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Abstract

In practice, survival analyses appear in pharmaceutical testing, procedural recovery

environments, and registry-based epidemiological studies, each reasonably assuming a

known patient population. Less commonly discussed is the additional complexity in-

troduced by non-registry and spatially-referenced data with time-dependent covariates

in observational settings. In this short report we discuss residual diagnostics and in-

terpretation from an extended Cox proportional hazard model intended to assess the

effects of wildfire evacuation on risk of a secondary cardiovascular events for patients

of a specific healthcare system on the California’s central coast. We describe how

traditional residuals obscure important spatial patterns indicative of true geograph-

ical variation, and their impacts on model parameter estimates. We briefly discuss

alternative approaches to dealing with spatial correlation in the context of Bayesian

hierarchical models. Our findings/experience suggest that careful attention is needed

in observational healthcare data and survival analysis contexts, but also highlights

potential applications for detecting observed hospital service areas.

keywords: survival analysis, electronic medical records, administrative data, spatial

residuals, Bayesian hierarchical models, hospital service areas
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1 Introduction1

The assessment of residuals in the model fitting process for survival analysis is more complex2

than a traditional linear model (or even generalized linear model) framework (24; 19) and3

the complexity only increases with spatially-referenced data and time-dependent covariates4

(2; 12). In practice, survival analyses are often used in pharmaceutical testing, procedural5

recovery environments, and registry-based epidemiological studies, each reasonably assuming6

a set and known patient population (12; 4; 2; 3; 14; 5; 30). While interval censoring makes an7

(important) appearance in this literature (24; 19), less commonly discussed is the additional8

complexity introduced by non-registry and spatially referenced data combined with time-9

dependent covariates in observational settings. This short report was born of questions10

we encountered in implementing an extended Cox proportional hazard model to assess the11

effects of wildfire evacuation on risk of a secondary cardiovascular events (CVE) for patients12

of a singular specific healthcare system on the California’s central coast (1).13

While the main paper discusses the nuts and bolts of the findings and the model specifi-14

cations, in this short report we present a concise narrative of how traditional residuals in the15

survival framework can obscure important spatial patterns indicative of true geographical16

variation, and their impacts on parameter estimates in the model. We briefly discuss alterna-17

tive approaches to dealing with spatial patterns in the context of Bayesian hierarchical and18

spatial survival models. Our findings/experience suggest that careful attention is needed in19

observational healthcare data and survival analysis contexts, but also suggest that survival20

analysis may have applications for detecting observed hospital service areas using patient21

visit records.22

2 Methods23

This study has been approved by the Santa Barbara Cottage Hospital Institutional Review24

Board.25
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We collected electronic medical records of all patients who arrived at Santa Barbara Cot-26

tage Hospital system with a qualifying cardiovascular event between October 1, 2016 and27

June 1, 2019 and an in-county address(es) (n=2948). Qualifying cardiovascular events were28

identified using ICD-10 codes selected by a physician collaborator. Qualifying diagnoses in-29

cluded all child codes within the following: I10, I11, I13, I15, I20-I25, I40, I42-I52, I71, R00,30

R07.1, R07.2, R07.8, R07.9, and R94.3, which encompass a range of cardiac dysfunctions in-31

cluding severe diagnoses (stroke, cardiac arrest, acute myocardial infarction) and potentially32

less severe diagnoses (hypertensive heart disease and chest pain). These diagnosis codes align33

well with other studies using similar methods (20; 27; 9; 11; 7; 21; 13; 6; 22; 15; 29; 28). All34

patient addresses during the study period were geo-coded using 2016 Santa Barbara County35

Assessor parcel data.36

For this set of patients, we also captured secondary cardiovascular events over the same37

period (n=473), and determined which patients had experienced an evacuation order for any38

of the three fires that occurred during the period (n=393). Patients were considered exposed39

to an evacuation if and only if their current address location at the time of the evacuation40

order fell within an evacuation zone polygon. The details of the data preparation is discussed41

elsewhere (1), but relevant to this analysis we only used a singular address for each patient42

in the sample and that address was the address associated with the period of the evacuation43

orders (no prior- or post-evacuation order addresses).44

2.1 Statistical Analysis45

Our model of interest takes the following form:

h(t|xi) = h0(t)e
βxi(t)

where h0 is the unestimated baseline hazard (or risk) of secondary cardiovascular events, and46

xi(t) is the value of the i
th patient’s evacuation event indicator at any time point t, which is47
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set to 0 until a patient experiences an evacuation order, at which point it takes the value 1.48

