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Abstract A simple model of gene regulation in response to stochastically changing
environmental conditions is developed and analyzed. The model consists of a differen-
tial equation driven by a continuous time 2-state Markov process. The density function
of the resulting process converges to a beta distribution. We show that the moments
converge to their stationary values exponentially in time. Simulations of a two-stage
process where protein production depends on mRNA concentrations are also presented
demonstrating that protein concentration tracks the environment whenever the rate of
protein turnover is larger than the rate of environmental change. Single-celled organ-
isms are therefore expected to have relatively high mRNA and protein turnover rates
for genes that respond to environmental fluctuations.

Keywords Gene expression - Environmental stochasticity - Stochastic process -
Stationary distribution

Mathematics Subject Classification (2000) 92C37 - 92C42 - 60G10

This paper was greatly improved by the comments of several anonymous reviewers. S. R. Proulx was
funded by NSF grant EF-0742582 and by the Baker Center for Bioinformatics at Iowa State University.

M. W. Smiley

Department of Mathematics, Iowa State University,
396 Carver Hall, Ames, IA 50011, USA

e-mail: mwsmiley @iastate.edu

S. R. Proulx (<)

Ecology Evolution and Marine Biology, University of California,
Santa Barbara, Santa Barbara, CA 93106-9620, USA

e-mail: stephen.proulx @gmail.com

@ Springer



232 M. W. Smiley, S. R. Proulx

1 Introduction

One way that organisms cope with change in the physical and biological environment
is by controlling gene expression so that the complement of active proteins can be
adjusted (McAdams et al. 2004; Seshasayee et al. 2006; Wittkopp 2007). Clearly, alter-
ing protein production to match the environmental demands can be adaptive (Dekel
et al. 2005), but the transition from constitutive expression to regulated expression
may have its own pitfalls. For example, down-regulating a gene when it is not needed
necessarily creates a delay in protein production when the protein is needed in the
future.

We consider a cell that encounters a series of environmental conditions that affect
gene transcription rates and potentially affect reproductive fitness. The environment
alternates between discrete states at random intervals. These discrete states could rep-
resent the presence of some metabolite, a signal molecule, or some other aspect of the
environment. The environmental state could even represent changes in the physiolog-
ical or hormonal state that a cell experiences in a multicellular organism. In this paper
we use a simple set of assumptions that make our calculations easier and provide a
baseline description of gene expression dynamics. In particular, we assume that there
are only two environmental states and that the cell has complete information about
the state of the environment. Gene expression is regulated in a simple fashion, where
the mRNA degradation rates are constant but the rate of transcription varies between
environments.

Perhaps the simplest stochastic model of such behavior involves exponential wait-
ing times between environmental shifts. This is a Markovian process, where the history
does not influence the future states of the environment. Further, by assuming expo-
nential waiting times there is no additional information available regarding expected
waiting time until the next environmental shift. This means that knowing how long
the environment has been in one state does not alter the expected waiting time until
it shifts to the other state. In particular, this means that the cell has nothing to gain
by storing information about the amount of time spent in the current environment. In
the simple environment we consider it is unlikely that a more complicated regulatory
control structure would be optimal, and so our analysis focusses on simple regulation
of transcription rate. However, more realistic environmental scenarios may impose
selection for more complex regulatory architectures.

The model we consider is a simple differential equation, ' + pux = R(¢), driven
by a continuous time 2-state Markov process R(t), which is sometimes referred to
as the telegrapher’s process. Stochastic processes of this type have a long history but
the literature does not seem to be as well known or as unified as that of diffusion
processes, although (Davis 1984) has proposed a general framework for the analysis
of “piecewise deterministic Markov processes”, which include the type of processes
considered here. One of the earliest works seems to be that of McFadden (1959) who
consider these in the context of RC circuits and obtained some results on stationary
distributions. Further results in the context of RC circuits can be found in Pawula and
Rice (1986). More recently (Mazza and Piau 2001) have established a link between
Dubins—Freedman Processes and RC filters, and have provided algorithms for com-
puting stationary distributions in a variety of cases.
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Expression dynamics 233

As is well-known for the process R(t), the time-dependent density function of the
driven process X (¢) can be characterized by a generator and a differential equation.
However, now the differential equation is a system of partial differential equations.
An early work developing the theory of dynamics driven by continuous time finite
state Markov processes is that of Milstein and Repin (1972). See also the book by
Srinivasan and Vasudevan (1971) and the more recent works (Pinsky 1991; Klyatskin
2005). Although models like the one we consider are primarily found in the mathemat-
ics and physics literature, they have recently been used to model gene transcription.
For example, in Karmakar and Bose (2004) the telegrapher’s process is used to model
switches between a gene being in an active or inactive state, with the active state
leading to protein synthesis. The same approach is used in Karmakar and Bose (2007)
with one of the transition rates protein dependent, and the results compared to a deter-
ministic model that has the cell population density overlapping a bifurcation point in
the model.

