
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Learning Affinity to Parse Images

Permalink
https://escholarship.org/uc/item/1d46v5h0

Author
Liu, Sifei

Publication Date
2017

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1d46v5h0
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, MERCED

Learning Affinity to Parse Images

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical Engineering and Computer Science

by

Sifei Liu

Committee in charge:

Professor Ming-Hsuan Yang, Chair
Professor Shawn Newsam
Doctor Chang Huang

2017

Copyright

Sifei Liu, 2017

All rights reserved.

The dissertation of Sifei Liu is approved, and it is

acceptable in quality and form for publication on mi-

crofilm and electronically:

Professor Shawn Newsam

Doctor Chang Huang

Professor Ming-Hsuan Yang Chair

University of California, Merced

2017

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vii

List of Tables . xii

Vita and Publications . xiv

Abstract . xvi

Chapter 1 Introduction . 1
1.1 Overview . 1
1.2 Affinity Learning for Computer Vision Problems 2
1.3 Solutions . 3

1.3.1 Affinity Learning with Deep Convolutional Networks . 3
1.3.2 Affinity Learning with Spatial Propagation Networks . 4

1.4 Organization . 6

Chapter 2 Literature Review . 8
2.1 Pairwise Learning . 8
2.2 Affinity Related Vision Applications 11

2.2.1 Face Parsing . 11
2.2.2 Learning Low-level Vision Filters 12
2.2.3 Object Segmentation 14

Chapter 3 Multi-Objective Convolutional Learning for Face Labeling 16
3.1 Introduction . 16
3.2 Multi-Objective Convolutional Learning 18

3.2.1 ConvNet Architecture 21
3.2.2 Nonparametric Prior 22
3.2.3 Adaptive Inference 23

3.3 Experimental Results . 26
3.3.1 Datasets and Settings 26
3.3.2 LFW-PL . 30
3.3.3 HELEN . 34

iv

3.4 Summary . 36

Chapter 4 Learning Recursive Filters for Low-Level Vision via a Hybrid Neural
Network . 42
4.1 Introduction . 42
4.2 Recursive Filter via RNNs 45

4.2.1 Preliminaries of Recursive Filters 46
4.2.2 Recursive Decomposition 47
4.2.3 Constructing Recursive Filter via Linear RNNs 48

4.3 Learning Spatially Variant Recursive Filters 50
4.3.1 Spatially Variant Linear Recurrent Network 50
4.3.2 Learning Weight Maps of Recurrent Networks via Con-

vNets . 51
4.4 Experimental Results . 53

4.4.1 Edge-Preserving Smoothing 54
4.4.2 Image Denoising . 57
4.4.3 Image Propagation Examples 58

4.5 Summary . 62

Chapter 5 Face Parsing via Recurrent Propagation 73
5.1 Introduction . 73
5.2 Proposed Algorithm . 75

5.2.1 Recurrent Neural Networks 76
5.2.2 Spatially Variant Recurrent Network 78
5.2.3 Hybrid Model of ConvNet and RNN 79

5.3 Sub-networks for the Detailed Components 80
5.4 Experimental Results . 82

5.4.1 Datasets and Settings 82
5.4.2 Coarse-grained Face Parsing 85
5.4.3 Fine-grained Face Parsing 87

5.5 Applications . 88
5.5.1 Eyebrow Editing . 89
5.5.2 Eyelash Editing . 89
5.5.3 Lip Color Adjustments 89
5.5.4 Skin Smoothing . 90
5.5.5 Makeup Transfer . 90

5.6 Summary . 92

v

Chapter 6 Learning Affinity via Spatial Propagation Networks 93
6.1 Introduction . 93
6.2 Proposed Approach . 95

6.2.1 Linear Propagation as Spatial Diffusion 95
6.2.2 Learning Data-Driven Affinity 98

6.3 Implementation . 102
6.4 Experimental Results . 104
6.5 Summary . 111

Chapter 7 Conclusion and Future Work . 113
7.1 Summary . 113
7.2 Future work . 115

7.2.1 What is Learned from Spatial Propagation Network? . 115
7.2.2 Acceleration for Real-time Rendering 116

Bibliography . 118

vi

LIST OF FIGURES

Figure 3.1: Face labeling on the LFW [48] and Helen [1] (a) input images. (b)
pixel-wise label likelihoods. (c) semantic edge maps. (d) face labeling
results. Our algorithm first generates pixel-wise label likelihoods and
semantic edge maps, which are combined in a CRF energy function
to generate face labels. The images in (b) are soft labels (probabilistic
outputs) and images in (d) are hard labels (excluding hair) which are
shown in different colors. While the pixel-wise maps alone are effec-
tive for labeling, the use of edge maps further facilitates delineating
the details, especially near the class boundaries. 19

Figure 3.2: Proposed ConvNet classifier with sliding window based inputs. . . . 20
Figure 3.3: Proposed ConvNet classifier for the LFW-PL dataset (patch-based

training phase) with input and activation size of each layer. 22
Figure 3.4: An nonparametric prior is proposed based on label transfer, as shown

on the left. A typical labeling improvement is show on the right. The
ConvNet trained on image patches without exemplars incorrectly la-
bels the face on the upper left part according to its local content while
the ConvNet trained on both prior and image patches is able to reject
the false label assignments. 24

Figure 3.5: Generation of a twice upsampled output map. The original image
in (a) is shifted with additional 3 versions (b-d) along the x- and y-
axis, with a step of 1. The desired high-resolution one is obtained by
interlacing them in the way shown on the right, with a 2 × 2 block.
The final upsampled map layouts are shown on the right. 26

Figure 3.6: Comparison for usage of nonparametric prior. (a) test images; (b)
labeling results generated by MO-GC; (c) labeling results generated
by MO-GC with nonparametric prior. (d) semantic edge generated by
MO-GC; (e) semantic edge generated by MO-GC with nonparametric
prior. Best viewed in colors. 29

Figure 3.7: We show the network regularization by introducing the proposed non-
parametric prior as an additional input. Four FC settings associated
with Table 3.3 are used to control the size of the network, as shown in
the X-axis. 30

Figure 3.8: Face labeling results and semantic edge maps from LFW-PL dataset.
(a) test images; (b) edge term output; (c) unary term output; (d) la-
beling result by GraphCut inference, denoted as GC; (e) ground truth.
Best viewed in colors. 37

vii

Figure 3.9: Face labeling results and semantic edge maps from LFW-PL dataset.
(a) test images; (b) edge term output; (c) unary term output; (d) la-
beling result by GraphCut inference, denoted as GC; (e) ground truth.
Best viewed in colors. 38

Figure 3.10: Face labeling results and semantic edge maps from LFW-PL dataset.
(a) test images; (b) edge term output; (c) unary term output; (d) la-
beling result by GraphCut inference, denoted as GC; (e) ground truth.
Best viewed in colors. 39

Figure 3.11: Face labeling results and semantic edge maps from the HELEN dataset.
GC denotes labeling result by GraphCut inference. Best viewed in
colors. 40

Figure 3.12: Face labeling results and semantic edge maps from the HELEN dataset.
GC denotes labeling result by GraphCut inference. Best viewed in
colors. 41

Figure 4.1: Several applications of the proposed algorithm. (a) Approximation
of relative total variation (RTV) [115] for edge-preserving smoothing.
(b) Denoising. (c) Restoration of an image with random 50% pixels
occluded. (d) Restoration of an image with only 3% color informa-
tions retained. 43

Figure 4.2: An illustrative example of the proposed model for edge-preserving
image smoothing with a single RNN. The deep ConvNet generates a
weight map (b) that guides the propagation of the RNN. We consider
an image as a group of sequences, and take the left-to-right recurrent
propagation in 1D as an example, where k denotes a spatial location.
For a single RNN, the weight map corresponds to the edges of an
image and can be clearly visualized. When pk is close to zero, it cuts
off the propagations from k − 1 to k so that the edge is preserved (i.e.,
near boundary). On the other hand, pk+1 maintains the propagation
from k to k+1 so that the image is smoothed at any non-edge location.
The ConvNet and RNN are jointly trained and the proposed network
can be generalized to many other applications such as colorization,
inpainting and denoising (see Figure 3.1). 45

Figure 4.3: Proposed hybrid network that contains a group of RNNs to filter/restore
an image and a deep ConvNet to learn to propagate the RNNs. The
process of filtering/restoration is carried out through RNNs with two
inputs and one output result, denoted in red. Both parts are trained
jointly in an end-to-end fashion. 51

viii

Figure 4.4: Visualization of weight maps for approximating the RTV filter using
first order recursive filter. (a) original image; (b) and (c): manually
designed edge prior maps in RTV for x and y axes; (d) and (e): weight
maps generated from the ConvNet for x and y; (f) our filtered result. 54

Figure 4.5: Approximation of edge-preserving filters. (a) input images. (b) re-
sults by Xu et al. [113]. (c) results of our model. (d) results from
the original filters. First row: Results by approximating RGF [121].
Second row: Results by approximating WLS smoothing [29]. 55

Figure 4.6: Image denoising. (b) denotes the results of image patch prior based
method EPLL [128]. (c) denotes the results by end-to-end trainable
ConvNet method [83]. 59

Figure 4.7: Pixel interpolation. (a) input image. (b) restored image for masking
half pixels in (a). 60

Figure 4.8: First row: image inpainting on the regions of texts with comparison
to Xu et al. [82]. We directly apply the pixel interpolation model to in-
painting. The model does not require any network finetuning on texts
masks. Second row: color interpolation with comparison to Levin et
al. [53]. 61

Figure 4.9: Re-colorization by applying the brightness channel of (a) and directly
taking 3% color pixels from the monochrome channels in a reference
image with the same size. 62

Figure 4.10: Visualization of weight maps for L0 edge-preserving smoothing fil-
ter [111]. 63

Figure 4.11: Approximation of L0 edge-smoothing method [111]. Zooming in to
see details. 64

Figure 4.12: Approximation of RGF [121] edge-smoothing method. Zooming in
to see details. 65

Figure 4.13: Approximation of RTV [115] edge-smoothing method. Zooming in
to see details. 66

Figure 4.14: Approximation of WLS [29] edge-smoothing method. Zooming in to
see details. 67

Figure 4.15: Approximation of Shock filter [74] image enhancement method. Zoom-
ing in to see details. 68

Figure 4.16: Image denoising. First row: image with white Gaussian noise; Sec-
ond row: image denoised by EPLL [128]; Third row: image denoised
by deep ConvNet based method [83]; Forth row: image denoised by
the proposed algorithm. Zooming in to see details. 69

ix

Figure 4.17: Pixel interpolation. First row: occluded image; Second row: EPLL
based inpainting [128]; Third row: ConvNet based inpainting [82];
Fourth row: restored by proposed algorithm; Fifth row: the original
image. Zooming in to see details. 70

Figure 4.18: Color interpolation with comparison to Levin et al. [53]. 71
Figure 4.19: Color interpolation via proposed algorithm. 72

Figure 5.1: Proposed parsing network architecture by combining a ConvNet and
a spatial RNN. The ConvNet generates a coarse label map (b) and a
recurrent gate (c), which are fed into 4 RNNs with different directions
to generate a more accurate result (d). The network structure is shown
where the notation for Conv1 “5×5×16/1” means convolution layer
with 5 × 5 kernel, 16 channels and stride 1. The face image in (d)
is further segmented with detailed labels in the second stage (see text
and Figure 5.2). 76

Figure 5.2: The second stage network operates on the cropped region, i.e., left
and right eyes, nose, and mouth, to parse accurate facial components.
The final parsing result in (d) is the combination of segments from two
stages. 81

Figure 5.3: Face parsing results on the LFW-PL dataset. First row: input image.
Second row: ground-truth annotations. Third row: results from [64].
Fourth row: results from CNN-S. Fifth row: results from CNN with
dense CRF. Sixth row: results by RNN-G. 83

Figure 5.4: Parsing results on the Multi-Face dataset. (a) input image. (b) results
by the baseline ConvNet. (c) results by the standard RNN. (d) results
from RNN-G. (e) the ground truth. (f) a visualized version of RNN-G.
Our method is able to effectively and efficiently parse multiple faces
in the cluttered background. 84

Figure 5.5: Parsing results on the Multi-Face dataset. We can successfully pro-
cess multiple face with our network. 84

Figure 5.6: Face parsing results on the HELEN [94] dataset. (a) input image. (b)
ground-truth annotations. (c) results from [64]. (We roughly crop the
results for better visual comparisons.) (d) our results with 11-class
pixel-wise parsing. 86

Figure 5.7: Swithcing of eyebrow types given the parsed facial components. . . . 88
Figure 5.8: Eyelash editing. Best viewed by zooming in. 89
Figure 5.9: Lip Color Adjustments. Best viewed in color. 90
Figure 5.10: Smoothing the skin region. Best viewed by zooming in. 91

x

Figure 5.11: Facial makeup transfer. First row: reference model images with
specific-stylized makeup. Second row: virtual makeup by applying
facial detail and color from the models in the first row. Best viewed in
color through zooming in. 92

Figure 6.1: Different propagation ranges for (a) one-way connections; and (b)
three-way connections. Each pixel (node) receives information from
a single line with one-way connection, and from a 2 dimensional plane
with three-way connection. 99

Figure 6.2: We illustrate the general architecture of the SPN using a three-way
connection for segmentation refinement. The network, divided by the
black dash line, contains a propagation module (upper) and a guidance
network (lower). The guidance network outputs all entities that can
constitute four affinity matrices, where each sub-matrix wt is a tridi-
agonal matrix. The propagation module, being guided by the affinity
matrices, deforms the input mask to a desired shape. All modules are
differentiable and jointly learned via SGD. 103

Figure 6.3: Results of face parsing on the HELEN dataset with detailed regions
cropped from the high resolution images. (Images are all with high
resolution and can be viewed by zoom-in.) 108

Figure 6.4: Visualization of Pascal VOC segmentation results (left) and object
probability (by 1−Pb, Pb is the probability of background). The “pre-
trained” denotes the base Deeplab ResNet-101 model, while the rest 4
columns show the base model combined with the dense CRF [15] and
the proposed SPN, respectively. 109

Figure 6.5: Visualization of Pascal VOC segmentation results (left) and object
probability (by 1 − Pb, where Pb denotes the probability of the back-
ground region). 112

xi

LIST OF TABLES

Table 3.1: Overall per-pixel accuracy on the LFW-PL dataset with channel num-
bers of two FC layers setting as 4096 and 1024. Also the F-measure of
skin (F-skin), hair (F-hair) and background (F-bg) are presented. . . . 28

Table 3.2: Overall accuracy on LFW-PL with comparison to [48]. Note that the
evaluation of GLOC is based on a superpixel-wise accuracy, and ours
are based on a per-pixel evaluation. 29

Table 3.3: Four settings of channel numbers for the two FC layers, and their
corrsponding model size in MB. 32

Table 3.4: Overall per-pixel accuracy on the LFW-PL dataset. 32
Table 3.5: Overall F-measure of skin on the LFW-PL dataset. 33
Table 3.6: Overall F-measure of hair on the LFW-PL dataset. 33
Table 3.7: Overall F-measure of background on the LFW-PL dataset. 33
Table 3.8: Evaluations on HELEN. We use float numbers instead of percentage to

keep consistent on the numarical pericision with [93]. For comparison,
eyes, brow and mouth all are computed by combining related cate-
gories, and the overall denotes all facial components excluding facial
skin. 36

Table 4.1: Quantitative evaluations for learning various image filters. 56
Table 4.2: Run-time (second) performance against [113] and some conventional

methods at different resolutions of color images. 57
Table 4.3: Quantitative evaluations for image denoising on BSDS500-test. 58

Table 5.1: Quantitative results on the LFW-PL dataset.“F” denotes f-score, “bg”
denotes background, “-” denotes not available. We denote the results
by Chapter 3 as Liu et al. [64] . 82

Table 5.2: Quantitative results on the Multi-Face dataset. 85
Table 5.3: Quantitative evaluation results on the HELEN dataset. We denote the

upper and lower lips as “U-lip” and “L-lip”, and overall mouth part as
“mouth”, respectively. See Chapter 3 (denoted as Liu et al. [64] in the
table) and [94] for more details. 87

Table 6.1: Quantitative evaluation results on the HELEN dataset. We denote the
upper and lower lips as “U-lip” and “L-lip”, and overall mouth part as
“mouth”, respectively. The label definitions follow that in Chapter 3,
and denoted as Liu et al. [64] in the table. 107

xii

Table 6.2: Quantitative evaluation results on the Pascal VOC dataset. We compare
the two connections of SPN with the corresponding pre-trained mod-
els, including: (a) FCN-8s (F), (b) Deeplab VGG (V) and (c) Deeplab
ResNet-101 (R). AC denotes accuracy. 110

Table 6.3: Quantitative comparison (mean IoU) with dense CRF-based refine-
ment [15] on Deeplab pre-trained models. 110

xiii

VITA

2008 B. S. in Control and Computer Engineering, North China
Electrical Power University, Beijing, China

2012 M. S. in Electronic Science and Technology, University of
Science and Technology of China, Hefei, China

2017 Ph. D. in Electrical Engineering and Computer Science, Uni-
versity of California, Merced

PUBLICATIONS

Sifei Liu, Shalini De Mello, Jinwei Gu, Guangyu Zhong, Ming-Hsuan Yang, Jan Kautz.
Learning Affinity via Spatial Propagation Networks, Neural Information Processing Sys-
tems (NIPS 2017).

Sifei Liu, Jianping Shi, Ji Liang, Ming-Hsuan Yang. Face Parsing via Recurrent Propa-
gation. British Machine Vision Conference (BMVC 2017, spotlight).

Jingchun Cheng, Sifei Liu, Yi-Hsuan Tsai, Wei-Chih Hung, Shalini De Mello, Jinwei Gu,
Jan Kautz, Shengjin Wang, Ming-Hsuan Yang. Learning to Segment Instances in Videos
with Spatial Propagation Network, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2017 workshop).

Kihyuk Sohn, Sifei Liu, Guangyu Zhong, Xiang Yu, Ming-Hsuan Yang, Manmohan Chan-
draker. Unsupervised Domain Adaption for Face Recognition in Unlabeled Videos, Inter-
national Conference on Computer Vision (ICCV 2017).

Yijun Li, Sifei Liu, Jimei Yang, and Ming-Hsuan Yang. Generative Face Completion,
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017).

Chih-Yuan Yang, Sifei Liu, and Ming-Hsuan Yang, Hallucinating Compressed Face Im-
ages, International Journal of Computer Vision (IJCV 2017)

Sifei Liu Jinshan Pan and Ming-Hsuan Yang Learning Recursive Filters for Low-Level
Vision via a Hybrid Neural Network, European Conference on Computer Vision (ECCV
2016, oral).

Shizhan Zhu, Sifei Liu and Chen-Change LoyDeep Cascaded Bi-Network for Face Hallu-
cination, European Conference on Computer Vision (ECCV 2016).

xiv

Sifei Liu, Jimei Yang, Chang Huang, and Ming-Hsuan Yang, Multi-Objective Convolu-
tional Learning for Face Labeling, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2015).

Sifei Liu, Chih-Yuan Yang, Ming-Hsuan Yang, Compressed Face Hallucination, Interna-
tional Conference on Image Processing (ICIP 2014, oral).

Chih-Yuan Yang, Sifei Liu, and Ming-Hsuan Yang, Structured Face Hallucination, IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2013).

Sifei Liu, Dong Yi, Zhen Lei, Stan Z. Li, Heterogeneous Face Image Matching Using
Multi-scale Features, IAPR/IEEE conference on Biometrics (ICB 2012).

