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AB INITIO STUDY OF LOW-ENERGY ELECTRON COLLISIONS WITH
ETHYLENE

C. S. Trevisan,! A. E. Orel,' and T. N. Rescigno®

"Department of Applied Science, University of California, Davis, CA 95616
2 Lawrence Berkeley National Laboratory, Computing Sciences, Berkeley, California 94720

We present the results of an investigation of elastic electron scattering by ethylene, CoHa4, with
incident electron energies ranging from 0.5 to 20 eV, using the complex Kohn variational method.
These are the first fully ab initio calculations to accurately reproduce experimental angular differen-
tial cross sections at energies below 3 eV. Low-energy electron scattering by ethylene is sensitive to
the inclusion of electronic correlation and target-distortion effects. We therefore report results that
describe the dynamic polarization of the target by the incident electron and involve calculations
over a range of different geometries, including the effects of nuclear motion in the resonant ?Bs,
symmetry with an adiabatic nuclei treatment of the C-C stretch mode. The inclusion of dynamic
polarization and the effect of nuclear motion are equally critical in obtaining accurate results. The
calculated cross sections are compared with recent experimental measurements.

PACS numbers: 34.80.Gs
I. INTRODUCTION

Collisions of electrons with small polyatomic molecules
are important in many areas of physics. They are of
interest in determining the energy balance and trans-
port properties of electrons in low-temperature gases and
plasmas under a wide variety of conditions. Electron-
molecule collision data is critically important for nu-
merical modeling studies [1] in wide-ranging areas such
as plasma deposition and etching of semiconductors,
gaseous high voltage switches and environmental reme-
diation plasmas.

Electron scattering by hydrocarbons is particularly rel-
evant to cold plasma technology. Although ethylene,
CyHy, is one of the simpler hydrocarbon molecules, there
have been only very limited studies of its interaction with
low-energy electrons.

Low-energy electron scattering by atoms and molecules
can be dominated by electrostatic interaction effects,
electron exchange, and electron correlation. The proper
balance of these effects is needed to theoretically de-
scribe effects such as the Ramsauer-Townsend (RT) ef-
fect. Shape resonances are also sensitive to the effects
of electron correlation and, in addition, are sensitive to
changes in target nuclear geometry. The proper inclusion
of all these factors is crucial for an adequate description
of resonance parameters and vibrational excitation cross
sections.

We present the results of an investigation of the colli-
sion of low-energy electrons with ethylene using the com-
plex Kohn variational method. Ethylene is a closed-shell
molecule which possesses a permanent quadrupole mo-
ment. Early ab initio calculations by Schneider et al. [2]
were the first to confirm the existence of the Ramsauer-
Townsend effect in such a molecule. Ethylene also has a
low-lying shape resonance whose position and width are
strongly influenced by target-distortion effects. The reso-
nance is of 2B, symmetry and corresponds to the tempo-

rary capture of the incident electron into an empty, anti-
bonding, valence orbital. The investigations of Schneider
et al. , which were carried out only at the equilibrium
geometry and included only two scattering symmetries,
produced a resonance at 1.83 eV, in excellent agreement
with experiment. Several other theoretical studies on
low-energy electron scattering from ethylene have been
performed in the fixed-nuclei approximation at equilib-
rium geometry[3-5]. None of the previous calculations,
however, have been particularly successful in describing
experimental angular differential cross sections at elec-
tron impact energies below 3 eV, as evidenced by the
recent experimental measurements of Panajotovic et al.

[6].

The present calculations extend the work of Schneider
et al. [2] by including all relevant symmetries and im-
portant dynamical correlation effects. In addition, the
calculations include the effects of nuclear motion for the
critically important resonant symmetry. It will be shown
below that all these factors are essential in obtaining ac-
curate total, momentum transfer, and elastic differential
cross sections.

II. THEORETICAL FORMULATION

The complex Kohn method is a variational technique
which uses a trial wave function that is expanded in terms
of square-integrable (Cartesian Gaussian) and contin-
uum basis functions that incorporate the correct asymp-
totic boundary conditions. Detailed descriptions of the
method have been given in previous publications (see,
for instance, refs. [7, 8]), so only a brief summary of the
aspects that concern this study will be given below.