Several researchers have considered the effects of a stochastically changing envi-
ronment on cell populations (e.g. Kussell and Leibler 2005; Gander et al. 2007), gene
regulation (e.g. Belle et al. 2008; Cook et al. 1998), and protein production (e.g.
Karmakar and Bose 2004; Shahrezaei and Swain 2008). In these works the relative
rates of cellular processes and environmental switching is shown to be important
factor. For example, Bennett and co-workers (Belle et al. 2008) report that in Sac-
charomyces cerevisiae the metabolic system responds effectively to an environmental
stimulus changing at a slow rate, but has virtually no response to the same stimu-
lus changing at a rapid rate. This type of variation in response was observed from
a different point of view in simulations of a simple model with switching between
active and inactive protein production (Cook et al. 1998). This type of stochastic
effect could be caused by variation in chemical reactions, such as changes in the
conformation of the promoter, binding of RNA polymerase, and stochastic pausing
of RNA polymerase. The simulations showed protein synthesis varied over a wide
range when the switching rate was slow but was essentially steady at a rapid rate of
switching.

The works of Karmakar and Bose (2004, 2007) provide a clearer understanding of
how relative rates can determined whether protein synthesis has a unimodal or bimodal
distribution. Using a simple activation/deactivation model of protein synthesis they
show that bimodal stationary distributions are expected when the rate at which the
promoter changes conformation is slow relative to the degradation rates of the pro-
tein. This is also our conclusion relative to mRNA synthesis. In addition, we show
that all of the moments of the time-dependent distributions converge exponentially to
the moments of the stationary distributions, with exponential rates depending on the
degradation and switching rates.

We also consider the two step process of transcription and translation from gene to
protein and give some heuristic arguments on how the relative rates can effect the cells
ability to cope with the environment. Both steps are also considered in Shahrezaei
and Swain (2008) from a different modeling approach and with different goals. Start-
ing with a master equation (a large system of ordinary differential equations) for the
probabilities of all possible numbers of mRNA and protein molecules, the authors
combine a generating function approach with an asymptotic assumption that proteins
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234 M. W. Smiley, S. R. Proulx

are much more stable the mRNA to reduce the system to one involving only protein
probabilities. Again, relative rates play an important role in the analysis.

The outline of the paper is as follows. We begin by introducing basic notation and
assumptions about the process R(#), and describe and characterize the time-dependent
density of the driven process X (¢) in terms of a system of partial differential equa-
tions. Stationary distributions, which are Beta distributions, are then explicitly given.
With this background developed, we derive time-dependent equations for differences
of moments and use them to show the exponential convergence of the moments of the
time-dependent process to those of the stationary process. We then extend our model
to include the dynamics of protein production and investigate the ability of protein
concentrations to track fluctuations in the environment. We argue that the relative rates
of environmental fluctuations, mRNA and protein turnover limit the ability of a cell to
track its environment. Our simulations indicate that protein concentrations will track
changes in the environment provided that both mRNA and protein turnover rates are
higher than the rate of environmental change. This suggest that single-celled organ-
isms in variable environments will only persist if mRNA and protein turnover rates
are relatively high.

2 Mathematical framework

Our model of gene regulation in response to a stochastically changing environment is

dx

ar + px = R(t), ey

where x(t) represents the expression level (i.e. the concentration) of mRNA, u is its
degradation rate, and R(¢) is the environmental input which is assumed to be a random
process switching between the two states ro and rq. This corresponds to a system where
the gene’s enhancer sites can be bound by different transcription factors or cofactors.
Once bound, transcription occurs at a constant rate, and the mRNA product breaks
down at a constant rate j. Specifically, R(¢) is assumed to be a continuous time 2-state
Markov chain, with exponentially distribution waiting times between jumps.

The following notation and standard results, as given in Allen (2003) or Durrett
(2004) for example, will be used. The process R(¢) can be characterized by its infini-

tesimal generator
N S
o= 2]

and probability transition matrix P (z) = [p; ;(?)],

1 —(ho+A1)t _ —(Ao+A1)t
Py = |:A1+Aoe A — Aie }

Ao+ A [ Ao — )»oe_()‘°+)‘l)t Ao + )\16_()‘0"')‘1”

which satisfies the Kolmogorov differential equation P’(t) = Q P(t), and the initial
condition P(0) = I. The entries Ag, A of Q are the transition rates between states,
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and their reciprocals correspond to mean waiting times. Here, we have adopted the
convention that p; ;(z) denotes the probability of a transition from state j to state
i. (This is the transpose, as are Q and P(¢), of the usual notational convention but
is more convenient in our analysis of stationary distributions for the process X (¢).
See also Allen (2003) for a consistent use of and argument for this convention.) If
the distribution of R(0) is p(0) = [po(0), p1(0)]T then the distribution of R(?) is
p) = P)p(0);

_ [Po(t)] _ 1 [/\1 + (Ropo(0) — A1pi (0))e<*0“'>f}
p(t) = = —Gotrpe |- @
PI | T %o+ a1 Lo+ (i pi1(0) — Aopo(0))e

The solution of (1) is a continuous time, continuous state stochastic process which
we denote by X (7). Assuming 0 < ro < rq, and that X (0) € [ro/p, r1/pn] we will
have X (t) € [ro/u, r1/m] for t > 0 (with probability one).