Sifei Liu, Dong Yi, Bin Li, Stan Z. Li, Face Alignment under Partial Occlusion in Near In-
frared Images, In Proceedings of Chinese Conference on Pattern Recognition 2010 (CCPR
2010, best paper candidate).

Jianfei Zhu, Zhen Ray, Sifei Liu,Stan Z. Li, Discriminant Analysis with Gabor Phase for
Robust Face Recognition, IAPR/IEEE conference on Biometrics (ICB 2012).

Zhiwei Zhang, Junjie Yan, Sifei Liu, Zhen Lei, Dong Yi, Stan Z. Li. Anti-spoofing Attacks
in Face Biometrics: A Comprehensive Database and A Baseline. IAPR/IEEE conference
on Biometrics (ICB 2012).

Zhangxian Wu, Guotian Yang, Xiangjie Liu, Pengyuan Yang, Sifei Liu, A Dynamic Tex-
ture Model for Fire Recognition, In Proceedings of Asian Conference on Computer Vi-
sion 2009: Workshop on Video Event Categorization, Tagging and Retrieval (ACCV 2009
Workshop).

xv

ABSTRACT OF THE DISSERTATION

Learning Affinity to Parse Images

by

Sifei Liu

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, 2017

Professor Ming-Hsuan Yang, Chair

Recent years have witnessed the success of deep learning models such as convolutional

neural networks (ConvNets) for numerous vision tasks. However, ConvNets have a sig-

nificant limitation: they do not have effective internal structures to explicitly learn image

pairwise relations. This yields two fundamental bottlenecks for many vision problems of

label and map regression, as well as image reconstruction: (a) pixels of an image have

large amount of redundancies but cannot be efficiently utilized by ConvNets, which pre-

dict each of them independently, and (b) the convolutional operation cannot effectively

solve problems that rely on similarities of pixel pairs, e.g., image pixel propagation and

shape/mask refinement.

This thesis focuses on how to learn pairwise relations of image pixels under jointly,

end-to-end learnable neural networks. Specifically, this is achieved by two different ap-

proaches: (a) formulating the conditional random field (CRF) objective as a non-structured

objective that can be implemented via ConvNets as an additional loss, and (b) developing

spatial propagation based deep-learning-friendly structures that learn the pairwise relations

in an explicit manner.

In the first approach, we develop a novel multi-objective learning method that opti-

mizes a single unified deep convolutional network with two distinct non-structured loss

xvi

functions: one encoding the unary label likelihoods and the other encoding the pairwise

label dependencies. We propose to apply this framework on face parsing, while experi-

ments on both LFW and Helen datasets demonstrate the additional pairwise loss signif-

icantly improves the labeling performance compared to a single loss ConvNet with the

same architecture.

In the second approach, we explore how to learn pairwise relations using spatial propa-

gation networks, instead of using additional loss functions. Unlike ConvNets, the propaga-

tion module is a spatially recurrent network with a linear transformation between adjacent

rows and columns. We propose two typical structures: a one-way connection using one-

dimensional propagation, and a three-way connection using two-dimensional propagation.

For both models, the linear weights are spatially variant output maps that can be learned

from any ConvNet. Since such modules are fully differentiable, they are flexible enough

to be inserted into any type of neural network. We prove that while both structures can

formulate global affinities, the one-way connection constructs a sparse matrix, and the

three-way forms a much denser one. While both structures demonstrate their effective-

ness over a wide range of vision problems, the three-way connection is more powerful

with challenging tasks (e.g., general object segmentation). We show that a well-learned

affinity can benefit numerous computer vision applications, including but not limited to

image filtering and denoising, pixel/color interpolation, face parsing, as well as general

semantic segmentation. Compared to graphical model base pairwise learning, the spatial

propagation network can be a good alternative in deep-learning based frameworks.

xvii

Chapter 1

Introduction

1.1 Overview

Learning affinity with deep-learning frameworks is a challenging task. On one hand,

convolutional based network has a significant limitation: it does not have an effective in-

ternal structure to explicitly learn image pairwise relations. On the other hand, existing

pairwise learning frameworks, e.g., graphical models, are not efficient to be formulated

as a deep learning module. In this thesis, we focus on how to learn pairwise relations of

pixels under jointly, end-to-end learnable neural networks. This is achieved by two dif-

ferent directions: First, we formulate the conditional random field (CRF) objective as two

non-structured objectives that can be implemented via ConvNets with multiple losses, as

introduced in Chapter 3. Second, we develop spatial propagation based structures that are

capable of learning the pairwise relations explicitly. Such structures are fully differentiable

and can be inserted into any type of neural network as a jointly learning module. Specifi-

cally, Chapter 4 and 5 present two types of spatial propagation networks (SPNs) while both

utilize the one-way connections. Chapter 6 further extends the one-way connection to a

three-way connection, which substantially improves the capability of pairwise learning in

more complex vision tasks. We discuss the problem context and solutions respectively as

1

2

follows.

1.2 Affinity Learning for Computer Vision Problems

An affinity matrix is a generic matrix that determines how close or similar two points

are in a space. In computer vision tasks, it is a weighted graph that regards each pixel as

a node, and connects each pair of pixels by an edge [88, 54, 53, 42]. The weight on that

edge should reflect the pairwise similarity with respect to different tasks. For example,

for low-level vision tasks such as image filtering, the affinity values should reveal the low-

level coherence of color and texture [29, 42]; For mid to high-level vision tasks such as

image matting and segmentation [54, 69, 41, 4], the affinity measure should reveal the

semantic-level pairwise similarities.

Introducing the affinity learning into a typical ConvNet is important but challenging.

Let’s consider using a fully convolutional network for problems of pixel-wise regression,

which typically refers to image object segmentation, filtering and denoising, etc. A well-

learned ConvNet that takes an image as its input will compute for each pixel the desired

output properties (e.g., semantic labels, smoothed pixel value, etc.), with the consideration

of its neighboring local region with a predefined receptive field. In contrast, it is not easy

to directly model the desired relation between any pair of pixel with a specific task using

such network architecture, since the output dimension is comparatively much larger and

redundant.

Another category of the applications for affinity matrices is image filtering. Typical

filters include bilateral filter [100], guided filter [42] and weighted least square filter [29].

All of these rely on the manual design of pairwise kernels that construct all the entries of

the corresponding affinity matrix. The main disadvantage is that such kernels are manu-

ally designed by low-level vision features; they cannot be generalized to high-level vision

problems, such as object semantic segmentation.

In this thesis, we focus on both low-level (Chapter 4) and semantic-level (Chapter 3, 5, 6)

3

vision tasks. We show that with the proposed general framework, a well-learned affinity

matrix can accurately approximate various types of filtering effects, refine the semantic

probability maps and even help to correct the semantic integrity for object segmentation.

Other than this, it is also successfully applied to image denoising, inpainting and interpo-

lation with significant quantitative and qualitative improvements over the other solutions

and efficient computational speeds.

1.3 Solutions

In this thesis, we provide a convolutional network-based solution which introduces an

additional loss function for learning the local pairwise relations, and two types of propa-

gation network-based solutions, which design a novel, deep-learning friendly structure to

explicitly learn the global pairwise relations.

1.3.1 Affinity Learning with Deep Convolutional Networks

We model affinity via deep ConvNets for semantic segmentation through multiple ob-

jectives. The major goal is to leverage the prediction pixel-wise labels and the regular-

ization of labeling structures together, in order to jointly improve the performance. We

develop an end-to-end image segmentation network that can incorporate the structured

loss of pixel-wise labeling into the plain, no-structured ConvNet. Specifically, we formu-

late the labeling of pixels as a conditional random field with unary and pairwise classifiers.

This is carried out by developing a multi-objective learning method that optimizes a single

unified deep convolutional network with two distinct, non-structured loss functions: one

encoding the unary label likelihoods and the other encoding the pairwise label dependen-

cies. For segmenting some domain specific images (e.g., face), the network can be further

regularized by using a nonparametric prior (e.g., mean face) as new input channels in addi-

tion to the RGB image, which introduces significant performance improvements through a

4

much smaller network size. The proposed algorithm is applied to face parsing on the LFW

and Helen datasets, reported in [64] and specified in Chapter 3. It demonstrates supe-

rior performance over all the existing non-deep-learning methods, with accurate labeling

results on challenging images.

1.3.2 Affinity Learning with Spatial Propagation Networks

The proposed spatial propagation networks (SPNs) focus on learning the pairwise rela-

tions via recurrent based structures. Compared to the graphical model-based methods (e.g.,

CRF), spatial propagation networks are fully differentiable and do not need the separate

design of learning and inference. In Chapter 6, we show that a general spatial propaga-

tion module can have two forms of connections: (a) one-way connection that shows great

effect and efficiency for both low-level [62] (Chapter 5) and high-level [63] (Chapter 5) vi-

sion problems, and (b) three-way connection [61] (Chapter 6) that can learn dense affinity

matrix for more challenging tasks.

Learning the one-way propagation for low-level vision. In Chapter 4, we use the one-

way connection structure for learning numerous low-level vision problems (e.g., edge-

preserving filtering and denoising). Specifically, we prove that the one-way connection is

equivalent to a one-dimensional recursive filtering, where the weights of connections are

equivalent to the coefficients of the recursive filter. We formulate a hybrid network that

contains several one-way propagation layers as equivalents of a group of distinct recursive

filters for each pixel, and a deep ConvNet that learns their weights. The deep ConvNet can

learn regulations of recurrent propagation for various tasks and effectively guides spatial

propagation over an entire image. The spatial propagation strategy makes sufficient use of

image pixel redundancy, and greatly reduces the model size as well as computational cost

required by a ConvNet-base framework on similar tasks. The proposed model does not

need a large number of convolutional channels nor big kernels to learn features for low-

level vision filters. We report both the theory and the experimental results in Chapter 4,

5

which demonstrates that many low-level vision tasks can be effectively learned and carried

out in real-time by the proposed algorithm.

Learning the one-way propagation for high-level vision. In Chapter 5, we further show

that the one-way connection structure brings substantial improvements to face parsing, a

relatively high-level vision task. We propose a face parsing framework that combines hier-

archical representations learned by a ConvNet, and accurate label propagation achieved by

a spatially variant recurrent neural network (RNN), which is a variant of the one-way con-

nection. The RNN-based propagation approach enables efficient inference over a global

space with the guidance of semantic edges generated by a local convolutional model. Un-

like Chapter 4, this work focus on formulating an efficient and light-weight solution. Since

the convolutional architecture can be shallow and the spatial RNN can have few parame-

ters, the framework is much faster and more light-weighted than the state-of-the-art Con-

vNets for the same task. We apply the proposed model to coarse-grained and fine-grained

face parsing. For fine-grained face parsing, we develop a two-stage approach by first iden-

tifying the main regions and then segmenting the detail components, which achieves better

performance in terms of accuracy and efficiency. We demonstrate in this chapter that, with

a GPU, the proposed algorithm parses face images accurately at 300 frames per second,

which facilitates real-time applications.

Learning the three-way propagation: A dense affinity. We provide a three-way con-

nection in Chapter 6, and theoretically prove that a dense affinity matrix can be formulated

in such an efficient way. We show that by constructing a row/column linear propagation

model, the spatially varying transformation matrix exactly constitutes an affinity matrix

that models dense, global pairwise relationships of an image. Specifically, we develop

a three-way connection for the linear propagation model, which (a) formulates a sparse

transformation matrix, where all elements can be the output from a deep ConvNet, but (b)

results in a dense affinity matrix that effectively models any task-specific pairwise similar-

ity matrix. Instead of designing the similarity kernels according to image features of two

6

points, we can directly output all the similarities in a purely data-driven manner. The spa-

tial propagation network is a generic framework that can be applied to many tasks, which

traditionally benefit from designed affinity, e.g., image matting, colorization and guided

filtering, to name a few. Essentially, the model can learn semantically-aware affinity val-

ues for high-level vision tasks due to the powerful learning capability of the deep neural

network classifier. We validate the framework on the task of refinement for image seg-

mentation boundaries. Experiments on the HELEN face parsing and PASCAL VOC-2012

semantic segmentation tasks show that the spatial propagation network provides a general,

effective and efficient solution for generating high-quality segmentation results.

1.4 Organization

The organization of the thesis is as follows: In Chapter 2, we make the literature review

with respect to the general pairwise learning problems and methods, and specifically in-

troduce the related applications in this thesis. In Chapter 3, we present how to introduce a

local spatial pairwise term to deep convolution networks based on multiple objectives, and

validate it for the task of 3-class and 11-class face parsing. In Chapter 4, we introduce how

to construct a one-way connection propagation network that is equal to one-dimensional

recursive filter, in order to approximate any type of image filter using a light-weight deep

model. We specifically show the results with respect to numerous low-level vision appli-

cations, including but not limited to edge-preserving smoothing and enhancement, image

denoising and inpainting, image and color interpolation. In Chapter 5, we introduce a

fast solution for face parsing using the combination of a recurrent-based shallow net for

the main regions, and several subnets for the details facial components. In Chapter 6,

we provide the general theory of the spatial propagation network (SPN), in which the

Chapter 4 and 5 are special cases (a sparse affinity matrix) under this framework. We

introduce a three-way connection that can provide a dense affinity matrix, which proves

to have better performance for more complex vision tasks. We validate the method on

7

both high-resolution face parsing in the HELEN dataset, and the general object seman-

tic segmentation in the Pascal VOC dataset. We conclude the thesis in Chapter 7, and

specifically discuss the potential future work with border range of pairwise learning and

its applications.

Chapter 2

Literature Review

In this Chapter, we review the literature related to the research work in terms of general

pairwise learning as well as its typical applications, including learning image filters, face

parsing and object segmentation.

2.1 Pairwise Learning

Numerous methods explicitly compute affinity matrices for image filtering [42], col-

orization [53], matting [54] and image segmentation [51] based on the physical nature

of the problem. Other methods, such as total variation (TV) [84] and learning to dif-

fuse [60] improve the modeling of pairwise relationships by incorporating more priors into

the framework of diffusion partial differential equations (PDEs). However, due to the lack

of an effective learning strategy, it is still challenging to model complex pairwise learning

problems. Recently, Maire et al. [69] trained a deep ConvNet to directly predict the enti-

ties of an affinity matrix, which demonstrated good performance on image segmentation.

However, since the affinity is followed by a solver of spectral embedding as an indepen-

dent part, it is not directly supervised for the classification/prediction task. Bertasius et

al. [4] introduced a random walk network that optimizes the objectives of pixel-wise affin-

8

9

ity for semantic segmentation. Differently, the affinity matrix is additionally supervised

by ground-truth sparse pixel similarities, which limits the potential connections between

pixels.

On the other hand, many graphical model-based techniques have successfully model

pixel pairwise relations in semantic labeling spaces and improves the performance of im-

age segmentation. An early work is proposed in [28], which combines multiscale Con-

vNets with a region tree structure for scene parsing. Specifically, the ConvNet is trained

in an unsupervised layer-wise manner from multiple scales. The learned multiscale im-

age features are then used to train region-wise classifiers for label prediction in a pre-

constructed segmentation tree. This is a typical two-step approach that sequentially trains a

ConvNet and a graphical model. Other than sequential combination, joint training of Con-

vNets and graphical models have been reported in several algorithms [71, 81, 101]. Ranftl

et al. [81] combine a variational energy model with ConvNets for foreground/background

image segmentation. The variational model used in [81] can be considered as a relaxation

of CRF labeling models. Three ConvNets for unary, vertical pairwise and horizontal pair-

wise terms are trained separately without weight sharing. The joint training approach has

also been applied to human pose estimation. In [101], a ConvNet model is used to train

part detectors (unary) and part likelihood maps are then combined with image input to

train pairwise spatial models between parts. All the above methods are closely related to

the algorithm proposed in Chapter 3, however, our multi-objective learning uses shared

weights that further reduces the computational complexity, and was the first deep learning

framework introducing the pairwise learning into the problem of face parsing.

More recently, CRFs by efficient mean-field inference have been frequently used as

pairwise modules for deep learning frameworks [51, 125, 56, 15, 86, 3]. Some of them [125,

56, 86, 3] translate inference into a differentiable module with an end-to-end training strat-

egy. Others apply it as a post-processing step with manually defined kernels [51, 15].

While both CRFs and the affinity matrix describe the pairwise relationships between pix-

els, they solve for different objective functions. To connect with convolutional networks,

10

mean-field approximation [51, 125] is commonly used to construct a jointly learnable

graphical module. However, since this module (a) still relies on a handcrafted kernel, and

(b) requires iterative computation during training and inference, its effectiveness and ef-

ficiency is potentially restricted. We specifically compare the propagation network-based

methods with Dense CRF [51, 15] for face parsing and general object semantic segmenta-

tion in both chapters 5 and 6. We show that the proposed algorithms are more suitable for

the deep-learning framework with better performance and faster computation speed.

Our propagation network structure is also related to the recurrent networks [18], which

have been shown to be effective for modeling long term dependencies in sequential data

(e.g., speech). Its variants include long short-term memory [37, 23, 39, 9], gated recurrent

units (GRUs) [18], and others. For image data, we can apply one-dimensional RNN to

multiple dimensions in row/column-wise manner [36, 105, 49] or multi-dimensional RNN

(MDRNN) [103, 9, 36] such that each neural node can receive information from multiple

directions [9, 104] (as opposed to one direction in the conventional RNN). In addition,

there are other variants that leverage these two models, e.g., the grid LSTM [49, 55]. In

Chapter 4 and 5, we propose one-dimensional propagation modules that fall into the first

category. Specifically, both models utilize linear recurrent formulation to associate the

adjacent pixels in either the semantic label space or the low-level image space. A simi-

lar module is proposed in [14] with the concept of domain transform, where object edges

learned on top of the intermediate layers of a fully convolutional network (FCN [66]) is

used to regularize the transforms between adjacent pixels. In contrast, the module pro-

posed in Chapter 4 extends the recurrent structure to high-order recursive filters to model

more variations in the low-level space, while on the other hand, the module proposed in

Chapter 5 is utilized to formulate a shallow and faster architecture as a real-time solu-

tion for face parsing. In Chapter 6, we propose a three-way, two-dimensional propagation

module that is more related to the second category. However, since this module is fully

linear as an affinity learning framework, it is very different with the standard RNN and

LSTM as well as their variants, which contain multiple non-linear units.

11

2.2 Affinity Related Vision Applications

A well-learned affinity can benefit numerous vision problems in terms of performance

and visual quality. In this thesis, we mainly demonstrate the effectiveness of the proposed

methods for the applications of face parsing, general object semantic segmentation and

low-level vision filters. Among them, face parsing is a practical application of semantic

segmentation in the face domain for facial image analysis and editing, which is proposed

in Chapter 3, 5 as well as 6. We also demonstrate the proposed propagation networks

for general low-level vision problems in Chapter 4, and object semantic segmentation in

Chapter 6. We introduce the related work with these applications in the following part.

2.2.1 Face Parsing

Face landmark vs face parsing. While both are important methods for analyzing a face

image, they are different in concepts and applications. Face landmark detection [8, 10,

126] is to localize the key positions and define the basic shape of a face. Compared to

face parsing that semantically labels all pixels, it has very sparse definitions on a fixed

number of locations. One can use the landmarks to generate pixel-wise labels by connect-

ing all neighboring pixels in a certain order. However, the results can be very coarse and

even unavailable for some undefined regions, such as forehead and hair. However, face

landmark detection can provide the correspondences of all control points among different

faces, while face parsing cannot. For applications, face landmark detection is usually used

for deforming/warping a face image [46], while face parsing is more frequently applied by

image processing with semantic regions [80].

