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INVESTIGATION

High-Density Genotypes of Inbred Mouse Strains:
Improved Power and Precision of
Association Mapping
Christoph D. Rau,* Brian Parks,* Yibin Wang,† Eleazar Eskin,‡ Petr Simecek,§ Gary A. Churchill,§

and Aldons J. Lusis*,1

*Departments of Human Genetics, Medicine, Microbiology, Immunology and Molecular Genetics, †Department of
Anesthesiology, and ‡Department of Computer Sciences, UCLA, Los Angeles, California 90095-1679, and §The Jackson
Laboratory, Bar Harbor, Maine 04609

ABSTRACT Human genome-wide association studies have identified thousands of loci associated with
disease phenotypes. Genome-wide association studies also have become feasible using rodent models and
these have some important advantages over human studies, including controlled environment, access to
tissues for molecular profiling, reproducible genotypes, and a wide array of techniques for experimental
validation. Association mapping with common mouse inbred strains generally requires 100 or more strains
to achieve sufficient power and mapping resolution; in contrast, sample sizes for human studies typically are
one or more orders of magnitude greater than this. To enable well-powered studies in mice, we have
generated high-density genotypes for ~175 inbred strains of mice using the Mouse Diversity Array. These
new data increase marker density by 1.9-fold, have reduced missing data rates, and provide more accurate
identification of heterozygous regions compared with previous genotype data. We report the discovery of
new loci from previously reported association mapping studies using the new genotype data. The data are
freely available for download, and Web-based tools provide easy access for association mapping and
viewing of the underlying intensity data for individual loci.
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The advent of high-density DNA genotyping has revolutionized the
ability of geneticists to identify genes associated with polymorphisms
that contribute to common diseases and complex traits. Using genotyp-
ing technologies, researchers can now assay hundreds of thousands of
single nucleotide polymorphisms (SNPs) in human cohorts in tens of
thousands of subjects. To date,more than 6900 loci havebeenassociated
with phenotypes ranging from cancer to neurological, cardiovascular,
and metabolic disorders in human populations (genome.gov/gwas).
Genome-wide association studies (GWAS) often have the precision to
identify single candidate genes but in many cases the biological mech-

anisms that underlie these associations remain uncertain.Theprocess of
moving from a locus to a gene to a mechanism is challenging and often
requires follow-up studies in model organisms, especially rodents.

Genetic mapping also can be carried out directly in rodent models,
and when similar phenotypes are ascertained, it is highly likely that the
biological processes that lead to a diseasewill be shared betweenhumans
and mice. Associations of disease phenotypes to polymorphisms in the
mouse provide a direct means to identify disease models to support
mechanistic studies. Classical approaches to genetic analysis in rodents
use low-resolution mapping crosses and correspondingly low-density
genotyping is sufficient to achieve the (limited) maximal resolution
available from these studies. Recognition that the potential for high-
resolution mapping in rodents was not being realized lead to the
development of new strategies and resources (Threadgill et al. 2002).
New resources that have been developed include collections of existing
inbred strains of mice (Bennett et al. 2010; Ghazalpour et al. 2012) as
well as the construction of new panels of genetically diverse strains
(Collaborative Cross Consortium 2012). In addition, there has been
increased interest in the use of outbred rodent populations for genetic
mapping studies (Yalcin et al. 2010; Svenson et al. 2012). Here, we focus
on the Hybrid Mouse Diversity Panel (HMDP), which consists of
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a collection of approximately 175 strains, of which approximately 30 are
“classic” inbred strains and 145 are recombinant inbred strains derived
from pairs of inbred strains. Generally, about 100 strains are required for
sufficient power to map typical complex traits (Bennett et al. 2010). The
HMDP has been used to examine the genetics of a wide array of phe-
notypes, including plasma lipids (Bennett et al. 2010), bone density
(Farber et al. 2011), blood cell traits (Davis et al. 2013), conditioned fear
responses (Park et al. 2011), gene-by-diet interactions in obesity (Parks
et al. 2013), inflammatory responses (Orozco et al. 2012), hearing loss
(Ohmen et al. 2014), diabetes (Parks et al. 2015), and heart failure (Rau
et al. 2015). In many of these studies, genes at the identified loci were
validated as causal using engineered mouse models and a number of the
loci or genes corresponded to human GWAS results.