In the case of electronically elastic scattering, the trial
wave function to be used is of the form:



U = A[®,(7..7N) F (Fn41)]
+ZdH@N(F]“FN+]) (1)

where ®, is the (Hartree-Fock) ground-state of CoHy, A
antisymmetrizes the coordinates of the incident electron
(Fn41) with those of the target electrons (r..7y) and
the sum contains square-integrable, (N + 1) - electron
terms that describe polarization and/or correlation ef-
fects due to electronically closed channels. In the present
study, these configuration-state functions (CSFs), ©,,
were constructed as products of bound molecular orbitals
and terms obtained by singly exciting the target Hartree-
Fock wave function. Thus the configurations in Eq. (1)
have the form

Ou = A(®o[do = ¢aldi) (2)

where ¢, — ¢, denotes the replacement of occupied or-
bital ¢, by orbital ¢, and ¢; is another virtual orbital.

The proper construction of the correlation component
of the trial wave function is critical in determining the
low-energy behavior of the elastic cross sections and the
position and width of shape resonances. Moreover, there
are different ways in which this correlation portion of
the trial wave function should be built, depending on
the symmetry under consideration. These different ap-
proaches will be described throughout the sections that
follow.

The scattering function, F'(#n411), is further expanded
in the Kohn method in a combined basis of Gaussian (¢;)
and continuum (Ricatti-Bessel, j;,and Hankel, hz+) basis
functions

F(7) =Y cii(7) + > Lit(kr)ou, bmm,
i im

+T01,mm, h?—(kr)]Y}m (7:)/7" (3)

where Y},,,(7) are spherical harmonics. Applying the sta-
tionary principle for the T-matrix,

Tstat = Tiriar — 2 /‘IJ(H - E)‘I} (4)

results in a set of linear equations for the coefficients c¢;,
d,, and Ty ym, - The T-matrix elements, T} ym, , are the
fundamental dynamical quantities from which all fixed-
nuclei cross sections are derived.

III. THEORETICAL MODELS FOR
ELECTRON-MOLECULE COLLISIONS AND
CALCULATIONS

In an approach similar to that employed by Rescigno
et al. [9] in a study of CO,, we found that the best de-
scription of the low-energy scattering by CoHy is attained

when analyzing the prevailing physical processes related
to each symmetry. The following subsections will briefly
describe the different approximations that were consid-
ered and how they were introduced into our calculations.

Table I lists the Gaussian basis sets employed in all our
scattering calculations. In every case, a self-consistent
field (SCF), Hartree-Fock target wave function for the
ground state of CoH4 was used. The target basis was aug-
mented with additional diffuse Gaussian functions, also
in Table I, for the construction of the Kohn trial wave
function. The expansion of the trial scattering function
was completed by including numerically generated con-
tinuum basis functions, retaining terms with angular mo-
mentum quantum numbers [ and |m/| less than or equal
to 6.

A. Static-exchange

The simplest approximation to describe an electron-
molecule collision, consistent with the Pauli principle,
would be to express the scattering wave function as an
antisymmetrized product of the target wave function and
a scattered electron function, i.e., as the first term of
Eq. (1). This so-called static-exchange (SE) approxima-
tion cannot be expected to yield accurate results at col-
lision energies (generally less than 5§ eV) where target
polarization is important, at least for total symmetries
in which the incident electron significantly penetrates
the target. The SE approximation makes no allowance
for the target to relax to the presence of the scattering
electron. This model can describe shape resonances, al-
though SE results generally place their position too high
and their width too broad in energy.

All symmetries in our calculations were treated beyond
the SE approximation [10]. Although this level of ap-
proximation generally displays the basic features of the
scattering process at higher energies, it is known to be
quantitatively, and often qualitatively, incorrect at scat-
tering energies below several eV.

B. Polarized SCF

At low energies for the incident electron, it becomes
necessary to describe its dynamic polarization effect on
the target. Previous work on this and other closed-shell
molecules has shown that including a set of specific con-
figurations in Eq. (1) to produce what is known as a
“polarized SCF” (PSCF) trial wave function provides a
good description of target polarization, with a balance
of correlation effects in the N - and (N + 1) - electron
systems [2, 9, 11 13]. In the PSCF approach [11] the
CSFs, ©,, are constructed from the product of bound
molecular orbitals and terms obtained by singly excit-
ing the target SCF wave function, as mentioned before.
Instead of using all the unoccupied orbitals to define a
space of singly excited CSFs, we choose a compact sub-



set of these virtual orbitals, the polarized virtual orbitals
(¢o in Eq. (2)), for singly exciting the target. These po-
larized orbitals are constructed following the prescription
of ref. [11]. We further restricted the CSFs in the PSCF
wave function by including only those single excitations
that preserved the singlet spin symmetry of the ground
state.