Face parsing. Face parsing considered in this work assigns dense semantic labels to

all pixels in an image. Typically, only one face image is assumed to be detected in an

input frame. Several approaches have been developed based on graphical models [48],

exemplars [94] and convolution networks [67]. Warrell and Prince [106] use a family of

12

multinomial priors to model facial structures and a CRF for labeling facial components.

In [48], Kae et al. model the face shape prior with a restricted Boltzmann machine and

combine it with a CRF for 3 classes labeling (background, face and hair). These two meth-

ods train classifiers based on hand-crafted image features as the unary terms of CRFs. Luo

et al. [68] propose a deep learning based hierarchical face parsing method by combining

several separately trained models, in which only facial components are labeled. In [93],

Smith et al. develop a method to parse facial components and skin by transferring labeling

masks from aligned exemplars. In [116] Yamashita et al. propose a weight cost function

to deal with unbalanced samples for parsing small regions.

In this thesis, we provide two typical solutions for face parsing: Chapter 3 (also in [64])

develops a unified, ConvNet-based model to generate complete labels of facial regions in

one single pipeline. An additional supervision of semantic edges is utilized to achieve

substantial improvements for coarse-grained and fine-grained face parsing. Chapter 5 fur-

ther provides a much faster solution (also in [63]) using a two-stage training method with

hybrid networks based on the idea of spatial propagation. In addition, we also provide

a general propagation method for parsing high resolution face images in Chapter 6 (also

in [61]). All these methods demonstrate the efficiency and effectiveness of modeling the

pairwise relations in the labeling space.

2.2.2 Learning Low-level Vision Filters

Low-level vision. The recent years have witnessed significant advances in numerous low-

level vision problems due to the use of designed priors and propagation methods under the

guidance of image structures. In edge-preserving image smoothing, the key problem is to

design structural priors to preserve sharp edges. Some explicit weight-averaging filters,

e.g., bilateral filters [100] and guided image filters [42] exploit internal or guided image

structures to preserve the edges of filtered images. Most energy-based edge-preserving

methods explicitly or implicitly design adaptive weight maps through image structures

13

(e.g., image gradients), such as edge-preserving decompositions [29], relative total varia-

tion [115], to achieve this goal. In PDE-based image processing, the edge-preserving ef-

fect is achieved by hand-craft anisotropic diffusion operators [107]. These adaptive weight

maps control whether the image regions should be smoothed or not. Similar ideas have

been used in image denoising and inpainting.

Numerous recent image processing methods, e.g., colorization [53, 114] and image

matting [54, 114], involve propagation that is equivalent to implicitly filtering an image

according to its structure. Although significant progress has been made, solving any of

these problems is not a trivial task as specific operations are required. For example, in [53,

54], the specific rules for the propagation affinity are manually designed. Such methods

cannot be easily generalized as a unified framework for image filtering.

Deep learning models for low-level vision problems. Several data-driven deep learning

methods for low-level vision have been explored in recent years [112, 113, 82, 83, 24]. One

significant advantage is that these data-driven models are good approximations to multiple

conventional filters/enhancers via one learning paradigm. The uniform edge-preserving

ConvNet filter [113] is able to achieve 200 times acceleration against some conventional

methods. In addition, ConvNets have been applied to image denoising [7, 110, 2], super

resolution [25], and deconvolution [112], among others. However, there are two factors

that limit the performance of deep ConvNet based models. First, these models are gen-

erally large due to numerous convolutional operations. Second, the redundancy between

pairs of pixels is not effectively made use of. As another class of neural networks, RNNs

have been recently exploited for high-level vision problems such as object recognition

[105] and scene labeling [9], through applying recurrent propagations over the spatial do-

main. In Chapter 4, we show that the one-dimensional recurrent networks can be better

exploited for effective and efficient image filtering for low-level vision problems. Different

with the standard RNNs, this network utilizes a linear, spatially variant structure that can

equivalently formulate a standard one-dimensional recursive filter with arbitrary orders.

14

2.2.3 Object Segmentation

Non-deep learning methods. Object segmentation is an important computer vision prob-

lem that has been studied for decades. In the previous decade, most methods relied on

hand-crafted features combined with a unary classifiers (e.g., boosting [90], support vec-

tor machine [30], random forest [89]). Significant improvements have been achieved by

introducing richer information from context [11, 117, 65] and structure prediction [28, 71,

81, 101], where several of them are introduced in Section 2.1. Typically, the performance

of this system is limited by the expressive power of the handcraft features.

Deep regression of pixel-wise labels. More recently, deep ConvNet has been dominating

with its significant advantage of learning powerful feature representations. One of the most

typical categories of approaches is to utilize ConvNet to directly regress the dense image

labels [66, 26] in a fully convolutional fashion, transforming the last fully connected layers

of the ConvNet into convolutional or deconvolutional layers. Specifically, [66] produces

the class probability map with the softmax layer at the 8× smaller resolution of the original

input image. It then bilinearly upsamples the map to the desired resolution. [26] refines

the prediction result using an additional ConvNet. Much more advanced network architec-

tures have been proposed after these two work [17, 72, 124], which demonstrate superior

performance on the VOC 2012 dataset with respect to the object segmentation task. The

common disadvantage is that these work relies on pure convolutional units, which do not

explicitly model the pixel pairwise relations in the labeling space.

Segmentation refinement by utilizing pixel pairwise relations. As has been introduced

in Section 2.1, a well-designed/learned pairwise relations can significantly improve the

performance and object details visually for semantic segmentation. For modeling pixel

pairwise relations, graphical models are frequently exploited [28, 71, 81, 101, 51, 125, 56,

15, 86, 3]. We have specifically introduced the CRF-related methods [125, 3, 56, 15] in

Section 2.1. Similar strategies are frequently used to refine a coarse probability map. Other

than these, several affinity matrix related refinement modules [41, 4] are proposed, either

15

using a learned guidance that is conditioned on the original input image [41], or integrated

through linear matrix multiplication based on a jointly learned kernel [4]. Similar as [4],

the method [13] is proposed under the framework of gaussian CRFs, with the key differ-

ence that the matrix multiplication uses a reversed formulation and thus requires solving

linear equations during both the training and inference stages. In this thesis, the propaga-

tion networks, either with one-way or three-way connections (specific introductions can

be found in Chapter 6), can be used as a segmentation refinement module as demonstrated

in Chapter 5 (for face parsing) and Chapter 6 (for general object semantic segmentation).

Our method also relies on the matrix multiplication similar with [4], but exploits the spa-

tial propagation structure instead of the kernel methods. We provide thorough theoretical

analysis and proofs for the properties of their corresponding affinity matrix in Chapter 6,

as well as substantial quantitative results in comparison to a typical graphical model based

pairwise learning methods [51, 16, 15] for face parsing and semantic object segmentation

in Chapter 5 and 6, respectively.

Chapter 3

Multi-Objective Convolutional Learning

for Face Labeling

3.1 Introduction

Deep convolutional neural networks (ConvNets) have been applied to image labeling

and parsing problems [21, 28, 19, 68, 95]. As powerful end-to-end nonlinear classifiers,

ConvNets generate more discriminative representations compared to traditional methods

based on hand-crafted features. Conditional random fields (CRFs) are another important

class of image labeling models [70, 31, 35, 5] that carry out structured prediction by con-

sidering label dependencies and allow flexible use of pre-trained image features. We are

concerned with combining ConvNets and CRFs for image labeling by exploiting rich fea-

tures from ConvNets and structured output from CRFs [81, 101]. Considering a typical

CRF energy function with unary and edge terms, a straightforward combination is to add

CRF based structured losses on top of ConvNets. Learning ConvNets with structured loss,

however, requires MAP inference of all the samples during training cycles. On one hand,

it significantly increases computational cost while restricting the training flexibility. On

the other hand, the direct combination of ConvNets and CRFs with the structured loss may

16

17

not guarantee convergence.

This chapter presents a novel learning method by decomposing the structured loss into

two distinct, non-structured losses: softmax loss for the unary term and logistic loss for

the edge term. The training process is carried out through a multi-objective optimiza-

tion, which minimizes the losses of unary and edge terms respectively through a unified

convolutional network. Weight sharing is enforced between them so that the network is

strengthened by learning from both objectives. Compared to a structured loss ConvNets,

our method has two advantages. First, the training process is as efficient as existing Con-

vNets with non-structured losses. Second, by converting the edge term into a logistic loss

(edge versus non-edge), semantic image boundaries are learned for effective labeling.

Our model is trained on patches for flexibility. During the test stage, by making some

simple adjustments, we can apply our patch model directly to a full image without patch

cropping for efficient pixel-wise label prediction. We apply the proposed learning algo-

rithm to a practical problem, face labeling that assigns every pixel a facial component

label, e.g. skin, nose, eyes and mouth. Two examples are shown in Figure 3.1. Compared

to facial landmarks, face labeling provides a better intermediate representation for many

face analysis, synthesis and editing tasks.

Faces are highly structured visual patterns. For image labeling, we integrate a global

facial prior into our learning model. The global facial prior is estimated by transferring

labeling masks from exemplars through landmark detection [93]. Unlike existing meth-

ods [93, 118, 58] that use this nonparametric prior at the inference stage, our method uses

it as additional input channels, other than raw RGB image intensities, to train a ConvNet.

We show that this nonparametric prior significantly reduces the size of ConvNet in terms

of both parameters and connections. In other words, it provides strong regularizations for

ConvNet training to facilitate lightweight architectures.

The proposed face labeling algorithm is evaluated on two challenging benchmark

datasets with 3 classes (LFW) [45] and 11 classes (Helen) [93]. Experimental results

show that our algorithm performs favorably against state-of-the-art methods. We also

18

present hair parsing results that can be generated simultaneously from the unified frame-

work, which is more challenging and rarely addressed by existing methods.

The contributions of this chapter are summarized as follows:

• a multi-objective convolutional learning method is developed for image labeling

problems by decomposing the structured loss of CRFs into two distinct, non-structured

losses, and optimizing a single unified ConvNet model with weight sharing;

• a nonparametric facial prior is introduced to ConvNet training that significantly re-

duces the network size;

• an efficient testing method is proposed to ensure fast, full-sized labeling.

3.2 Multi-Objective Convolutional Learning

We formulate the problem of labeling a face image X as a CRF model P(Y|X) =

1
Z exp(−E(Y,X)) where Z is the partition function and Y is a set of random variables yi ∈ Y

defined on every pixel i. Each variable yi takes a value from a set of labels {` = 1, 2, ..,K}.

To consider the label dependencies, we introduce a 4-connected graph (V,E) where each

node represents one pixel i ∈ V and edges represent the connections between any two

adjacent pixels i, j ∈ E. Therefore, the CRF model can be expressed as a energy function

E(Y,X) with two data-dependent terms:

E(Y,X) =
∑
i∈V

Eu(yi, xi) + λ
∑

(i, j)∈V

Eb(yi, y j, xi j). (3.1)

The unary term Eu(yi, xi) measures the assignment cost of variable yi based on the image

patch xi centered at the pixel i and the pairwise term V(yi, y j, xi j) encodes the consistency

cost of adjacent variables yi, y j given their overlapping patch xi j. In addition, λ is the

mixing constant. We introduce a multi-class classifier Pu(yi = `|xi, ωu) to express the label

19

(a) input (b) unary (c) edge (d) label

Figure 3.1: Face labeling on the LFW [48] and Helen [1] (a) input images. (b) pixel-wise

label likelihoods. (c) semantic edge maps. (d) face labeling results. Our algorithm first

generates pixel-wise label likelihoods and semantic edge maps, which are combined in a

CRF energy function to generate face labels. The images in (b) are soft labels

(probabilistic outputs) and images in (d) are hard labels (excluding hair) which are shown

in different colors. While the pixel-wise maps alone are effective for labeling, the use of

edge maps further facilitates delineating the details, especially near the class boundaries.

assignment cost for the unary term,

Eu(yi, xi, ωu) = − log Pu(yi = `|xi, ωu). (3.2)

To measure the consistency of two adjacent pixels i, j in the pairwise term, we introduce

a new label zi j = 1, if yi = y j and zi j = 0, otherwise. Thus the pairwise term is defined by

the output of a binary classifier Pb(zi j = 1|xi, ωu),

Eb(yi, y j, xi j, ωb) = − log Pb(zi j = 1|xi, ωb). (3.3)

In this work, we use ConvNets with 9 layers for both unary and pairwise classifiers as they

provide end-to-end predictions without using hand-crafted features.

20

Figure 3.2: Proposed ConvNet classifier with sliding window based inputs.

Learning ConvNet parameters ωu and ωb jointly with the CRF model is difficult as it

needs to explore not only the combinatorial labeling space but also the large parameter

space. To avoid this problem, an obvious approach is to train two independent ConvNets

for the unary and pairwise terms, respectively. We note that both ConvNets are based on

local image patches and should share very similar features in the lower layers [91]. In

addition, the potentially large set of parameters from two ConvNets may cause overfitting

problems. In this chapter, we propose to learn a single unified ConvNet for both unary and

pairwise classifiers. By sharing all the features within a single ConvNet, the two classifiers

are able to enjoy better generalization ability and higher computational efficiency.

We define two distinct loss functions for unary and pairwise classifiers, respectively.

We denote the parameters of shared ConvNet network by ω, and the feature response

extracted from the topmost intermediate layer of ConvNet by hi = h(xi, ω). Thus, the

output of the unary classifier is given by a softmax function,

Pu(yi = `|hi, ωu) =
exp((ω`

u)>hi)∑K
`=1 exp((ω`

u)>hi)
, (3.4)

where ω`
u represents the parameters for the `-th class. Accordingly, the softmax loss for

unary term is

Lu(yi, xi, ω, ωu) = − log Pu(yi = `|hi, ω, ωu). (3.5)

21

On the other hand, the output of pairwise classifier is given by a logistic function,

Pb(zi j = 1|hi, ωb) =
1

1 + exp(ω>b hi))
, (3.6)

and accordingly, the logistic loss for pairwise term is

Lb(zi j, xi j, ω, ωb) = − log Pb(zi j = 1|hi, ω, ωb). (3.7)

Based on these two loss functions (3.4) and (3.6), we train the unified ConvNet through

multi-objective optimization,

min
ω
{Ou(ω,ωu),Ob(ω,ωb)}, Ou(ω,ωu) = E(

∑
i∈V Lu(yi, xi, ω, ωu)) + Ψ(ω,ωu)

Ob(ω,ωb) = E(
∑

i, j∈E Lb(zi j, xi j, ω, ωb)) + Φ(ω,ωb)

(3.8)

where Ou(ω,ωu) is the expected loss E(·) for the unary classifier and Ob(ω,ωb) is the ex-

pected loss for the binary classifier over all the training samples. In addition, Ψ(ω,ωu) and

Φ(ω,ωb) are regularization terms. The network is updated through combining gradients

of both the softmax and logistic loss functions for backpropagation.

This multi-objective ConvNet has two main advantages: First, the convolutional net-

work generates expressive representations at lower levels (layers that are close to the input

end) that can be utilized for both unary and edge model regressions. Second, the unified

network can be learned by backpropagating errors from both outputs jointly such that the

network can learn features that are highly adaptive to both objectives. The shared model

also alleviates overfitting problems and reduces the overall model size such that both train-

ing and testing can be carried out efficiently.

3.2.1 ConvNet Architecture

Since ConvNets usually operate on a patch level centered at each pixel, Our labeling

pipeline is based on a sliding window input [87, 101] with overlapping patches, as shown

22

Figure 3.3: Proposed ConvNet classifier for the LFW-PL dataset (patch-based training

phase) with input and activation size of each layer.

in Figure 3.2. We propose an architecture similar but deeper [91] than that of [52], with

7 convolutional and 2 fully connected layers. The inputs are 72 × 72 single scale patches

which are passed to two top consecutive convolutional unites with a filter of 5 × 5, where

each convolutional layer is followed by one max pooling layer with a downsampling stride

of 2. Following that is another stack of small convolutional unites with a receptive field of

3 × 3 and no pooling layer. All the layers are equipped with a rectification (ReLU) non-

linearity and a local response normalization (LRN) layer. We denote the input or activation

of each layer in the proposed ConvNet as h × w × d, where h and w are spatial size, and d

is the number of channels for the input, or dimensions for activation. The detailed pipeline

with nonparametric prior input is illustrated as shown in Figure 3.3.

3.2.2 Nonparametric Prior

We introduce a nonparametric prior as global regularization for face labeling, which is

estimated by transferring label masks from exemplars. Given a test image, 20 (K = 20)

exemplars are selected by comparing the Euclidean distance of PCA coefficients in the

keypoints subspace. The selected exemplars are then aligned to the test image through

the similarity transformation. The least-squares optimization is used on the corresponding

23

five keypoint pairs (exemplar vs. test image) to estimate their similarity transformation.

The ground truth labels are then transformed using the the similarity transformation, and

combined with weights to generate the prior. For any specific class, the prior is:

M =

K∑
k=1

αkMK , αk =
‖UP − UPk‖

2
2

K∑
l=1
‖UP − UPl‖

2
2

, (3.9)

where U is the eigenvector of keypoints on the validation set. In addition, P and Pk are

respectively the detected five keypoints for test image and the k-th exemplar, and Mk is

the ground truth binary label for the k-th exemplar. In (3.9), UPk forms the projection

of Pk in the subspace. The weight α is proportional to the Euclidean distance of the test

image to the exemplars, where αk are the weight for the k-th exemplar among the nearest

K exemplars. The value of M ranges from 0 to 1, which is then used as an additional input

channel for training the ConvNet. A typical labeling improvement using this prior is shown

on the right side of Figure 3.4. The ConvNet trained on image patches incorrectly labels

the face on the upper left part according to its local content while the ConvNet trained on

both prior and image patches is able to reject the false label assignments. Moreover, the

prior input introduces relaxation to the ConvNet so that the training could converge faster.

We will also show that using the prior leads to significant reduction of the network size

without degrading performance.

3.2.3 Adaptive Inference

Submodular energy function. In the testing stage, the labeling process involves evaluat-

ing the learned ConvNet for both unary and pairwise terms and CRF inference. Figure 3.2

demonstrate the inference pipeline. Given pixel-wise label likelihood maps for the unary

term Eu(yi) and the edge map for the pairwise term Eb(yi, y j), we convert the original

energy function to a submodular one such that the GraphCut algorithm can be used for

24

Figure 3.4: An nonparametric prior is proposed based on label transfer, as shown on the

left. A typical labeling improvement is show on the right. The ConvNet trained on image

patches without exemplars incorrectly labels the face on the upper left part according to

its local content while the ConvNet trained on both prior and image patches is able to

reject the false label assignments.

efficient inference,

min E(Y) =
∑
i∈V

Eu(yi) +
∑
i, j∈V

Eb(yi, y j)I(yi , y j), (3.10)

where I(·) is the indicator function.

Adapting the patch ConvNet to the full image. To generate pixel-wise label likelihood

maps efficiently, we make some adjustments for the ConvNet trained on patches. Our Con-

vNet architecture consists of more layers but smaller filter size, compared to that in [52].

Thus, we have a considerate size of overall receptive field and more nonlinearity of the de-

cision function, without increasing the number of parameters. Specifically, we use fewer

pooling layers (only in the first two convolutional units) to preserve more spatial informa-

tion from the input image. We propose to use the following efficient testing schemes to

25

enable full-sized label likelihood maps. In the training stage, we sample a group of patches

centered with randomly selected pixels for each training image. The network is supervised

through the corresponding labels y and z respectively for unary and edge training. We up-

date model by mini-batch gradient descent.