Until recently,mapping studies using theHMDPhave relied on a set
of ~140,000 SNP loci that were ascertained from multiple sources and
merged, including data from the Broad Institute (Kirby et al. 2010) and
the Welcome Trust Center for Human Genetics (http://mus.well.ox.ac.
uk/mouse/INBREDS/). Gaps were filled using imputation to create
a uniform set of SNPs for each strain (http://mouse.cs.ucla.edu/mouse-
hapmap/). Here we describe genotyping of ~650,000 SNP loci for the
175 strains in the HMDP using the Mouse Diversity Array (MDA)
(Yang et al. 2010; Didion and de Villena 2013). These results comple-
ment a previous effort to examine 198 inbred mouse lines using the
MDA (Yang et al. 2011b); however, all data has been independently

generated, and roughly 80% (138) of the strains are novel compared
with Yang et al. (2011b). The data have been curated to remove poorly
performing SNP probes and to correct a handful of errors in strain
identification and the sex of genotyped animals. All probes have been
remapped by alignment to the most recent release of the reference
mouse genome (GRCm38). Updated probe annotations, genotype calls
and raw probe intensity are available for download from the Jackson
Laboratory (http://churchill.jax.org/mda). In addition, the MDA geno-
types now support the online mapping tool (http://mouse.cs.ucla.edu/
emmaserver/). We describe the new genotype data and demonstrate
that it improves the performance of GWAS using the HMDP.

MATERIALS AND METHODS

Genotyping
Prior Genotypes: genotypes were obtained as previously described
(Bennett et al. 2010) through the combination of genotypes from the
Broad Institute (http://www.broadinstitute.org/mouse/hapmap) and
genotypes from theWellcomeTrustCenter forHumanGenetics.Geno-
types of RI strains were imputed from Wellcome Trust genotypes by
interpolating alleles at polymorphic SNPs among parental strains.

MDA DNA isolation and hybridization was performed at the
Jackson Laboratories as previously described (Yang et al. 2010). Geno-
type calls were obtained using the MouseDivGeno R package (Didion
et al. 2012)

All analysis of genotypes was performed using the R programming
language.

GWAS
Association mapping was performed as described in Rau et al. 2015.
We performed the association testing of each SNP using the Efficient
MixedModel Algorithm (Kang et al. 2008). This algorithm corrects for
population structure among the HMDP using the following model:

y ¼ 1nmþ xbþ uþ e

n Table 1 All SNPs present in the Mouse Diversity Array

Total SNPs ~623,000

Total high-quality SNPs ~550,000
Intergenic SNPs ~337,000
Intronic SNPs ~198,000
Exonic SNPs ~8,900
39 or 59 UTR SNPs ~5,700

Shown is a listing of the SNPs and their classification on the Mouse Diversity
Array. SNP, single-nucleotide polymorphism; UTR, untranslated region.

Figure 1 Comparisons of Prior genotypes with Mouse Diversity Array (MDA) genotypes. (A) Fraction of single-nucleotide polymorphisms (SNPs)
with missing calls in each strain for Prior (left) and MDA (right) genotypes. The red line indicates the average value. (B) Histogram showing the
proportion of missing strains for each SNP for the prior (left) and MDA (right) genotypes. Highlighted in yellow and displayed as a percentage are
the numbers of SNPs with more than 10% missing values (7% for prior, 0.03% for MDA). (C) Fraction of heterozygous SNPs within each strain for
prior (left) and MDA (right) genotypes. The red line indicates the average value. (D) Histogram of concordance between SNPs found in both
genotyping sets.

2022 | C. D. Rau et al.

http://mus.well.ox.ac.uk/mouse/INBREDS/
http://mus.well.ox.ac.uk/mouse/INBREDS/
http://mouse.cs.ucla.edu/mousehapmap/
http://mouse.cs.ucla.edu/mousehapmap/
http://churchill.jax.org/mda
http://mouse.cs.ucla.edu/emmaserver/
http://mouse.cs.ucla.edu/emmaserver/
http://www.broadinstitute.org/mouse/hapmap


where m is the mean, b is the allele effect of the SNP, x is the (n · 1)
vector of observed genotypes of the SNPs (using additive coding of
0,0.5,1), u is the random effects due to genetic relatedness with
varðuÞ ¼ s2

u and e is the random noise with varðeÞ ¼ s2
e I. K denotes

the identity-by-state kinship matrix estimated from all of the SNPs, I
denotes the (n · n) identity matrix and 1n is the (n · 1) vector of ones.
Both u and e follow normal distributions. s2

u and s2
e are estimated

using restricted maximum likelihood and computed p values using
the standard F test to test the null hypothesis b ¼ 0. Thresholds
reported in Rau et al. 2015 (P , 4.1E-6 suggestive, P , 4.1E-7 sig-
nificant) were used in this study as well.