The estimate of interest is the value of β̂, or the multiplicative effect of evacuation exposure49

on the risk of secondary CVE.50

To assess general model fit, we use Schoenfeld residuals. To assess the model fit and51

sensitivity to spatial patterning, we use martingale and jackknife residuals calculated at52

several scales. Martingale residuals are defined as the observed count at a given time (Ni(t))53

less the expected count per our model formulation at a given time (Êi(t)). We sum these54

residuals by their unique patient ID, and use the maximum value to identify individuals who55

survived too long (or longer than expected) between cardiovascular events. The minimum56

value is indicative of individuals who “died too soon” or had survival times between events57

that were less than expected. (In this case, some of these lower-end outliers did not survive58

their second cardiovascular event.) We then sum or average these martingale residuals by59

city name, census tract, and zip code tabulation area (ZCTA) to inspect a-spatial and spatial60

patterning of the residuals.61

To assess the sensitivity of the β̂ (evacuation effect estimate) to spatial patterning, we62

rely on jackknife or case-deletion residuals. These residuals are calculated by “leaving-one-63

out”, re-fitting the model and noting the change in the parameter estimate. In the survival64

context, “leaving one out” usually refers to a single individual. We exploit this and expand65

it to “leave one group out”, which is common place in cross-validation techniques (10). We66

use both individual-level jackknife residuals in addition to city name, census tract, and zip67

code tabulation area (ZCTA) jackknife residuals to assess the sensitivity of the evacuation68

order effect.69

3 Results70

The model result suggests a hazard ratio of 1.2833 (e0.2494) or an increase in risk of 28%.71

(The hazard with robust standard error is shown in Table 1.) The effect is significant at72

α = 0.1 level in this model.73
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The Schoenfeld residuals for the model are presented in Figure 1. The orange line is the74

β̂ estimate of evacuation order plotted against time (t). The two grey bands demark the 95%75

confidence pointwise interval (24; 23). The relative stacking or linear effect in the plotted76

points is due largely to the simplicity of the model – evacuation order is a binary covariate.77

The relative flatness of the orange line suggests that the effect of the evacuation order is78

consistent across time, and proportionality assumptions are appropriate.79

Using the summed martingale residuals (by patient identifier), we can assess the outliers.80

Negative outliers are those that survived not as long as expected; positive outliers are those81

that survived longer than expected. Figure 2 displays the martingale residuals sorted by82

size and direction of the residual. From the graphic, there appears to be around 50 or83

so individuals for whom the model would suggest should have survived longer, though the84

magnitude of the residual is relatively small. However, it is clear there are several hundred85

individuals that have survived longer than expected, for whom the model does not perform86

well.87

This result is both interesting and concerning. The magnitude of the residual is high,88

indicating a large difference between expected and observed survival time. It is also unclear89

how exposure to an evacuation order enters into this subpopulation. If we assume no indi-90

viduals in this outlier population were exposed to an evacuation order, then these patients91

survival times would contribute to a longer period between events in the un-estimated base-92

line hazard, which could inflate the effect of the exposure to an evacuation order. If, on93

the other hand, all of individuals in this outlier population were exposed to an evacuation94

order, then these elongated survival times would contribute (mostly) to the evacuation ef-95

fect, suggesting a protective effect for evacuation exposure over the un-estimated baseline96

hazard. For a mix of evacuation exposed and un-exposed within the outlier subpopulation,97

it is harder to develop intuition.98

Given the significant positive results of the model fit, there is reason to be concerned about99

the case where no patients, or only a small number, in the martingale outlier group were100
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exposed to an evacuation order. In Figures 3 and 4, we plot the average martingale residual101

values by ZCTA and census tract. Lighter blue values represent higher average martingale102

residual values for patients in the area; darker blue values represent lower average martingale103

residual values in the area. The orange point is the location of the dominant hospital system.104

In Figure 3, there is some evidence of a distance decay– tracts with the highest values seem to105

be located further from the hospital system. In Figure 4, this effect is somewhat attenuated,106

though high average martingale residual areas are still generally located further from the107

hospital system.108

In figure 5, we plot the summed positive and negative martingale residuals by Euclidean109

distance (km) from the hospital system. The clumping of individuals by distance is expected,110

as the settlements in the region are dispersed. The negative martingale residual values do111

not appear to have much of a relationship with distance. As distance increases, there is not112

much evidence to suggest a change in the residual martingale values (perhaps slight trend113

towards zero.) Surprisingly, the positive martingale residual values also do not appear to114

trend positively with increasing distance. However, we did not use network distance, which115

could further segregate the data.116

We also investigate this spatial trend by testing the sensitivity of the β̂ evacuation esti-117

mate to various individuals, city names, ZCTAs, or census tracts using the jackknife resid-118

uals. In Figure 6, panel (a) shows the sensitivity of evacuation estimate to removing single119

individuals. While some individuals would appear to make the estimate even higher, mostly120