Since convolutional operations share computations between overlapped patches, com-

puting the sliding-window pipeline for each pixel of a test image is computationally redun-

dant. We propose to use an efficient patch-training and image-testing strategy introduced

in [87] by replacing the fully connected (FC) layers with equivalent convolutional layers,

and setting the filter size as 1 × 1 (See Figure 3.2). We then apply the full-convolutional

model directly to a test image. Note that a test image is proper padded to ensure that every

pixel corresponded “window” can be covered in order to generate the exactly equivalent

result. Thus, both unary and edge probability maps can be generated by one full image

forward propagation, which is much faster than applying the model many times to sliding

windows.

One problem with the proposed full image testing approach is that the size of the

output maps is smaller than that of the original image due to the downsampling strides in

the max pooling layers. Most existing approaches upsample the low-resolution map to the

image size [28]. We propose to obtain the full-sized output maps by forward propagating

a group of input images, generated by shifting the original input image with one or more

pixels (depending on the zooming factor) on the x and y axis, as described in [77]. The

way of generating an upsampled output map with a zooming factor of 2 is illustrated in

Figure 3.5. In this work (two pooling layers with downsampling stride of 2), 4×4 times of

forward propagations from shifted input images generate an upsampled output map with a

zooming factor of 4 in a similar way. Since the size of the maps may still be inconsistent

with that of the original image due to border effect of convolutional operation, the final

output map can be obtained by rescaling them to the exact input image size. Note that 16

times of forward propagation is still much faster than applying the convolutional network

to patches at each location of an image.

26

Figure 3.5: Generation of a twice upsampled output map. The original image in (a) is

shifted with additional 3 versions (b-d) along the x- and y-axis, with a step of 1. The

desired high-resolution one is obtained by interlacing them in the way shown on the right,

with a 2 × 2 block. The final upsampled map layouts are shown on the right.

3.3 Experimental Results

We evaluate the proposed algorithm on two different benchmark dataset with different

face labeling tasks. We show that it applies to both tasks and performs favourably against

state-of-the-art methods with the same framework and experimental settings. Specifically,

we demonstrate that both the multi-objective approach and the nonparametric prior im-

proves the performance in all aspects compared to a per-pixel ConvNet classifier. We

validate that the nonparametric prior introduces regularization to the network by reducing

the number of network parameters and connections.

3.3.1 Datasets and Settings

Datasets. We use the LFW [48] dataset which has been used by recent methods for face

labeling [106, 68]. However, the image subsets that are used for training and testing by

these two methods are not available to the public. Kae et al. [48] report their 3-classes

face labeling results on a released subset of LFW. For fair comparison, we choose to

conduct our first labeling experiment on the same subset of images, named LFW part

labels database (LFW-PL), with the same evaluation criteria.

The LFW-PL set contains 2927 face images of 250 × 250 pixels acquired in uncon-

27

strained environments. All of them are manually annotated with skin, hair and background

labels using superpixels. This dataset is divided into a training set with 1500 images, a test-

ing set with 927 images, and a validation set with 500 images. The validation set is used

to generate the nonparametric prior for each training and testing image, as described in

Section 3.4.

We use the HELEN [1, 93] dataset with 11-classes face labels for the second set of

experiments. It is composed of 2330 face images of 400 × 400 pixels with labeled facial

components generated through manually-annotated contours along eyes, eyebrows, nose,

lips and jawline. The hair region, not considered in the labeling categories in [93], is

annotated through a matting algorithm. The dataset is also divided into a training set (cor-

responding to the exemplar set in [93]) with 2000 images, a testing set with 100 images,

and a validation set (corresponding to the tuning set in [93]) with 300 images.

Network Configurations. Similar network configurations are applied to the LFW-PL

and Helen datasets for face labeling. As mentioned in the Section 3.2.1, we use a single-

scale patch input with size of 72 × 72 pixels in order to keep a proper receptive field.

Compare to a multi-scale input [28, 101], the single-scale configuration make the network

to be easily adapted from patch-based training to image-based testing. The released images

in the LFW-PL dataset are coarsely aligned using the congealing alignment method [48].

We align the images of the HELEN dataset to a canonical position by detecting five fa-

cial keypoints using [97], and computing the similarity transformation using least squares

minimization. To adapt to the receptive field to the input patch size, we further resize the

images and evaluate them with size of 250 × 250 pixels.

The ConvNet training procedure is carried out using mini-batch gradient decent with

where the momentum, weight decay, dropout ratio, and batch size are set to 0.9, 5 × 10−4,

0.5, and 50, respectively. All are kept unchanged throughout the training procedures. The

learning rate is initially set to 10−3 and is manually decreased by a factor of 10 when the

loss on the validation set starts fluctuating.

28

Table 3.1: Overall per-pixel accuracy on the LFW-PL dataset with channel numbers of

two FC layers setting as 4096 and 1024. Also the F-measure of skin (F-skin), hair

(F-hair) and background (F-bg) are presented.

(%) accuracy F-skin F-hair F-bg
S-CNNs 92.92 90.07 73.73 95.18

MO-unary 93.45 91.45 78.03 95.84
MO-GC 93.77 91.95 79.06 96.03

S-CNNs with prior 94.25 92.79 77.18 96.63
MO-unary with prior 94.94 93.64 79.95 97.02
MO-GC with prior 95.12 93.93 80.70 97.10

For evaluation, we use the sliding-window ConvNets, without edges and nonparamet-

ric prior, as a baseline of our approach, denoted as S-CNNs. We evaluate our multi-

objective approach with respect to: (a) unary term (MO-unary) with a softmax proba-

bilistic output; (b) inference results from both unary and edge terms through GraphCut,

denoted as MO-GC. We denote a suffix of “with prior” for the approaches with the non-

parametric prior.

Sampling. In the training stage, patch sampling is generally based on a random criteria.

However, the number of patches from rare classes may be insufficient for training an ef-

fective network with such sampling strategy. This is particularly obvious with semantic

edges and facial components, where the edge and some facial components such as eyes

and lips takes a relatively small portion of pixels. Therefore, we apply a two-stage training

with different sampling approaches. We first train the convolutional network by keeping a

certain ratio of patch number between one or more rare classes and the others, such that

we draw a sufficient of samples for the rare classes. We then apply the globally random

sampling for fine-tuning to ensure the network adapts to the natural distributions of classes

so in order to further improve the performance.

29

(a) image (b) no prior (c) prior (d) no prior (e) prior

Figure 3.6: Comparison for usage of nonparametric prior. (a) test images; (b) labeling

results generated by MO-GC; (c) labeling results generated by MO-GC with

nonparametric prior. (d) semantic edge generated by MO-GC; (e) semantic edge

generated by MO-GC with nonparametric prior. Best viewed in colors.

Table 3.2: Overall accuracy on LFW-PL with comparison to [48]. Note that the

evaluation of GLOC is based on a superpixel-wise accuracy, and ours are based on a

per-pixel evaluation.

(%) GLOC (SP) MO-unary MO-GC
accuracy 94.95 95.03 95.24

error reduction 25.41 26.59 29.69

30

(a) accuracy (b) F-skin (c) F-hair (d) F-bg

Figure 3.7: We show the network regularization by introducing the proposed

nonparametric prior as an additional input. Four FC settings associated with Table 3.3 are

used to control the size of the network, as shown in the X-axis.

Runtime. All models are trained and tested using the Caffe package on a single NVIDIA

Tesla K10c GPU. Our proposed method (MO-GC with prior) with FCs setting of 1024 ∗

1024 takes approximately 120 ms to forward propagate an 250× 250 6-channel input (See

Figure 3.2). To generate original-sized output maps with 16 shifted versions of an input

and to infer the final labeling results, it takes less than two seconds for the full pipeline.

The configurations and code will be released to the public.

3.3.2 LFW-PL

We first show results on face labeling of skin, hair and background. In this task, the 3

classes are relatively balanced in the number of pixels, and we randomly sample 12 batches

from each training image. We additionally sample 12 batches with the ratio of non-edge

and edge setting to 1.2 (this step is removed in the fine-tuning stage). We also apply jitter

that generated with random affine transformations over patches [28], to one of the batches.

This is easy to be applied to a patch-based training approach, and is particularly effective

for increasing the variation of training samples, especially when the number of training

images is small.

In table 3.1, we test a series of approaches with the channel numbers of the two FC

31

layers as 4096 and 1024, and evaluate the results with respect to per-pixel accuracy and

F-measure of each class. The first 3 rows show the approaches without nonparametric

prior input, while the lower 3 rows are those using it. Overall, the nonparametric prior

significantly improves the results when compared with all corresponding approaches. We

specifically compare the labeling and semantic edge results in terms of the nonparamet-

ric prior in Figue 3.6. By comparison between network with (shown in (c) and (e)), and

without (shown in (c) and (e)) the nonparametric prior, we observe that the labeling is

improved in terms of blurry hair region (Figure 3.6(a)), blurry face (Figure 3.6(b)), multi-

ple persons (Figure 3.6(c)) and moustache (Figure 3.6(c)), through introducing the prior.

Moreover, the proposed multi-objective approach (begin with MO) generally outperform

the ConvNet classifiers (S-CNNs and S-CNNs with prior). The inference step can further

improves the performance of all tested approaches.

Another major improvement of the multi-objective approach can be observed from the

comparison between S-CNNs and MO-unary, as shown in the row 1 vs.2 and 4 vs.5 in

Table 3.1. Both of them are generated directly from the output probabilities. The only

difference is that, the MO-unary contains an additional output that learns the semantic

edges. Namely, even when two networks are trained under the same conditions (net-

work configurations, inputs, with or without nonparametric prior, etc.), the one with a

supervised semantic edge learning generates results in more expressive representations by

back-propagating information of edges.

Network Regularization. By introducing a nonparametric prior as an additional input,

the network size can be significantly reduced without degrading the performance. We use

different settings of the FC layers as they usually take a large portion of weights and con-

nections in a deep ConvNet architecture. The combination of channel numbers regarding

to two FC layers is denoted by a∗b, where a and b are numbers for the first and the second

FC layer, respectively. Four network configurations, as listed in Table 3.3, are applied to

evaluate of different model sizes, as shown in Figure 3.7 and table 3.4-3.7. Note that we

32

Table 3.3: Four settings of channel numbers for the two FC layers, and their corrsponding

model size in MB.

FC 4096* 4096* 2048* 1024* 1024*
a ∗ b 4096 1024 1024 1024 512

size (MB) 163 119 65 38 36

only test and compare at the setting of 4096 ∗ 1024 (119MB) for S-CNNs and S-CNNs

with prior.

With a nonparametric prior input (colored with green and purple), the performance of

the small size networks (e.g. 1024 ∗ 1024 and 1024 ∗ 512) are comparatively similar to

that of the large-size networks (e.g. 4096 ∗4096 and 4096 ∗1024). With the inference step

(MO-GC with prior), the network of 1024 ∗ 1024 achieves the highest overall accuracy,

while the network of 1024 ∗ 512 achieves the highest F-score for the class of skin. On

the contrary, with no prior input (colored with blue and dark red), the network generally

has a worse performance when decreasing its size. For the networks less than 119 MB

(4096 ∗ 1024), the per-pixel accuracies are no higher than 93%.

Table 3.4: Overall per-pixel accuracy on the LFW-PL dataset.

accuracy 4096* 4096* 2048* 1024* 1024*
(%) 4096 1024 1024 1024 512

S-CNNs - 92.92 - - -
MO-unary 93.05 93.45 92.74 92.91 92.70
MO-GC 93.41 93.77 92.89 93.23 93.05

S-CNNs with prior - 94.25 - - -
MO-unary with prior 94.82 94.94 95.03 95.03 94.99
MO-GC with prior 94.95 95.12 95.19 95.24 95.16

Comparison to GLOC. We compare the results with GLOC [48] by following their

evaluation of overall accuracy and error reduction with respect to a standard CRF with

features in Huang et al. [44], as shown in Table 3.2. We apply the setting of FCs with

33

Table 3.5: Overall F-measure of skin on the LFW-PL dataset.

F-skin 4096* 4096* 2048* 1024* 1024*
(%) 4096 1024 1024 1024 512

S-CNNs - 90.07 - - -
MO-unary 90.84 91.45 89.58 90.39 89.99
MO-GC 91.37 91.95 90.21 90.88 90.49

S-CNNs with prior - 92.79 - - -
MO-unary with prior 93.61 93.64 93.73 93.73 93.75
MO-GC with prior 93.89 93.93 94.00 94.03 94.05

Table 3.6: Overall F-measure of hair on the LFW-PL dataset.

F-hair 4096* 4096* 2048* 1024* 1024*
(%) 4096 1024 1024 1024 512

S-CNNs - 73.73 - - -
MO-unary 76.56 78.03 74.84 76.76 76.17
MO-GC 77.45 79.06 75.90 77.64 77.42

S-CNNs with prior - 78.03 - - -
MO-unary with prior 79.70 79.95 80.67 80.27 80.24
MO-GC with prior 80.47 80.70 81.09 81.27 80.70

Table 3.7: Overall F-measure of background on the LFW-PL dataset.

F-bg 4096* 4096* 2048* 1024* 1024*
(%) 4096 1024 1024 1024 512

S-CNNs - 95.18 - - -
MO-unary 95.56 95.84 95.51 95.48 95.37
MO-GC 96.79 96.03 95.73 95.68 95.59

S-CNNs with prior - 96.63 - - -
MO-unary with prior 96.84 97.02 97.03 97.03 97.02
MO-GC with prior 96.90 97.10 97.10 97.10 97.10

1024 ∗ 1024 which achieves the best performance. Note that, a major difference of the

evaluation is that [48] applies a superpixel-wise accuracy since it is a superpixel based

method, while we use a per-pixel accuracy evaluation since our approach outputs a per-

34

pixel labeling map. For GLOC, the per-pixel evaluations may be slightly different, which

however is not reported in their paper.

Figure 3.8- 3.10 more experimental results using challenging images including blurry

hair region with low contrast, occlusions and mustache. For unary output on the third

column, we show a “soft mask” with values ranges from 0 to 1 for each class. Specifically,

the hair region (red) reveals its natural properties of transparency by showing a smooth

probability map. For edge output on the second column, we also illustrate a probabilistic

output ranging from 0 to 1, which is directly used on the inference step. Our generated

edge is clean (with much little of the background) and accurate, which further helps infer

labeling results with better class boundaries as shown on the forth column. Although our

approach is not specifically designed to handle occlusions, it handles such factors well as

shown in Figure 3.8(row 2, 5), Figure 3.9(row 1) and Figure 3.10(row 3).

The fifth column of figure 3.8- 3.10 shows the ground truth labeling for selected exam-

ples. We notice that the superpixel labeling proposed by [48] does not generate accurate

annotations. Some typical examples are shown in Figure 3.8(row 1, 3, 4, 5), Figure 3.9(row

2, 5, 6, 7) where the boundary regions are not well defined by superpixels, and inaccurate

annotations are thus generated. Furthermore, humans may not be able to annotate details

well, e.g., the mustache region in Figure 3.9(row 3) and the low-contrast hair region in

Figure 3.10(row 6). On one hand, the inaccuracy introduces noise to the supervised Con-

vNet training, on the other hand, the superpixel-wise evaluation in [48] does not reveal a

real accuracy. For instance, our results in the forth column contain a certain number of

incorrect label assignments evaluated on the ground truth in the fifth column. However,

they are visually even better than the ground truth, particularly along the class boundaries.

3.3.3 HELEN

We also show results on the labeling of 11 classes: two eyes, two eyebrows, nose,

upper and lower lips, inner mouth, facial skin and hair. Unlike LFW-PL, some facial

35

components are rare classes (e.g. eyes, lips, etc.) and therefore the two-stage sampling

strategy proposed in Section 3.2.3 is applied. Instead of sampling the first 12 batches

in a random way as in LFW-PL, we propose to firstly separate the labels as foreground

(containing all facial components, skin and hair) and background. We then sample the

first 11 batches randomly from foreground and the remaining one from background. In

this way, the foreground is sufficiently trained in the first stage, and a natural foreground

label distribution can be preserved. We repeat the same edge sampling and jitter generation

strategy with LFW-PL. Specifically we train two models for HELEN: For the first model,

we train a 11-classes unified convolutional network, with the multi-objective approach

with nonparametric prior as additional input. Therefore, we show that the hair labeling

can be generated along with other facial labels, which is not addressed in prior work. For

the second model, we merge the ground truth hair label with the background to train a

10-classes network using the same approach. In this way, a fair comparison with the work

of [93] can be obtained.

Based on the same subset of images with same evaluation criteria, we simply report

the results of [93]. In Table 3.8, a large variation in F-measure with respect to each facial

component can be seen between [93] and the proposed approaches. While [93] bases

the work on exemplar transfer, and obtains better results on relatively rare facial classes,

such as eyes, nose and mouth, we outperform it in facial skin and the overall components.

Specifically, we achieve an overall F-measure of 0.854, which is a noticeable improvement

over the work of [93].

Table 3.8 shows that the labeling of hair regions, which is challenging and seldom

addressed in existing facial component labeling methods, can be successfully generated

together with other facial components by the proposed algorithm in a unified model. With

hair labeling, this proposed method still performs well in overall facial components against

the state-of-the-art method on the HELEN dataset. Unlike the superpixel-based annotation

in the LFW-PL dataset, the hair in the HELEN dataset is annotated by matting with a

“soft mask” that ranging from 0 to 1, as shown in the fifth row in Figure 3.113.12. To be

36

Table 3.8: Evaluations on HELEN. We use float numbers instead of percentage to keep

consistent on the numarical pericision with [93]. For comparison, eyes, brow and mouth

all are computed by combining related categories, and the overall denotes all facial

components excluding facial skin.

methods eyes brows nose in mouth upper lip lower lip mouth all facial skin overall

Smith et.al [93] 0.785 0.722 0.922 0.713 0.651 0.700 0.857 0.882 0.804

Ours, 11 classes 0.768 0.713 0.909 0.808 0.623 0.694 0.841 0.910 0.847

Ours, 10 classes 0.768 0.734 0.912 0.824 0.601 0.684 0.849 0.912 0.854

consistent with the ground truth, we also visualize hair regions with “soft masks” generated

by unary probabilistic output maps, while keeping the other classes with “hard masks”, as

shown on the fourth row of Figure 3.113.12. Our approach generates accurate labeling

results on each facial component (second row) compared to the ground truth (third row).

Specifically, it generates visually pleasant labeling results in some challenging cases (even

for human beings), as shown in the sixth and seventh column.

3.4 Summary

We propose a deep convolutional network that jointly models pixel-wise likelihoods

and label dependencies through a multi-objective learning method. We introduce a non-

parametric prior, combined with the RGB image together as input to the network, and show

that this prior provides a strong regularization to the network, so that we can use a much

smaller model to achieve a competitive performance. Experiments on face labeling tasks

show that the proposed multi-objective learning and the nonparametric prior significantly

improves the labeling performance.

37

(a) image (b) edge (c) unary (d) GC (e) ground truth

Figure 3.8: Face labeling results and semantic edge maps from LFW-PL dataset. (a) test

images; (b) edge term output; (c) unary term output; (d) labeling result by GraphCut

inference, denoted as GC; (e) ground truth. Best viewed in colors.

38

(a) image (b) edge (c) unary (d) GC (e) ground truth

Figure 3.9: Face labeling results and semantic edge maps from LFW-PL dataset. (a) test

images; (b) edge term output; (c) unary term output; (d) labeling result by GraphCut

inference, denoted as GC; (e) ground truth. Best viewed in colors.