Data availability
Both raw data (CEL files) and genotypes (SQLite database) are available
for download and visualization at http://churchill.jax.org/mda.Weoffer
an online MDA browser to explore raw intensity data for SNPs in
a region of interest (Supporting Information, Figure S1). This is useful
as a diagnostic tool and to help identify other strains (not in the
HMDP) that are likely to share causal variants. GWAS results for data
reanalyzed from Rau et al. 2015 can be found at http://systems.genetics.
ucla.edu/ as well as tools for visualization and analysis of these data.

RESULTS

The Mouse Diversity Array
The MDA consists of 623,124 SNP probe sets that uniformly cover the
nonrepetitive portions of the mouse genome and 916,269 invariant
genomic probes that target regions with segmental duplications (Yang
et al. 2010). SNPs were selected to represent the genetic diversity of the
classical inbred strains, which derive primarily from Mus musculus
domesticus ancestry, as well as sampling the genetic diversity of other
mouse species and subspecies includingM.m. musculus,M.m. castaneus
and M. spretus. This selection strategy maximizes the discrimination of
strains and as such it does not necessarily reflect phylogenic divergence,
especially for wild-derived inbred strains.

In total, DNA samples from more than 1900 inbred strains,
hybrids, or wild-caught mice have been hybridized at The Jackson

Laboratory using the protocol previously described (Yang et al.
2010). In this paper we focus attention on SNP genotype calls
obtained from the 175 strains that have been used to comprise the
HMDP.

MDA genotypes improve coverage and identify
residual heterozygosity
The previous set ofmouse genotypes (Prior) contains ~140,000 SNPs
(Bennett et al. 2010), with an average spacing of 20 kb between
SNPs. By comparison, the 623,000 SNPs on the MDA have an av-
erage spacing of 4.3 kb (Yang et al. 2010). We identified ~550,000
high-quality MDA SNPs and tabulated these by functional classes
defined by their location relative to known genomic features (Table
1). As further indications of the quality of the MDA genotypes, we
examined the frequency of missing data both within strains and
within SNP loci (Figure 1, A and B). Overall, the rate of missing
genotype calls was ~0.1% on the MDA compared with 2.4% on the
Prior SNPs (Figure 1A). Only six strains havemore than 1% missing
values in the MDA genotypes, whereas only three strains have less
than 1% missing values in the Prior genotypes. In the MDA geno-
types, we observed 187 SNPs (0.03%) with a missing call rate greater
than 10%; in contrast, the Prior genotypes include ~9800 SNPs (7%)
with more than 10% missing values across the 175 HMDP strains
(Figure 1B). The increased density of genotyped loci and reduced
levels of missing data are important improvements for the identifi-
cation of GWAS loci as we illustrate below.

Tobe useful formapping, a SNPmust be polymorphic in the study
population. Furthermore, the minor allele frequency (MAF) should
not be too low if used for GWAS to avoid the potential for spurious
findings (Figure 2). In our studies we restrict attention to the 42% of
high-quality SNPs that have a MAF greater than 5% in the HMDP
strains (see Table S1 for a list of strains). In contrast, 82% of SNPs in
the Prior genotyping panel have MAF greater than 5%. This differ-
ence reflects the selection of SNPs on the MDA, which was designed
in part to work with the Collaborative Cross and thus incorporates
probes that specifically discriminate among wild-derived strains
and are comparatively rare among the common inbred mouse

Figure 2 Allele frequencies in geno-
typing datasets. Histograms of the
allele frequency of single-nucleotide
polymorphisms (SNPs) in the Prior (left)
and Mouse Diversity Array (right) geno-
types. Highlighted in yellow and dis-
played as a percentage are the SNPs
whose allele frequencies are too low
for genome-wide association studies.

n Table 2 Informative SNPs for performing GWAS in the Hybrid Mouse Diversity panel

Prior Genotypes Mouse Diversity Array Genotypes

Total high-quality SNPs ~140,000 ~550,000
More than 10% missing values ~9,000 ~200
MAF less than 5% ~24,000 ~347,300
Final informative SNPs ~108,500 ~202,500

A comparison of the number of SNPs in both the Prior and MDA genotypes, their reasons for removal and the final number of informative SNPs in each set. SNP,
single-nucleotide polymorphism; GWAS, genome-wide association studies; MAF, minor allele frequency.
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strains (Yang et al. 2011a). After eliminating these SNPs as well as
SNPs with over 10% missing values, our new genotypes contain
202,473 SNPs (1 SNP per 13.4 kb) that are suitable to genomic
analyses. This represents a 1.ninefold increase over the Prior
genotypes, which contain 108,565 SNPs (1 SNP per 25 kb) after
filtering to remove MAF , 5% and missing values over 10%
(Table 2).