individuals seem to be clustered around the estimated mean. In panel (b) we fit models while121

leaving out one of the sixteen city names in the patient addresses. We see that removing122

one specific city name lowers the beta estimate to almost zero (no effect) while removing123

a different specific city name would raise the beta estimate above 0.3. These bars are not124

weighted by the number of participants in each city (and the first bar is “Santa Barbara,”125

which, by leaving out, decimates the sample size and makes that fitted model extremely126

unstable.) Panel (c) and (d) also show the beta estimates of models fit if leaving out one127
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ZCTA or one census tract. Again the ZCTA scale suggests that removing one or two areas128

would greatly increase the estimate of evacuation order effect, and removing one or two areas129

would decrease estimate of the effect. The census scale suggests less of a drop in removing130

any one census tract, but a similar increase in effect size if removing selected census tracts.131

These same results for ZCTA and census tract are mapped in Figures 7 and 8 to assess132

spatial auto-correlation or trends. In Figure 7, there are two trends of interest. First, exclud-133

ing the large southwestern ZCTA (that encompasses the southwestern tip of the county),134

would dramatically lower the evacuation effect, as would excluding the tract just east of135

the hospital system location. Second, excluding any of the ZCTAs just north or slightly136

east of the hospital system would substantially raise the evacuation effect estimate. The137

interpretation of these trends is somewhat difficult given that the estimates themselves are138

a product of both the sample size, the number of secondary CVEs observed, and the overall139

number of evacuation order exposed (which are also not uniformly distributed across these140

areas.) The effect of excluding the western tract (within which there were no evacuation141

orders) suggests that patients from that area are contributing longer than expected survival142

times, inflating the underlying hazard. Conversely, excluding any of the three lighter blue143

ZCTAs near the hospital system would also exclude large swaths of evacuated individuals144

(and secondary CVEs) which would make the estimate of the evacuation order effect based145

less stable and derived from much fewer cases (with less long survival times).146

Using a different scale of aggregation (the census tract in Figure 8), the spatial differences147

in the area near to the hospital system is somewhat preserved, but the effect of removing148

the western-most areas is largely attenuated. This is likely due to the aggregation effect149

(aggregating at too small a scale means limited numbers of individuals per tract, and a less150

clear effect.)151
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4 Discussion152

In this short report we explore the spatial patterning of evacuation effect model residuals153

from a full sample of Santa Barbara County residents with existing cardiovascular diag-154

noses. Summed martingale residual values flag several individuals with longer than expected155

survival times, which we explored spatially. We further investigated the sensitivity of the156

model fit to spatial patterning across several scales and found some evidence to suggest a157

problematic relationship with increasing distance and the magnitude of the evacuation order158

estimate.159

The results of this investigation were a key part of our decision to geographically confine160

our final sample in the our primary paper and have a more conservative un-estimated baseline161

hazard (1). The statistical spatial patterning of these results has a parallel interpretation for162

clinical researchers, which is hospital service areas. If patients received care for their initial163

CVE at Cottage Hospital, and then had further treatments at other hospital systems – they164

would appear as censored survival times in our data (and potentially be quite long). There165

are other locations besides our dominant hospital system for immediate cardiovascular care -166

particularly in the western south central area of the county, and the northwest. These areas167

did appear in the statistical analysis, though the statistical narrative was less clear than we168

would have hoped.169

Alternatively, it is also possible to directly account for the spatial correlation of the170

residuals using Bayesian hierarchical models. These models extend frailty models to in-171

clude a spatial frailty that can be modeled from direct patient locations or aggregated areal172

counts (geostatistical or lattice/areal respectively). Essentially, these models extend random173

effects (frailty terms) to non-i.i.d. settings, where one can model spatial correlation struc-174

tures using, for example, a powered exponential, or Matèrn (in the geostatistical approach)175

or a network graph approach (lattice/areal approach). Banerjee, Wall and Carlin (2003)176

provide excellent statistical theory development and application for infant mortality in Min-177

nesota (4) as do Henderson, Shimakura and Gorst in with leukemia in Northwest England178
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(2002) (12). In extensions/adaptations, Bastos and Gamerman (2006) describe use dynamic179

models to consider models without proportional hazards assumption (5); Banarjee and Dey180

consider semi-parametric approaches (3); Zhang and Lawson assess other spatial parametric181

approaches (accelerated failure times)(30).182

Despite their strengths, in the context of this short report, the Bayesian hierarchical183

models present some additional challenges – the spatial frailty effects for each area (latticed184

or otherwise) are assumed to be smoothly spatially varying, and the statistical theory still185

rests on a random (or completely enumerated) sample within each area. While the first186

assumption may hold, given the fragmented landscape of healthcare within the United States,187

the second assumption likely does not.1 Patients with addresses further from Santa Barbara188