39

(a) image (b) edge (c) unary (d) GC (e) ground truth

Figure 3.10: Face labeling results and semantic edge maps from LFW-PL dataset. (a) test

images; (b) edge term output; (c) unary term output; (d) labeling result by GraphCut

inference, denoted as GC; (e) ground truth. Best viewed in colors.

40

(a) image (b) edge (c) unary (d) GC (labeling) (e) ground truth

Figure 3.11: Face labeling results and semantic edge maps from the HELEN dataset. GC

denotes labeling result by GraphCut inference. Best viewed in colors.

41

(a) image (b) edge (c) unary (d) GC (labeling) (e) ground truth

Figure 3.12: Face labeling results and semantic edge maps from the HELEN dataset. GC

denotes labeling result by GraphCut inference. Best viewed in colors.

Chapter 4

Learning Recursive Filters for

Low-Level Vision via a Hybrid Neural

Network

4.1 Introduction

Recursive filters, also called Infinite Impulse Response (IIR) filters, are efficient algo-

rithms that account for signals with infinite duration. As such, recursive implementations

are commonly exploited to accelerate image filtering methods, such as spatially invari-

ant/variant Gaussian filters [22, 120, 99], bilateral filters [119] and domain transforms

[32]. However, few methods are developed based on recursive formulations for low-level

vision tasks mainly due to the difficulty in filter design.

Recently, several deep ConvNet based methods have been proposed for low-level vi-

sion tasks [112, 113, 82, 83, 24]. A convolutional filter can be considered equivalent to a

finite impulse response (FIR) filter. Unlike IIR filters, it is easier to design FIR filters at the

expense of using more parameters to support non-local dependency. In deep ConvNets, Xu

et al. [113] approximate a number of edge-preserving filters using a data-driven approach

42

43

(a) smoothing (b) denoising (c) inpainting (d) color interpolation

Figure 4.1: Several applications of the proposed algorithm. (a) Approximation of relative

total variation (RTV) [115] for edge-preserving smoothing. (b) Denoising. (c)

Restoration of an image with random 50% pixels occluded. (d) Restoration of an image

with only 3% color informations retained.

which can utilize hundreds of convolutional channels to support spatially variant filtering

or large (up to 16 × 16) kernels to support global convolution. In spite of using a large

number of parameters, this model does not present local image structures well. Further-

more, it is difficult to extend the deep ConvNet model to other low-level vision problems

such as colorization and image completion.

Figure 4.1 shows a number of low-level vision tasks, e.g., denoising and inpainting,

which can be efficiently carried out by the proposed algorithm. In this chapter, we incor-

porate a group of RNNs as an equivalent of a recursive filter. As an important class of

neural networks, RNNs have been used for modeling contextual information in sequential

data [36, 9, 105]. The linear formulation of a RNN is equivalent to a first order recur-

sive filter, and the weight matrix corresponds to the coefficients. In addition, higher order

recursive filters can be formulated with several RNNs integrated either in cascade, or in

parallel. To design a data-driven RNN filter, a straightforward approach is to take each

pixel as a hidden recurrent node in a two-dimensional (2D) spatial sequence [73, 96, 49],

44

and use the recurrent structure to learn the propagation weight matrix. However, a standard

RNN uses an invariant weight matrix, which makes all pixels share one single recursive

filter. Thus, this approach cannot be directly applied to filters that are conditioned on an

input image with spatially variant structures, e.g. edge-preserving smoothing.

To address these issues, we propose a spatially variant RNN by introducing a weight

map conditioned on the input image. The map has a set of distinct values for each

node which control the node-wise recurrent propagation, or equivalently, each node has

a distinct recursive filter. The weight map is associated with an image representation

that reveals important structures e.g., salient edges (useful for edge-preserving smooth-

ing and denoising). It can be jointly trained through a deep ConvNet that is combined

with RNNs in an end-to-end fashion. The proposed hybrid network is shown in Fig-

ure 4.3, which exhibits significant differences from existing pure data-driven ConvNet

models [112, 113, 82, 83, 24]. It is worth emphasizing that the ConvNet is not used to

extract hierarchical image features, but to learn the coefficients of RNNs. We show that

a variety of low-level vision tasks can be carried out as recursive image filtering by the

proposed neural network.

The contributions of this chapter are summarized as: (a) A hybrid neural network is

proposed to learn recursive filters for low-level vision tasks. The network contains sev-

eral spatially variant RNNs as equivalents of a group of distinct recursive filters for each

pixel, and a deep ConvNet that learns the weights of the RNNs. (b) The deep ConvNet

effectively guides the propagation of RNNs through learned regulations in a data-driven

fashion. Specifically, the weight map from the ConvNet is highly correlated to the cor-

responding image structures, which plays an important role in low-level vision problems.

(c) The proposed model achieves promising results without any special design, regular-

ization of the coefficients, pre-training or post-processing, and is suitable for real-time

applications.

45

Figure 4.2: An illustrative example of the proposed model for edge-preserving image

smoothing with a single RNN. The deep ConvNet generates a weight map (b) that guides

the propagation of the RNN. We consider an image as a group of sequences, and take the

left-to-right recurrent propagation in 1D as an example, where k denotes a spatial

location. For a single RNN, the weight map corresponds to the edges of an image and can

be clearly visualized. When pk is close to zero, it cuts off the propagations from k − 1 to k

so that the edge is preserved (i.e., near boundary). On the other hand, pk+1 maintains the

propagation from k to k + 1 so that the image is smoothed at any non-edge location. The

ConvNet and RNN are jointly trained and the proposed network can be generalized to

many other applications such as colorization, inpainting and denoising (see Figure 3.1).

4.2 Recursive Filter via RNNs

The proposed model contains two parts: a deep ConvNet, and a set of RNNs that take

the output of the ConvNet as their input. Different from existing ConvNet based methods

[112, 113, 82], the filtered images are generated only through the set of RNNs. The deep

ConvNet, on the other hand, does not contribute any features or outputs for the filtered

result. Instead, it learns the internal regulations (see Figure 4.2, an example of a single

RNN for edge-preserving smoothing) to guide the propagation process for each hidden

node. In terms of the network structure, the deep ConvNet does not need to have a large

46

number of channels or large kernels, since it focuses on learning the guidance for recurrent

propagation instead of kernels for low-level filters. In comparison to recent deep ConvNet

models for [25, 112, 113], the proposed model is much more efficient and light-weighted.

In this section, we describe the algorithmic details of the low-level part in the proposed

network. We show that a recursive filter can be equally expressed by a set of RNNs, with

its coefficients corresponding to the weight matrices of RNNs. We present two schemes to

combine a group of RNNs for constructing a recursive filter, and show how to ensure the

stability of the system.

4.2.1 Preliminaries of Recursive Filters

We first review recursive IIR filters [78] before presenting the hybrid neural network.

For illustration, we use a one-dimensional (1D) convolution FIR filter, in which the output

y [k] is composed of a weighed sum of the input signal x [k − i], expressed in the causal,

discrete-time formulation:

y [k] =

M∑
i=0

aix [k − i] , k = 0, . . . ,N, (4.1)

where N is the range of the sequence to be filtered, k is one point in the signal which

practically corresponds to a frame, character, or pixel in the sequential data. A 1D IIR

filter is different in the sense that the output also contains the previously computed values:

y [k] =

P∑
i=0

aix [k − i] +

Q∑
j=1

b jy
[
k − j

]
, k = 0, . . . ,N, (4.2)

where x [k − i] is the input and y [k] is the output sequence, {ai, bi} ∈ R are filter coeffi-

cients, P and M are the order of convolutional filters, and Q is the order of the recursive

filter. A 0-th order IIR filter is reduced to a FIR filter. An IIR filter (4.2) is equivalent

to a FIR filter (4.1) by recursively expanding its second term. For an impulse input, the

expanded terms can be infinitely long with exponentially decaying coefficients. That is, an

IIR filter bypasses a long convolution, with only a few coefficients involved. The causal

47

IIR system from (4.2) is equivalently described in the z-domain by its transfer function

H(z) [78]:

H (z) =

∑P
i=0 aiz−i

1 −
∑Q

j=1 b jz− j
. (4.3)

It describes the frequency properties of IIRs independent of specific input signals. The

output sequence y [k] can be obtained from the z-transform of the input signal X (z) and

H (z) by computing the inverse z-transform of H (z) X (z). Note that for causal filters, we

need to define the initial conditions of the input signal x [−i] where i = 1, ..., P, and the

output signal y
[
− j

]
where j = 1, ...,Q. In this work, we set the initial conditions to zero

in the training process since we only use up to the second order (Q ≤ 2). Similarly, we

obtain the testing results by padding image borders.

4.2.2 Recursive Decomposition

The Q-th order IIR filter can be decomposited into a set of first order filters in two

different forms.

Cascade Decomposition. A recursive filter can be described in the z-plane with poles and

zeros [78]. Denoting the poles by {p j}
Q
j=1 and the nonzero zeros by {qi}

P
i=1, we have

H (z) = Hr (z) Hc (z) ,

Hr =
∏Q

j=1
g j

1−p jz−1 , Hc =
∏P

i=1 hi(1 − qiz−1),
(4.4)

where Hr and Hc are recursive and convolutional parts, gi and h j are their coefficients

respectively, {g, h, p, q} ∈ C. While Hc is equivalent to an ordinary 0-th order FIR that can

be constructed through a convolutional layer, Hr is a cascade of Q first order IIR units.

The spatial domain formulation with respect to the j-th unit from sequences of input xr [k]

and output yr [k] is:

yr
j [k] = g jxr

j [k] + p jyr
j [k − 1] . (4.5)

We denote this formulation as a cascade decomposition.

48

Parallel Decomposition. In [33], it is shown that H (z) can be decomposed into a sum of

Q first order recursive filters:

H (z) = Hr (z) + Hc (z) ,

Hr =
∑Q

j=1
g j

1−p jz−1 , Hc =
∑P−Q

i=0 hiz−i,
(4.6)

where {g, h, p} ∈ C. Similar to the cascade formulation, the parallel decomposition also

contains a FIR Hc with different kernel size (P − Q + 1) of a convolutional layer, as well

as Q summed first order IIR units. Each one shares the same formulation as in (4.5). We

refer to this formulation as a parallel decomposition.

To simplify the framework, we do not apply Hc from (4.4) and (4.6) in this work.

Therefore, the parallel way has P = Q − 1, which is greater than the cascade one with

P = 0 when Q > 1. It is more amenable to be designed as a high-pass filter (e.g., for

enhancement effect) compared to the cascade connection [78].

4.2.3 Constructing Recursive Filter via Linear RNNs

Single Linear RNN is 1st Order Filter. RNNs have been used to learn sequential data

of varying length for various tasks. Let x ∈ X be the input signal, h ∈ H be the hidden

state, and {Wx,Wh} be the weight matrices, then the recurrent relation over space or time

is modeled by

h [k] = f {Wxx [k] + Wh (h [k − 1] + b)} . (4.7)

The formulation (4.7) is slightly different from the first order recursive filter, as expressed

in (4.5), where the sigmoid is often used for f to ensure the output is bounded and the

recurrent system is stable in transition.

To model the recursive filter (4.5), we set f as an identity function f (x) = x, and

{Wx,Wh} as diagonal matrixes. We refer to this neural network as the Linear Recurrent

Neural Network (LRNN) in this chapter. With this method, we ignore the bias term in (4.7)

and formulate LRNN using the dot product:

h [k] = g · x [k] + p · h [k − 1] , (4.8)

49

where x [k] ∈ Rn×1. The {g, p} ∈ Rn×1 can be regarded as the diagonal values of Wx and

Wh, where · is a dot product operator.

We further formulate (4.8) in a normalized filter, which has unit gain at some specified

frequency. For example, a low-pass filter commonly has unit gain at z = 1, which implies

that its discrete impulse response should sum to one. Normalizing a filter is carried out by

scaling its impulse response by an appropriate factor, where (4.8) is computed by setting

g = 1 − p such that the prediction of coefficients is reduced to estimating the parameter p

only:

h [k] = (1 − p) · x [k] + p · h [k − 1] . (4.9)

Its backward pass can be generalized by back propagation thorough time (BPTT) used in

RNNs [38]. The derivations with respect to h [k], denoted as θ [k] is,

θ [k] = δ [k] + p · θ [k + 1] . (4.10)

The stability of LRNN (4.9) is different from the standard RNN (4.7) because the range

of h [k] is not controlled through some nonlinear functions (e.g., sigmoid). The output

sequence is likely to go to infinity when p is greater than one. According to z-transform

[78], the causal recursive system can be stabilized by regularizing p inside the unit circle

|p| < 1, which we discuss in the next section. In addition, the propagation of (4.9) can

reach to a long range when p is close to one, thereby enabling global propagation over an

entire image.

Construction of High Order Filters. High order recursive filters [33] can be constructed

by combining a group of LRNNs in cascade or parallel schemes as discussed in Sec-

tion 4.2.2. In the cascade decomposition, LRNNs are stacked with the input signal passing

through one to the next. In the parallel approach, each LRNN receives the input signal

respectively, where the outputs are integrated with node-wise operations. The FIR terms

(which we do not use in this work) can be implemented by convolutional layers that are

integrated in the same way.

50

Two Dimensional Image. To filter an image we need to extend the 1D LRNN in (4.9) to

2D. We adopt a strategy similar to the 4-way directional propagation for two-dimensional

data in [14]. First, the 1D LRNN is processed respectively along left-to-right, top-to-

bottom and their reverse directions, as shown in Figure 4.3. In any direction, we treat

each row or column as 1D sequence. Taking the left-to-right case as an example, the

LRNN scans each row from left to right. As a result, four hidden activation maps are

generated. We integrate the four maps through selecting the optimal direction based on

the maximum response at each location. This is carried out by a node-wise max pooling,

which effectively selects the maximally responded direction as the desired information to

be propagated and rejects noisy information from other directions. We note that the four

directions can be executed in parallel for acceleration as they are independent.

4.3 Learning Spatially Variant Recursive Filters

One problem with the standard or linear RNN in (4.7) and (4.9) is that it takes a group

of fixed weights for every point k. Filtering an image in such a way means that each pixel

is processed with the same recursive filter, which is not effective for many low-level tasks,

e.g., edge-preserving smoothing, where the edge and texture areas need to be processed

differently.

4.3.1 Spatially Variant Linear Recurrent Network

Therefore, we propose a spatially variant recurrent network by extending the fixed pa-

rameter p to p [k], so that each pixel has a distinct recursive filter. Taking edge-preserving

smoothing as an example (see Figure 4.2), and considering the first order recursive filter

(a single LRNN), {p [k]}, namely the weight map, is supposed to be associated with an

“edge map”. Specifically, the weights that lie on the edge regions should be close to zero

such that the input x [k] is preserved, and one otherwise so that the other regions can be

51

Figure 4.3: Proposed hybrid network that contains a group of RNNs to filter/restore an

image and a deep ConvNet to learn to propagate the RNNs. The process of

filtering/restoration is carried out through RNNs with two inputs and one output result,

denoted in red. Both parts are trained jointly in an end-to-end fashion.

smoothed out via recurrent propagation (as in (4.9)). For higher order recursive filters and

some other tasks, e.g., inpainting, the weight maps are more complex and do not corre-

spond to some explicit image structures. However, they reveal the propagation regulations

with respect to specific tasks, which are conditioned on the input image.

We have two types of input to a LRNN, i.e., an image X and a weight map P. Given a

hidden node h [k] and similar to (4.9), the spatially variant LRNN is:

h [k] = (1 − p [k]) · x [k] + p [k] · h [k − 1] . (4.11)

In the back propagation pass, the derivative σ [k] with respect to p [k] is:

σ [k] = θ [k] · (h [k − 1] − x [k]) , (4.12)

such that the weight map p [k] of a spatially variant recursive filter can be learned.

4.3.2 Learning Weight Maps of Recurrent Networks via ConvNets

We propose to learn the weight maps through a deep ConvNet, which takes an image

to be filtered as its input. The ConvNet can be small and deep, since it learns the guidance

52

of propagation instead of learning convolutional filters. The proposed network is equipped

with 10 convolutional layers. The first five layers are followed by a max pooling, while

the other five are followed by a bilinear upsampling. The RELUs are used between adja-

cent convolutional layers. In addition, 4 links between corresponding downsampling and

upsampling units connect feature maps of the same size at different levels in order to learn

better representations, where similar settings can be found in [66]. We use 3 × 3 kernels

with the number of channels ranging from 16 to 64, as shown in Figure 4.3.

To connect with the LRNNs of different directions (4 distinct hidden layers, see Fig-

ure 4.3), the weight map can be equally split into 4 parts for the 4 directions. To simplify

the network implementation, each axis is allowed to share the same part (e.g., the left-to-

right and right-to-left directions share a common horizontal map). Thus, for each LRNN,

we have two parts in a weight map for the x and y-axis, respectively. We find that better re-

sults can be obtained by linearly transferring the RGB input of LRNN into a feature space,

e.g., through one convolutional layer, and then perform LRNN on the proposed transform

space. We are then able to select a best direction at each point on the feature space using

a node-wise integration strategy, which combines the four directions. The combined maps

can be transferred back to a 3-channel image through another convolutional layer. We con-

figure both of the transform convolutional layers using 3 × 3 kernels. We set the number

of channels in each hidden layer of LRNNs to m = 16 in all experiments so that each x [k]

and p [k] in (4.11) are vectors with dimension of 16. The number of output channels for

ConvNet is 2 × m × R, where R denotes the order of recursive filter (or equivalently the

number of LRNNs), e.g., it should be set to 64 with a network configured with a 2nd order

recursive filter. It is important that we equip a hyperbolic tangent function as the topmost

layer of the ConvNet, so that the weight map is restricted to (−1, 1) to stabilize the LRNN,

as introduced in Section 4.2.3.

53

4.4 Experimental Results

We apply the proposed model to a variety of low-level vision problems including edge-

preserving smoothing, enhancement, image denoising, inpainting and colorization. All the

following applications share the same model size as well as the run-time. Specifically, our

model reaches real-time performance on images of 320 × 240 pixels (QVGA) using a

Nvidia Geforce GTX Ti GPU with 3 GB memory. Due to space limitations, we present

some results in this section. During the training phase, the momentum, weight decay

and batch size are set to be 0.9, 10−3, and 20, where the initial learning rate is set as

10−4. Specifically, our model takes 0.55 and 0.88 ms for an input image with 1080p or

2k resolution, respectively. The corresponding run time performance of the ConvNet filter

can be found and compared in [113]. The trained models and source code is available at

www.sifeiliu.net/project.

Experimental Settings. To obtain rich information from different scales of an image, we

use multi-scale input through downsampling the color image with ratio of {1/2, 1/4, 1/8, 1/16},

resizing them to the original size, and concatenating them to be a single input. Therefore,

nodes in a LRNN can reach to a more global range via processing on coarse scales, with-

out increasing the number of coefficient maps to be learned. We use 96×96 image patches

as the original inputs that are randomly cropped from training images, which are then

processed as multi-scale input through average pooling and upsampling. All patches are

augmented through perturbation using the similarity transform, so as to adapt to the scale-

variant property for some existing filters. We use roughly 400, 000 image patches that are

randomly cropped from the MS COCO dataset [57] in the training process with data aug-

mentations. For all the following applications, the order of filter is set to 2 with specific

structures shown in Figure 4.3. The only difference lies in the integration manner with

respect to these 2 LRNNs, e.g., cascade or parallel, which is specified in each application.

www.sifeiliu.net/project

54

(a) original (b) RTV-x (c) RTV-y (d) weight-x (e) weight-y (f) our result

Figure 4.4: Visualization of weight maps for approximating the RTV filter using first

order recursive filter. (a) original image; (b) and (c): manually designed edge prior maps

in RTV for x and y axes; (d) and (e): weight maps generated from the ConvNet for x and

y; (f) our filtered result.