The HMDP is composed of inbred strains, many of which have
been maintained by brother-sister mating for hundreds of gener-
ations and are expected to be homozygous throughout their entire
genome. However, some of the strains are more recently derived and
these may retain regions of residual heterozygosity. The MDA
genotypes allow us to gain a better understanding of the heterozy-
gosity remaining in the inbred mouse strains (Figure 1C). The MDA
genotype calls are heterozygous at 1.2% of SNPs on average across
the HMDP strains. Although the majority of these “H” calls are
known to be errors (Didion and de Villena 2013), genomic regions
with multiple “H” genotypes in a strain are likely to reflect residual
heterozygosity. We note that only a few strains have heterozygous

call rates greater than 2%, and all of these are from the more recently
derived BXD43-103 panel (Peirce et al. 2004).

A common set of ~71,000 SNPs are represented in both the MDA
and Prior genotyping data. Discordant genotypes (Figure 1D) were
observed to exceed 10% at only 335 (0.5%) of the common SNP loci.
We observed 10 SNP loci with discordance rates greater than 50%
between the two data sets. For association analyses, we assumed that
the MDA genotypes are correct.

Improved GWA results
To illustrate the improved performance of GWAS using the MDA
genotypes, we present a new analysis of previously reported data on
the role of catecholamine stimulation on heart weight (Rau et al.
2015). We performed GWA analyses of heart weight after catechol-
amine stimulation using the efficient mixed model algorithm (Kang
et al. 2008) with both the Prior genotypes (Figure 3A) and the new
MDA genotypes (Figure 3B). Using the Prior genotypes, we identi-
fied a single significant locus, while using the MDA genotypes,
we identified four additional loci at genome-wide significance

Figure 3 Effects of new single-nucleotide polymorphisms (SNPs) on genome-wide association study results. In both cases, the phenotype being
used is total heart weight after isoproterenol treatment. Red line indicates genome-wide significance threshold (4.1E-6). (A) Results using EMMA
on the Prior genotypes reveals a single locus on chromosome 1. (B) Results using EMMA on Mouse Diversity Array (MDA) genotypes reveals four
additional loci. (C) Results using EMMA on the MDA genotypes using a kinship matrix generated from the Prior genotypes does not demonstrably
change the results from B).

n Table 3 Improved GWAS results due to MDA

Chromosome Peak SNP rsID Peak P-value Distance to Candidate Candidate Gene Evidence

Associated in prior genotypes
1 rs33825648 1.1E-6 55 kb upstream Tgfb2 Cis-eQTL, literature

Associated in MDA genotypes
1 rs33825648 9.8E-7 55 kb upstream Tgfb2 Cis-eQTL, literature
2 rs27922490 2.6E-6 2 kb upstream Acvr1 Cis-eQTL, literature
9 rs36770705 3.1E-7 Between Exon 4 and 5 Trim29 Splicing mutation, literature
9 rs24885538 2.9E-7 Between Exon 2 and 3 Drd2 Cis-eQTL, literature

10 rs49270079 3.1E-7 737 kb upstream Pln Cis-eQTL, literature
2.8 mb upstream Grik2 Cis-eQTL, literature

Significant loci were observed in both the Prior and MDA genotypes Dashed lines delineate loci from one another. GWAS, genome-wide association studies; MDA,
Mouse Diversity Array.
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(P , 4.1E-6), as determined previously for the HMDP (Kang et al.
2008; Bennett et al. 2010). Each of the new loci had achieved a sug-
gestive (P , 0.05) level of significance using the Prior genotypes,
which provides an indication of the consistency of these findings;
however, as only 71,000 SNPs are shared between the two datasets,
the specific SNPs making up the peaks in both genotype sets were
not entirely identical. Like other mixed-model algorithms (e.g.,
Lippert et al. 2011), EMMA uses a kinship matrix to correct for sub-
structure in the study population.We examinedwhether changes to the
kinship matrix might lead to this result by using the Prior kinship
matrix while performing EMMA on the MDA genotypes (Figure 3C,
Figure S2, Figure S3, Figure S4, Figure S5, Figure S6, Figure S7, and
Figure S8). Although there were some differences in association
strengths (Figure S9), the peak SNPs were not affected. When the peak
SNP was shared, the SNP had nearly identical genotypes in both sets,
which suggests that even small changes to the genotypes can have large
effects on the results.