(the city) have other options for cardiovascular care, and those who do appear in the data189

may appear for systematic reasons (such as commuting patterns or severity). This likely190

would bias the inference of estimated hazards across space (and the interpretation of relative191

areas), but also may reproduce the spatial patterning directly in the hazard rates themselves192

as opposed to the residuals from the Cox model.193

Given the somewhat murky spatial interpretation of the residual martingale values and194

leave-one-out and leave-one-group-out analyses, we still believe there might be applications195

of survival analysis (both Bayesian hierarchical and otherwise) with hospital data to describe196

functional hospital service areas, particularly for diagnoses that require somewhat regular197

care. The hospital service area literature is rich in floating catchment area methods to198

define service units (8; 17; 16; 25; 26; 18), but to our knowledge survival methods remain199

absent. While clearly not ready for prime time, simple Kaplan-Meier estimates at various200

scales/distances might reveal natural edges for regular care in the healthcare landscape.201

Similarly, loss-to-follow up trends (censoring) or disease exacerbation analyses could reveal202

1Additionally, U.S. census tracts, by design, typically are more homogeneous than ZCTAs. In general,
they range in population size from 1,200 to 8,000 people with an optimal size of 4,000. In Santa Barbara
County, populated census tracts range in size from 1,245 to 9,519 whereas ZCTAs range in size from 154
to 55,126. These differences in population can be seen in Figure 9, and, coupled with our results further
exacerbate potential issues with areal units, spatially structured survival data, and reconciling heterogeneity
in the healthcare system.
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edge distances where patients might benefit from satellite clinics or coordinated care across203

systems. Though tricky to implement, such analyses could prove a fruitful compliment to204

the existing floating catchment methods.205

5 Conclusion206

In observational studies with spatially referenced data, careful model fitting is critical. A207

thorough check for spatial autocorrelation and/or patterning in the residual values is a nec-208

essary step, and multiple scales may reveal different narratives and conclusions. In survival209

models and especially extended Cox models, these spatial effects may play out in model210

estimates that are artificially high (or low) depending on the structure of the unestimated211

baseline hazard. Conservative and meticulous decision making in the construction of the212

models is vital for interpretation, and Bayesian hierarchical models that directly incorpo-213

rate spatial structures should be explored. However, despite the difficulties, there are also214

potential applications in other areas from these methods, and in particular hospital service215

area research. Survival methods to assess changing survival times between regular care visits216

could be used to determine functional catchment areas and target existing resources, and217

would compliment existing floating catchment methods.218
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6 Tables and Figures311

Dependent Variable:

Risk of Secondary CVE

Evacuation Order Exposure 0.2494∗

(0.1486)
Robust SE

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1: Evacuation and Full County Population Reduced Model
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Figure 1: The Schoenfeld residuals for the evacuation order parameter estimate by time for the simple model
with the full sample.
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Figure 2: The summed martingale residual values by individual, sorted by size.

17



Figure 3: Map of the summed martingale residual values per individual, associated to one address and
aggregated by ZCTA.
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Figure 4: Map of the summed martingale residual values per individual, associated to one address and
aggregated by census tract.
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(a) Positive Summed Residuals

(b) Negative Summed Residuals

Figure 5: Summed martingale residual values per individual separated by positive (longer than expected
survival time) and negative (shorter than expected survival time), and plotted by Euclidean distance from
the hospital system location.
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Figure 6: Jackknife residuals from leave-one-out analyses at various scales: individuals, city names, ZCTA,
census tract.
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Figure 7: Mapped jackknife residuals for leave-one-out ZCTA and coefficient estimates.
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Figure 8: Mapped jackknife residuals for leave-one-out census tract and coefficient estimates.
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(a) Total population (b) Households with at least one member aged 65 years or
older

Figure 9: The Lorenz curves display the cumulative percentiles and normalized ranks of both U.S. census
tracts and zip code tabulation areas (ZCTAs) in Santa Barbara County. In each case, the curves are
compared to a 45°-line which would indicate perfect alignment (e.g. 25% of the population would have
a normalized rank of 0.25.) The further the curve from the 45°-line, the less the measure (variable) is
distributed homogeneously (or equally) across areal units. For both the total population (panel A) and the
share of households with at least one member aged 65 years or older (panel B) the census tracts show more
homogeneity in construction than the ZCTAs. As age is a particular risk factor for cardiovascular events,
and we can see from the panel B that while neither ZCTAs nor census tracts are perfectly aligned, the census
tracts are better than the ZCTAs. Specifically, while 50% of the census tracts account for approximately
25% of the share of households with at least one member over the age of 65, nearly 70% of the ZCTAs
account for only 25% of the share of households with at least one member over the age of 65.
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