4.4.1 Edge-Preserving Smoothing

Xu et al. in [113] propose a ConvNet model to approximate various filters such that

many conventional implementations can be accelerated significantly. We show that the

proposed algorithm is able to approximate various filters and performs favorably against

[113] in terms of accuracy, run time, and model size. We selectively learn a group of local

and global filters including bilateral filter (BLF) [100], weighted least square (WLS) [29],

L0 smoothing [111], RTV texture smoothing [115], weighted median filter (WMF) [122],

and rolling guidance filter (RGF) [121].

Visualization of Weight Maps. We first demonstrate through a first order recursive filter

using a single scale RGB image without any linear transformation as the input to both

ConvNet and LRNN, where the weight maps with respect to x and y axes accurately cor-

respond to the edges of the image. This is carried out by setting the number of output

channels of the ConvNet to 2, such that the maps for x and y axes, which are then shared

by all channels of the hidden layers in the LRNN, can be obtained and visualized.

We note that some edge-preserving methods, e.g., RTV [115], focus on extracting the

main structures of an image. The designed edge prior maps for RTV (Figure 4.4(b) and

(c)), which reflect the main structures of an image, determine whether the image regions

55

(a) Input (b) Xu et al. [113] (c) Ours (d) Original filters

Figure 4.5: Approximation of edge-preserving filters. (a) input images. (b) results by

Xu et al. [113]. (c) results of our model. (d) results from the original filters. First row:

Results by approximating RGF [121]. Second row: Results by approximating WLS

smoothing [29].

should be smoothed or not in the propagation step [115]. Interestingly, the learned data-

driven weight maps by our model (see Figure 4.4(d) and (e)) have the similar effects to

the handcrafted maps. They accurately locate the image edges with cleaner background,

and effectively remove the grid-like texture in the input image, as shown in Figure 4.4(f).

As our method is data-driven, different weight maps can be generated for different tasks.

The data-driven approach allows the proposed algorithm to be generalized to a variety of

applications without handcrafted priors. Similar weight maps can be generated through

approximating other edge-preserving filters (e.g., L0 filter [111]), which is not designed

based on edge prior, as shown in Figure 4.10. While one can also manually design the

weight maps and feed them to the RNNs to create new type of filters, it is beyond the

scope of data-driven approach and not be discussed in this chapter.

56

Table 4.1: Quantitative evaluations for learning various image filters.

Methods L0 [111] BLF [100] RTV [115] RGF [121] WLS [29] WMF [122] Shock filter [74]

PSNRs of [113] 32.8 38.4 32.1 35.9 36.2 31.6 30.0

Our PSNRs 30.9 38.6 37.1 42.2 39.4 34.0 31.8

SSIM of [113] 0.99 0.99 0.98 0.99 0.98 0.98 0.97

SSIM ours 0.97 0.99 0.98 0.99 0.99 0.97 0.97

Quantitative Comparisons. We show the applications that are based on a second order fil-

ter. Specifically for edge-smoothing tasks (e.g., L0, WLS and RTV, etc.), the two LRNNs

are connected in cascade since it is more amicable to low-pass filtering. On the other hand,

we use the parallel integration scheme for learning shock filters [74] with enhancement ef-

fects. We quantitatively evaluate the proposed algorithm against [113] on the dataset used

in [113]. Table 4.1 shows that our method generates high quality filtered images with sig-

nificant improvements over the state-of-the-art ConvNet based method. In addition, the

proposed model is much smaller and faster due to its hybrid structure, which can be used

to accelerate more conventional algorithms, e.g., region covariance filter (RegCov) [50]

and local laplacian filter (LLF) [75].

Figure 4.5 shows approximations of RGF [121] and WLS smoothing [29]. The results

by our model preserve more accurate structures without including details that are supposed

to be removed. The filtered images are visually the same as those generated by the original

implementations. We note that the ConvNet based filter [113] misses important local

structures by approximating the RGF, and includes some details that should be removed

by approximating the WLS, as shown in Figure 4.5(b). We also show more qualitative

results for the approximation of other edge-preserving/enhancement filters to demonstrate

the effectiveness of the proposed method. Specifically, we crop one patch for each image

in visualizing the approximation of shock filter (see Figure 4.15), for better comparisons

with respect to the region details.

Run Time and Model Size We evaluate all the following methods with the same computer

57

Table 4.2: Run-time (second) performance against [113] and some conventional methods

at different resolutions of color images.

method QVGA VGA 720p
BLF [100] 0.46 1.41 3.18
WLS [29] 0.71 3.40 11.38
RTV [115] 0.81 3.51 9.94
WMF [122] 0.67 1.70 3.80
EPLL [128] 33.82 466.79 1395.61
Levin [53] 2.10 9.24 31.09

Xu et al. [113] 0.23 0.83 2.10
Ours 0.05 0.16 0.37

introduced in the beginning of this section. The proposed method achieves favorable speed

as shown in Table 4.2, and is significantly smaller than that of [113] (0.54 vs 5.60 MB).

It can speed up a variety of conventional filters for denoising, inpainting and colorization,

etc.

4.4.2 Image Denoising

The proposed method can be used to learn filters for image denoising. Specifically, we

train the model with thousands of patches in which white Gaussian noise with the standard

deviation of 0.01 is added. At the output end, the model is supervised by the original image

patches. We apply the parallel connection to the two LRNNs to preserve more details. The

other settings are the same as those used in Section 4.4.1.

Figure 4.6 shows the results with two state-of-the-art algorithms including expected

patch log likelihood (EPLL) [128] and a deep ConvNet based model [83]. The denois-

ing method [128] is based on a prior of image patches, and the vectorization-based deep

ConvNet [83] is based on a two-layer convolutional model. Although significant noise

has been removed by both methods, some details are not preserved well and the restored

results can be over-smoothed. The learned filter by the proposed model generates clear

58

images with well preserved fine details, as shown in Figure 4.6(d). It retains important

image contents such as the brushstrokes of oil painting in the first row, or pattens of the

feather in the second row.

We apply the test set of Berkeley segmentation dataset 500 (BSDS500) which contains

200 natural images, and compare the proposed algorithm with the state-of-the-art methods,

including EPLL [128], bm3d [20] and deep ConvNet based model [83].

In Figure 4.16, several patches are cropped for better visualization and comparisons.

The EPLL algorithm over-smooths many regions (in all examples) especially on the back-

ground, and introduces color noise (being obvious on the first and third columns). The

ConvNet based method preserves more details. However, it produces more texture-like

noise on smooth regions. Comparatively, the results generated by the proposed algorithm

(see Figure 4.16, the 4-th row) are visually pleasant on both preserving details and remov-

ing noise.

Table 4.3: Quantitative evaluations for image denoising on BSDS500-test.

Methods EPLL [128] deep ConvNet [83] bm3d [20] ours
Average PSNRs 28.38 28.82 28.38 31.05

The deep ConvNet method is likely to be slower in terms of run-time (was not specified

in [83]) due to its large model size, while the EPLL takes more than hundreds of seconds to

process one image. In contrast, the proposed method achieves several order of magnitude

accelerations (see Section 4.4.1). As a result, it outperforms the state-of-the-art methods

in terms of the overall performance as well as efficiency.

4.4.3 Image Propagation Examples

In this section, we validate the effectiveness of propagation-study of the network by

restoring images from degraded frames with masks. The deep ConvNet here learns more

complex rules than the edges that are used for smoothing. We apply the proposed model

59

(a) Input (b) EPLL, PSNR: 31.0 (c) ConvNet, PSNR:31.0 (d) Ours, PSNR: 32.3

(a) Input (b) EPLL, PSNR: 31.1 (c) ConvNet, PSNR: 29.5 (d) Ours, PSNR: 31.6

Figure 4.6: Image denoising. (b) denotes the results of image patch prior based method

EPLL [128]. (c) denotes the results by end-to-end trainable ConvNet method [83].

to two interesting applications for pixel and color interpolation (e.g., inpainting and col-

orizaiton). Specifically, we retain randomly 50% pixels for the image interpolation and 3%

monochrome pixels for the color interpolation. The proposed model takes degraded im-

ages as well as masks as input channels, and learns the weight maps with the supervision of

the original images. It learns complex regulations including identifying the occluded pix-

els and restoring them by propagating information from the other pixels, and identifying

the image structures such that the restored pixels can naturally adapt to them.

Pixel Interpolation. The goal of pixel interpolation is to restore the values in missing

regions according to a mask of pixels that are to be restored. In this model, the random

60

mask is concatenated with the degraded image as the input, such that it learns the propa-

gation rules according to all the visual information. The LRNNs filter the degraded image

according to the learned rules and output an interpolated result. It does not require explicit

regulations to compute the missing data, nor expensive optimizations for each test image.

Therefore, it is accurate and fast to execute through forward propagation.

(a) occluded (b) restored (c) original

Figure 4.7: Pixel interpolation. (a) input image. (b) restored image for masking half

pixels in (a).

We show that the proposed algorithm can restore fine details (e.g., pattens on a butter-

fly) in Figure 4.7 with randomly half pixels are masked. We discover that the proposed

model trained for image interpolation can be directly applied to image inpainting with

texts, as shown in the first row of Figure 4.8. Both results are visually very similar to the

original images, as shown in Figure 4.7(b) and 4.8(c).

For ease of comparison, we show all results by different methods on one page, and the

details can be clearly viewed at the original image resolution, or equivalently by zooming

in on Figure 4.17. The EPLL algorithm can recover the edges but over-smooths many

details (in all examples). The ConvNet based method, on the other hand, produces jagged

boundaries (e.g., edges along houses on the hill in (a), long edges in (b)). Comparatively,

the results generated by the proposed algorithm (fourth row of Figure. 4.17) are visually

pleasant on both detail and edge preserving, and are visually similar to the ground truth

images (fifth row of Figure. 4.17).

Color Interpolation. The proposed algorithm can be applied to color image restoration

61

(a) occluded (b) Xu et al. (c) ours (d) original

(e) degraded (f) Levin et al. (g) ours (h) original

Figure 4.8: First row: image inpainting on the regions of texts with comparison to Xu et

al. [82]. We directly apply the pixel interpolation model to inpainting. The model does

not require any network finetuning on texts masks. Second row: color interpolation with

comparison to Levin et al. [53].

and editing despite providing little color information, e.g., user inputs. Given the bright-

ness channels (y channel in the YCbCr color space), we retain only 3% color pixels, as

shown in Figure 4.8(e). Taking a degraded image and a mask as input, the proposed model

learns to propagate the known colors to other regions to be restored. We compare the re-

sults of the proposed algorithm with those generated by the state-of-the-art method [53]

in Figure 4.18, and show more results in Figure 4.19. The proposed model generates fa-

vorable results (visually the same with the original image) compared to the state-of-the-art

method [53], which takes more than 3 seconds on a QVGA image.

The proposed model can also be generalized to image re-colorization by applying

the brightness channel of an input image, and directly taking 3% color pixels from the

monochrome channels in a reference image of the same size. The re-colored image has

the contents of the original image, but with the color style of the reference image. Figure

4.9 shows examples of image re-colorization.

62

(a) origin (b) reference (c) re-colored

Figure 4.9: Re-colorization by applying the brightness channel of (a) and directly taking

3% color pixels from the monochrome channels in a reference image with the same size.

4.5 Summary

In this chapter, we propose a novel hybrid neural network for low-level vision tasks,

based on the recursive filters whose coefficients can be learned by a deep ConvNet. We

show that the proposed model is faster and significantly smaller than the deep ConvNet

filters. It is also more generic, and can effectively and efficiently handle a variety of appli-

cations including image smoothing and enhancement, image denoising and pixel interpo-

lation.

63

(a) input (b) x-map (c) y-map (d) smoothed

Figure 4.10: Visualization of weight maps for L0 edge-preserving smoothing filter [111].

64

(a) input (b) proposed (c) L0

Figure 4.11: Approximation of L0 edge-smoothing method [111]. Zooming in to see

details.

65

(a) input (b) proposed (c) RGF

Figure 4.12: Approximation of RGF [121] edge-smoothing method. Zooming in to see

details.

66

(a) input (b) proposed (c) RTV

Figure 4.13: Approximation of RTV [115] edge-smoothing method. Zooming in to see

details.

67

(a) input (b) proposed (c) WLS

Figure 4.14: Approximation of WLS [29] edge-smoothing method. Zooming in to see

details.

68

(a) input (b) proposed (c) shock

Figure 4.15: Approximation of Shock filter [74] image enhancement method. Zooming in

to see details.

69

(a) (b) (c)

Figure 4.16: Image denoising. First row: image with white Gaussian noise; Second row:

image denoised by EPLL [128]; Third row: image denoised by deep ConvNet based

method [83]; Forth row: image denoised by the proposed algorithm. Zooming in to see

details.

70

(a) (b)

Figure 4.17: Pixel interpolation. First row: occluded image; Second row: EPLL based

inpainting [128]; Third row: ConvNet based inpainting [82]; Fourth row: restored by

proposed algorithm; Fifth row: the original image. Zooming in to see details.

71

(a) degraded (b) Levin et al. (c) proposed (d) original

Figure 4.18: Color interpolation with comparison to Levin et al. [53].

72

(a) degraded (b) proposed (c) original

Figure 4.19: Color interpolation via proposed algorithm.

Chapter 5

Face Parsing via Recurrent Propagation

5.1 Introduction

Recent years have witnessed significant progress in object segmentation and image

parsing using deep ConvNets [28, 21, 85, 16, 125, 65]. With end-to-end nonlinear clas-

sifiers and hierarchical features, ConvNet-based face parsing methods [64, 102] achieve

the state-of-the-art performance than approaches based on hand-crafted features [48]. The

main issues with existing ConvNet-based face parsing are the heavy computational load

and large memory requirement. Both issues can be alleviated by using shallow or light-

weighted convolutional structures, but at the expense of parsing accuracy.

In this work, we propose a face parsing algorithm in which a spatially variant recurrent

module is incorporated for global propagation of label information. A straightforward

combination of ConvNet and RNN is to take each activation in a ConvNet feature map as

the input to a hidden recurrent node in a two-dimensional (2D) spatial sequence and use

the recurrent structure to learn the propagation weight matrix in an end-to-end fashion [9,

55]. These models either utilize a spatial RNN [9], or a stacked long short-term memory

(LSTM) [55]. In contrast, the proposed recurrent structure exploits the strength of both

models in which we apply a simple structure similar to a typical RNN but maintains the

73

74

capability of spatially variant propagation of an LSTM. Specifically, the proposed model

uses a spatially variant gate map to control the propagation strength over different locations

in the label space. For face parsing, this gate is naturally associated with the semantic

boundary. A gate allows propagation between pixels in a label-consistent region or stops

it otherwise. We show that this gate can be obtained via a relatively shallow ConvNet

that focuses on learning low and mid-level image features. The RNN module, controlled

by the gate, can utilize rich redundant information by propagating the predicted labels to

their neighboring pixels in the label-consistent region. Compared to a deep ConvNet face

parser with similar performance, the propagation layer requires a small amount of model

parameters and significantly reduces the computational cost. As a result, we construct a

model that is hundreds of times faster and smaller than deep ConvNet-based methods [64,

102] for face parsing without loss of accuracy.

We validate the proposed algorithm on both coarse-grained (parsing an image with ma-

jor regions including skin, hair and background) and fine-grained (parsing an image with

detailed facial components such as eyes, eyebrows, nose and mouth) face parsing. Both are

of critical importance for real-world applications in face processing, e.g., coarse-grained

face parsing for style transfer [12] and fine-grained face parsing for virtual makeup. Pars-

ing only the main classes is generally easier under the same settings due to the complexity

of solutions and more balanced distributions of training samples. We show that the pro-

posed model can parse all faces of an image in one shot, and significantly outperform the

state-of-the-art methods in terms of accuracy and speed.

One issue with applying a single network to fine-grained face parsing is the perfor-

mance on small facial components. This is due to the extremely unbalanced sample dis-

tributions and image size of these regions. We design a two-stage method to parse these

components efficiently. We train the model for the main classes in the first stage and then

focus on the others with relatively simpler sub-networks. Specifically, the sub-networks

in the second stage take a cropped facial region as input. In contrast to a face component

may occupy a small amount of pixels from a whole image, the distributions of the pixels

75

for a cropped region are more balanced. We show that by dividing the second face parsing

problem into several sub-tasks, the overall network complexity is significantly reduced.

The contributions of this work are summarized as follows. First, a light-weighted

network is proposed for pixel-wise face parsing by combining a shallow ConvNet and a

spatially variant RNN, which significantly reduces the computational load of deep Con-

vNet. Second, we show that when parsing a face image with multiple detailed components,

dividing the problem into several sub-tasks is significantly more efficient than using one

single model, with even better accuracy. Experimental results on the HELEN [94], LFW-

PL [48] and Multi-Face demonstrate the efficiency and effectiveness of the proposed face

parsing algorithm against the state-of-the-art methods.

5.2 Proposed Algorithm

Most ConvNet-based face parsing algorithms [64, 116] apply deep networks with a

large number of parameters, which entail heavy computational loads. On the other hand,

shallow models can be executed efficiently but not able to model global data dependency.

In this work, we use a shallow ConvNet with a combination of spatially variant recurrent

propagation module to model image data effectively and efficiently.

Our model contains a shallow ConvNet and a spatial RNN, as shown in Figure 5.1.

First, the ConvNet takes a color image as its input and learns a coarse pixel-wise label

score map (Figure 5.1(b)). Second, the coarse label result is fed to a spatial recurrent unit

for global propagation. Specifically, the spatial propagation is controlled by a gate map

(Figure 5.1(c)), which is referred to as a recurrent gate in the rest of the chapter. Each pixel

in the map, formulated as a scalar weight coefficient to the recurrent term, controls the

connection between two adjacent hidden nodes at the corresponding location. Since a gate

map can be supervised by the ground truth semantic boundaries from labeled annotations,

it enables the recurrent propagation to be discriminative between semantically consistent

and inconsistent regions, with respect to the specific input image.

76

Figure 5.1: Proposed parsing network architecture by combining a ConvNet and a spatial

RNN. The ConvNet generates a coarse label map (b) and a recurrent gate (c), which are

fed into 4 RNNs with different directions to generate a more accurate result (d). The

network structure is shown where the notation for Conv1 “5×5×16/1” means convolution

layer with 5 × 5 kernel, 16 channels and stride 1. The face image in (d) is further

segmented with detailed labels in the second stage (see text and Figure 5.2).

We first briefly review conventional RNNs and describe how we extend it to the 2D

space for image data, before introducing the recurrent gates. We then discuss how to train

the hybrid model in an end-to-end fashion.

5.2.1 Recurrent Neural Networks

The conventional RNN is developed to process 1D sequential data where each hidden

node represents a single character, frame, pixel and is connected to its adjacent neighbor.