The probability density function v (z, ¢) associated with X (¢) can be characterized
by a system of two partial differential equations (cf. Srinivasan and Vasudevan 1971;
Milstein and Repin 1972; Karmakar and Bose 2004, 2007). Since

P(X(t) € [z, x4+ Ax]) = P(X(t) € [z, x + Ax], R(t) = ro)
+PX (@) €[z, z+ Ax], R(t) =r1) (3)

it is natural to consider the cummulative distribution functions W¥; (z, 1) = P(X (t) <
x, R(t) = r;), (i = 1,2), associated with these joint probabilities. The derivatives
of these functions with respect to x give the joint density/distribution of X () = =
and R(¢) = r; which will be denoted by v; (x, ¢). Thus v (x, t) is given as a marginal
density

V(@ 1) = Yola, 1)+ y1(z,1), € (r—o,r—l), >0 o
o
Clearly
/1
/wi(z,t)de(X(r) € [%’ ;—‘]Rm =ri) = pi(0), )
ro/m

where [po(t), p1(1)]” is the distribution of R (7).

Analysis of the transitions between the joint density/distributions of the expressions
levels, which result from the transitions between the environmental states r;, leads to
the characterizing system

o 9
7 + —[(ro — ux) ol = —rovo + A1,

t ox (6)
v, 9

s ﬁ[(” — ux)Y1l = rovo — A1,
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236 M. W. Smiley, S. R. Proulx

for the joint densities o (x, 1), ¥1(x, t) on the semi-infinite strip (z,t) € (ro/u,
r1/m) x (0, 0o). In addition to (6), the functions should satisfy the integral conditions
(5), which formally lead to the appropriate Cauchy data for (6), making it a well-posed
hyperbolic system (cf. John 1978). This is seen as follows. Integrating (6) over the
interval (ro/u, r1/p) results in the identity

T/ T/
d r/
/ (i) + 101 = pails) di = & / i, D dz + (i — poyyl]
t ro/ K
ro/m ro/m

By using (5) we find

r/

P + 10 = payol| = —hopo(t) +11p10).
r/

PLO+ 11— pel| | = hopo(®) = kipio).

Since p(¢) satisfies p’(t) = Qp(¢) the boundary terms must vanish. Hence

r ro
Yo (—,I) = (—,l‘) =0, t>0, (7)
I I

while only the weaker conditions
lim (ro — px)o(z, 1) =0, lim (rp —p)Yi(z, 1) =0, 1>0, (8
T—ro/1 T—>ri/p

are required at the other end points.

Finally, we note that the characteristic curves for the first equation in (6) trace back-
ward from an arbitrary point (z, t) € (ro/u, r1/pn) x (0, 00) to either a point on the
initial segment where t+ = 0 or to a point on the half-line * = ri/u, t > 0; while
the characteristic curves for the second equation trace backward to either a point on the
initial segment where t = 0 or to a point on the half-line x = ro/u, t > 0. Thus initial
densities Yo (x, 0), Y1 (x, 0) on (ro/u, r1/1) together with the boundary conditions
(7) provide the proper Cauchy data for (6). Hence there is a unique solution of (6)
together with this Cauchy data.

3 Stationary distributions

In our model, the environment changes stochastically over time. We would like to pre-
dict the future state of the system and determine whether the levels of gene expression
are able to track the environmental change. One way of looking at this is to ask how the
system behaves in the long run. In this section, we calculate the environment-specific
stationary distributions, as well as the overall stationary distribution. These provide a
measure of the relative amount of time that expression will be at any particular level
in each environmental state. These can then be used to calculate observable statistics
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of gene expression or plugged into the next level of biological function to determine
metabolic function or even fitness.

A stationary distribution 7 (x) of the process (1) is determined by a pair of functions
7 (x) = mp(x) + w1 (x) which are time-independent solutions of the system (6), thus
satisfying

d
—[(ro — px)mol = —Aomo + A1y,
dx 9
y ©)
—[(r1 — px)mi] = romo — A7y
dx

The existence and uniqueness of stationary distributions for processes of this type
has been well studied (cf. McFadden 1959; Milstein and Repin 1972; Pawula and
Rice 1986; Mazza and Piau 2001). Typically Beta distributions are obtained when the
waiting times are exponentially distributed as in the present case. See Mazza and Piau
(2001) for some results on gamma distributed waiting times.

Although there are many solutions of the system (9) there is only one solution that
also satisfies the integral conditions

r/m r/m
Al A0

, mi(z)dr =
Ao+ A1 Ao+ Aq
ro/m ro/m

mo(x)dr = (10

The values on the right in these equations are the limiting values of the integrals in (5).
Solutions of (9) can be easily found by using the following observation. If [, 71]7
is a solution then by adding the two differential equations we obtain

d
Jo L0 = p)mo + (n — pryml =0, ro/u < x <ri/p.
This shows that any solution pair of (9) satisfies

(ro — px)mo(x) + (1 — px)m () = K, ro/pn <x <ri/u, (11)

for some constant K. Thus 71 (x) = [(ux — ro)mo(x) + K]/(r1 — px), so that ry can
be eliminated from the first equation in (9). After solving the resulting equation for
70, the same relation can then be used to determined 7.

