemma characterizes all the critical points of f(W ).

Lemma 3.4.2. [47] Let X∗ = ΦΣΨ =
∑r

i=1 σi(X
∗)φiψi be the reduced SVD of X∗ and

f(W ) as defined in 3.15. Any W =

 U
V

 is a critical point of f(W ) if and only if

W ∈ C, where

C :=

{
W =

 U
V

 | U = ΦΛ
1
2R and V = ΨΛ

1
2R,R ∈ Or

Λ is diagonal,Λ ≥ 0, (Σ−Λ)Σ = 0

}
, (3.23)
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The above lemma implies that a critical point W̃ of f(W ) is such that ŨŨ is a low rank

approximation of X∗, where the diagonal matrix Λ is formed as

λi ∈ {0, σi(X∗)}, (3.24)

for i ∈ {1, 2, · · · , r}. Moreover, the set of optimal solutions is

X ∗ :=

{
W =

 U
V

 | U = ΦΣ
1
2R and V = ΨΣ

1
2R,R ∈ Or

}
,

as defined in 3.21.

Theorem 3.4.1. [47] Let f(W ) be as defined in 3.15 and let W =

 U
V

 be any critical

point of f(W ) , i.e. W ∈ C. Any W ∈ C \ X ∗ is a strict saddle point of f(W ) satisfying

λmin(∇2f(W )) ≤ −1

2

∥∥WW T −W ∗W ∗T∥∥2

F
≤ −σr(X∗) (3.25)

This theorem implies that f(W ) has no spurious local minima and obeys the strict saddle

property, that is f(W ) has a directional negative curvature at all of the critical points

except local minima, which are in turn shown to be global optima. These two properties

imply that gradient methods with random initialization converges to a global minimizer

almost surely [61,62].

Next, we briefly mention two similar results that extend Theorem 3.4.1 to under-parametrized(over-

parametrized) matrix completion problem, where the ground truth matrix has a lower(higher)

rank than the factor matrices.

For over-parametrized scenario, where rank(X∗) ≤ r, we have

Theorem 3.4.2. [47] Let X∗ = ΦΣΨ =
∑r′

i=1 σi(X
∗)φiψi be the reduced SVD of X∗ with

r′ ≤ r and f(W ) as defined in 3.15. Any W =

 U
V

 is a critical point of f(W ) if and

only if W ∈ C, where

C :=

{
W =

 U
V

 | U = ΦΛ
1
2R and V = ΨΛ

1
2R,R ∈ Or′

Λ is diagonal,Λ ≥ 0, (Σ−Λ)Σ = 0

}
, (3.26)
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Moreover, all the local minima (which are also global) belong to the following set

X ∗ :=

{
W =

 U
V

 | U = ΦΣ
1
2R and V = ΨΣ

1
2R,R ∈ Or′

}
,

and finally, any W ∈ C \ X ∗ is a strict saddle point of f(W ) satisfying

λmin(∇2f(W )) ≤ −1

2

∥∥WW T −W ∗W ∗T∥∥2

F
≤ −σr′(X∗) (3.27)

Similarly for the under-parametrized scenario, where rank(X∗) ≥ r, we have

Theorem 3.4.3. [47] Let X∗ = ΦΣΨ =
∑r′

i=1 σi(X
∗)φiψi be the reduced SVD of X∗

with r′ ≥ r and σr(X
∗) > σr+1(X∗); and f(W ) as defined in 3.15. Any W =

 U
V

 is a

critical point of f(W ) if and only if W ∈ C, where

C :=

{
W =

 U
V

 | U = Φ∗ΩΛ
1
2R and V = Ψ∗ΩΛ

1
2R,Λ = Σ[Ω,Ω],

R ∈ O`,Ω ⊂ {1, 2, · · · , r′}, |Ω| = ` ≤ r

}
, (3.28)

where Φ∗Ω, as defined in the notations, is a sub-matrix of Φ obtained by keeping the columns

indexed by Ω and Σ[Ω,Ω] is a matrix obtained by taking the elements of Σ in rows and

columns indexed by Ω. Moreover, all the local minima (which are also global) belong to the

following set

X ∗ :=

{
W =

 U
V

 | U = Φ∗rΛ
1
2R and V = Ψ∗rΛ

1
2R,Λ = Σ[r, r],R ∈ Or

}
,

where r = {1, 2, · · · , r}. Finally, any W ∈ C \X ∗ is a strict saddle point of f(W ) satisfying

λmin(∇2f(W )) ≤ −(σr(X
∗)− σr+1(X∗)) (3.29)

These three theorems fully characterize the optimization landscape of the regularized matrix

factorization objective 3.14 for the low rank matrix X∗. Our exterior point method relies

on this characterization for constructing the initialization point from a stationary point of

the unconstrained problem.

61



3.4.2 An Extended Summary of NMF Algorithms

In this sub-section, we give an extended overview of the algorithms proposed for solving the

NMF problem. Specifically, we review interior point methods based on projection along

with the gradient based algorithms. Next we consider NMF optimization with explicit

sparsity constraints. The NMF problem can be viewed as a bound-constrained optimization

problem where projection methods can be applied. As such, [63] proposed Projected Non-

Negative Least Squares method, which solves subproblems in algorithm 1 by solving an

unconstrained least squares problem, and projecting the solution back to the positive orthant.

The unconstrained Least Squares problem can be solved as follows

Lemma 3.4.3. Given a pair of matrices X1,X2 ∈ Rk×k, The optimal transformation matrix

that minimizes

min
R∈Rk×k

|X1 −X2R|F . (3.30)

is R = X†2X1.

Therefore, Projected Non-Negative Least Squares method is performed by iteratively apply-

ing

Ut+1 = P
(
X∗V T

t

†
)

and

Vt+1 = P
(
X∗TUT

t

†
)
, (3.31)

where P(·) is the non-negative projection operator that projects all the negative components

of its argument to zero, and M † denotes the Moore-Penrose inverse of the matrix M . The

drawback of such approach is that after applying the projection operator, the cost function

does not necessarily decrease.

The same projection operator can be applied on gradient updates to solve each of the sub-

problems in algorithm 1 using a gradient approach. where projected gradient methods could

be used [64]

Wt+1 = P (Wt − µt∇f(Wt)) , (3.32)
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for some appropriate step size µt, where Wt =

 Ut

Vt

.

Choosing the step size µt in an adaptive way lied in the heart of projected gradient methods.

One can for example aim for optimizing for the steps size in the sense of maximizing the

decrease in the function value along the chosen direction that is

µt = arg min
µ
f (P [Wt − µ∇f(Wt)]) , (3.33)

A simple yet popular gradient projection scheme widely used in many other bounded opti-

mization algorithm is the so called Armijo rule along the projection arc [65], a pseudo code

for which is given in the following

Algorithm 8 Armijo rule along the projection arc

Input: any feasible initial factors W =

 U0

V0


positive constants 0 ≤ σ ≤ 1 and 0 ≤ β ≤ 1

repeat

Set Wt+1 = P (Wt − µt∇f(Wt)),

where µt = βM , with M being the smallest integer that

f(Wt+1)− f(Wt) ≤ σ∇f(Wt)
T (Wt+1 −Wt),

Increment t

until some convergence criterion is met

return (Ut,Vt)

Since finding the step size for the projection operator is very time consuming, various meth-

ods have been proposed to initialize the search for the next step based on the previous step

size(s).

Several other gradient approaches have been proposed for solving the sub-problems in Al-

gorithm 1. For example, [66] uses Nesterov’s acceleration method [67] to achieve fast rates

for the convergence of the sub-problems. In particular, at each iteration round, the factors

are updated using the projected gradient method performed on an adaptively chosen search
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point, with a step size determined by the Lipschitz constant of the optimization objective.

Authors in [68] also consider sub-problems in Algorithm 1 as bound-constrained optimiza-

tion problems and use a quasi-Newton method to them by efficiently computing the Hessian.

Another second order to solved the sub-problems is proposed in [69]. The method is based on

the quasi-Newton type algorithm, by using symmetric rank-one matrices and finding proper

negative curvature directions to approximate the Hessian matrix.

By considering the component-wise square of the factor matrices as the optimization vari-

ables, [70] frame the NMF problem as an unconstrained problem. A nice survey of the

various optimization algorithms for solving NMF can be found in [71]. As has already been

discussed so far, the premise of the non-negativity constraint in the NMF formulation is to

serve as a surrogate for sparsity in the factor matrices so as to allow part-based interpretation

of the factors. However, it is reported in some experimental studies, including [72, 73], that

the mere non-negativity constraint does not yield sparse representations for the factor ma-

trices and NMF does not necessarily learn localized features. Therefore, a remarkable body

of research is developed around methods that impose sparsity constraint in a suitable form

on one(or both) of the factor matrices along with the non-negativity constraint. Following

the part based interpretation of NMF, a sparsity constraint on the columns of U implies

that each part being sparse should represent a small part of the data. On the other hand,

imposing a sparsity constraint on rows of V implies that each data point is approximated

by a linear combination of a limited number of basis elements. If columns of V are sparse,

then each basis vector is used to approximate a limited number of data points, which is

particularly relevant when NMF is regarded as a soft clustering tool.

Adopting sparse constraints can also be seen as restricting the geometry of the problem to

alleviate the issue of non-uniqueness of the solutions.

The Non-negative sparse coding algorithm proposed by Hoyer [74] is the first to incorporate

a sparsity constraint in the NMF objective. Let us consider the regularized objective 3.1
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with a sparsity constraint on rows of V

min
U∈Rn×r
V ∈Rm×r

1

2

∥∥UV T −X∗
∥∥2

F
+ λ||V ||1,1, (3.34)

subject to U ≥ 0 and V ≥ 0,

where ||V ||1,1 =
∑m

i=1 ||Vi∗||1 is the sum of the `1 norm of the rows of V , which is in fact

equivalent to summing up all the entries of V . Adopting the two block coordinate descent

algorithm 1, Hoyer proves that the solution to the following sub-problem involving V by

fixing U

Vt+1 = arg min
V ∈Rm×r

1

2

∥∥UtV
T −X∗

∥∥2

F
+ λ||V ||1,1 (3.35)

subject to V ≥ 0,

can be found by multiplicative updates in the following form

Vt+1 = Vt �
[
X∗TUt �

(
VtU

T
t Ut + λ

)]
. (3.36)

In order to find the update equations for the subproblem involving U , he adopts projected

gradient updates

Ut+1 = P
(
Ut − µ∇U

1

2

∥∥UtV
T −X∗

∥∥2

F

)
. (3.37)

In summary, the Pseudo-code for this algorithm is summarized in

Algorithm 9 Non-negative Sparse Coding

Input: any feasible initial factors W =

 U0

V0


positive constant λ ≥ 0

repeat

Set Ut+1 = P
(
Ut − µ∇U

1
2

∥∥UtV
T −X∗

∥∥2

F

)
Normalize Ut+1

Set Vt+1 = Vt �
[
X∗TUt �

(
VtU

T
t Ut + λ

)]
Increment t

until some convergence criterion is met

return (Ut,Vt)
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In view of Hoyer’s update equations 3.36 for the factor matrix V , the gradient approach

of [58] in algorithm 4 can be seen as solving a sparse constrained problem with a step size

specified in their algorithm, that is

min
U∈Rn×r
V ∈Rm×r

1

2

∥∥UV T −X∗
∥∥2

F
+ λ||U ||1,1 + λ||V ||1,1, (3.38)

subject to U ≥ 0 and V ≥ 0,

In a later work [72], Hoyer proposed a constrained optimization problem to address sparsity

of the factors in the NMF problem. Specifically, by defining a heuristic measure for sparsity

of a vector x ∈ Rndefined as

S(x) =

√
n− ||x||1||x||2√
n− 1

, (3.39)

Hoyer proposed the following constrained optimization formulation for sparse NMF

min
U∈Rn×r
V ∈Rm×r

1

2

∥∥UV T −X∗
∥∥2

F
, (3.40)

subject to U ≥ 0 and V ≥ 0

S(U∗i) = sU and S(V∗i) = sV ∀1 ≤ i ≤ r

In order to solve 3.40, a projected gradient algorithm with a projection that at each step

enforces the columns of the factors to be non-negative, have unchanged `2 norm, but `1 norm

set in a such a way that the sparseness constraint is met.