The five highest occupied orbitals were used to gen-
erate the set of polarized orbitals. The entire space of
target and supplemental diffuse basis functions listed in
Table T was used in the construction of the polarized or-
bitals. A structure calculation on the neutral target using
an SCF configuration for the ground state and single ex-
citations from these occupied orbitals into the polarized
orbitals gave a polarizability (in atomic units) of 29.473 |
which is 99.74% of the experimentally determined value
[14]. This suggests that using an SCF description of the
target is a good approximation. PSCF calculations were
performed for all total symmetries with the exception of
?Bs,. The following subsection will describe the way this
latter symmetry was tackled.

Ramsauer-Townsend minima are present in the elas-
tic low-energy scattering cross sections of many closed-
shell, non-polar targets. Our PSCF approach success-
fully describes the Ramsauer-Townsend minimum in the
e~ - CyHy4 elastic cross section that occurs in 2Ag sym-
metry [2].

C. Relaxed-SCF

Another low-energy feature that characterizes e™ -
CoH, scattering is a shape resonance of 2B2_q symme-
try. In symmetries that include shape resonances, the
PSCF model may lead to an unbalanced description of
correlation in the temporary negative-ion state relative
to the SCF target state at short range, with the re-
sult that the resonance will appear at too low an en-
ergy relative to the target ground state. Previous expe-
rience with a number of closed-shell target molecules has
shown that a “relaxed-SCF” (RSCF) model provides a
good description of symmetries that present shape reso-
nances [2, 13, 15-17]. The key is to include in the trial
function only those correlation terms that produce an or-
bital relaxation effect, similar to the type of relaxation
that would be produced in performing an SCF calculation
on the negative ion. The relaxed-SCF trial function only
includes configurations @, built from single excitations
of the occupied target orbitals into virtual orbitals of the
same symmetry; no ¢, — ¢, excitation that breaks the
spatial symmetry of the ground state is included in the
calculation. This type of trial function describes the es-
sential short-range core relaxation effects that are needed
to describe a shape resonance but does not include the
long-range dipole-polarization effects of the PSCF model.
We therefore constructed a relaxed-SCF trial wave func-
tion for the ?Bs, symmetry, obtaining an accurate de-
scription of the well known low-energy resonance that

TABLE I: Gaussian basis sets used in e~ - CaHy scattering
calculations. Underlines separate contracted basis functions.

Center Type Exponent Coefficient
Target basis
Carbon s 4232.610000 0.006228
Carbon s 634.882000 0.047676
Carbon s 146.097000 0.231439
Carbon s 42.497400 0.789108
Carbon s 14.189200 0.791751
Carbon s 1.966600 0.321870
Carbon s 5.147700 1.000000
Carbon s 0.496200 1.000000
Carbon s 0.153300 1.000000
Carbon s 0.050000 1.000000
Carbon ) 18.155700 0.039196
Carbon P 3.986400 0.244144
Carbon ) 1.142900 0.816775
Carbon ) 0.359400 1.000000
Carbon P 0.114600 1.000000
Carbon P 0.050000 1.000000
Carbon d 0.750000 1.000000
Carbon d 0.300000 1.000000
Hydrogen s 74.690000 0.025374
Hydrogen s 11.230000 0.189684
Hydrogen s 2.546000 0.852933
Hydrogen s 0.713000 1.000000
Hydrogen s 0.224900 1.000000
Hydrogen p 0.750000 1.000000
Diffuse scattering basis, Ay symmetry
Center of mass s 0.020000 1.000000
Center of mass s 0.010000 1.000000
Center of mass s 0.005000 1.000000
Center of mass d 0.090000 1.000000
Center of mass d 0.035000 1.000000
Center of mass d 0.010000 1.000000
Diffuse scattering basis, B14, B2y and B3y symmetries
Center of mass d 0.160000 1.000000
Center of mass d 0.080000 1.000000
Center of mass d 0.040000 1.000000
Center of mass d 0.020000 1.000000
Center of mass d 0.010000 1.000000
Diffuse scattering basis, B1,, B2, and Bs, symmetries
Center of mass p 0.030000 1.000000
Center of mass p 0.015000 1.000000
Center of mass p 0.007500 1.000000
Center of mass p 0.003750 1.000000
Center of mass p 0.001000 1.000000




occurs in this symmetry.