As can be seen by integrating each of the equations in (9) separately (as was done to
obtain (7) and (8)), the solution [rg, 7117 satisfying (10) should be one of the solutions
with K = 0. Thus, up to a normalizing factor C it is

(= ro) RO (ry — payhi/i

mo(x) | _
|:7T1(.’b):| - |:(,ux — rO)AO/M(rl _ /;LZ')_H_M/M] . (12)

Itis clear that, although they may be unbounded, both components are integrable func-
tions on (ro/u, r1 /). In fact, by using the change of variables s = (ux—rg)/(r1 —ro)
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238 M. W. Smiley, S. R. Proulx

we have
r/p ( yRotin)/u A A
re—r
(ux — ro)—1+k0/M(r1 _ Mm)ll/u do = 1 0 B (_0, 1+ _1) ,
0 w 2
ro/m

where B(«a, B) is the Beta function (cf. Freund 1971). Similarly

i/
(war = ro)" " (ry — par) =M de

ro/m

— 1) RoFAD/ 1 o A
_n-n B (1 +2, —1) :
M nooun

Since B(«, B) = I'()['(B)/ ' (x + B), it follows by a standard property of the
Gamma function that

A A A A0 A ro A
B(_O,H_l): ! B(_O,_l), B(H_O,_l)
iz iz Ao+ A 7" Hoop
A A0 A
__to B(_O,_l).

Ao+ Al 7

Therefore, the unique stationary distribution of the process is m = o + 71 where

p(ux — ro) "R — )t /e
(r1 — ro) ot /B o/, A1 /)
pw(ux — rg) 0/ (ry — pa)~HHA/R
(r1 — ro)*0t* /BB (g /i, A1 /)

mo(w) =
(13)

m(z) =

4 Convergence of moments

In this section, we derive ordinary differential equations for various moments and
establish asymptotic estimates showing exponential decay in time. While the previous
section shows that the long-run behavior of the system can be calculated, the current
section shows how quickly that long run behavior is approached. Because we find
that the stationary distribution is approached as an exponential decay function that
depends on the rate parameters, we can infer that the stationary distribution is reason-
able measure of the behavior when organisms persist over several alternations of the
environment.

Let ¥, ¥ be the solutions of (6) satisfying (5), and 7y, 1 be the unique stationary
distributions satisfying (9) and (10) given in (13). We consider time varying moments
of the differences

ri/m
M (1) = / xk(l/fi(x, t)y —mi(x))dx, i=0,1. (14)

ro/m
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The moments My o(t), M1 o(¢) are actually already known. From (2), (5), and (10), it
follows that

[Mo,o(t):| _ [Po(t):| 1 [M] — o~ Cotht |:M0,0(0)]
My o(t) p1(t) Ao+ A1 | Ao Mi(0) "

Taking the difference of first equation in (6) and the first equation in (9) we find

r/u
M(’)’k(t) = / xk%(ax tdx
ro/m
r/p
= / at (% ((nx —ro) (Yo — m0)) — 2o(Yo — 7o) + A1 (Y1 — 711)) dz.
ro/m

Using (7) and (8) and the explicit form of g it follows that

ri/m

/ z* ((uz — ro) (Yo — m0)), dx
ro/
; r/m
ri/m
= (= ro) — 7on [ - / ke 1 (u — ro) (o — 70)) da
ro/m
ri/pn ri/pm
= —uk / 2k (Yo —mo)dx + rok / 2* = (o —m0) dx,
ro/m ro/m

for any k > 1. Thus, for k > 1, the moment My x(¢) satisfies
Mg (1) = —(uk 4 20) Mo,k (1) + A1 M1k (t) + rokMo g1 (1).

A similar calculation applies to M (¢) showing that for k > 1 the k-th moments
satisfy the linear nonhomogeneous system

Mo« /= —(uk + Ao) Al Moy Sk roMo k-1
My Ao —(uk+Xx1) | [ My rMig—1]|’

In matrix-vector notation we have M; = (—ukI 4+ Q)M + Dy My where My (1) =
[Mo,k(t),Ml,k(t)]T, Q is the infinitesimal generator for the process R(¢), and
Dy = diag[rok, rik] is a diagonal matrix. Since exp(rQ) = P(t) it follows that
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240 M. W. Smiley, S. R. Proulx

exp(t(—ukl + Q)) = e Mk P (). Hence the variation of parameters representation
of the solution gives
t
My (t) = e " P (1) My (0) +/e_”k(’_S)P(t — $) D My_1(s) ds.
0
Let |[v]l1 = |v1| + |v2| denote that standard 1-norm of a vector v = [v;, v2]%, and

I|A|l1 the induced matrix norm (cf. Horn and Johnson 1985). This choice of norm is
convenient since the induced matrix norm turns our to be the maximum of all column

sums of the matrix. Thus ||P(z)||; = 1, for all ¢, and || Dy||; = rik. Hence, for all
k>1,
t
M)l < e ™M | Me(O)ll1 + rik / e MU I My ()1 ds. (15)
0

Clearly estimates on || My_1(¢)||1 lead to estimates on | My (¢)||;. Since we know
1Mo(2)|l1 < [|Mp(0)]l1 exp(—(Xo + A1)t) this leads inductively to estimates on all of
the moments.