An alternative view on sparse NMF was later proposed in consequent papers of Kim and

Park [75,76], where they add a Frobenius norm regularization on U

min
U∈Rn×r
V ∈Rm×r

1

2

∥∥UV T −X∗
∥∥2

F
+ η||U ||2F + λ||V ||21,2, (3.41)

subject to U ≥ 0 and V ≥ 0,

where ||V ||21,2 =
∑n

i=1 ||Vi∗||1 is a sparsity constraint on the rows of the factor matrix V .

Using the two block coordinate descent in algorithm 1, they reformulated the sub-problems
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as standard non-negative least square problems in the following form. The sub-problem

involving V can be written as

min
V ∈Rm×r

1

2

∥∥∥∥∥∥
 U
√
λ11×r

V T −

 X∗

01×n

∥∥∥∥∥∥
2

F

, (3.42)

subject to V ≥ 0,

where 11×r is an all ones vector of size r and 01×n is an all zeros vector of size n.The

sub-problem involving U can be written as

min
U∈Rn×r

1

2

∥∥∥∥∥∥
 V
√
ηIr

UT −

 X∗T

0r×n

∥∥∥∥∥∥
2

F

, (3.43)

subject to U ≥ 0,

This approach is closely related to an earlier work [77], where Frobenious norm regularization

was adopted to impose sparse constraint on the factor matrices

min
U∈Rn×r
V ∈Rm×r

1

2

∥∥UV T −X∗
∥∥2

F
+ η||U ||2F + λ||V ||2F , (3.44)

subject to U ≥ 0 and V ≥ 0,

which yields similar update rules

min
U∈Rn×r

1

2

∥∥∥∥∥∥
 V
√
ηIr

UT −

 X∗T

0r×n

∥∥∥∥∥∥
2

F

,

subject to U ≥ 0,

and

min
V ∈Rn×r

1

2

∥∥∥∥∥∥
 U
√
ηIr

V T −

 X∗

0r×n

∥∥∥∥∥∥
2

F

,

subject to V ≥ 0,

Although the solutions to this problems have fairly small values due to the shrinkage effect

of the `2 norms used for the regularization, they are however not necessarily sparse in the

strict sense.
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CHAPTER 4

Evaluation and Computational Results

In this chapter, we evaluate our entity resolution model in two case studies; namely a dis-

cussion forum on parenting issues and a transactional setting on Twitter.

4.1 Mothering Discussion Forums

4.1.1 Motivation

Over the past decade and a half, the explosion in social media and the concomitant rise in

informational websites has changed the manner in which people access health care informa-

tion. Various sites dedicated to conversations about child rearing and parenting, colloquially

referred to as “mommy blogs,” attract millions of users. Although straightforward data

mining techniques such as topic modeling exist for determining what parents are talking

about on these sites and other similar sites, few techniques exist for determining how they

are talking about those topics.

Among the many topics discussed on these parenting sites, few topics garner as much at-

tention and vigorous discussion as childhood vaccination. Despite the fact that safe and

effective vaccines exist, sporadic outbreaks of vaccine preventable diseases (VPDs) point to

the continuing tension between public programs intended to make these vaccinations easily

accessible and broadly adapted and parents who resist vaccination based largely on ideolog-

ical principles.

For example, Measles was officially eliminated in the United States with no continuous

transmission for twelve months in the year 2000. However, public health officials were worried
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that the pronouncement of the demise of measles might contribute to a false sense of security

among parents, thereby diminishing their commitment to vaccinating their children. This

concern was realized in the events of late 2014 and early 2015, when over 120 cases of

measles across the United States were linked to an infected visitor at a Southern Californian

amusement park.

Reduced rates of vaccination have jeopardized the elimination of diseases that have been on

the cusp of such elimination for decades and, as recent outbreaks attest, threaten the hard-

won herd immunity developed through long-term vaccination programs. In the last decades

of the 20th century, even while many childhood diseases were disappearing from the disease

landscape of America because of successful vaccination programs, certain communities, par-

ticularly those that resisted vaccination based on ideological principles (largely communities

of faith), continued their use of exemptions as an expression of these principles.

The role of exemptions in precipitating outbreaks in vaccine-communicable disease is increas-

ingly being considered, although little evidence is currently available to directly support this

link. Although simple inspection of parenting sites and standard text mining approaches

can confirm that vaccination is a topic of frequent discussion on these sites, such methods

cannot determine the structure of those discussions.

Importantly, these communities were easy to monitor, and schools or school districts with

high exemption rates were uncommon. Conversations about vaccinations were largely con-

fined to interactions between parents and medical professionals.

Both the recent adoption of social media forums like “mommy blogs” changed fundamen-

tally the nature and reach of these conversations. Over the course of a relatively short time

span, these sites became a locus for discussions not only about the safety and efficacy of

vaccinations, but also for sharing strategies for obtaining exemptions. Unlike the relatively

circumscribed groups that circulated this information in the pre-social media era, these vir-

tual communities were geographically dispersed and visible in many more social strata. Im-

portantly, these online conversations became clearinghouses for information about the local

regulatory regimes governing exemptions. In this study we are interested in characterizing
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the narratives in these forums that underly the discussions [78].

4.1.2 Objective

We analyzed 300 thousand posts contributed by 12,376 users and viewed a few million times

indexed from a popular parenting site, ”mothering.com”, over almost 8 years ending in

2012. Beyond simply identifying the main topics of discussion on the site, our objective is

to identify the underlying narrative frameworks that explain the stories circulating in these

various discussions. In addition to delineating the narrative framework that parents activate

in their storytelling, we provide a fine-grained view of actant interactions and relationships in

these stories, offering insight into individuals’ shifting attitudes toward vaccination. Figure

4.1 shows the pipeline describing the steps of this study.

Figure 4.1: Pipeline of the study

In this dissertation, we only focus on automatic detection of actant groups, which we pose

as an entity clustering problem.

4.1.3 Data

Data for this study were obtained from a popular social media site dedicated to parenting,

mothering.com. This website is particularly popular among a group of user who self-identify

as mothers. As mothers are on the “front line” of discussions about the health of their
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infant children, the site offers important information about how they approach decisions

related to vaccination. The site draw members from a wide range of backgrounds with

broad geographic diversity, largely in the United States and Canada, but it is know to have

an anti-vaccination tone. The language of the discussion forum is English. We indexed posts

that appeared in the forums related to childhood vaccination, recursively visiting and storing

all publicly available discussion threads, and date-time–data, while creating an anonymized

index of any accessible user data, resulting in a corpus of 299,778 posts from 12,376 users,

based on 105 months of indexed data (2004-2012). These posts comprised the corpus for

analyses.

4.1.4 Ground Truth Actants

We use the notion of an actant to refer to a set of entities that serve the same or similar

purpose in the decision making ecosystem we are exploring. We captured each actant by an

associated set of words that most commonly referred to that group in the forums.

Within we identified three main categories of actants:

• individual actants:

comprised of parents, children, and medical professionals

• corporate actants:

comprised of government institutions, religious institutions, and schools

• objects:

comprised of vaccines, exemptions, VPDs, and adverse effects.

The words associated with an actant consist of both synonyms for the actant and entities

that have the actant as a super-category. For example, the actant ‘government’ includes

the colloquial synonym ‘the Feds’ as well as the government institution, the ‘CDC’, where

‘government’ is the super-category for CDC. This list of actants is summarized in Table 4.1.
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Table 4.1: Ground Truth actants

Entities (Nodes) Associated Word Set

Individuals

• Parents

• Children

• Medical Prof.

• parents, parent, i, we, us, you

• child, kid, kids, children, daughter, daughters, son, sons, tod-

dler, toddlers, kiddo, boy, d[ear]d[aughter], d[ear]s[on]

• doctor, doctors, pediatrician, pediatricians, nurse, nurses, ped,

md, dr

Corporates

• Government

• Religious Inst.

• Schools

• government, cdc, federal, feds, center for disease control, offi-

cials, politician, official, law

• faith, religion, pastor, pastors, parish, parishes, church,

churches, congregation, congregations, clergy

• teacher, teachers, preschools, preschool, school, schools, class,

daycare, daycares, classes

Objects

• Vaccines

• Exemptions

• VPDs

• Adverse Effects

• vaccines, vax, vaccine, vaccination, vaccinations, shots, shot,

vaxed, unvax, unvaxed, nonvaxed, vaccinate, vaccinated, vaxes,

vaxing, vaccinating, substances, ingredients

• exemption, exempt

• varicella, chickenpox, flu, whooping cough, tetanus, pertussis,

hepatitis, polio, mumps, measles, diphtheria

• autism, autistic, fever, fevers, reaction, reactions, infection,

infections, inflammation, inflammations, pain, pains, bleeding,

bruising, diarrhea, diarrhoea

4.1.5 Sample Posts from the Discussion Forum

In the posts below all actants are in bold while significant ones are also printed in red. The

relational verb between the significant actants is italicized and underlined.
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• My hubby and I are presently concerned about the ingredients - our faith prevents us

from allowing certain substances into our son’s body.

• I have come to the conclusion that there is more of a likelihood that my child would

have a bad reaction to certain vaccines than getting the actual disease itself .

• Every vaccine has a very small chance of more serious side effects ( generally linked

to allergic reactions , about which parents could not be expected to know before

vaccination, because the child is so young ), and a larger chance of less serious

reactions ( soreness , fever , redness ) .

• He mentioned piggy backing off other ’s immunizations and how autism isn’t caused

by vaxes and a bunch of other things just to try to convince me to vax my son .

• It is ironic that the pro-vax crowd will laugh off the autism-vaccines link as if it is

somehow preposterous - yet here is just one example of a child who was diagnosed

with autism and the government conceded his vaccine injury.

• I certainly wouldn’t want my kids to suffer socially because of our decision not to

vax , but OTOH if I say something that can save one family from the pain of a serious

reaction or death of a child , then maybe it ’s worth it .

• This concern is reinforced by a study which revealed that 1 in 175 children who

completed the full DPT series suffered “severe reactions”, and a Dr’s report for

attorneys which found that 1 in 300 DPT immunizations resulted in seizures .

• If a parent wants to exempt their child only from the MMR , Hep A and vari-

cella vaccines because of the aborted fetal tissue , the religious exemption would

be invalid in almost every state .

• Even if the Church told all Catholic parents not to let their child get the MMR

for instance , most parents would have to still be required to submit a religious

exemption which would exempt all vaccines.
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• I think , first of all , that since my kids never had a reaction to vaccines, I just

would never be able to forgive myself if they got a really horrible disease that would

have been preventable through taxes .

• Here is the Hawaii immunization brochure , which states the exemption forms can

also be obtained from the school: Immunization and TB code : Surprisingly , I don’t

see anything about religiously exempting a child from the TB screening requirement

in the code .

• My kids are partially vaxed and we just submitted a religious exemption to the

school she will be attending this fall.

• My younger daughter may be going to preschool next year and I am either going to

have to immunize or claim a religious exemption, and I want my thoughts together

on the topic so I can advocate for her .

• The CDC here told me they wouldn’t accept the any kids w/out shots, even with a

signed exemption.

• If the school has funding by the government then it is my understanding they must

accept the exemption

• For Peace Corps , the US Government requires vaccinations BUT there is a reli-

gious exemption and disclaimer, I ’m sure of it- anyway, there was in 1998.

4.1.6 Relation Extraction

In this section, we briefly describe our relation extraction method. A dependency relationship

[79] is an asymmetric binary relationship between a word called head, and another word

called modifier. The structure of a sentence can be represented by a set of dependency

relationships that form a tree. A word in the sentence may have several modifiers, but

each word may modify at most one word. The root of the dependency tree, which is called

the head of the sentence, does not modify any word. For example, Figure 4.2 shows the

74



dependency tree for the sentence “the doctor signed our exemption form.”, generated by the

Stanford parser [80]. The links in the diagram represent dependency relationships.

Figure 4.2: Parsing tree for the sentence “the doctor signed our exemption form.”, obtained

by the Stanford parser

The direction of a link is from the head to the modifier in the relationship. Labels associated

with the links represent types of dependency relations. In the dependency trees, each link

between two words represents a direct semantic relationship. A path allows us to represent

indirect semantic relationships between two content words. We name a path by concatenating

dependency relationships and words along the path, excluding the words at the two ends.