IV. APPROXIMATE TREATMENT OF
NUCLEAR MOTION

To date, theoretical treatments of e~ - CoHy scatter-
ing have been restricted to fixed-nuclei calculations at the
equilibrium geometry. Although this approach has pro-
duced total cross sections that qualitatively agree with
experiment[2 5], significant disagreement remains for dif-
ferential cross sections at energies below 3 eV.

One obvious source of error is the neglect of nuclear
motion in the critically important resonant symmetry.
To address this problem, we focused on the C-C stretch
mode (labeled as v$'“(a,) by Herzberg [18]), which is
most strongly coupled to the resonance. As in an ear-
lier study of CO» [9], we used an adiabatic nuclei treat-
ment [19] to compute a vibrationally averaged T-matrix
in the resonant ?By, symmetry. The other symmetries
are far less sensitive to changes in nuclear geometry.
We verified this by performing calculations in %A, at
several different geometries and found the fixed nuclei
cross section to vary by 5 percent over the energy range
0.5< E <20 eV. There are proportionately larger changes
in the immediate vicinity of the RT minumum (0.18 eV),
but the calculations we are reporting here do not probe
this low-energy region. Symmetric-stretch motion does
not break the symmetry of the target, thus the same
symmetry designations can continue to be used.

The vibrationally averaged T-matrix, in By, symme-
try, is computed as:

Ti (B) = (%o| Ty (B, B)|x0). (5)
where x,(R) is the symmetric stretch vibrational wave
function and the average is taken over the C-C normal
mode. Harmonic oscillator functions were used, with
constants derived from Herzberg [18]. E and R denote
the dependency on energy and on geometry, respectively.
Without loss of clarity, we will drop these dependencies
in some of the equations that follow to simplify notation.

2g

. . B .
In the eigenphase representation, 7,,,”’ can be written

as

T = Z(’l}‘(’;?e"i ein((sz") (6)

A

The mixing coefficients ¢;* are elements of the unitary ma-
trix of elgenchannel vectors that diagonalize the T-matrix
and 6)‘ are the eigenphases. We found that, over a num-
ber of different geometries, the resonance behavior was
clearly concentrated in one eigenphase, 55:557 while the
other eigenphases were small and smoothly varying with
energy and geometry. Therefore, with only one eigen-
phase varying significantly, we were able to separate out
the resonant term from the sum in Eq. (6) and ignore the

TABLE II: Parameters obtained by fitting the resonant

eigenphase, 6 , to the Breit-Wigner form of Eq. (8) at dif-
ferent C-C 1nternuclear separations, R(a,).

R(ao) T(eV) Eres(eV) di((eV)™") da((eV)™?)
2.27808 -1.0374 2.6555  -0.0945  0.0092
2.53120 -0.4963 1.8517  -0.0735  0.0048
2.78432 -0.1576  1.1073  -0.0890  0.0106

geometry dependence of the non-resonant contributions
so as to average the resonant component only. The final
expression for our T-matrix elements is given by:

Ares 26
I

T = (X0|c, res e Aressm((s Do " [Xo) +

Z cep U ein(éfzg) (7
AFAres

We performed fixed-nuclei calculations at the equilib-
rium geometry of CoHy, as well as at two other (stretched
and compressed) geometries. The fixed-nuclei ?By, cross
sections are shown in Fig. 1. The resonance is clearly very
sensitive to changes in C-C bond distance, becoming nar-
rower and lower in energy as the molecule is stretched.
We fitted the resonant eigenphase to a Breit-Wigner form
at each geometry,

(55:1(1%) = arctan {

&} N
2E — B,os(R))
T'(R)

arctan [m

} +di(R)E + da(R) E? (8)

where T'(R) represents the resonance width, E,.s(R) is
the resonance energy and d;(R) are fitting coefficients.
Both T'(R) and E,.s(R) were found to vary smoothly
with R and were easily interpolated to give the resonant
T-matrix elements at any value of R. This greatly facil-
itates the average required in Eq. (5). The resonance
parameters are listed in Table II.