Let {hy(1)}72, be the sequence of functions defined inductively by

‘
ho(t) = e~ 0T and () = eiﬂk’/e“kshk_l(s) ds, k>1.
0

We show by induction that
e r\* 7 : &
M)l <D (J.)IIM;(O)H] (;) e ML R IIMo(0) [l A (). (16)
j=1

This is easily seen to hold when k = 1.
Suppose (16) is valid with k replaced by k — 1. Then the second term in (15) satisfies

t
rik / KD My ()11 ds < rke ™M (1 (1) + (),
0

where

~

1
1 (1)

. t
k-1 k=j-1 ,
( . )||M,~<0)||1(’—‘) / P8 g
1 J ’ 12 )

3 (k B 1)nM O (n)"‘f"l etk —
. j 1\ P
: J ! n (ke — j)

j=1

~.
I

~
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and

t

L(t) = (k — DIrf M) / e S hy_y (s) ds.
0

Clearly rike ™™ I (t) = k!rk || Mo(0) |17 (1), and since ek =1 — 1 < erk=ir

=l k r\ 7 .
rike ™ I < (J) 1M (O) 14 (;1) e,
j=1

Inequality (16) follows directly by adding the first term in (15) to these upper bounds.

We now show each of the functions % (¢) decays exponentially to zero as ¢t — oo.
The cases Ao + A1 < @ and A9 + A1 > u are considered separately. First we assume
Ao + A1 > w. Then ho(t) = exp(—(ho + A1)1) < e ™, t > 0, and hence

t
hi(t) = eﬂ“/e’”ho(s) ds <te ™,
0

An easy induction argument then shows

—ut
hy(t) < ——— t >0, whenXiy+ A1 > K.
k()_uk_l(k—l)! > 0otAi =pu
Next we assume Ag + A; < u. For notational convenience we set A = Ag + A1, SO
that 19(r) = e~*'. By the mean value theorem applied to f(z) = ¢~ we find
! —At —ut
e — e
hi(t) = e_’”/e’”e_)‘x ds = ———— —te " <te™ | t>0.
nw—A
0
By induction it follows that for k > 2
te—)»t te—)»t

h =
KO = = = T e

Sinceipp — A = (@ — D+ (u —A) > (i — 1) it then follows that

—At

hi(t) < m

, t>0, whent =29+ A; < p.
These two cases can be combined to show

k
kirk () < k (r—l) it exp(—min{p, Ao + A1}1), ¢ > 0.
"
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242 M. W. Smiley, S. R. Proulx

It is now clear from (16) that each of the moments M; ;(¢) decays exponentially to
Zero, as t — 00.

5 Convergence of statistics

Biological function is only indirectly dependent on gene expression. The ultimate
function will depend on protein production and the activity of those proteins and
their products. Calculating this downstream functionality will often require comput-
ing expectations of functions of gene expression. In this section, we show that such
statistics also converge exponentially in time.

The convergence of moments shown in the previous section leads to the conver-
gence of all statistics associated with the process X (¢). Since the density function
Y (x,t) associated with the process X(f), as given in (4), is the sum of V(z, 1)
and V1 (z, t) and since all of the moments of y; converge to the moments of r;
(i =0, 1), it follows that the moments of i (x, #) converge to the moments of the sum
w(x) = mo(x) + w1 (x), as t — o0.

According to (13) the stationary distribution & = mo + 71 is explicitly given by

u(ry —ro)
(r — ro)(AoHl)/uB(%O, %1)

n(r) = (ux — ro) /oy — py /= (17)

This is shown to be a beta distribution on (ro/u, r1 /1), with parameters o« = Ag/u
and 8 = A1/u, as follows.
The standard beta distribution p(s), with parameters « and S, is defined by

s T =51 0<s <1,

pls) = B B)

with p(s) = 0 elsewhere. If S is a random variable with this distribution, then by a
change of variables (cf. Freund 1971) X = ro/u + S(r1 — o)/ is a random variable
with the distribution

r@)= " p(uw—ro)_ M (/w—ro)‘“ (rl—uw)’“
rL—ro ri—ro (ri —ro)B(a, ) \ r1 —ro rL—ro '
Setting o = Ao/ and B = A1/u, we obtain (17).
Since all of the moments converge it follows (see Athreya and Lahiri (2006) for
the discrete case) that all of the statistics of the process X (#) converge to the statistics

of a random variable with the distribution 7 (x). That is, for any bounded continuous
function f(x) defined on R we have

ri/m ri/m
tl_i)rgo/f(x)wm,t)dx:/f(m)rr(x)dx,
ro/m ro/m
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or in terms of expected values lim;_, o, E(f(X(?))) = E(f(Xx)), Where X is
a random variable with the beta distribution 7 (z). We remark that in this setting a
proof can be based on the density of polynomials in the uniform norm on compact
subintervals of R (i.e. Weierstrass’s approximation theorem).

It is easy to see that the graph of the distribution 7 (z), like all beta distributions,
may have a variety of shapes. For example, if Ao/ < 1 then z = ro/p is a vertical
asymptote, while if Ag/u > 1 the graph passes through the point (r9/u, 0) on the
x-axis. Thus, depending on the ratios of the transition rates (i.e. mean waiting times)
to the turnover rate u, the distribution could be sharply peaked within the interval or
have most of its mass near the end points, among many other alternatives.