For example, the main parsing structure(path), that we are interested in is

N : subj : V : obj : N

Given a corpus of text, after cleaning the data and tokenizing the documents into sentences.

We scan every tokenized sentence from the corpus and extract relation triplets of the form

(ms,mo, v), where ms is the head word of the subject node in the parsing tree, mo is the

headword of the object node in the parsing tree, and v is the verb that connects the two. The

following table provides a summary of the extractions T = {(ms,mo, v)} with our method.
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Table 4.2: Summary statistics for relation extraction

Extraction Number

Relation triplets(|T |) 226949

Unique subject entity mentions(|MS|) 15727

Unique object entity mentions(|MO|) 37829

|MS ∩MO| 3955

Unique relation phrases(|V|) 33818

4.1.7 Entity-Relationship Matrices

Recall Chapter 3 that we construct the left entity relation matrix XL ∈ R|M|×NL and the

right entity relation matrix XR ∈ R|M|×NR as follows

XL[i, j] = TF-IDFL(vj,mi), and

XR[i, j] = TF-IDFR(vj,mi).

We review the computation of TF-IDFL(vj,mi) and specify the parameters used in the

construction. The construction of the right entity relation matrix is similar. In the above

construction, the TF-IDF is defined as

TF-IDFL(v,m) =
TFL

v,m

Q-RankLv (m)
,

where the term-frequency component in the nominator is computed as

TFL
v,m = log(1 + sLv (m)),

where sLv (m) =
∑

m′∈M 1(m,m′,v)∈T .

The IDF component in the denominator is computed by

Q-RankLv (m) =

√
1 + RankLv (m) / w,
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where RankLv (m) = rank of m ∈Mv in SLv , in which SLv representing the collection of all

co-occurrence counts of the relation phrase v ∈ V with all entity mentions that co-occur

with it in ML
v = {m | (m,m′, v) ∈ T for some m′ ∈M}. In our experiments we set

w = max(5, |SLv |/10).

Also, in construction of the left and right entity-relation matrices, we only keep the entity

mentions that appear both as a subject in some relation tuple and an object in some other

relation tuple. Furthermore, in order to improve the quality of the results, we filter out the

entities that appear in less than 4 relation tuples in T .

After this filtering, we have

XL ∈ R286×1242, and

XR ∈ R286×1528,

which means that |M| = 286, |VL| = 1242 and |VR| = 1528.

4.1.8 Matrix Estimation results

In this section, we compare the performance of the algorithms studied in the previous chapter

to solve the matrix completion optimization on the ground truth matrices. The optimization

problem for the right entity relation matrix is given as follows. The optimization problem

for the left entity relation matrix is likewise.

min
UR∈R|M|×d
VR∈RNR×d

||XR −URV
T
R ||2F (4.1)

subject to UR ≥ 0 and VR ≥ 0,

In our evaluations, we study the following three algorithms to solve 4.1. In all the algorithms,

the ambient dimension of the embedded space is set to d = 20, implying that

UR ∈ R286×20, and

VR ∈ R1528×20.

We specify the parameters of each algorithm in the pseudo-codes.
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• Multiplicative Updates Algorithm(NMF-MUL):

Multiplicative update rules [46] is the most commonly used algorithm for solving 4.1.

It is very fast, as it does not require computing the gradient in each steps and the

multiplicative updates are easy to implement. It is almost parameter free, except

that a stopping criterion based on the number of iterations or convergence should be

designed.

Algorithm 10 Solving NMF with NMF-MUL

Input: the ground truth matrix XR

Initialize factors with U0 ∼ U [0, 1] and V0 ∼ U [0, 1]

repeat

Set Ut+1 = Ut �
[
X∗Vt �UtV

T
t Vt

]
Set Vt+1 = Vt �

[
X∗TUt � VtUT

t Ut

]
Increment t

until t > 3000 or f(Wt+1)− f(Wt) < 10−4

return (Ut,Vt)

• Gradient-Based Algorithm(NMF-GRAD):

This algorithm is designed to guarantee convergence to a stationary point with a small

modification of the NMF-MUL. As mentioned in chapter 3, the parameter δ in this

algorithm can be regarded as a sparsity controlling parameter. But the algorithm is

very sensitive to this parameter and it is usually set to be very small. In the following

we specify the parameters of the algorithm.
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Algorithm 11 Solving NMF with NMF-GRAD

Input: the ground truth matrix XR

positive constants σ = 0.01 and δ = 10−10

Initialize factors with U0 ∼ U [0, 1] and V0 ∼ U [0, 1]

repeat

Set W̄t[i, j] =

 Wt[i, j] if ∇W f(Wt)[i, j] ≥ 0

max (σ,Wt[i, j]) if ∇W f(Wt)[i, j] < 0

for 1 ≤ i ≤ m+ n, 1 ≤ j ≤ r

Set Ut+1 = Ut −
{
Ūt � [ŪtV

T
t Vt + δ]

}
�∇Uf(Ut,Vt)

Set Vt+1 = Vt −
{
V̄t � [V̄tU

T
t Ut + δ]

}
�∇V f(Ut,Vt)

Increment t

until t > 3000 or f(Wt+1)− f(Wt) < 10−4

return (Ut,Vt)

• The Exterior Point Method(NMF-EXT) As fully described in chapter 3, NMF-EXT

solves NMF by first finding an optimal solution to the unconstrained problem and then

moving to the feasible region from that point by flat gradient updates. Once in the

feasible region, any NMF algorithm can be used. Here, we specify the parameters of

the flat descent algorithm for solving NMF.
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Algorithm 12 Solving NMF with NMF-EXT

Input: the ground truth matrix XR

initial factors W0 =

 U0

V0

 obtained as explained in Chapter 3

initial descent constant δ = 0.1

Perturbation constant ε = 10−6

Scaling constant κ = 0.1

Number of outer iterations n1 = 30

Number of inner iterations n2 = 100

Step parameters β = 0.5, σ = 10−1

Set Ŵ = W0

for i ∈ {1, . . . , n1} do

if i mod 2 = 0 then

s = κ

else

s = 1
κ

end if

W0 = PerturbScale(Ŵ , ε, s)

δ0 = δ

for t ∈ {0, . . . , n2 − 1} do

Set Wt+1 = Flat-Descent(Wt,∇f(Wt), δt),

where δt = δt−1β
M , with M being the smallest integer that

f(Wt+1)− f(Wt) ≤ σ∇f(Wt)
T (Wt+1 −Wt),

end for

Ŵ = Wn2

end for

return Ŵ

As for measures of evaluation, we consider the approximation error and the sparsity of the
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factor matrices. That is

εA(UAR ,V
A
L ) = ||XR −UARV AR

T ||2F and

κA(UAR ) =
||UAR ||0
|M| × d

,

where (UAR ,V
A
R ) are the solutions of 4.1 given by algorithm A.

We run these algorithms ns = 200 times and obtain a sample of size ns for the statistics of

interest. Let ε̄A(UAR ,V
A
R ) = mean({εA(UAR ,V

A
R )}) and κ̄A(UAR ) = mean({κA(UAR )}).

Tables below represents ε̄A(UAR ,V
A
R ), minimum value, maximum value and a 95% confidence

interval length for {εA(UAR ,V
A
R )}. The confidence interval[

ε̄A(UAR ,V
A
R )± 1.96σ

√
ns

]
is obtained through a standard application of the central limit theorem, where σ is the

empirical standard deviation of {εA(UAR ,V
A
R )}.

By the same token, we have represented κ̄A(UAR ), minim value, maximum value and a 95%

confidence interval length for {κA(UAR )}.

Table 4.3: Summary statistics for prediction accuracy and sparsity of NMF-MUL algorithm for the

right entity relation matrix XR

NMF-MUL Prediction Error Sparsity

mean 184.89 18.709

confidence interval size 0.0551 0.1398

minimum 184.41 17.304

maximum 185.79 20.336
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Table 4.4: Summary statistics for prediction accuracy and sparsity of NMF-GRAD algorithm for the

right entity relation matrix XR

NMF-GRAD Prediction Error Sparsity

mean 184.86 20.463

confidence interval size 0.0520 0.1129

minimum 184.38 18.865

maximum 185.59 22.322

Table 4.5: Summary statistics for prediction accuracy and sparsity of NMF-EXT algorithm for the right

entity relation matrix XR

NMF-EXT Prediction Error Sparsity

mean 184.74 45.762

confidence interval size 0.0394 3.9155

minimum 184.38 0.0

maximum 185.23 55.921

In order to get a sense of how well the NMF-optimization algorithms do in terms of recon-

structing the matrix, we have to compare the prediction errors in the above table with the

optimal SVD error. In this case

min
UR∈R|M|×d
VR∈RNR×d

||XR −URV
T
R ||2F = 176.116

Clearly, the factor matrices obtained by the NMF-EXT are much sparser than those of the

other algorithms. Moreover, the prediction error of the NMF-EXT is lower than that of

the other two algorithms. It can also be observed that NMF-GRAD performs a little bit

better than NMF-MUL in terms of prediction accuracy but ”significantly” better in terms

of sparsity. To test the statistical significance of our observations, we perform a two sample
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one-sided t-test with the following hypotheses on the samples we have obtained from each

pair of algorithms

H0: mean({εA(UAR ,V
A
R )}) ≤mean({εA′(UA

′
R ,V A

′
R )})

H1: mean({εA(UAR ,V
A
R )}) > mean({εA′(UA

′
R ,V A

′
R )}).

The corresponding p-value of the test is then

pA,A′ = P(T >
ε̄A(UAR ,V

A
R )− ε̄A′(UA

′
R ,V A

′
R )√

σ2
A+σ2

A′
ns

),

where T is the Student’s random variable with ns − 1 degrees of freedom and σA is the

empirical standard deviation of the sample {εA(UAR ,V
A
R )}. Table below gives the values of

pA,A′ for all pairs of algorithms

Table 4.6: p-values of the t-test

(A,A′) pA,A′

(NMF-MUL,NMF-GRAD) 0.228

(NMF-MUL,NMF-EXT) 2.85× 10−5

(NMF-GRAD,NMF-EXT) 0.0004

We repeated the same experiments on the left entity-relation matrix and the results are

summarized in the following tables
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Table 4.7: Summary statistics for prediction accuracy and sparsity of NMF-MUL algorithm for the left

entity relation matrix XL

NMF-MUL Prediction Error Sparsity

mean 190.59 20.536

confidence interval size 0.0332 0.2074

minimum 190.28 17.748

maximum 191.02 23.333

Table 4.8: Summary statistics for prediction accuracy and sparsity of NMF-GRAD algorithm for the

left entity relation matrix XL

NMF-GRAD Prediction Error Sparsity

mean 190.46 22.268

confidence interval size 0.0293 0.2701

minimum 190.24 19.893

maximum 190.87 26.684

Table 4.9: Summary statistics for prediction accuracy and sparsity of NMF-EXT algorithm for the left

entity relation matrix XL

NMF-EXT Prediction Error Sparsity

mean 190.51 51.995

confidence interval size 0.0331 3.0066

minimum 190.25 0.0

maximum 191.12 57.765

In order to compare the reconstruction error of the NMF algorithms with that of the optimal
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SVD, we note that

min
UL∈R|M|×d
VL∈RNL×d

||XL −ULV
T
L ||2F = 179.786

It can be clearly observed that the NMF-EXT algorithm beats the other two in terms of

sparsity. Although, it is interesting to note that, there are instances for which the solution

of the NMF-EXT algorithm is not sparse at all. In terms of prediction accuracy, it can be

observed that the NMF-GRAD algorithm does better than the other two; while NMF-EXT

performs better than the NMF-MUL.

4.1.9 Entity Clustering results

As discussed earlier, our primary objective is to find clusters of entity mentions that refer

to the same group of objects in the stories, aka actants. In fact, the main intuition behind

seeking sparse embeddings for the entity mentions, which was achieved by imposing the non-

negativity of the factor matrices in the matrix estimation problem as a surrogate to sparsity

of the factors, is that sparse embeddings lead to better clustering results. In this section we

verify this intuition by evaluating the clustering performance of the above algorithms on the

dataset based on the actant groupings in table 4.1.