The hidden node i, denoted as hi ∈ H receives two inputs: an external input xi ∈ X and

its previous activation hi−1 from one step back. The summation of these two inputs is then

non-linearly mapped via a function θ (·) as the activation of the current step:

hi = θ (ai) , ai = ωxxi + (ωhhi−1 + b) . (5.1)

In this formulation, xi and hi can have different dimensions, where the input transition

matrix ωx aligns xi to have the same dimension as hi. In addition, b is a bias or offset term

77

to model data points centered at a point other than the origin. For simplicity, we set xi and

hi to have the same dimension, and remove the ωx so that only the recurrent state transition

matrix needs to be learned.

To extend the 1D RNN in (5.1) to 2D images, we consider each row/column as 1D

sequence, and then adopt an approach similar to the bidirectional recurrent neural net-

work for processing temporal sequences [36]. First, the 1D sequential RNN is processed

respectively along left-to-right, top-to-bottom, and their reverse ways. Taking the left-to-

right direction for a 2D feature/label map as an example, the 1D sequential RNN scans

each row from left to right. As a result, four hidden activation maps are generated.

The four hidden activation maps can be grouped either in parallel or cascade, as in-

troduced in [62]. The four maps share the same input X with the parallel method, while

in the cascade way, each RNN takes the output from a previous RNN as its input. We

adopt the parallel method and integrate the maps by selecting the optimal direction based

on the maximum response at each location. This is carried out by a node-wise max pool-

ing operation that can effectively select the maximally responded direction as the desired

information to be propagated and reject noisy information from other directions. We note

that the four-directional RNNs with parallel integration can be executed simultaneously

with multiple GPUs for further acceleration as they are independent.

The backward pass is also an extension of the back propagation through time (BPTT)

method used in RNNs [109]. Due to space limitation, we only present the derivative with

respect to ai:

δi = θ′ (ai) · (ξi + ωhδi+1) , (5.2)

where ωh is a square weight matrix and all the others are 1D vectors. We denote ξ as

the influence from the output layer on top of the proposed spatial RNN, and the second

term in (5.2) the influence from the next hidden node. The derivatives are passed back

in reverse order against the feedforward process, with four distinct directions computed

respectively [109].

78

5.2.2 Spatially Variant Recurrent Network

The fundamental problem of the RNN in (5.1) is that the hidden state transition matrix

ωh is spatially invariant. As such, it tends to propagate any pixel to its adjacent ones with

a group of fixed weights. However, the label space is spatially variant with respect to

different locations. The propagation between pixels that share the same label should be

distinguished from those between pixels with different labels on the semantic boundaries.

To this end, we propose a spatially variant recurrent network with gate maps gi ∈ G

as an additional input to the spatial RNN. Each gi is an additional coefficient that controls

the strength of connections between nodes to guide the recurrent propagations. Intuitively,

strong connections (e.g., gi is close to 1) should be enforced between nodes in the label-

consistent region. On the other hand, weak connections (e.g., gi is close to 0) should be

assigned to the nodes belonging to semantically different categories, so that they can be

successfully separated.

To reformulate the framework, we have two types of inputs to a RNN, i.e., an external

input X, and a spatially variant gate G. Given a hidden node hi, the spatially controllable

recurrent propagation is:

ai = xi + gi · (ωhhi−1 + b) . (5.3)

The propagation of the hidden activation at i − 1 to i is controlled by dot product with

gi. We use the identity function θ (x) = x as the activation (also used by [14, 62]), since

experimentally it achieves better performance. To maintain the stability of the linearized

formulation, the absolute value of gi, and norm of ωh are both normalized to be within

one during parameter update in order to prevent the hidden activation in H to increase

exponentially.

Similar to the sequential RNN, the BPTT algorithm is adopted to adjust X and G in the

spatially variant RNN. The derivatives with respect to ai and gi, denoted as δi and εi are:

δi = ξi + gi · ωδi+1, εi = δi · (ωhhi+1 + b) . (5.4)

79

In addition, the derivative from RNN with respect to xi is equal to δi.

5.2.3 Hybrid Model of ConvNet and RNN

In the proposed framework, we apply a ConvNet that provides label representation X

and spatially variant gate representation G to the spatial RNN (see Figure 5.1). With the

effective propagation of RNN, the ConvNet can be relatively shallow as revealed in the

experimental analyses. Taking the three-class face parsing as an example, the main part

of ConvNet is equipped with only three convolutional layers, two max pooling (down-

sampling) as well as deconvolutional (upsampling) layers, as shown in Figure 5.1, and

at most 32 channels for each layer. The proposed network is significantly smaller than

most existing ConvNet-based face parsing models based on 6 convolutional layers with 2

fully-connected layers [64], or 16 layers [102] from VGG [92].

To connect with the spatial RNN, the feature maps with 16 channels generated from the

first deconvolutional layer (Deconv6 in Figure 5.1) are equally split into two components

(each with 8 channels), where one is for pixel-wise labels and the other is for the recurrent

gate, with equal width and height. They are then fed to four recurrent layers with different

directions as X and G respectively, where each pixel i in the hidden layers is processed by

combining xi and gi based on (5.3).

The hybrid network contains three different loss layers. At the top of the ConvNet, both

X and G are supervised with the softmax cross entropy loss. The labeling representations

are transferred by a convolutional layer to be directly supervised by the ground truth labels

(see Figure 5.1(b)). The gate representations are transferred by a 1× 1 convolutional layer

to have a single channel output, which is supervised by the boundary between different

categories (see Figure 5.1(c)). Finally, the output of RNN with 8 channels are transferred

to 3 channels, upsampled to the original image scale, and supervised by the ground truth

labels (see Figure 5.1(d)). All the losses encourage the ConvNet to learn better label can-

didates as well as guidances to the propagation. Specifically, the ground truth boundaries

80

are obtained from the annotated labels, by setting its boundary pixels to zeros and all the

others to one. For example, with a pixel i that is located on a boundary of two categories,

the ground truth value is set to zero, which can encourage the gi to “cut off” the connection

between different classes, and vise-versa.

5.3 Sub-networks for the Detailed Components

As discussed in Section 5.1 and revealed in the experiments, a single network does not

perform well on small facial components. One problem is that some facial components

amount to small percentage of the entire dataset, e.g., the eye regions in Figure 5.1(a)

occupy less than 1% of the whole image. It is difficult to parse such components in one

stage due to unbalanced labeled data. The work of [64] applies a simple strategy by sam-

pling with an equal number of input patches. However, the performance on small facial

components is not satisfactory compared to categories with more pixels, e.g., skin. The

other problem is the limited resolution of facial components. With a larger input image,

more details of the components can be learned. However, it requires deeper or larger mod-

els to adapt to the enlarged receptive fields. For a single model, it is a trade-off between

effectiveness and efficiency.

We decompose a unified face segmentation network into a two-stage framework. In

practice, parsing major classes with either frontal, canonical face or multiple random faces

can be handled using the first stage only. For parsing 11 classes in the HELEN dataset,

each component can be labeled independently first and then combined with the major ones.

First Stage Skin-Hair-Background Network. The first stage network classifies an image

into skin, hair and background regions using the combination of ConvNet and RNN, as in-

troduced in Section 5.2. Since there are only three labels with relatively equal distribution,

we do not need to balance the samples. As these classes do not contain detailed structures

such as facial components, the input resolution does not need to be high. Similar to [64],

81

Figure 5.2: The second stage network operates on the cropped region, i.e., left and right

eyes, nose, and mouth, to parse accurate facial components. The final parsing result in (d)

is the combination of segments from two stages.

a face image is detected and roughly aligned to the center using [98], with a resolution of

128 × 128 pixels. The result of the label has the same resolution as the input image.

Second Stage Facial Component Networks. We locate the facial components for high

resolution faces image through 5 detected key points (eye centers, nose tip, and mouth cor-

ners) [98], and crop the patches accordingly. We train three simple and efficient networks

to segment eye and eyebrow, nose, and mouth regions, respectively. Figure 5.2(b) shows

the structure of eye/eyebrow network. It contains five convolution layers, two max-pooling

layers, and two deconvolution layers, with an input size of 64× 64. Similar network struc-

tures are used for the nose as well as the mouth, and the input image size is 64 × 64 and

32 × 64, respectively. Since each image is cropped around each facial component, it does

not include many pixels from the skin region. Therefore, the sample distribution is bal-

anced for network training. The final parsing result is composed of the accurate facial

component segments in the second stage and the coarse segments in the first stage. Since

the segmentation task in the second stage is easier, we do not apply the spatial RNN for

efficiency reason.

82

Table 5.1: Quantitative results on the LFW-PL dataset.“F” denotes f-score, “bg” denotes

background, “-” denotes not available. We denote the results by Chapter 3 as Liu et

al. [64]

(%) GLOC [48] Liu et al. [64] CNN-S CNN-deep CNN-CRF [16] RNN [129] RNN-G
F-skin - 93.93 90.47 91.63 91.25 93.72 97.55
F-hair - 80.70 76.09 78.30 75.21 81.21 83.43
F-bg - 97.10 95.42 95.95 99.58 97.15 94.37

Accuracy 94.95 95.09 92.44 93.27 92.59 94.85 95.46
Time (ms) 254 (CPU) ∼ 110 < 1 ∼ 2 ∼ 7 ∼ 2 ∼ 2

5.4 Experimental Results

We carry out experiments on images containing one or multiple faces. For single

face parsing, we evaluate our method on the LFW-PL [48] and HELEN [94] datasets.

In addition, we develop a Multi-Face dataset to evaluate parsing numerous faces in one

image. All experiments are conducted on a Nvidia GeForce GTX TITAN X GPU.

5.4.1 Datasets and Settings

LFW-PL and HELEN Datasets. The LFW part label (LFW-PL) dataset contains 2, 927

face images. Each face image is annotated as skin, hair or background using superpixels,

and roughly aligned to the center [48]. The HELEN dataset contains 2, 330 face images

with manually labeled facial components including eyes, eyebrows, nose, lips, etc. For

both datasets, the most centered face in each image is annotated. We adopt the same

setting of data splits as [64] and resize each image and its corresponding label to 128×128.

For the HELEN dataset, the hair region is trained as one category in the first stage of our

algorithm but is not evaluated for fair comparisons with the existing method [94, 64].

Multi-Face Dataset. We collect a Multi-Face dataset where each image contains multiple

faces. It contains 9, 645 images in unconstrained environments with pixel-wise labels

83

Figure 5.3: Face parsing results on the LFW-PL dataset. First row: input image. Second

row: ground-truth annotations. Third row: results from [64]. Fourth row: results from

CNN-S. Fifth row: results from CNN with dense CRF. Sixth row: results by RNN-G.

including skin, hair, and background. This dataset is divided into a training set of 9, 045

images, a test set of 200 images, and a validation set of 200 images. We rescale each

image and its corresponding label according to the length of the long side to maintain the

aspect ratio. Each one is zero padded to result in a 512× 512 image where all faces appear

clearly.

Network Implementation. Our network structures are described in Figure 5.1 and 5.2.

We use the first stage model (see Figure 5.1) to parse images in the LFW-PL and Multi-

Face datasets, and the facial skin and hair regions in the Helen dataset. In addition, we

use the second stage model (see Figure 5.2) to parse facial components of images in the

84

(a) (b) (c) (d) (e) (f)

Figure 5.4: Parsing results on the Multi-Face dataset. (a) input image. (b) results by the

baseline ConvNet. (c) results by the standard RNN. (d) results from RNN-G. (e) the

ground truth. (f) a visualized version of RNN-G. Our method is able to effectively and

efficiently parse multiple faces in the cluttered background.

(a) Input Ground truth (c) Our result (d) Input (e) Ground-truth (f) Our result

Figure 5.5: Parsing results on the Multi-Face dataset. We can successfully process

multiple face with our network.

HELEN dataset.

For fair comparison with the previous work, we align the input images according to

the standards in Chapter 3 in the HELEN dataset. The faces in the LFW-PL dataset do

not need additional processing since the released images are already coarsely aligned. On

the other hand, we directly use the 512 × 512 images as the network inputs, and do not

preprocess any face for the Multi-Face dataset. We quantitatively evaluate and compare

our model using per-pixel accuracy and F-measure for each class in all experiments.

In the first stage, the boundaries in Figure 5.1(c) are balanced with the ratio of pos-

itive/negative number of pixels set to 1 : 5 such that a sufficient number of boundary

samples can be drawn. The training images are augmented by random affine and mir-

85

Table 5.2: Quantitative results on the Multi-Face dataset.

(%) CNN-deep CNN-CRF RNN Det+RNN-G single RNN-G
F-skin 75.56 77.84 73.33 81.02 87.36
F-hair 64.62 61.53 62.85 55.35 73.09

F-background 96.5 97.08 96.18 97.10 98.19
AC 93.39 94.5 92.78 94.42 96.35

ror transformations for increasing the variation of training samples. The network for the

Multi-Face dataset has two more 3 × 3 × 16 convolutional units (with max-pooling) and

one more deconvolutional layer to adapt to the input size. The results are evaluated with

the resolution of 256×256. The boundary loss sampling and training image augmentation

strategies are uniformly applied to all experiments. For the second stage model, we crop

the facial components based on the 5 facial key points from [98] for training and tests. We

include at least additional 20% height/width of the total foreground height/width in the

cropped images during training and maintain the aspect ratio.

5.4.2 Coarse-grained Face Parsing

Face parsing with 3 classes are carried out using the first stage model on the LFW-PL

and the Multi-Face datasets, respectively. We compare the proposed method, denoted as

RNN-G with: (a) shallow ConvNet part only (CNN-S). (b) shallow ConvNet with the RNN

module replaced by two 3×3 convolutional layers with 32 channels as a baseline network,

denoted as CNN-Deep. We increase the number of the output channels of Deconv6 (Fig-

ure 5.1) from 8 to 16 to ensure that the shallow model can converge. (c) a combination

of the shallow ConvNet and the post processing with a dense CRF, denoted as CNN-CRF,

which is commonly used in recent semantic segmentation tasks [16]. (d) a standard RNN

in (5.1) (similar to [129]) with the same ConvNet. We note that both [16, 129] do not have

experiments on shallow networks.

We show two more baseline methods [48, 64] (also Chapter 3) evaluated on the LFW-

86

(a) (b) (c) (d) (a) (b) (c) (d)

Figure 5.6: Face parsing results on the HELEN [94] dataset. (a) input image. (b)

ground-truth annotations. (c) results from [64]. (We roughly crop the results for better

visual comparisons.) (d) our results with 11-class pixel-wise parsing.

PL dataset. Specifically, we adjust the results in Chapter 3 by using only one-time feedfor-

ward with 2× bilinear upsampling layer for fair comparisons in speed and accuracy. For

the Multi-Face dataset, we use the models to parse all faces in images without using any

detector. This is computationally efficient and useful for numerous applications without

the need of instance-level information. We note the label distribution of the Multi-Face

dataset with respect to different categories are significantly unbalanced since the vast ma-

jority of pixels belong to the background regions. Thus, we apply a data sampling strategy

at each loss layer by maintaining the number of sampled background pixels as 5 times of

the total number of pixels for skin and hair regions.

Table 5.1 and 5.2 show the results with similar trends on these two datasets. Overall,

the shallow ConvNet, i.e., CNN-S, has limited performance. There is no significant im-

87

Table 5.3: Quantitative evaluation results on the HELEN dataset. We denote the upper

and lower lips as “U-lip” and “L-lip”, and overall mouth part as “mouth”, respectively.

See Chapter 3 (denoted as Liu et al. [64] in the table) and [94] for more details.

Methods eyes brows nose in mouth U-lip L-lip mouth skin overall
Liu et al. [59] 77.0 64.0 84.3 60.1 65.0 61.8 74.2 88.6 73.8

Smith et al. [94] 78.5 72.2 92.2 71.3 65.1 70.0 85.7 88.2 80.4
Liu et al. [64] 76.8 71.3 90.9 80.8 62.3 69.4 84.1 91.0 84.7
Ours 1-stage 63.3 53.7 87.5 65.7 54.0 72.6 80.6 91.1 78.8
Ours 2-stage 86.8 77.0 93.0 79.2 74.3 81.7 89.1 92.1 88.6

provement gain by simply adding more layers (CNN-Deep) or adding an additional dense

CRF module (CNN-CRF). The standard RNN without the spatially variant gate performs

better, but still worse than the proposed method. With the spatially variant gate, the RNN-

G model performs significantly better than the baseline CNN-S, CNN-Deep and RNN

models. The results demonstrate the effectiveness of the proposed spatially variant RNN

structure. The proposed models operate at 500 fps for a 128 × 128 single face image and

200 fps for a 512 × 512 image with multiple faces.

Figure 5.3 and 5.4 show some parsing results on the two datasets. The proposed

RNN-G model performs favorably against the CNN-S, CNN-CRF, standard RNN, and

the method using nonparametric prior and graph cut inference in Chapter 3. For Multi-

Face dataset, we evaluate the alternative method using a face detector [79] and the single

face parser trained on the LFW-PL dataset, which operates at 37 fps on average (depending

on the number of detected faces). The RNN-G model performs favorably in the cluttered

background against all alternative methods in terms of accuracy and efficiency.

5.4.3 Fine-grained Face Parsing

In the HELEN dataset, we evaluate the parsing results following the settings in Chap-

ter 3, where the second stage network is utilized to improve parsing results. Since the

88

second stage takes less than 1 ms, the overall run-time for parsing a face with 11 classes

can operate at 300 fps on a single GPU.

Table 5.3 and Figure 5.6 show the quantitative and qualitative parsing results. We first

show that by using a single stage, the unified model cannot handle detailed facial parts

even with the spatially variant RNN module. Our two-stage network performs favorably

against the state-of-the-art methods, and the one stage network model, on all categories.

It is worth noting that the overall F-measure achieved by the RNN-G model is 0.886,

which amounts to 20% reduction in error rate from the state-of-the-art method [59]. These

experimental results demonstrate that the two-stage network structure with the spatially

variant gate is effective for accurate and efficient face parsing.

5.5 Applications

Based on the proposed fast face parsing algorithm, automatic facial editing applica-

tions can be constructed. We take (a) eyebrow type switching, (b) eyelash editing, (c)

lip color adjustment, (d) facial skin beautification, and (e) facial makeup transferring as

examples to demonstrate the applications of the proposed algorithm.

(a) input (b) mask (c) removal (d) new #1 (e) new #2

Figure 5.7: Swithcing of eyebrow types given the parsed facial components.

89

5.5.1 Eyebrow Editing

The application of eyebrow editing can be carried out by removing the existing eye-

brow and appending a new type based on the accurate boundaries generated by face pars-

ing. Given the input image in Fig. 5.7 (a), and eyebrow parsing results in (b), we apply

Poisson image editing [76] to remove the existing eyebrow, shown in (c). In particular, we

slightly dilate the mask to accommodate for any error caused by an uncovered boundary.

New types of eyebrows can be easily generated through alpha blending. Fig. 5.7 (d) and

(e) show two different eyebrow types enabled by our mask.

5.5.2 Eyelash Editing

We can append eyelashes on the eye regions based on the accurate eye boundaries

generated from parsing results. Given a face image in Fig. 5.8 as input, we adopt the thin

plate splines (TPS) algorithm [6] to map the eyelash template to the eye boundary. The

results are obtained through alpha blending.

input with eyelash input with eyelash

Figure 5.8: Eyelash editing. Best viewed by zooming in.

5.5.3 Lip Color Adjustments

With the accurate mouth region in Fig. 5.9, we can directly change the color tone of

the lips. Two examples are shown in Fig. 5.9 (b) and (c).

90

(a) input (b) color #1 (c) color #2

Figure 5.9: Lip Color Adjustments. Best viewed in color.