6 Two-stage model of mRNA and protein concentration

Our analysis has relied on a one-step model where an mRNA gene product is pro-
duced at an environment dependent rate and decays at a fixed rate. Fitness must,
in the end, depend on the protein complement of a cell and the internal structural
and physiological conditions created by those proteins. To address this, we con-
sider a two stage model where protein production depends on the concentration of
mRNA. In our current model we simply assume that the rate of protein production
is proportional to mRNA concentration and that the rate of protein decay is fixed.
This excludes several known biologically important processes including posttran-
scriptional regulation (Halbeisen et al. 2008), diminishing returns in translation due
to ribosome saturation, and targeted degradation of protein. This leads to a modified
system

dx
Z + urr = R(1)
dy
ar + Upy =1pT,

where 1, and 1), are the respective decay rates of mRNA and protein, 7, is the envi-
ronment independent rate at which protein is translated from active mRNA, and R(¢)
is the continuous-time 2-state Markov process modeling the switching environmental
conditions as before. This model gives rise to a joint stochastic process (X (¢), Y (¢))
for the levels of mRNA and protein. As with the single variable process the stationary
probability density function p(x, y) for the joint process can be written in the form
p(x,y) = po(x, y)+ p1(x, y), with pg, p1 now characterized by the first order system
of partial differential equations

0 d

—[(ro — wrx)pol + —[(rpr — wpy)pol = —Aopo + 2101,

ox ay

5 5 (18)
ﬁ[(” — urr)p1] + @[(Vpl‘ — upy)p1l = Xopo — A1p1,
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along with the integral identities

)

,Y)dA = _0
/po(x Y) ot

R

1
AL S— x,y)dA =
Y /m( Y)
R

where R = [a, b] x [c,d], witha = ro/uy, b = ri/py, ¢ = rpa/pp, and d =
rpb/ip.

The PDE (18) is a symmetric hyperbolic system subject to integral side conditions.
Little seems to be known theoretically for problems of this type, and our efforts to
find analytical solutions have not been successful. We have therefore used stochastic
simulations to obtain approximations of the density p(z, ).

We consider a discrete version of the joint stochastic process defined as follows.
Assuming the process starts at (xg, yo) with the environment in state g, we find that
as long as the environment remains in this state the dynamics determine the state at
time ¢ to be

0] = s ey e[+ 2]
] sl (S RS | d|’

If ¢ is drawn from the distribution Exp(Ag) of waiting times before the environment
switches, this determines a random mapping on R. If the environment starts in state
r1 then x(7), y(¢) are given by the same expression as above, but with the roles of a
(resp. ¢) and b (resp. d) interchanged. Again arandom map on R is defined by drawing
from the distribution Ex p(A1) of waiting times before the environment switches. This
gives a pair of random maps on R of the form

Fii(z) = A@t)z+bi(t), z€R,

where A(?) is a (2 x 2) matrix depending only on fi,, ip, ¥p, With ¢ being randomly
drawn from Ex p(A;), and b; (¢) being a column vector depending on the state r; of the
environment and the matrix A(¢). This defines a discrete process associated with the
continuous process (X (¢), Y (¢)) that is given in terms of iterated random functions
(Diaconis and Freedman 1999). This process consists of points in R at which the flow
of the dynamical system reverses due to an environmental switch. Although the choice
of the index i is deterministic, since it is alternatively taken as O or 1, it has been shown
in the 1-dimensional case that there are distributions of waiting times such that the
stationary distribution of this process follows the same stationary distribution as the
process in which i is chosen randomly (Mazza and Piau 2001).

Let {Z;}72, denote the discrete process generated by iteration of the random func-
tions described above. For simplicity we assume that the distributions of waiting times
in the two environments are the same, so that in the stationary regime the fraction of
time spend in each environment is the same. Operating under the assumption that (here
8;(A) = 1if z € A and is zero otherwise)
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1 N
N 2

converges to the distribution of the process (cf. Diaconis and Freedman 1999), with
convergence in an appropriate sense, we use stochastic simulations to compute real-
izations of {Zk},ivzl, for large N and then an approximation py (x, y) of the density
p(x,y) as follows. Let [a, b] be subdivided into M, subintervals of equal width Ax,
and [c, d] be subdivided into M, subintervals of equal width Ay. This determines
M, M, subrectangles R; ; of R. We define py (x, y) as a piecewise constant function,
with py (2, y) = p;,j, forall (z,y) € R; j, where

N
1
pijATAY = = ;szkmi, J)

Piecewise constant marginal densities are then determined by o}(,(m) = criy on

(i1, zi], oy (y) = o} on [y;_1,y;], with

M Y

M,
of =D pijAy. i=1 M of =) pijAz, j=1... M,
j=1 i=1

One of the marginal densities of p(x, y) can be computed analytically. Integrating
the system (18) with respect to y over the interval [c, d], and using the fact pg, p1
should be zero on the edges y = ¢, y = d (a consequence of the integral identities
p0, p1 must satisfy), leads to the conclusion that

d d
o (x) =/po(:c, ydy, mi(v) =/p1(:c, y) dy,

c c

where mg, m; are the densities satisfying (9) and (10). Thus the marginal density
o¥(x) of x is w(x), the stationary density of the single equation given in (17). Since
the moments of 7 are known, moments of its simulated approximation a;\/, can be
compared to them for an indication of the validity of the methods being used.