In order to show the importance of the sparsity of the entity mention embeddings in the

performance of the clustering, we compare the clustering performance of the NMF-based

algorithms with that of the embeddings obtained from optimal SVD factorization. Note

that for a fair comparison between the different algorithms, we fix the clustering method

that groups the obtained embeddings by the different algorithms. Specifically, we use K-

means clustering with K = 20 clusters.

Let us recall the measures of clustering performance from chapter 2. Suppose that Given a set

M of entity mentions with the underlying ground truth actant groupings E = {E1, E2, . . . , EJ},

we want to measure the quality of a clustering C = {C1, C2, . . . , CK} with respect to E . The

measures of clustering performance that we consider in our experiments are

• Mutual Information I(C; E) =
∑K

i=1

∑J
j=1 Pi,j log

Pi,j
PiP ′j
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• Homogeneity h(C; E) = 1− H(C|E)
H(C)

• Completeness c(C; E) = 1− H(E|C)
H(C)

• V-measure v(C; E) = 2h(C;E)c(C;E)
h(C;E)+c(C;E)

,

where Pi = |Ci|
N

, P ′j =
|Ej |
N

, Pi,j =
|Ci∩Ej |
N

, are relative sizes of the groups and their intersection

and H(C) = −
∑K

i=1 Pi logPi, and

H(C|E) = −
K∑
i=1

J∑
j=1

Pi,j log
Pi,j
P ′j

,

are the cluster entropy and conditional entropy respectively. For each algorithm, we have

collected an independent sample of size ns = 200 on the statistics of interest.

For each measure D(C; E), let {D(i)(C; E)}nsi=1 be the sample. Moreover, let D̄(C; E) =

mean({D(i)(C; E)}nsi=1).

Tables below represents D̄(C; E), minim value, maximum value and a 95% confidence interval

length for {D(i)(C; E)}nsi=1 for the various measures defined above.

Table 4.10: Summary of K-means clustering results for NMF-MUL algorithm with K=20

NMF-MUL homogeneity completeness V-measure Mutual Information

mean 0.523 0.428 0.471 0.473

confidence interval size 0.002 0.001 0.002 0.002

minimum 0.490 0.403 0.442 0.444

maximum 0.554 0.450 0.497 0.500
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Table 4.11: Summary of K-means clustering results for NMF-GRAD algorithm with K=20

NMF-GRAD homogeneity completeness V-measure Mutual Information

mean 0.526 0.427 0.471 0.474

confidence interval size 0.002 0.001 0.002 0.002

minimum 0.488 0.405 0.448 0.450

maximum 0.565 0.451 0.502 0.505

Table 4.12: Summary of K-means clustering results for NMF-EXT algorithm with K=20

NMF-EXT homogeneity completeness V-measure Mutual Information

mean 0.523 0.425 0.469 0.471

confidence interval size 0.003 0.002 0.002 0.002

minimum 0.488 0.401 0.446 0.448

maximum 0.563 0.456 0.504 0.506

Table 4.13: Summary of K-means clustering results for SVD algorithm with K=20

SVD homogeneity completeness V-measure Mutual Information

mean 0.511 0.424 0.463 0.466

confidence interval size 0.003 0.002 0.002 0.003

minimum 0.467 0.390 0.426 0.428

maximum 0.560 0.455 0.499 0.501

It can be observed that the clustering accuracy is more or less the same on embeddings

obtained from different NMF algorithms and it is significantly better than that of the SVD

embeddings.

In order to visualize the obtained embeddings from these methods, we use a popular method
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to visualize high dimensional embeddings, called t-distributed Stochastic Neighbor Embed-

ding (t-SNE) [81]. t-SNE is a nonlinear dimensionality reduction technique to visualize

high dimensional vectors on a 2D plane. It models each high-dimensional object by a two-

dimensional point such that similar objects are modeled by nearby points and dissimilar

objects are modeled by distant points with high probability.

In fact it constructs two probability distributions, one over pairs of high-dimensional vectors

and another one over the points in the low-dimensional space, and then minimizes the Kull-

back–Leibler(KL) divergence between the two distributions with respect to the locations of

the points in the map.

In the following, we visualize the entity mention embeddings obtained by the NMF-EXT

algorithm via the t-SNE mapping. It can be clearly seen that groups of entity mentions that

refer to the same actant group tend to cluster together.

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

shot

books

children

dr

parents
government

ped

vaccinations

pox

schools

ds

articles

school
reactions

officials

boy
vaccines

religion

nurse

shots

parent

vaxes

article

teacher vaccinefaith

kids
daughter

pediatrician

tetanus

son

news

vaxing

vaccinationvax

kid media

infection
child

exemption

flu

nurses

autism
polio

pediatricians

book

measles

dd
fever

daycare

doctor

infections

doctors

reaction

Figure 4.3: Entity Embeddings for Mothering data

In the following table, the clusters by the K-means algorithm with k = 20 applied to embed-

dings obtained by NMF-EXT algorithm are listed. It can be clearly observed that clusters 1

and 13 represent care-receiver actant groups. Cluster 3 represents the actant group related
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to big pharma. Cluster 4, 11 and 15 represents media that parents use as sources of ob-

taining and sharing information. Cluster 5 concerns the actant group related to vaccination.

Cluster 6 represents an actant group related to causes of the diseases. Cluster 12 represents

the parents actant in the story narrative. Cluster 14 represents the actant that concerns ad-

verse effects allegedly due to vaccines. Clusters 16 and 19 represent care providers. Cluster

17 represents that actant group related to authorities and finally cluster 18 represents the

actant group concerning vaccination preventable diseases.
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cluster 1 infant women groups generation girl boy infants months girls adult cat patients today adults year member

majority niece babies students grandmother persons wife dog organization

cluster 2 vaxers decision mamas point news lol statement case report sense

cluster 3 brain group pharma workers government world condition companies stuff man judge idea society lawyer

manufacturer public body members faith ladies question system author bodies life poster company mine

individual systems researchers

cluster 4 books info story link thread information book

cluster 5 shot vaccinations dose doses vaccines shots vaxes vaccine vaccination vax antibiotics

cluster 6 thimerosal bacteria strains amount viruses mercury cells antibodies

cluster 7 records sources medicine schedule care type treatment form drugs exemptions sort exemption test blood

letter exposure thought

cluster 8 years day program tests couple bit luck research state reason times place lot kind work matter thing daycare

cluster 9 breastfeeding results conditions bill factors experience media cases problem evidence breastmilk immunity

status levels response

cluster 10 authors risks issues folks risk religion issue side number vaxing rates part science situation beliefs numbers

things posters fact laws

cluster 11 paper list articles page posts article post study studies stories links data

cluster 12 mother father parents dad woman dh moms lady mothers brother husband people parent sister family friends

mama friend families physician nurses midwife authorities person

cluster 13 oldest children ds kids daughter son kid boys child baby babe dd

cluster 14 increase symptoms effects reactions autism damage problems reaction

cluster 15 board forum website places site countries

cluster 16 guys docs guy peds officials lots scientists patient profession community district manufacturers population

providers experts pediatricians age

cluster 17 rest clinic schools school practice country hospital states hospitals law

cluster 18 pox disease cough tetanus infection flu illnesses illness diseases polio measles fever virus infections

cluster 19 office vet dr ped mom pedi nurse teacher pediatrician doc doctor doctors

cluster 20 dogs animals foods diet
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4.2 Transactional Relations on Twitter

4.2.1 Motivation

Over the last few years, there has been a growing public and enterprise interest in social

media. Service Providers, manufacturers and merchants allow customers to write reviews

and express their experience with their service or product in an on-line platform, being it a

designated public page in a social media platform like Facebook or an e-merchant website

like Amazon.

This has lead to a paradigm shift in ways parties in an online transactional environment

interact. From the perspective of the service provider, social media data can dramatically

improve business intelligence, for branding and awareness, customer engagement, user expe-

rience analysis and improving customer service. From customers’ perspective, social media

can help making informed choices based on a more comprehensive view of the pros and cons

of the service or product. It helps also as a venue to compare with the product or service

similar competitors. Moreover, social media can be used as a troubleshooting platform as

other customers with similar issues might have shared their experience. Finally, from the

perspective of the investors and new players, monitoring customer reviews in social media

helps with understanding potential failure situations, product popularity problems, as well

as to be alerted against potential threats for Investment.

This new paradigm has opened up opportunities for understanding interactions in a trans-

actional setting to guide building socially-aware systems. For example, in behavioral eco-

nomics studies the correlation between public mood, financial rumors or news stories and

economic indicators. In Data analytics and business intelligence, it provides opportunities for

developing computational methods for monitoring marketing activities, consumer opinion,

influencers, competitors, brands, investment, market prediction, and aggregation of events

from user-generated content.

The main challenge in turning such data into business intelligence is scalability with cus-

tomer engagement. It is practically impossible to curate a set of hand picked reviews to
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represent a holistic view of customers’ opinion. Moreover, it is not clear how to distinguish

between objective comments versus subjective ones that involve experiences of individuals

that may not necessarily reflect the overall opinion of the customers. Therefore, there is an

indispensable need for large scale methods that can aggregate pieces of information present

in different reviews and provide a holistic view of the customers’ opinion.

Such summarization can help with opinion mining with various levels of granularity. As such,

one can obtain a general assessment of sentiment polarity regarding a particular product or

service, which can be invaluable for marketing or reputation management. A more granular

objective would be to target specific query-based information, such as ”Which particular

features do customers like best about a given product?” Therefore, having a structured

representation of the transactional relationships in the form of a summary network between

the involved entities with connections that instantiate transactional relationships is necessary.

Most of the studies on opinion mining in microblogging settings involve limited views of the

data. For example, Turney [82] proposes an unsupervised method for classifying reviews

in a consumer platform. Popescu and Etzioni [83] proposed a method for opinion phrase

extraction based on the semantic orientation of words. This system can then be used for

entity-level classification with extraction rules based on sentence level rules. Hu et al. [84]

develop an extraction method that identifies sentences that contain one or more product

features and characterize the polarity of the opinion sentences using the adjective set from

WordNet. Along the same line of work [85] aim to identify noun phrases referred to the

problem target in the sentence by first identifying what phrases potentially contain infor-

mation about the problem then finding possible targets using the set of nouns for a given

problem expression.

In this work, we introduce an automated and scalable machine learning framework which uses

entity/relationship extractions to summarize customer reviews. In a transactional setting,

where there only a limited types of entities involved in the story and their interactions are

rather limited to a set of known relationship types, the summarization can be cast as an

instance of entity/relation typing problem, where the problem is to determine the type of

unknown entities rather than the harder problem of grouping similar entities into clusters
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without taking into consideration that there are only a small number of types involved in

the problem.

In order to show the merits of our entity resolution method, we focus on the harder problem

of clustering the entities based on the extracted relationships. In the typing problem, we

need to have a set of seed entities with known type labels to disseminate the type information

to the unknown entities, while in the clustering problem, the partitioning is independent of

any known types and the cluster labels are up to interpretation. Note that a clustering

partition of the entity mentions can be turned into a typing result in presence of partial type

labels by taking the majority type in the cluster.

4.2.2 Data

The data mainly consist of objective tweets which are describing interactions among banks

and mobile payments, or merchants and mobile payments. Tweets such as:

• “Barclays works with #Apple- Pay”, “Tried using Apple Pay at McDonalds. Didn’t

work. Rubbish.”

• “Starbucks will soon accept Apple Pay #news #tech”.

• “chrisdrackett I wish ApplePay would work with my paypal business card. :(“

• “roymartin gav Just tried ApplePay in McDonaldsUK. Amex card didn’t work so had

to pick a different card from Passbook instead..”

• “McDonaldsUK Twice in 1 wk I’ve tried to use ApplePay. Both times its registered

on my device but not acknowledged on your machines. WHY?!?!”