The resonance parameters extracted from these scat-
tering calculations give the resonance energy relative to
the CoHy ground state. The total electronic energy for
the resonance is the resonance energy plus the CsHy
ground state energy. In Fig. 2, the resonance and neu-
tral ground state potential energy curves are plotted as
a function of the C-C bond distance.

V. RESULTS

Except for the ?Bs, component, cross sections were
calculated for all symmetries by a PSCF approach at
the equilibrium geometry of the ground state (Rcc =
1.339 A, Roy = 1.086 A, H-C-H = 117.6°), namely, sym-
metries Ay, Big, Bsg, B1y, By, and Bs,. Symmetry A,
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FIG. 1: Symmetric-stretch dependence of the fixed-nuclei,
2Bzg component of the integrated cross section. The chained
curve represents RSCF calculations at equilibrium geometry.
The dotted curve represents a symmetric compression to a C-
C bond distance of 2.27808. Dashed curve: symmetric stretch
to a C-C bond distance of 2.78432. Cross sections are given
in atomic units. (1a2 = 2.8 x 107! c¢m?)

was found to be unimportant at low energy and was left
out of the calculations.

The total elastic and momentum transfer cross sections
are plotted in Fig. 3 along with recent measurements and
the Schwinger variational results of Brescansin et al. [5]
which used a model polarization potential. The experi-
mental values were obtained by Panajotovic et al. [6] on
two different crossed-beam electron spectrometers: open
circles refer to measurements at the Australian National
University (ANU), while diamonds represent measure-
ments performed at Sophia University, Japan (Sophia).
It is clear that the inclusion of nuclear motion is necessary
to properly describe the cross sections in the resonance
region.

At energies near and below the resonance peak, the
cross sections are sensitive to the effects of both geom-
etry and dynamic correlation. This is most clearly seen
in the angular differential cross sections. Fig. 4 illus-
trates this sensitivity at 2 eV incident electron energy,
which is near the center of the resonance at equilibrium
geometry. The figure includes a solid curve which repre-
sents results that incorporate an adiabatic-nuclei treat-
ment of symmetric stretch motion and a dashed curve
that describes the present results without the inclusion
of nuclear motion, at equilibrium geometry. The chained
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FIG. 2: Potential energy curves for 2By, negative ion reso-
nance (dashed curve) and neutral ground state (solid curve)
as a function of C-C bond distance.Bond distance is plotted
in atomic units (la, = 0.529 x 10~ ® cm)

curve, which corresponds to a preliminary SE treatment
of all symmetries (also at equilibrium geometry) except
A, (treated by PSCF) and By, (RSCF) [10] is included
to illustrate the sensitivity of differential cross sections to
geometry and correlation effects. The fact that the A,
and By, symmetries are sensitive to correlation effects is
not suprising, since there is a Ramsauer-Townsend min-
imum and a shape resonance in these symmetries, re-
spectively. We also found that the non-resonant By,
Bs, and Bjs, symmetries, which have leading p-wave be-
havior, significantly penetrate the target at low energies
and are sensitive to dynamic correlation. In the reso-
nance region, the cross sections are particularly sensitive
to effects which can change the resonance position. To
illustrate this, we performed RSCF calculations in Ba,
symmetry in which half the correlating configurations
(specifically, the singlet-triplet target excitations) were
dropped, which shifts the resonance position upward by
0.5 eV. Those results are shown as the dashed curve in
Fig. 4. Clearly, getting accurate differential cross sections
in the resonance region requires calculations that put the
resonance at the right energy.