Our main interest in modeling the two-stage process is to determine when pro-
tein levels can effectively track the changing environment. The single-stage model
showed that there is a qualitative change in the stationary distribution such that there
is a modal value when mRNA turnover is faster than the rate of environmental change.
In the two-stage model, the translation system experiences a continuously changing
“environment” defined by the current concentration of mRNA. Thus, it is intuitively
clear that protein distributions can only track the environment if mRNA concentration
transmits the environmental signal. Complementary to this principle, mRNA concen-
tration will never fluctuate with a period shorter than that of the environmental change,
so protein turnover does not need to be quick relative to mRNA turnover, but it does
need to be quick relative to the rate of environmental change.
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A The joint density of mRNA and protein B The joint density of mRNA and protein

p(x,y)

y 00 X

Fig. 1 The joint density functions for mRNA (x) and protein (y). For both panels, parameters are ry = 0,
ri =1, up = 0.025,rp = 0.01, A9 = A; = 0.01. Panel A shows a case where protein turnover is
relatively high (1, = 0.2) while in panel B protein turnover is slower than the rate of environmental
switching (up = 0.0085). In both figures, there are large peaks around x = 0 and = = 1, indicating that
mRNA densities track the environment. A curved ridge connects these peaks and reveals the trace of the
joint densities during the transition between environments. This curved ridge shows that protein density
achieves less proportional change at any given point than mRNA (i.e., protein density changes more slowly
than mRNA density). In panel B, this effect is more pronounced and the peaks are more spread out in the
y direction, indicating that protein density does not track environmental change well

To demonstrate this effect, we simulated cases in which ., was greater than or less
than A = A9 = X1 (see supplemental file for Matlab simulation code). In all of the
simulations reported, we setrg = 0,7 = 1, i, = 0.025,7, = 0.01, Ao = A1 = 0.01,
and used N = 500,000 simulated realizations. Plots were normalized to the unit inter-
val or unit square respectively. The expected value and variance of the exact marginal
distribution 7 were therefore 0.5 and (rounded to 4 digits) 0.1389. The expected values
(rounded to 4 digits) of the simulated marginal densities O’}?\J/ were all in the interval
(0.4998, 0.501), and the variances (also rounded) were in the interval (0.1372, 0.1374),
and hence showed very good agreement with those of .

Figure 1 shows the range of qualitative behaviors as seen in the joint stationary
distribution. So long as both w,, i, > A the joint distribution has most of its density
near the corner points (Fig. 1a). This is also reflected in the marginal distributions
shown in Fig. 2a. When protein turnover is low while mRNA turnover is high, relative
to the environmental switching rate, the joint density is seen to smear out along the
vertical edges of R (Fig. 1b). The marginal density of mRNA remains unchanged but
the marginal density of protein density becomes unimodal with its mode at intermedi-
ate protein concentrations (Fig. 2b). Figure 3 shows that this qualitative change takes
place as the decay rate p ), crosses through a small neighborhood of the switching rate
A. Figure 3 also shows that the marginal protein density appears to have 3 modes as
this transition takes place.

7 Discussion

We have analyzed a model of gene expression in response to environmental fluctua-
tions. Our main finding is that the probability density of gene expression approaches

@ Springer



Expression dynamics

247

A

©

B

—
x
<
=
0

5.5

5

4.5

4l
3.5
3l
2.5¢
ol

1.5¢

0.5
0

5.5

5

4.5

4l
3.5
3l
2.5¢
ol
1.51
1t

0.5
0

The marginal density of mRNA

The marginal density of mRNA

X

0.5 1

oX(y)

2.6

2471

2.2

1.8
1.61
1.41

1.21

0.8
0

1.3

0.4
0

The marginal density of protein

0.5
y

The marginal density of protein

0.5
y

Fig. 2 The marginal density functions for mRNA (z) and protein (y). The parameters are set as in Fig. 1.
In panel A 1 = 0.2 while in panel B 11, = 0.0085. In panel A, protein distributions are highly peaked at
y = 0 and y = 1, while panel B shows a strong mode in the protein distribution
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u,=0.0150 u,=0.0130
1.6 1.3
1.4 1.2
212 = 1.1
o] o]
1 1
0.8 0.9
0.5 1 0 0.5 1
u,=0.0110 u,=0.0099
14 1.4
s 1.2
s s
x x
o] o)
1
0.8
0.8
0 0.5 1 0 0.5 1
y y

Fig. 3 The marginal density functions for protein (y). The parameters are set as in Fig. 1 but ), is varied
over a larger range. As 1 nears A, a mode appears at intermediate protein levels. The peaks at y = 0 and
y = 1 disappear for low 1),

a Beta distribution exponentially fast. In particular, the unconditional distribution of
expression levels is a Beta distribution scaled to the interval (ro/u, r1 /i) with param-
etersa = ro/u, B = A1/ (see Eq. 17).