Total number of 527K posts (including retweets) are crawled from twitter using keywords

and hashtags around mobile payments such as Apple Pay and Samsung Pay. Among them,

202K tweets are unique. We applied typical text cleaning such as removing hashtags, links,

non-ascii characters, fixing encoding issues, separating sentences and etc. Then, using nltk

and stanford parser [80] we obtained POS tags and dependency parse trees that are used,
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following the same approach described in the previous section, to extract relation triplets of

the form (ms,mo, v), where ms is the head word of the subject node in the parsing tree, mo

is the headword of the object node in the parsing tree, and v is the verb that connects the

two. The following table provides a summary of the extractions T = {(ms,mo, v)} with our

method.

Table 4.14: Summary statistics for relation extraction

Extraction Number

Relation triplets(|T |) 70699

Unique subject entity mentions(|MS|) 11354

Unique object entity mentions(|MO|) 18602

|MS ∩MO| 1850

Unique relation phrases(|V|) 16188

4.2.3 Ground Truth Actants

In this study, we use the notion of entity type to refer to a set of entities that serve the same

or similar purpose in the transactional ecosystem we are exploring. This is similar to the

notion of actant in the story model, discussed in the previous section

Within our corpus three main categories of types can be identified:

• Banks

• Contact-less Payment Methods

• Merchants

In order to evaluate the performance of the clustering method, we manually curate a set

of ground truth entities that belong to each type. This set is generated by querying the

type of the first 200 most frequent word tokens from an external knowledge-base(specifically,

Google’s knowledge graph)
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We complement this list by extracting all word tokens that contain along with their fre-

quencies. We believe that frequent tokens of this type correspond to real-world entities of

our interest. e.g. McDonalds, ApplePay. But our observation is that twitter accounts with

very low number of mentions in the “main body” of tweets are often not entities and are

simply individuals tweeting here and there. Therefore, in order to discard mentions in the

“main body” of tweets that refer to individual accounts, we filter out those with a frequency

below a threshold, namely 5. To be more accurate, we don’t discard entities with just low

frequencies though, instead we discard those with low total frequencies of their entire entity

cluster. Read about our definition of entity tree in the following section. After some basic

cleaning, such as discarding certain prefix and suffix tokens like country names, we query a

knowledge-base to determine the type of most frequent tokens with character.

The following table provides a list of entity mentions with their associate type, obtained

with the method explained above, which we will use as our ground truth set to evaluate our

entity resolution method.
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Table 4.15: Ground Truth Type Assignment

Entity types (Nodes) Associated Word Set

Banks barclaysuk, ulster, natwestbusiness, bankofamerica, simple, td, ns, bmo,

arvest, barclays, hsbc, lloyds, ally, mbna, rbsgroup, rbs, amex, first-

direct, natwest, nationwide, mastercard, halifax, discover, barclaycard,

santanderuk, tsb, visa, americanexpress, chase

Payment Methods worldpay, judopayments, paypal, changeit, izettle, coin, metro, apple-

payinfo, ovchipkaart, samsungmobile, applepay, square, wocketwallet,

bpay, googlewallet

Merchants starbucks, costacoffee, pret, mcdonalds, chilis, subway, justeat, kfc, pub-

lix, homedepot, meijer, greggsofficial, sparinthe, tesco, cvs, cooperative-

food, morrisons, target, sainsburys, wholefoods, bestbuy, riteaid, wal-

greens, coop, asda, lovewilko, bloomandwild, gpdb, snapdeal, waitrose,

boots, paytm, mobikwik, verifone, applemusic, justpark, youtube, green-

gro, tfl, arrayit, linkedin, verizon, freecharge, affinorgrowers, marksand-

spencer, familyroomfilm

4.2.4 Entity-Relationship Matrices

Matrix constructions follow the exact same steps as in the previous section. Again, in

construction of the left and right entity-relation matrices, we only keep the entity mentions

that appear both as a subject in some relation tuple and an object in some other relation

tuple and filter out the entities that appear in less than 2 relation tuples in T .

After this filtering, we have

XL ∈ R92×629, and

XR ∈ R92×562,

which means that |M| = 92, |VL| = 629 and |VR| = 562.
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4.2.5 Matrix Estimation results

We compare the performance of the three algorithms studied in the previous section, namely

NMF-MUL, NMF-GRAD, and NMF-EXT, to solve the non-negative matrix factorization

problem 4.1 on both the left and right entity-relation ground truth matrices. In all the

algorithms, the ambient dimension of the embedded space is set to d = 20.

Again, we use matrix estimation error εA(UAR ,V
A
R ) and the sparsity of the factor matrices

κA(UAR ) as measures of evaluation. We run each algorithm A in ns = 200 instances and

obtain a sample of size ns for the statistics of interest; namely εA(UAR ,V
A
R )} and {κA(UAR )}.

Tables below represent mean value, minimum value, maximum value and a 95% confidence

interval length for the samples {εA(UAR ,V
A
R )} and {κA(UAR )}.

Table 4.16: Summary statistics for prediction accuracy and sparsity of NMF-MUL algorithm for the

right entity relation matrix XR

NMF-MUL Prediction Error Sparsity

mean 17.936 0.4655

confidence interval size 0.0427 0.0041

minimum 17.560 0.4207

maximum 18.545 0.5264

Table 4.17: Summary statistics for prediction accuracy and sparsity of NMF-GRAD algorithm for the

right entity relation matrix XR

NMF-GRAD Prediction Error Sparsity

mean 17.911 0.4891

confidence interval size 0.0356 0.0037

minimum 17.583 0.4443

maximum 18.383 0.5405
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Table 4.18: Summary statistics for prediction accuracy and sparsity of NMF-EXT algorithm for the

right entity relation matrix XR

NMF-EXT Prediction Error Sparsity

mean 17.741 0.6615

confidence interval size 0.0274 0.0408

minimum 17.558 0.0

maximum 18.146 0.7415

To compare the approximation error of the NMF-optimization algorithms, we compare the

prediction errors in the above table with the optimal SVD error. In this case

min
UR∈R|M|×d
VR∈RNR×d

||XR −URV
T
R ||2F = 15.943

Again, we observe that the factor matrices obtained by the NMF-EXT are by far sparser

than those of the other algorithms. Moreover, the prediction error of the NMF-EXT is

”significantly” lower than that of the other two algorithms. It can also be observed that

NMF-GRAD performs negligibly better than NMF-MUL in terms of prediction accuracy

but ”significantly” better in terms of sparsity.

Next, we repeated the same experiments on the left entity-relation matrix and the results

are summarized in the following tables.

Table 4.19: Summary statistics for prediction accuracy and sparsity of NMF-MUL algorithm for the

left entity relation matrix XL

NMF-MUL Prediction Error Sparsity

mean 17.137 0.1928

confidence interval size 0.0210 0.0023

minimum 16.942 0.1688

maximum 17.435 0.2169
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Table 4.20: Summary statistics for prediction accuracy and sparsity of NMF-GRAD algorithm for the

left entity relation matrix XL

NMF-GRAD Prediction Error Sparsity

mean 17.072 0.2082

confidence interval size 0.0206 0.0018

minimum 16.904 0.1886

maximum 17.380 0.2349

Table 4.21: Summary statistics for prediction accuracy and sparsity of NMF-EXT algorithm for the

left entity relation matrix XL

NMF-EXT Prediction Error Sparsity

mean 17.092 0.5425

confidence interval size 0.0211 0.0429

minimum 16.914 0.0

maximum 17.493 0.6433

In order to compare the reconstruction error of the NMF algorithms with that of the optimal

SVD, we note that

min
UL∈R|M|×d
VL∈RNL×d

||XL −ULV
T
L ||2F = 14.466.

It can be clearly observed that the factors obtained by NMF-EXT algorithm are sparser

than those of the other two algorithms. In terms of prediction accuracy, it can be observed

that the NMF-GRAD algorithm does better than the other two; while NMF-EXT performs

”significantly” better than the NMF-MUL.
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4.2.6 Entity Clustering results

In this section we demonstrate the quality of the embeddings obtained by the matrix estima-

tion algorithms by evaluating whether clustering the entity mentions with those embeddings

can recover the the actant groupings in table 4.15. We note that a smaller subset(of size

54) of the entities present in the actant groupings are captured in the relationships we have

extracted.

We compare the clustering performance of the NMF-based algorithms as well as the SVD

factorization. As for the clustering method, We use K-means clustering with K = 20

clusters. For each algorithm, we have collected an independent sample of size ns = 200 on

the statistics of interest, that is set divergence measures D(C; E) reviewed in the previous

section.

Tables below represents the mean value, minimum value, maximum value and a 95% confi-

dence interval length for {D(i)(C; E)}nsi=1 for the various divergence measures discussed in the

previous section.

Table 4.22: Summary of K-means clustering results for NMF-MUL algorithm with K=20

NMF-MUL homogeneity completeness V-measure Mutual Information

mean 0.364 0.139 0.202 0.225

confidence interval size 0.008 0.003 0.004 0.005

minimum 0.260 0.099 0.143 0.161

maximum 0.468 0.188 0.268 0.296
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Table 4.23: Summary of K-means clustering results for SVD algorithm with K=20

SVD homogeneity completeness V-measure Mutual Information

mean 0.253 0.093 0.136 0.153

confidence interval size 0.006 0.002 0.003 0.004

minimum 0.179 0.064 0.095 0.108

maximum 0.342 0.128 0.187 0.209

Table 4.24: Summary of K-means clustering results for NMF-GRAD algorithm with K=20

NMF-GRAD homogeneity completeness V-measure Mutual Information

mean 0.384 0.146 0.212 0.237

confidence interval size 0.007 0.002 0.004 0.004

minimum 0.290 0.108 0.157 0.177

maximum 0.466 0.178 0.257 0.287

Table 4.25: Summary of K-means clustering results for NMF-EXT algorithm with K=20

NMF-EXT homogeneity completeness V-measure Mutual Information

mean 0.352 0.135 0.195 0.218

confidence interval size 0.007 0.003 0.004 0.004

minimum 0.280 0.108 0.156 0.175

maximum 0.492 0.190 0.274 0.305

In the following, we visualize the entity mention embeddings obtained by the NMF-EXT

algorithm via the t-SNE mapping. It can be clearly seen that groups of entity mentions that

refer to the same actant group tend to cluster together.
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Figure 4.4: Entity Embeddings for twitter data

In the following table, the clusters by the K-means algorithm with k = 15 applied to embed-

dings obtained by NMF-EXT algorithm are listed. It can be clearly observed that clusters

1, 4 and 9 represent banks, clusters 2, 5, 11, 12, 13, and 14 represent merchants, cluster 3

represents mobile payment methods and the other clusters are mixtures of different actant

groups, usually with an actant group dominating.
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cluster 1 arvest santanderuk chase coin bpay

cluster 2 walgreens mcdonalds costacoffee starbucks subway

cluster 3 samsungpay googlewallet paypal applepay

cluster 4 barclays halifax lloyds hsbc

cluster 5 boots mbna safeway

cluster 6 citi waitrose amex wholefoods staples target

cluster 7 publix paytm td kroger samsungmobile

cluster 8 ulster simple chipotletweets wawa americanexpress asda morrisons verifone verizon santander firstdirect cvs

barclaycard ally greggs coop walmart pret bestbuy metro rbs androidpay mastercard sainsburys

cluster 9 square discover visa nationwide mobikwik

cluster 10 gpdb arrayit greengro

cluster 11 kfc chilis

cluster 12 freecharge cooperativefood

cluster 13 tsb natwest

cluster 14 tfl

cluster 15 looppay tesco marksandspencer
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CHAPTER 5

Detecting Changes in temporal Dynamics of the

Stories

5.1 Motivation

So far, we have studied online stories through a holistic view of all the posts, trying to

aggregate the partial information present in different posts, regardless of their timing. While

such static aggregate view helps understanding an overview summary of the story, oblivious

to the temporal dynamics in data. Characterizing the underlying dynamics in the evolution

of the story narratives in a social media setting is not a well-defined problem in general.

To make the problem concrete, let us assume that we are interested in detecting ”major

changes” in the temporal evolution of the story. These changes can reflect in the temporal

evolution of the story narrative in terms of the textual content of the users’ posts as well as

the frequency of the activities irrespective of the textual content.