Figures 5 and 6 show elastic angular differential cross
sections at different incident energies. We plot curves
that represent calculations both with and without the
inclusion of nuclear motion, represented by the solid and
dashed curves, respectively. We also show theoretical re-
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FIG. 3: Total elastic and momentum transfer cross sections for e - CoHy scattering. Solid curve: present results which
incorporate an adiabatic-nuclei treatment of symmetric stretch motion. Dashed curve: present results without the inclusion of
nuclear motion, at equilibrium geometry. Open circles: Panajotovic et al. ’s ANU measurements [6]. Diamonds: Panajotovic
et al. ’s Sophia measurements [6]. Stars: theoretical results of Brescansin et al. [5].

sults of Brescansin et al. [5] at available energies for
comparison. Note that the calculations of Brescansin et
al. plotted at 3.0, 4.5, 6.0 and 15.0 eV were actually per-
formed at energies of 3.3, 4.3, 6.1 and 15.5 eV. Again,
the experimental measurements are those of Panajotovic
et al. . Tt is worth noting that there are differences of
approximately 20 to 30% between the data obtained by
these two different experimental apparatii. These differ-
ences are particularly noticeable at small scattering an-
gles, where the cross sections appear to follow different
trends. At energies below 3 eV, our calculations appear
to agree better with the ANU data than with the Sophia
measurements. Vibrational averaging is clearly impor-
tant at 1.8 and 2.0 eV, which are close to the resonance
peak, and significantly improve the comparison with ex-
periment. The effects of nuclear motion become less im-

portant at energies outside the resonance region. The
principal effect of nuclear averaging is, not surprisingly,
to reduce the magnitude of the cross sections without
significantly affecting their shape. At energies of 3 eV
and above, our cross sections are in very good agreement
with experiment. For energies below 5.0 eV, the results
of Brescansin et al. are systematically too high at small
scattering angles, while at 5.0 eV and above there is good
mutual agreement. At these higher energies, the results
also agree with the static-exchange results of Winstead
et al. [4, 6] (not shown).
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FIG. 4: Elastic differential cross sections for e - CoHy4 scat-
tering at incident energy of 2 eV. Solid curve: present results
which incorporate an adiabatic-nuclei treatment of symmet-
ric stretch motion. Dotted curve: present results without the
inclusion of nuclear motion, at equilibrium geometry. Dashed
curve: present results without the inclusion of nuclear motion,
at equilibrium geometry, and a partial treatment of relaxation
in Bay symmetry. The chain curve represents SE calculations
at equilibrium geometry for symmetries other than Ay and
Bag. Open circles: Panajotovic et al. 's ANU measurements
[6]. Diamonds: Panajotovic et al. ’s Sophia measurements [6].

VI. CONCLUSIONS

We have carried out a variational treatment of elec-
tronically elastic e~ — CyHy scattering. At low energies,
we found a strong sensitivity of the cross sections to the
effects of both geometry and dynamic correlation. A
polarized-SCF approach was used for all symmetries ex-
cept for the resonant component ?Bs,, for which we found
a relaxed-SCF method more appropriate. For the reso-
nant symmetry, we also included an approximate treat-

ment of nuclear motion by using a simple adiabatic treat-
ment of the symmetric stretch (C-C) vibrational mode.

It is interesting to note that there are no oscillatory
structures observed in the elastic cross sections in the
vicinity of the ?By, resonance, either in the Panajotovic
et al. measurements [6] or in the high resolution exper-
iments of Allan [20]. This might seem surprising, since
such structures are well known in the case of Ny, which
has a similar reduced mass and very similar resonance
properties (near equilibrium geometry) [16]. The dif-
ference here is that, as seen from Fig. 2, a wavepacket
originally centered on the resonance curve near the equi-
librium geometry of the neutral (corresponding to a C-C
distance of 2.53 a,), would be largely confined by energy
conservation to C-C distances less than 3.0 a,. Over this
range of geometries, the resonance width is substantial
and the wavepacket decays too rapidly to produce the
kind of “boomerang” structure observed in the case of
molecular nitrogen.

Both of the main low-energy features of this electron-
molecule system were successfully described by these cal-
culations, namely, the Ramsauer-Townsend minimum in
2A, symmetry and the ?By, shape resonance. The inte-
grated elastic and momentum transfer cross sections we
obtained are in excellent agreement with recent experi-
ments. We have also found that the effects included in
this treatment significantly improve the agreement with
measured differential cross sections. Some small discrep-
ancies remain at energies between 2 and 3 eV and small
scattering angles, where the experimental measurements
reveal structure that is not reproduced by the calcula-
tions. A more elaborate treatment of the dynamics is
evidently needed to describe these features of the differ-
ential cross sections in the resonance region.
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