The single significant SNP obtained using the Prior genotypes is
located on chromosome 1 ~25 kb upstream of Tgfb2, which has been
implicated previously in cardiac morphogenesis and hypertrophy
(Lim and Zhu 2006; Azhar et al. 2011). The four new loci obtained
using MDA genotypes (Table 3) include: Acvr1, which has previ-
ously been implicated in the regulation of left ventricular heart mass
in newborns and congenital defects (Smith et al. 2009; Gorący et al.
2012); Drd2, a gene previously linked to changes in heart rate (Huertas
et al. 2012) and elevated blood pressure (Rosmond et al. 2001); Pln,
a well-studied gene involved in heart failure (Brittsan et al. 1999;
Chu and Kranias 2006) and associated by GWAS in human popu-
lations with variation in left ventricular internal dimension (Vasan
et al. 2009); and Grik2, a gene that has been associated with heart
failure in a human GWAS study (Parsa et al. 2011). Although the
causal role of these genes remains to be established, their known
biology supports a role in determining heart weight after catechol-
amine stimulation.

Examination of additional phenotypes reported in Rau et al.
(2015) (Table 4) shows that the use of the denser MDA arrays led
to more significant or suggestive results in each phenotype except
for lung weight. Two significant loci reported in Rau et al. (2015)
were lost in the MDAGWAS: one for liver weight on chromosome 7
over the Calm3 gene, which is lost entirely, and another for lung
weight on chromosome 6 over the Aqp1 gene, which becomes a sug-
gestive locus. In both cases, the relevant SNPs (rs31334298 for liver,
rs30022082 for lung) are present in both genotype sets. In both cases
the only difference in genotypes at these SNPs occurred in the
C57BL/6J strain, which might explain the large change in associa-
tion based on the importance of this strain in the HMDP. Ulti-
mately, the MDA genotypes resulted in 24 new suggestive loci and
11 new significant loci when compared to the original results re-
ported in Rau et al. (2015).

DISCUSSION
Systems-level analyses of complex phenotypes rely on accurate infor-
mation regarding the underlying genetic variants. Genotypes should be
dense enough to ensure that markers are in linkage disequilibriumwith
mostof thepotential causalmutations.Equally important inpopulations
with significant levels of population structure, such as admixed human
populations or inbred lines of mice, genotypes should be selected to
reflect the intrinsic genetic relatedness of the study population. In this
study, we examined the effects of obtaining a denser andmore accurate
set of genotypes inapopulation (theHMDP),whichhadpreviouslybeen
analyzed using GWAS (Rau et al. 2015). Our new genotypes, obtained
using the MDA, increased the number of informative SNPs typed by
87% and improved the genotype quality since large portions of the
previous genotypes were imputed.

A previous study (Yang et al. 2011b) reported the genotyping of a set
of 198 strains using the MDA. Our study complements this study, with
37 strains overlapping with Yang et al. 2011b and 138 previously un-
reported strains. For the 37 strains in common between Yang et al.
2011b and our data, we compared the genotypes and observed that, on
average, 99.5% of informative SNPs in our data had the same call in
Yang et al. 2011b, 0.49% were homozygous in either Yang or the
present study but heterozygous in the other and 0.01% had a SNP in
one data set but not the other (Table S2). These differences are likely the
result of either technical error or genetic drift in the inbred lines.

We observed significant improvements over the previously
reported GWAS data, returning over double (33 vs. 14) the number
of suggestive loci in the GWAS study examined here. We explored
whether changes to the kinship matrix played a role in this improve-
ment but saw very few changes by switching out one kinship matrix
for another. Rather, the new loci appear to be the result of a combi-
nation of the addition of new SNPs which, perhaps, are in better
linkage disequilibrium with causal mutations as well as corrections
to the SNP genotypes, especially in the four core strains (A/J, C3H/
HeJ, DBA/2J, and C57BL/6J), which contribute the majority of the
power of the panel. Our results suggest that the re-examination of
previously analyzed results with a more accurate and denser geno-
type set may lead to the discovery of novel loci and genes of interest,
both in mice as well as in human studies.
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