Consider, for example, an online micro-blog setting, where users post textual pieces about a

specific subject or an event with a textual signature specific to it. As our running example,

let us take Twitter as the online platform and let us refer to each post as tweet. Each tweet

is indexed by the time it is posted. Let us also assume that each tweet contains a number

of hashtags, which serve as textual signatures that contextualize the subject of the tweet.

Therefore, the total number of tweets that contain a particular hashtag related to the subject

or event can be regarded a measure of user activity. Monitoring the temporal evolution of

this measure reveals different aspects of the dynamics of user behavior. Specifically, in this

work, we aim at studying the statistical changes in the distribution of the number of activities

on particular hashtags. This change in distribution can reflect occurrence of a major event
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in the story.

In dealing with this problem, we can no longer assume that the whole batch of data is

available to the learner for decision making; rather a short term decision on whether a

change has occurred in the distribution of data is demanded upon observing new data points.

Therefore, the problem should be cast as an online learning problem so that data can be

analyzed sequentially. In a statistical framework, sequential analysis, which is also referred

to as online hypothesis testing, is a form of statistical analysis where the sample size of the

learning task is not fixed in advance and data is processed and evaluated as it is observed

over time. Sampling further observations is then performed based on past observations up

to a pre-defined stopping time that evaluates if a significant result is observed. In such a

framework the goal is to optimize an objective function, while meeting constraints on the

computational cost of the algorithm, precision of the learning task and the amount of data

to be observed.

Another major challenge in detecting changes in the temporal evolution of the activities is

the transient nature of such changes, meaning that the change has to be identified before

change period, which is assumed to be short compared to the whole observation window, is

over. Thus, we can view this problem as a characterizing a trade-off between quick detection

of the change versus reliability of the decision.

We formulate this problem in a transient change point detection setting where the objective

is to design a statistical test to detect the change, if present, based on the sequence observed

so far with minimum expected delay and a controlled measure of false alarm. This problem

finds applications in a variety of other fields as diverse as industrial quality control, intrusion

detection, and on-line fault detection.

We first develop a theory for transient change point detection and in the last section, we

show how this theory can be used to monitor the temporal evolution of user activities in

twitter. In our case study, we analyze tweets containing hashtags related Super bowl 2015

for a span of 2 weeks before the game to a week after the game. We show how changes in the

distribution of activities, which reflects major events in the game, can be detected quickly
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and reliably.

5.2 Summary of prior art

In the classical quickest change detection problem, a sequence of random variables {Xi}i≥1,

monitored sequentially, undergoes a change in distribution at some unknown point ν. It is

typically assumed that the random variables Xi are independent with a common probability

density function f0 for i < ν and with another common density f1 for i ≥ ν. Both f0 and f1

are known to the observer. Framing the problem as a sequential hypothesis testing, a natural

approach is to consider a nonrandomized stopping time with respect to the observed sequence

so far. The objective is to design a statistical test to detect the change, if present, based

on the sequence observed so far with minimum expected delay and a controlled measure of

false alarm. In this setting, Lorden [86] formulated the problem considering minimization a

measure of worst case expected delay under the so called average run length(ARL) constraint

that the mean time to false alarm is bounded from below by a parameter γ. He established

an asymptotic lower bound, in the asymptote of γ, on the worst case expected delay for all

stopping times satisfying the ARL constraint and showed that the CuSum statistic proposed

earlier by Page [87] achieves this lower bound. Moustakides [88] proved the optimality

of CuSum rule beyond the asymptotic setting considered by Lorden, casting the problem

into an optimal stopping time formulation. Later, Lai in his seminal paper [89] extended

the asymptotic results of Lorden to the non i.i.d setting employing a change of measure

argument. He also suggested new performance criteria and false alarm constraints, better

suited for variations of the problem, as well as new detection procedures, namely window

limited versions of CuSum and generalized likelihood ratio rules to attain the fundamental

performance bounds he developed for different variations of the problem.

Yet another common formulation of the change point detection problem is to assume a prior

distribution on the change time ν and cast the problem into a Bayesian setting. Shiryayev [90]

formulated the problem in a Bayesian framework assuming a geometric prior distribution.

He showed that a procedure based on threshold comparison of the posteriori probability that
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a change has occurred is optimal in this setting. Inspired by [89], the asymptotic optimality

of this procedure was extended to the non- i.i.d. case [91]. A survey of the results on different

variations of the problem can be found in [92].

In many practical applications there are multiple data streams to be monitored and the

changes are quite rare. Moreover, there might be a cost associated with taking observations.

We refer to the observations taken from the sequence {Xi}i≥1 as samples and the fraction of

samples taken in a sampling scheme as its sampling rate. In a series of papers, Banerjee and

Veeravalli [93, 94] formulated the quickest change point detection within both Bayesian and

Minimax frameworks, considering an additional constraint on the sampling rate before the

change time. They show in this setting, which they refer to as data-efficient change point

detection, that natural variations of the optimal procedures under full sampling are optimal

under sparse sampling.

While the problem is well-studied in the non-transient setting, much less is known when

the change is transient. In the transient setting, {Xi}i≥1 is a sequence of independent

random variables where all random variables have the same density function f0 except for

a possible subsequence of length L starting at an unknown point ν, i.e. {Xi}ν+L−1
ν , along

which the random variables have the common density f1. Inspired by the alternative criteria

proposed in [89], the problem of quickest detection of transient changes is formulated in [95]

as minimizing the worst-case probability of missed detection under a constraint on the false

alarm rate in a given period. In [96] and [97], the problem is formulated within the framework

of partially observed Markov decision processes under several performance criteria. The main

challenge in this setting is to design the statistical test in such a way that it reacts to the

change before it disappears. In an attempt to address the problem of detectability of a

transient change with a given duration, the probability of detection under Page’s test is

examined in [98].

We study the problem of quickest detection of transient changes under a Minimax formulation

[99]. A fundamental problem of interest is to determine the smallest duration of a change

detectable with an ARL constrained sequential test. That is, given the constraint that the

expected time to false alarm be at least γ, what is the minimum duration of a change that can
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be detected reliably, when γ tends to infinity. Next, given a transient change with duration

greater than the asymptotic minimum duration specified earlier, we seek to determine the

smallest sampling rate under which a transient change can be detected as quick and reliable

as in the full sampling regime. We address these two questions leveraging known results for

the non-transient setting.

5.3 Non-Transient Change Detection under Full Sampling

5.3.1 Problem Statement

Let us first review the classical change point detection problem for an independent random

process {Xi}i≥1 defined over a finite alphabet X , where all the random variables before an

unknown instant ν, so called the change point, have the common density function f0, while

all random variables {Xi}i≥ν have the common density function f1; that is

Xi ∼

 f0 if 1 ≤ i < ν

f1 if ν ≤ i .
(5.1)

The problem of interest is to detect the change point with a possibly small detection delay

and a controlled false alarming reaction.

5.3.2 Characterizing Minimum Delay

Framing the problem as a sequential hypothesis testing, a natural approach is to consider

a non-randomized stopping time τ with respect to the observed sequence so far. In the

setting where no assumption is made on the prior distribution of the change point, Lorden

[86] proposed a Minimax formulation of the problem as to minimize a measure of worst

case expected delay, while constraining expected time to false alarm being large; that is

minimizing

Ē1[τ ] = sup
ν≥1

ess supEν [(τ − ν + 1)+|X1, X2, · · · , Xν−1], (5.2)

over all stopping times τ satisfying

E∞[τ ] ≥ γ, (5.3)
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where Eν [·] denotes expectation under Pν which is the probability measure when the change

occurs at time ν. Lorden showed that asymptotically as γ →∞, for any ε > 0 and for any

stopping time τ satisfying (5.3),

Ē1[τ ] ≥ sup
ν≥1

Eν [τ − ν|τ ≥ ν] ≥ (1− ε) log γ

D(f1||f0)
(5.4)

where D(f1||f0) = E1 log f1(Xi)
f0(Xi)

. Then, he showed that the stopping time based on the so

called CuSum statistic, defined in the following, achieves this lower bound asymptotically.

Definition 5.3.1. The CuSum procedure is defined as

τ ∗γ = inf{n|max
k≤n

n∑
i=k

Zi ≥ c}, (5.5)

where Zi = log f1(Xi)
f0(Xi)

, and c is chosen appropriately such that E∞[τ ∗] ≥ γ.

Thus,

inf{Ē1[τ ]|E∞[τ ] ≥ γ} ∼ E1τ
∗
γ ∼

log γ

D(f1||f0)
. (5.6)

Later, Lai extended this result for the non independent identically distributed setting using

a natural generalization of the CuSum rule in [89], where he introduced new performance

criteria which also provide insights on the other variations of the problem. The main ingre-

dient in [89] to prove (5.6) is the following important observations which stands as the core

of asymptotic optimality of the CuSum rule for minimizing (5.2). For any stopping time τ

satisfying (5.3) and any ε > 0,

Pν(τ − ν > (1− ε) log γ

D(f1||f0)
|τ > ν) = 1 + o(1). (5.7)

where the o(1) term is uniform over all ν.Moreover, for the stopping time τ ∗γ defined in (5.35),

Pν(τ ∗γ − ν ≤ (1 + ε)
log γ

D(f1||f0)
|τ ∗γ > ν) = 1 + o(1), (5.8)

for all ν.

These observations provide fundamental insight on detectability of transient changes, sug-

gesting an asymptotic threshold on the smallest duration of the change detectable reliably

by a stopping random variable satisfying (5.3).
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5.4 Transient Change Point Detection Under Sparse Sampling

5.4.1 Problem Statement

Suppose now that the random process {Xi}i≥1 is distributed as follows

Xi ∼

 f0 if 1 ≤ i < ν or i ≥ ν + L

f1 if ν ≤ i < ν + L .
(5.9)

The sequence {Xi}i≥1 is observed sequentially according to a sampling strategy

Definition 5.4.1. A Sampling Strategy with respect to a random process {Xi}i≥1 is an

ordered collection of random time indices S = {S1, S2, · · · }, at which samples are taken from

the sequence. In general, the decision as to whether take a sample at a certain time instance

or not depends on the past samples. Since the change time is unknown, without loss of

generality we can start sampling from the first time instance of the sequence, that is S1 = 1.

For any n ≥ 2,

Sn = Φn({XSi}{i<n}) (5.10)

where Φn : X n−1 → {Sn−1 + 1, Sn−1 + 2, · · · } is a decision function at time n.

The objective is to detect the change efficiently, in a suitable sense, with a so called decision

policy Ψ which consists of a sampling strategy S and a stopping time τ with respect to the

sampled sequence so far, that is Ψ = (S, τ). A decision policy is evaluated with a measure

of detection delay and its sampling rate constrained on a measure of false alarm. As in

the non-transient setting, we consider the class of all decision policies satisfying the ARL

constraint.

Definition 5.4.2 (False Alarm Constraint). An ARL constrained decision policy Ψ = (S, τ)

is such that

E∞[τ ] ≥ γ. (5.11)

Definition 5.4.3 (Detection Delay). For a decision policy Ψ = (S, τ), and ε > 0, the worst

case minimum delay in probability is defined as

d(Ψ, ε) = min

{
` : sup

ν≥1
Pν(τ − ν > `|τ ≥ ν) ≤ ε

}
(5.12)
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We will later argue that in the transient setting a measure of worst case delay in probability

is more appropriate to be adopted compared to the measure of worst case expected delay

defined earlier in (5.2).

Definition 5.4.4 (Sampling Rate). For a decision policy Ψ = (S, τ), the pre-change sam-

pling rate is defined as

ρ(Ψ) = lim sup
n

En
[ |S(n)|

n

∣∣τ ≥ n
]

= lim sup
n

E∞
[ |S(n)|

n

∣∣τ ≥ n
]
, (5.13)

where |S(n)| , {i ∈ S|i ≤ n} is the number of samples taken up to time n.

Definition 5.4.5 (Achievable Sampling Rate). Let {ργ}γ>0 be an indexed family with 0 ≤

ργ ≤ 1. Sampling rates {ργ}γ>0 are achievable with respect to an indexed family of change

durations {Lγ}γ>0 , if there exists an indexed family of decision rules {Ψγ = (Sγ, τγ)}γ>0,

such that for γ large enough,

1. The ARL constraint E∞[τγ] ≥ γ is satisfied,

2. The sampling rates satisfy ρ(Ψγ) ≤ ργ,

3. The delay satisfies

d(Ψγ, εγ) ≤ Lγ,

for some indexed family {εγ}γ>0 such that lim
γ→∞

εγ = 0.