Our analysis shows that the moments of the transient distribution approach those
of the stationary distribution with an exponential rate, with a half life that depends
on the maximum of 1/ or 1/(Ag + A1). When p is larger than Ag + XA this means
that the decay towards the stationary moments has a half life of (In2/2 times) the
harmonic mean of the expected time in each environment. In either case the stationary
distribution can be used to calculate functional aspects of organisms that persist for
several oscillations of the environmental process.

These results can be directly used both to make predictions about experimental
results and to calculate interesting statistics based on gene expression. In particular,
the environment specific stationary distributions are relevant to understanding how
closely gene expression tracks environmental change (Eq. 13). They represent the
probability density of finding the system in both a particular environment and at a
particular level of expression. For example, mo(z) gives the probability of finding a
cell in environment 0 at expression level z. In many instances, the ability of a cell to
function, metabolize, and synthesize useful products depends on producing proteins
in specific contexts. For instance, if the environmental switching process measures
the availability of different sugars, then energy production will depend on the timing
of the availability of specific enzymes. If fitness depends on total energy gain, then
lifetime fitness can be calculated simply by taking the expectation of fitness over the
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stationary distribution, and our results on the convergence of statistics guarantee that
this is a reasonable approximation if individuals persist over several fluctuations of
the environment (the exact rate of convergence depends on ().

The distribution of expression levels can be interpreted in two different ways. First,
it can be thought of as describing the dynamics of a single individual forward in time.
In this interpretation, the PDF describes the probability density of finding the cell in
at a particular expression level at a random time point far in the future. Second, it can
be thought of as describing the dynamics of a population of cells that face uncorre-
lated random environments. In this case, it describes the frequency of cells that have
a specific value of expression in the population.

This population level interpretation of the distribution of expression values is par-
ticularly useful because it can potentially be used to experimentally infer particular
mechanisms of gene expression. There is much interest in reconstructing the topo-
logical structure of gene networks without individually assaying the physical interac-
tions between signals and genes (Wagner 2001; Proulx et al. 2005). Population level
measurements of protein variability are becoming feasible based on flow cytometry
approaches (Newman et al. 2006). Our results show that genes under simple direct
regulation of transcription rates will show Beta distributed expression levels when
exposed to a randomly varying environment, while more complex forms of regulation
will likely alter this pattern. This suggests that the distribution of expression levels
could be used as a first pass filter to identify genes that do not have interactions with
other genes, although further validation would be required.

We also developed an extended model that includes the additional step of pro-
tein production. So long as protein degradation rates are high relative to the rate of
environmental change, the two-step mRNA— protein model shows similar dynamics
to the one-step model of mRNA production. When protein turnover rates are lower,
however, protein abundance can no longer track the environmental shifts. Because the
protein concentration dynamics depend on the mRNA dynamics, any loss of environ-
mental signal that occurs at the mRNA level is necessarily transferred to the protein
level. Thus, high protein turnover rates cannot compensate for low mRNA turnover
rates.

Our results highlight the importance of high turnover rates in allowing gene expres-
sion and protein abundances to track changes in the environment. We suggest that this
has arelationship to an organisms ability to buffer noise in the environment (Proulx and
Phillips 2005; de Visser et al. 2003). When individuals experience multiple environ-
ments over their lifespan, evolutionary theory predicts that selection will maximize the
mean fitness of individuals and will not maintain multiple genotypes without genetic
overdominance (Ellner 1996). Multicellular organisms can buffer changes in the exter-
nal environment at the cellular level, so that the internal environment faced by cells
may be relatively constant. Single celled organisms, on the other hand, are relatively
exposed to changes in the environment and may be more dependent on gene regulation
and intrinsic metabolic buffering to survive (Papp et al. 2004).

This leads to the prediction that high mRNA and protein turnover rates are required
for single-celled organisms to maintain protein complements that track environmen-
tal change. Additionally, single celled organisms that experience relatively constant
environments may be free to evolve lower turnover rates without a sacrifice in
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equilibrium protein abundance. It is known that gene length and structure affect the
rate of transcription and mRNA stability (Feng and Niu 2007), but the range of values
shows that turnover rates are generally higher in single celled organisms. For E. coli,
the range of mRNA half-lives is as low as 1-2min and up to 15min (Feng and Niu
2007; Meyer et al. 2004), while in yeast the minimum half-lives are 2—3 min but can
be as high as 90 min (Meyer et al. 2004). Mammals have higher minimum half-lives
of around 15 min, and the 8-globin message has a half-life of more than 1 day (Meyer
et al. 2004). Protein half-lives have been systematically measured in yeast, where they
range from about 4 min to more than 10 hours (Belle et al. 2006).

While high degradation rates can allow a cell to track environmental shifts, they may
entail significant costs. Wagner (2005, 2007) estimated the energetic costs of changing
gene expression levels. He estimates that a change in equilibrium protein abundance
of 0.5% for an average yeast gene would be visible to natural selection. Likewise,
increasing protein turnover rates but maintaining a constant equilibrium would entail
an energetic cost. This suggests that lower degradation rates will be favored by natural
selection whenever the environment that individual cells face is relatively constant.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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