5.4.2 Notational Convention

When clear from the context, we represent an indexed family with its representative element,

e.g. we denote {ργ}γ>0 simply as ργ. Moreover, we will use dγ instead of d(Ψγ, εγ), leaving

out any explicit reference to the decision policy Ψγ and to the indexed family {εγ}γ>0 which

we assume satisfies lim
γ→∞

εγ = 0, unless it is necessary to make the sampling strategy or the

stopping time explicit.
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5.4.3 Minimum Duration of a Reliably Detectable Change

Theorem 5.4.1 (Transient Change under Full Sampling). Under full sampling (ργ = 1),

(i) Let α > 1. suppose Lγ ≥ α log γ
D(F1||F0)

. Then ργ is achievable with respect to Lγ. Moreover,

for decision policies Ψ∗γ with stopping time τ ∗γ defined in (5.35) and full sampling strategy,

we have

d(Ψ∗γ) ∼
log γ

D(f1||f0)
(5.14)

(ii) Let 0 ≤ α < 1. Suppose that Lγ ≤ α log γ
D(f1||f0)

. Then ργ is not achievable with respect to

Lγ. Moreover, in this case

lim inf
γ→∞

dγ
γ1−α ≥ 1 (5.15)

Remark 1. Theorem 1 establishes an asymptotic threshold on the minimum duration of

a change that can be detected reliably. Specifically, for γ large enough, if the duration of

the change is above log γ
D(f1||f0)

, the delay is as short as if the change had infinite duration.

Henceforth we call such transient changes asymptotically detectable. For transient changes

with duration below this threshold, delay grows as a polynomial function of γ. The lower

bound on the asymptotic worst case delay in probability in (5.17) can be converted to a lower

bound on the worst case expected delay defined in (5.2). Note, however, that the guarantee

provided on the asymptotic worst case delay in (5.14) cannot necessarily be translated to a

guarantee on the worst case expected delay. This is because when the event {τ ∗γ > ν + Lγ}

occurs, although happening with a vanishing probability, the delay can be arbitrarily large,

as the rest of the observations are f0 distributed, which leads the expected delay to grow

unbounded.

5.4.4 Minimum Sampling Rate

The following two theorems characterize the minimum achievable sampling rates with respect

to duration of detectable transient changes. Theorem 3 is proved using the so called DE-

CuSum decision policy proposed in [94], which was used to achieve any constant sampling

rate and asymptotically the same worst case expected delay as under full sampling in a non-

transient scenario [94]. A brief description of the DE-CuSum rule is provided in the next
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section right before proof of Theorem 3. For a more detailed discussion on the description

of the algorithm and the guarantees it provides we refer the reader to [94].

Theorem 5.4.2 (Minimum Asymptotic Achievable Rate [94]). Let α > 1. suppose that

Lγ ≥ α log γ
D(f1||f0)

. Sampling rates ργ = ω( 1
log γ

) are achievable with respect to any Lγ. Moreover,

as γ →∞, the delay satisfies

d(Ψ̂γ) ∼
log γ

D(f1||f0)
, (5.16)

where Ψ̂γ is the DE-CuSum procedure.

Remark 2. Note that in [94], authors are only interested in constant sampling rates while

we are interested in sampling rates that scale with γ as does the duration of the change. In

this case, the step size of the DE-CuSum procedure in the idle regime is not a constant but

a function of γ the same scaling behavior as the sampling rate ργ.

In the following theorem, we assume that the indexed family Lγ corresponds to durations

of some asymptotically detectable changes and show that sampling rates ργ = o( 1
Lγ

) are not

achievable.

Theorem 5.4.3 (Converse to Theorem 5.4.2). Let α > 1. suppose that Lγ ≥ α log γ
D(f1||f0)

.

Consider sampling rates ργ = o( 1
Lγ

) with respect to Lγ. Then, for any decision policy Ψγ,

satisfying the false alarm and the sampling rate constraints in Definition 6, Ψγ only takes

samples from f0(completely misses the change), with probability bounded away from zero.

Moreover, in this case

lim inf
γ→∞

dγ
γ
≥ 1 (5.17)

Corollary 5.4.1. Considering detectable changes with Lγ = θ(log γ), sampling rates o( 1
log γ

)

are not achievable.
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5.5 Proofs

1. Suppose that there exists some δ > 0 such that Lγ ≥ (1 + δ) log γ
D(f1||f0)

for some δ > 0,

and consider the CuSum rule

τ ∗γ = inf{n|max
k≤n

n∑
i=k

Zi ≥ log γ}. (5.18)

It follows that for any 0 < ε ≤ δ

Pν(τ ∗γ − ν > (1 + ε)
log γ

D(f1||f0)
|τ ∗γ > ν)

≤ Pν

 ⋂
ν≤n≤ν+(1+ε) log γ

D(f1||f0)

{
max
k≤n

n∑
i=k

Zi < log γ

}
≤ Pν

(1+ε) log γ
D(f1||f0)∑
i=ν

Zi < log γ

 −→
γ→∞

0, (5.19)

where the first inequality follows from the definition of the CuSum rule in (5.18) and

the last step follows from applying the law of large numbers to the sequence of i.i.d.

random variables {Zi}i≥ν with mean D(f1||f0).

Note that (5.19) establishes an upper bound on the detection delay. Moreover, by

causality of the stopping time random variables, (5.7) gives a lower bound on the

detection delay, which combined with the upper bound yields the desired result.

2. Now suppose that Lγ ≤ (1 − δ) log γ
D(f1||f0)

for some δ > 0. Let Ψγ = (Sγ, τ) be any

decision policy satisfying the false alarm constraint E∞[τ ] ≥ γ. Since E∞[τ ] ≥ γ, it

follows [Proof of Theorem 1 in [89]] that for any integer m < γ, there is some ν ≥ 1

such that

P∞(τ ≥ ν) > 0, and P∞(τ < ν +m|τ ≥ ν) ≤ m

γ
. (5.20)

Let m be the largest integer less than 2γδ−ε for some 0 ≤ ε < δ. Define the events

Cε =

0 ≤ τ − ν ≤ γδ−ε,

min{τ,ν+Lγ−1}∑
i=ν

Zi < (1− ε) log γ

 ,
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and

C ′ε =

0 ≤ τ − ν ≤ γδ−ε,

min{τ,ν+Lγ−1}∑
i=ν

Zi ≥ (1− ε) log γ

 .

Following the same lines as that of Lai’s change of measure argument (Proof of [89,

Theorem 1]), we have:

Claim 1. As long as δ > 2ε > 0,

Pν(Cε|τ ≥ ν) −→
γ→∞

0. (5.21)

Claim 2.

Pν {C ′ε | τ ≥ ν} −→
γ→∞

0. (5.22)

Combining Claims 1 and 2, we get Pν
{
τ − ν ≤ γδ−ε|τ ≥ ν

}
→ 0, as γ tends to infinity,

for ν given in (5.20). Since ε can be made arbitrarily small, it follows that

sup
ν>0

Pν
{
τ − ν > γδ|τ ≥ ν

}
→ 1, (5.23)

which in turn implies

lim inf
γ→∞

dγ
γδ
≥ 1,

as desired.

5.5.1 Description of DE-CuSum decision rule

Let us briefly review the DE-CuSum detection rule Ψ̂ proposed in [94]. Define the sampling

indicator random variable Mi as being 1 when the time instance i is sampled, and zero

otherwise. Start with D0 = 0 and fix γ > 0, µ(γ) > 0 and h > 0. For n ≥ 0, define the

following sampling strategy

Mn+1 =

 1 if Dn ≥ 0

0 Otherwise.

Also, define the stopping time as

τ̂(γ) = inf{n ≥ 1|Dn > log γ}. (5.24)
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At each step, the statistic Dn is being updated as follows

Dn+1 =

 min{Dn + µ, 0} if Mn+1 = 0

(Dn + Zn+1)h+ if Mn+1 = 1
(5.25)

where (x)h+ = max{x,−h}. In fact the algorithm naturally performs a hypothesis test

between the distributions f1 and f0 and skips the samples while the statistic is below 0. As

long as Dn < 0, which depends on the last undershoot from 0, samples are skipped and Dn

is being updated by adding the deterministic increment µ to Dn. The truncation to −h is

just to avoid large undershoots and is imposed for the ease of analysis.

Note that the DE-CuSum rule consists of a sequence of two sided tests; where each two-sided

test contains a sequential probability ratio test (SPRT) and a possible sojourn below zero.

Therefore, the stopping time of a two sided test in DE-CuSum rule is

Λγ = λγ + d(Dλγ )
h+e1{Dλγ<0} (5.26)

where, λγ = inf{n ≥ 1|
∑n

i=k Zi /∈ [0, log γ]}.

5.5.2 Proof of Theorem 2

We prove this theorem by the DE-CuSum procedure Ψ̂γ described earlier. It is shown in [94]

that the sampling constraint ρ(Ψ̂γ) ≤ ργ is met if

µγ < K
ργ

1− ργ
, (5.27)

where K =
E∞[|Zh+1 ||Z1<0] P∞(Z1<0)2

E∞[λ∞]
is a constant that does not scale with γ [94].

Using standard arguments, as it is shown in [94], the asymptotic worst case delay in proba-

bility of the DE-CuSum rule is bounded from above as follows

lim sup
γ→∞

dγ(Ψ̂) ≤ log γ

D(f1||f0)
+K ′

1

µγ
+K ′′, (5.28)

where K ′ =
E∞[|Dh+λ∞ |]

P1(Dλ∞>0)P1(Z1<0)
+ h and K ′′ = 2 + 1

P1(Dλ∞>0)
are constants which do not scale

with γ [94].
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Given a sampling rate constraint ργ = ω( 1
log γ

), by setting the step parameter for the sojourn

time in the DE-CuSum procedure as µγ = θ(ργ) such that (5.27) is satisfied, the desired

result follows by considering (5.28) and the lower bound (5.7).

5.6 Proof of Theorem 3

We show that for any decision policy Ψγ = {Sγ, τ} satisfying the false alarm constraint

E∞[τ ] ≥ γ and the sampling rate constraint ρ(Ψγ) ≤ ργ with ργ = o( 1
Lγ

), there exists a time

interval of duration Lγ such that, with probability bounded away from zero, no point within

this interval is sampled by Ψγ, for γ sufficiently large.

First note that since Ψγ satisfies the false alarm constraint E∞[τ ] ≥ γ, we get

P∞(τ ≥ γ

2
) ≥ P∞(τ ≥ γ

2
+ ν)

>
1

2
P∞(τ ≥ ν) > 0, (5.29)

where the last inequalities hold for some ν ≥ 1 by (5.20) with m = γ
2
.

The proof is based on the fact that as long as the samples are drawn from the distribution

f0, the sampling rate constraint guarantees existence of sufficiently long gaps among the

sampling times. Note that if no change occurs at all, the sampling rate constraint implies

E∞
[ |S(γ/2)|
γ/2

∣∣τ ≥ γ

2

]
= o(

1

Lγ
). (5.30)

Divide the time frame up to time ν = γ
2

into consecutive intervals of size Lγ. For each time

interval, define the following indicator random variable

Ki =

 1 If at least one point from ith interval is sampled

0 Otherwise.

We show that there exists an interval from which no sample is taken with probability bounded

away from zero. In fact, we show that

lim sup
γ→∞

max
j

P∞(Kj = 0|τ ≥ γ

2
) = 1. (5.31)
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Otherwise,

lim inf
γ→∞

min
i

P∞(Ki = 1|τ ≥ γ

2
) > 0, (5.32)

which implies

E∞
[ |S(γ/2)|
γ/2

∣∣τ ≥ γ

2

] (a)

≥ E∞
[2

γ

bγ/2Lγc∑
j=1

Kj

∣∣τ ≥ γ

2

]

=
2

γ

bγ/2Lγc∑
j=1

P∞(Kj = 1|τ ≥ γ

2
)

= θ(
1

Lγ
), (5.33)

where (a) holds because more than one sample can be taken from a given interval. Note that

(5.33) contradicts (5.30), establishing that (5.31) holds.

Combining (5.29) with (5.31) yields P∞(Kj = 0) > 0 for some j ≥ 1. Therefore, for any

decision policy, there exists some interval of size Lγ from which no sample is taken with

probability bounded away from zero.

Suppose now that a change of duration Lγ occurs along the sequence within the jth interval

for which P∞(Kj = 0) > 0. In such a case, with probability bounded away from zero, no

point of the change period is sampled, meaning that only samples from the distribution f0

are observed. In this case, since E∞[τ ] ≥ γ, it follows using an argument similar to part (ii)

of theorem 1 that

lim inf
γ→∞

d(Ψγ) ≥
γ

2
, (5.34)

as desired.

5.7 Evaluation Results on Twitter Data

We analyzed a total of 3,138,823 tweets collected by querying popular hash-tags related to

the 2015 Super Bowl spanning a period starting from almost 3 weeks before the game to

a week after the game. We are interested in detecting ”major changes” in the temporal

evolution of the story, specifically changes in the distribution of number of activities. In our
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study, we are oblivious to the textual content of the tweets except for the hash-tags that

contextualize the tweets. Let H denote the set of hash-tags related to the event; that is

H = {#gopatriots, #gohawks, #nfl, #patriots, #sb49, #superbowl}

Let Nh
t denote the number of tweets that contain hashtag h ∈ H at time t. In our study,

based on the scope of the changes that we want to capture, the unit of time can vary. The

following table summarizes some basic statistics on the hashtags in H, with per hour time

intervals

Table 5.1: Statistics on Super Bowl 2015 tweets Data

Hashtag #gopatriots #gohawks #nfl #patriots #sb49 #superbowl

# tweets 26,232 188,136 259,024 489,713 826,951 1,348,767

Avg. # tweets/hr 38.38 193.54 279.55 499.42 1419.88 1401.24

Avg. # followers/twt 1618.53 2477.06 4864.89 3759.78 10496.06 10136.34

Avg. # followers/user 1594.14 1831.94 4346.95 2061.58 2507.25 4490.15

Avg. # retweets/hr 0.0268 0.2092 0.051 0.091 0.178 0.137

Both the average number of followers per tweet and the average number of followers per

user are shown in Table 5.1. The difference between these values is that the former does

not account for the fact that users could have posted multiple tweets for the given time

period. The latter therefore only considers the number of followers for each unique user in

the dataset. The follower per user to the follower per tweet ratio is therefore an indication

of how many of the tweets were generated by unique authors. For #gopatriots, the ratio is

high and the difference between the followers per tweet and followers per user is relatively

small. However, for #sb49, the ratio is very low indicating that popular twitter authors

posted multiple tweets for this hashtag which in turn skewed the average towards a higher

value. The following histograms demonstrate the temporal distribution of the tweets on the

per hour basis.
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Figure 5.1: Histogram of the activities on different hashtags

As can be seen in the histograms corresponding to #gohawks, and #superbowl, there is a

large spike around the 800-th hour mark, corresponds to when the Super Bowl game was

played. Interestingly the first small spike in the #nfl histogram corresponds to one of the

conference final games. The second spike in the histogram again corresponds to the when
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the Super Bowl was played. With a small difference in time scaling we, see that observe a

spike between 500 and 600-th hour in hash-tags #gopatripots, #patriots, and a similar one

between 400 and 500-th hour in #nfl. This show as asynchrony in our collected data. It

should be note that our change detection framework is oblivious to the asynchronism in the

timing of the events.

As it can be observed from the histograms above, the per hour time resolutions is a little

low to capture more granular events. Like a touch-down in the game. Thus we zoom in and

define a more granular time step in the order of minute or seconds to be able to capture the

events during the game because the timespan over which a trend occurs during the super

bowl is minutes, not hours (e.g. a touchdown or the halftime show). Below is a plot of tweets

with the keyword “touchdown” for both Patriots-friendly and Seahawks-friendly hash-tags.

Figure 5.2: Number of touchdown posts per minute for Patriots (BLUE) and Seahawks

(GREEN). Halftime show in the middle

It is clear that there are four peaks for the Patriots and three for the Seahawks corresponding

to their respective touchdowns. The timing matches up with the actual scoring of Super Bowl

XLIX and shows the central gap for the halftime show. The final score was 28-24 for the

Patriots, which matches up with four Patriots touchdowns and three Seahawks touchdowns

plus one Seahawks field goal, which does not appear with the “touchdown” filter.

Now, let us focus on applying our change detection framework to detecting events during the
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game; namely, the beginning of the game and the first touchdown. Formally, the objective is

to detect the start of the game only from the evolution of the activities around hashtags. To

this end, we choose to observe the hash-tag #gopatriots in the hours leading to the game.

In order to have a meaningfully fast detection, we change the time scale in 10 seconds and

we aim to determine the start of the game only from the activities on the tweet #gopatriots.

Thus we are observing the stochastic process {Nh
t } for h = #gopatriots, with time stamps

corresponding to 10 second time interval. The time series in Figure 5.3 is a realization of

the process.

Figure 5.3: The realization of the process {Nh
t }

It can be clearly noted that the pre-change distribution of the process can approximated as

a Poisson distribution

Nh
t ∼ poi(λ0) t < ν

with λ0 = 3. Note that ν is the unknown time that the game starts and the pmf of the
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Poisson distribution is defined as

f0(x;λ0) =
e−λ0λx0
x!

Let us assume that the change distribution that we are seeking to detect is again a Poisson

distribution with parameter λ1 = 3λ0, that is

f1(x;λ1) =
e−(λ1)(λ1)x

x!
.

In order to detect the change in distribution from f0 to f1, we sequentially observe the log-

likelihood of the data, which amounts to observing the behavior of the CUSUM procedure

as defined in Definition 5.3.1.

τ ∗γ = inf{n|max
k≤n

n∑
t=k

Zt ≥ log γ},

where Zt = log
f1(Nh

t )

f0(Nh
t )

.

Luckily, the log-likelihood ration of two Poisson distributions can be easily computed. Specif-

ically,

log(
f1(X)

f0(X)
) = X log(

λ1

λ0

) + λ0 − λ1.

Note also that by taking the expectation of the log-likelihood, it follows that

D(f1||f0) = Ef1 [log(
f1(X)

f0(X)
)] = λ1 log(

λ1

λ0

) + λ0 − λ1;

Moreover, let us also assume that the Average Run Length(ARL) constraint for false alarm

be a large number so as to guarantee the reliability of the detected changes; specifically we

set γ = 106.

The CuSUM procedure stops when the CUSUM statistic, which is the cumulative log like-

lihood ratio, when positive, hits the pre-specified threshold log γ ∼ 20. Such a scheme, as

shown earlier, guarantees that if no change occurs in the time window of interest will likely

not mistakenly declare a change.

In order to measure how quickly the algorithm is able to detect the change, we follow the

temporal evolution of the statistic as shown in Figure 5.4.
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Figure 5.4: Evolution of the CUSUM statistic: As shown in the figure, the statistic captures

the change as soon the statistic hits the pre-specified threshold.

It turns out that in time t = 1486, the algorithm can declare that a change has occurred in

the distribution of the data, which is less than a minute after the change starts. This delay

should be compared with the average delay log γ
D(f1||f0)

.

We recognize that in order to have a more solid way to evaluate our algorithm we need more

realizations form the process so that we can make in probability or in expectation statements.

However, this small experiments shows that the natural CUSUM statistic is promising in

terms of a quick, yet reliable change detection scheme.
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CHAPTER 6

Summary of Contributions and Future Work

In this dissertation, we propose computational models for a holistic semantic analysis of an

on-line story based on aggregation of social media posts.

In the first part of the dissertation, we develop models towards characterizing a structured

information network, referred to as story narrative network, where nodes, which represent

groups of entities with contextually similar roles in the story, are linked via edges that

represent relationships with different relation types. In particular, in order to characterize

the actants, which are nodes in the story narrative network, we attribute distributed vector

representations, aka embeddings, to entity mentions that appear in extracted relations from

users’ posts, and then by clustering the embedded vectors, we partition the entities into

actant groups.

In chapter 2, we propose an embedding approach based on explicit factorization of suitably

generated entity-relation matrices that capture the contextual role of an entity mention

as a subject and an object in a relationship. In order to obtain interpretable embedding

vectors with improved clustering behavior, we impose sparse structure on the embeddings

by considering a non-negativity constraint on the factor matrices in the matrix factorization

formulation. In chapter 3, we propose a new exterior point method to solve NMF, based on

the results on the optimization landscape of the unconstrained matrix factorization problem.

Finally, we apply K-means clustering on the obtained embedded vectors to cluster the entities

into actant groups. In chapter 4, we evaluate the performance of our proposed algorithm and

embedding-based clustering scheme on two datasets, namely data from a discussion forum

on parenting issues and a corpus of tweets on user experience with contact-less payment

methods. It is shown that our exterior point method has a significantly better sparsity
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properties over the considered models as well as better prediction performance over the

celebrated multiplicative update rules method for solving NMF. Moreover, we show that

the clusters obtained by our method can very well recover the underlying ground truth

actant groups in the studied datasets and it is computationally shown that our NMF-based

embedding approach has superior clustering performance over embeddings obtained by the

optimal matrix completion approach based on SVD.

In the second part of the dissertation, we touched upon characterizing the dynamics in

development of the online stories. In chapter 5, we study the problem of detecting changes

in the temporal evolution of the user activities and formulate this problem in a transient

change point detection setting and applied a statistical test to detect the change based on the

number of user activities observed so far, with minimum expected delay under a controlled

measure of false alarm. We evaluate the change detection method on a corpus of tweets

related to Super Bowl 2015. We show that our method is able to detect the start of the

game reliably and effectively within less than a minute from the start of the game.

In the future work, we expand our approach in a number of directions itemized below:

• Joint embedding and clustering of relation and entity mentions: In our entity resolution

approach, although we jointly embed both the entity and relation mentions in the same

low dimensional space via entity relation matrix factorization, we are only using entity

embeddings for the clustering task. An interesting future direction is to perform a joint

clustering of the entity and relation embeddings.

• Adopting tensor-based models: In our current data model, the left entity relation ma-

trix only carries the information about the co-occurrence of subject entity mentions

regardless of the entities that appear as the object in the corresponding relations as the

object entities. Likewise, the right entity relation matrix only carries the information

about the co-occurrence of object entity mentions with the possible relationship men-

tions. These matrix representations can be regarded as projections of a 3-way tensor

whose entries represent the number of occurrences of a triplet. Such model encodes

all the information present in the set of entity relation triplets and potentially yields
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superior performance on larger datasets. By defining appropriate scoring functions, as

detailed in Chapter 2, we can characterize embeddings tailored to the clustering task.

• Exploring other regularization techniques to encourage sparsity structure: For a given

embedding scheme, in order to impose desired structures on the parameters of the

model, we have to regularize the optimization objective with penalty terms that en-

courage the structure of interest in the data. Specifically, in the future work, we aim at

exploring imposing `1 penalty on the embedded vectors on the tensor models presented

in Chapter 2.

• Characterizing the trade-off between prediction power and interpretability of the em-

beddings in a model: As discussed in chapter 2, there is a fundamental trade-off

between prediction power of a model versus the presence of certain structures in the

learned parameters. Understanding such trade-off helps developing more efficient in-

terpretable, yet efficient models, for predicting whether a triplet is a valid relation.

• Exploring sparsity encouraging methods for non-negative matrix factorization and un-

derstanding its optimization landscape: The primary embedding technique that we

studied in this work was based on explicit factorization of the entity relation matri-

ces. For this purpose, we used non-negative matrix factorization in order to get sparse

factors in the factorization. Although, our proposed exterior point method to solve

NMF inherently enforces more structured sparsity than the popular NMF methods, it

would be interesting to investigate further the effect of sparsity constraint in the NMF

optimization and how it changes the optimization landscape of the problem.

• Non-parametric detection schemes: A major drawback to our transient change detec-

tion approach is that the pre-change and post-change distributions should be known.

In the future work, it would be interesting to develop non-parametric methods that

estimate the distributions upon observing the new points.
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