5.5.4 Skin Smoothing

Equipped with the facial skin mask, we can smooth the facial area without affecting

the details in other components. We first apply the rolling guidance filter (RGF) [121]

for edge-preserving smoothing. However, the filtered image does not contain fine details

and is visually inauthentic. We denote the edges located by the RFG as edge region, and

the other part as the smooth region. To preserve the fine details (e.g., skin poles), we

preserve the high-frequency image texture on the corresponding smooth region, which can

be obtained through the residue of a standard Gaussian filter (δ = 2). The final result is

illustrated in Fig. 5.10 (c).

5.5.5 Makeup Transfer

We combine the above-mentioned applications for full makeup editing. Specifically,

we can transfer the makeup from a set of reference images with distinct makeup styles

(see first row of Fig. 5.11) to a test image (see second row of Fig. 5.11). This is carried

91

(a) input (b) parsing skin area (c) smoothed

Figure 5.10: Smoothing the skin region. Best viewed by zooming in.

out by first accurately aligning the face on the reference image to the one on the test

image through TPS with the semantic boundaries extracted from the parsing result, and

then applying the facial fine texture and color from the corresponding components on the

reference face. Given the fine segments, the proposed processing is simpler compare to

the work by Guo and Sim [40].

For makeup transfer, we first apply the facial texture and color by linearly blending the

gradients of facial skin of two images in the brightness channel, where the weights with

respect to each image can be adjusted by user according to the final visual effect. Second,

we reconstruct the brightness channel with the new facial gradient map through Poisson

image editing [76]. Third, we apply the chromatic channels of the reference image with

respect to facial skin and lips. The final virtual makeups, as shown in the second row of

Fig. 5.11, are realistic and accurate on the facial component boundaries due to the fine

precision of the face parsing results.

92

Figure 5.11: Facial makeup transfer. First row: reference model images with

specific-stylized makeup. Second row: virtual makeup by applying facial detail and color

from the models in the first row. Best viewed in color through zooming in.

5.6 Summary

In this chapter, we propose a pixel-level face parsing network by combining a shallow

ConvNet and a spatially variant RNN. The recurrent propagation infers globally over the

entire image with the guidance of a local model, which reduces the computational load

of deep ConvNets. We develop a two-stage approach for accurate parsing of the detailed

facial component. Experimental results on the HELEN [94], LFW-PL [48] and the pro-

posed Multi-Face datasets demonstrate the efficiency and effectiveness of the proposed

face parsing algorithm against the state-of-the-art methods.

Chapter 6

Learning Affinity via Spatial

Propagation Networks

6.1 Introduction

An affinity matrix is a generic matrix that determines how close or similar two points

are in a space. In computer vision tasks, it is a weighted graph that regards each pixel as a

node, and connects each pair of pixels by an edge [88, 54, 53, 42]. The weight on that edge

should reflect the pairwise similarity with respect to different tasks. For example, for low-

level vision tasks such as image filtering, the affinity values should reveal the low-level

coherence of color and texture [29, 42]; for mid to high-level vision tasks such as image

matting and segmentation [54, 69, 41, 4], the affinity measure should reveal the semantic-

level pairwise similarities. Most techniques explicitly or implicitly assume a measurement

or a similarity structure over the space of configurations. The success of such algorithms

depends heavily on the assumptions made to construct these affinity matrices, which are

generally not treated as part of the learning problem.

In this chapter, we show that the problem of learning the affinity matrix can be equiv-

alently expressed as learning a group of small row/column-wise, spatially varying linear

93

94

transformation matrices. Since a linear transformation can be easily implemented as a

differentiable module in a deep neural network, the transformation matrix can be learned

in a purely data-driven manner as opposed to being constructed by hand. Specifically, we

adopt an external deep ConvNet to output all entities of the matrix with the input of the

original RGB images, such that the affinity is learned from a deep model conditioned on

the specific inputs. We show that using a three-way connection, instead of the fully con-

nection, is sufficient for learning a dense affinity matrix and requires much fewer output

channels of a deep ConvNet. Therefore, instead of using designed features and kernel

tricks, our network outputs all entities of the affinity matrix in a data-driven manner.

The advantages of learning affinity matrix in a data-driven manner are multifold. First,with

SPN, high-level affinity measures (e.g, object segmentation requires semantic-level simi-

larity) that are not easy to design by hand can be learned in an end-to-end fashion. Since

the proposed method learns and outputs all entities of an affinity matrix under direct su-

pervision of ultimate loss functions, it learns an effective metric to measure similarities,

without considering how the pairs of pixels are compared. Second, it does not need itera-

tive processing during learning and inference. Thus, it is much more efficient with a deep

learning framework than the existing solutions for performing similar tasks, such as dense

conditional random fields (CRFs) [51, 15, 125].

The proposed spatial propagation network (SPN) contains a deep ConvNet that learns

the affinity entities and a spatial linear propagation module. Images or general 2D matrix

are fed into the module, and propagated under the guidance of the learned affinity for

specific tasks. All modules are differentiable and jointly trained using stochastic gradient

descent (SGD) method. The spatial linear propagation module is computationally efficient

for inference due to the linear time complexity of the propagation architecture.

95

6.2 Proposed Approach

In this chapter, we construct a spatial propagation network (SPN) that can transform

a two-dimensional (2D) map (e.g., the result of coarse image segmentation) to a new one

with desired properties (e.g., a new segmentation map with significantly refined details).

With spatially varying parameters that supports the propagation process, we show theoret-

ically in Section 6.2.1 that this module is equivalent to the standard anisotropic diffusion

process [108, 60]. As proved, the transformation of maps is controlled by a Laplacian

matrix that is constituted by the parameters of the spatial propagation module. Since the

propagation module is differentiable, its parameters can be learned by any type of neural

network (e.g., a typical deep ConvNet) that is connected to this module through joint train-

ing. We introduce the propagation network in Section 6.2.2, and specifically analyze the

properties of different types of connections within the framework for learning the affinity

matrix.

6.2.1 Linear Propagation as Spatial Diffusion

We apply a linear transformation by means of the spatial propagation network, where

a matrix is scanned row/column-wise in four fixed directions: left-to-right, top-to-bottom,

and verse-vise. This strategy is used widely in [36, 103, 62, 14] (see Chapter 4 and 5). We

take the left-to-right direction as an example for the following discussion. Other directions

are processed independently in the same manner.

We denote X and H as two 2D maps of size n × n, with exactly the same dimensions

as the matrix before and after spatial propagation, where xt and ht, respectively, represent

their tth columns with n × 1 elements each. We linearly propagate information from left-

to-right between adjacent columns using an n × n linear transform matrix wt as:

ht = (I − dt) xt + wtht−1, t ∈ [2, n] (6.1)

where I is the n × n identity matrix, the initial condition h1 = x1, and dt(i, i) is a diagonal

96

matrix, where the ith element is the sum of all the off-diagonal elements of the ith row of

wt:

dt(i, i) =

n∑
j=1, j,i

wt(i, j). (6.2)

As shown, the matrix H, where {ht ∈ H, t ∈ [1, n]}, is updated in a column-wise manner

recursively. For each column, ht is a linear, weighted combination of the previous column

ht−1, and the corresponding column xt in X.

When the recursive scanning is finished, the updated 2D matrix H can be expressed

with an expanded formulation of Eq. (6.1):

I 0 · · · · · · 0

w2 λ2 0 · · · · · ·

w3w2 w3λ2 λ3 0 · · ·

...
...

...
. . .

...
...

... · · · · · · λn


Xv = GXv, (6.3)

where G is a lower triangular, N × N(N = n2) transformation matrix, which relates X and

H. Hv and Xv are vectorized versions of X and H, respectively, with the dimension of N×1.

Specifically, they are created by concatenating ht and xt along the same, single dimension,

i.e., Hv =
[
hT

1 , ..., h
T
n

]T
and Xv =

[
xT

1 , ..., x
T
n

]T
. All the parameters {λt,wt, dt, I} , t ∈ [2, n]

are n × n sub-matrices, where λt = I − dt.

In the following section, we validate that Eq. (6.3) can be expressed as a spatial

anisotropic diffusion process, with the corresponding propagation affinity matrix consti-

tuted by all wt, t ∈ [2, n].

Theorem 1. The summation of elements in each row of G equals to one.

Since G contains n× n sub-matrices, each representing the transformation between the

corresponding columns of H and X, we denote all the weights used to compute ht as the

97

tth block-row Gt. On setting λ1 = I, the kth constituent n × n sub-matrix of Gt is:

Gtk =


t∏

τ=k+1

wτλk, k ∈ [1, t − 1]

λk, k = t

(6.4)

To prove that the summation of any row in G equals to one, we instead prove that for

∀t ∈ [1, n], each row of Gt has the summation of one.

Proof. Denoting E = [1, 1, ..., 1]T as an n×1 vector, we need to prove that Gt [1, ..., 1]T
N×1 =

E. Equivalently
∑t

k=1 GtkE = E, because G is a lower triangular matrix. In the following

part, we first prove that when m ∈ [1, t − 1], we have
∑m

k=1 GtkE =
∏t

τ=m+1 wtE by mathe-

matical induction .

Initial step. When m = 1,
∑m

k=1 GtkE = Gt1E =
∏t

τ=2 wτE, which satisfies the assertion.

Inductive step. Assume there is a n ∈ [1, t − 1], such that
∑n

k=1 GtkE =
∏t

τ=n+1 wtE, we

must prove the formula is true for n + 1 ∈ [1, t − 1].

n+1∑
k=1

GtkE =

n∑
k=1

GtkE + Gt(n+1)E =

t∏
τ=n+1

wτE +

t∏
τ=n+2

wτ

=

t∏
τ=n+2

wτ [(wn+1 + I − dn+1) E] .

(6.5)

According to the formulation of the diagonal matrix in Eq. (6.2) we have
∑n+1

k=1 GtkE =∏t
τ=n+2 wτE. Therefore, the assertion is satisfied. When m = t, we have:

t∑
k=1

GtkE =

t−1∑
k=1

GtkE + GttE =

t∏
τ=t

wτE + λtE

= wτE + (I − dt) E = E,

(6.6)

which yields the equivalence of Theorem 1. �

Theorem 2. We define the evolution of a 2D matrix as a time sequence {U}T , where U(T =

1) = U1 is the initial state. When the transformation between any two adjacent states

98

follows Eq. (6.3), the sequence is a diffusion process expressed with a partial differential

equation (PDE):

∂T U = −LU (6.7)

where L = D − A is the Laplacian matrix, D is the degree matrix composed of dt in

Eq. (6.2), and A is the affinity matrix composed by the off-diagonal elements of G.

Proof. We substitute the X and H as two consecutive matrices UT+1 and UT in (6.3).

According to Theorem 1, we ensure that the sum of each row I −G is 0 that can formulate

a standard Laplacian matrix. Since G has the diagonal sub-matrix I − dt, we can rewrite

(6.3) as:

UT+1 = (I − D + A) UT = (I − L) UT (6.8)

where G = (I − D + A), D is an N × N diagonal matrix containing all the dt and A is the

off-diagonal part of G. It then yields UT+1 − UT = −LUT , a discrete formulation of (6.7)

with the time discretization interval as one. �

Theorem 2 shows the essential property of the row/column-wise linear propagation in

Eq. (6.1): it is a standard diffusion process where L defines the spatial propagation and A,

the affinity matrix, describes the similarities between any two points. Therefore, learning

the image affinity matrix A in Eq. (6.8) is equivalent to learning a group of transformation

matrices wt in Eq. (6.1).

In the following section, we show how to build the spatial propagation (6.1) as a differ-

entiable module that can be inserted into a standard feed-forward neural network, so that

the affinity matrix A can be learned in a data-driven manner.

6.2.2 Learning Data-Driven Affinity

Since the spatial propagation in Eq.(6.1) is differentiable, the transformation matrix can

be easily configured as a row/column-wise fully-connected layer. However, we note that

since the affinity matrix indicates the pairwise similarities of a specific input, it should also

99

Figure 6.1: Different propagation ranges for (a) one-way connections; and (b) three-way

connections. Each pixel (node) receives information from a single line with one-way

connection, and from a 2 dimensional plane with three-way connection.

be conditioned on the content of this input (i.e., different input images should have different

affinity matrices). Instead of setting the wt matrices as fixed parameters of the module, we

design them as the outputs of a deep ConvNet, which can be directly conditioned on an

input image.

One simple way is to set the output of the deep ConvNet to use the same size as the

input matrix. When the input has c channels (e.g., an RGB image has c = 3), the output

needs n × c × 4 channels (there are n connections from the previous row/column per pixel

per channel, and with four different directions). Obviously, this is too many (e.g., an

128 × 128 × 16 feature map needs an output of 128 × 128 × 8192) to be implemented in a

real-world system. Instead of using full connections between the adjacent rows/columns,

we show that certain sparse connections can also achieve good results for affinity learning.

Specifically, we introduce the (a) one-way connection and the (b) three-way connection as

two different ways to implement Eq. (6.1).

One-way connection. The one-way connection enables every pixel to connect to only

one pixel from the previous row/column (see Figure 6.1(a)). It is equivalent to an one

100

dimensional (1D), linear recurrent propagation that scans each row/column independently

as an 1D sequence. Following Eq. (6.1), we denote xk,t and hk,t as the kth pixels in the tth

column, where the left-to-right propagation for one-way connection is:

hk,t =
(
1 − pk,t

)
· xk,t + pk,t · hk,t−1, (6.9)

where p is a scaler weight indicating the propagation strength between the pixels at {k, t − 1}

and {k, t}. Equivalently, wt in Eq. (6.1) is a diagonal matrix, with the elements constituted

by pk,t, k ∈ [1, n].

The one-way connection is a direct extension of sequential recurrent propagation [36,

105, 49]. The exact formulation of Eq. (6.9) has been used previously for semantic seg-

mentation [14] and for learning low-level vision filters [62] (also in Chapter 4). In [14],

Chen et al.explain it by domain transform, where in semantic segmentation, p corresponds

to the object edges. Chapter 4 explain it by arbitrary-order recursive filters, where p cor-

responds to more general image properties (e.g., low-level image/color edges, missing

pixels, etc.). Both of these can be explained as the same linear propagation framework of

Eq. (6.1) with one-way connection.

Three-way connection. We propose a novel three-way connection in this chapter. It

enables each pixel to connect to three pixels from the previous row/column, i.e., the left-

top, middle and bottom pixels from the previous column for the left-to-right propagation

direction (see Figure. 6.2(b)). With the same notations, we denote N as the set of these

three pixels. Then the propagation for the three-way connection is:

hk,t =

1 −∑
k∈N

pk,t

 xk,t +
∑
k∈N

pk,thk,t−1 (6.10)

Equivalently, wt forms a tridiagonal matrix, with p:,k, k ∈ N constitute the three non-zero

elements of each row/column.

Relations to the affinity matrix. As introduced in Theorem 2, the affinity matrix A

with linear propagation is composed of the off-diagonal elements of G in Eq. (6.3). The

101

one-way connection formulates a spares affinity matrix, where each sub-matrix of A has

nonzero elements only along its diagonal. On the other hand, the three-way connection,

also with a sparse wt, can form a relatively dense A with the multiplication of several

different tridiagonal matrices. It means pixels can be densely and globally associated, by

simply increasing the number of connections of each pixel during spatial propagation from

one to three. As shown in Figures 6.2(a) and 6.2(b), the propagation of one-way connec-

tions is restricted to a single row, while the three-way connections can expand the region

to a triangular 2D plane (blue in Figure. 6.2(b)). The summarization of the four directions

result in dense connections of all pixels to each other.

Stability of linear propagation. Model stability is of critical importance for designing

linear systems. In the context of spatial propagation (Eq. 6.1), it refers to restricting the

responses or errors that flow in the module from going to infinity, and preventing the net-

work from encountering the vanishing of gradients in the backpropagation process [127].

Specifically, the norm of the temporal Jacobian ∂ht \ ∂ht−1 should be equal to or less than

one. In our case, it is equivalent to regularizing each transformation matrix wt with its

norm satisfying

‖∂ht \ ∂ht−1‖ = ‖wt‖ ≤ λmax, (6.11)

where λmax denotes the largest singularity value of wt. This condition, λmax ≤ 1 provides a

sufficient condition for stability.

Theorem 3. Let
{
pK

t,k

}
k∈N

be the weight in wt, the model can be stabilized if
∑

k∈N

∣∣∣pK
t,k

∣∣∣ ≤ 1.

Proof. Let λ be the eigenvalue of matrix wt and λmax be the largest one. According to

Gershgorin′s Theorem [34], where every eigenvalue of a square matrix wt satisfies:

∣∣∣λ − pt,t

∣∣∣ ≤ n∑
k=1,k,t

∣∣∣pk,t

∣∣∣ , t ∈ [1, n] (6.12)

102

then
∣∣∣λ − pt,t

∣∣∣+∣∣∣pt,t

∣∣∣ ≤ ∑n
k=1

∣∣∣pk,t

∣∣∣. According to the triangle inequality, and since
∑n

k=1,t,k

∣∣∣pk,t

∣∣∣ ≤
1, we have

λmax ≤
∣∣∣λ − pt,t

∣∣∣ +
∣∣∣pt,t

∣∣∣ ≤ n∑
k=1

∣∣∣pk,t

∣∣∣ ≤ 1 (6.13)

which satisfies the model stability condition. �

Theorem 3 shows that the stability of a linear propagation model can be maintained by

regularizing the all weights of each pixel in the hidden layer H, with the summation of their

absolute values less than one. For the one-way connection, Chen et al. [14] limited each

scalar output p to be within (0, 1). We extended the range to (−1, 1) in Chapter 4, where the

negative weights showed preferable effects for learning image enhancers. It indicates that

the affinity matrix is not necessarily restricted to be positive/semi-positive definite (e.g.,

the setting is also applied in [54].) For the three-way connection, we simply regularize the

three weights (the output of a deep ConvNet) according to Theorem 3 without restriction

to be any positive/semi-positive definite.

6.3 Implementation

We describe the implementation of the three-way connection-based network. We spec-

ify two separate branches: (a) a deep ConvNet, namely the guidance network that outputs

all elements of the transformation matrix, and (b) a linear propagation module that outputs

the propagation result (see Figure 6.2). The structure of a guidance network can be any

typical deep ConvNet, which is designed for the task at hand. Examples of this network

are described in Section 6.4. The propagation module receives an input map and outputs

its refined or transformed version. It also takes the matrix learned by the deep ConvNet

guidance network as the second input.

The guidance network takes, as input, any 2D matrix that can help with learning the

affinity matrix (e.g., typically an RGB image). It outputs all the weights that constitute

the transformation matrix wt. The linear propagation module takes, as inputs, a 2D map

103

Figure 6.2: We illustrate the general architecture of the SPN using a three-way

connection for segmentation refinement. The network, divided by the black dash line,

contains a propagation module (upper) and a guidance network (lower). The guidance

network outputs all entities that can constitute four affinity matrices, where each

sub-matrix wt is a tridiagonal matrix. The propagation module, being guided by the

affinity matrices, deforms the input mask to a desired shape. All modules are

differentiable and jointly learned via SGD.

that needs to be propagated (e.g., a coarse segmentation mask), and the weights generated

by the guidance network. Suppose that we have a map of size n × n × c that is input

into the propagation module, the guidance network needs to output a weight map with

the dimensions of n × n × c × (3 × 4), i.e., each pixel in the input map is paired with 3

scalar weights per direction, and 4 directions in total. The propagation module contains 4

independent hidden layers for the different directions, where each layer combines the input

map with its respective weight map using Eq. (6.10). All submodules are differentiable and

jointly trained using stochastic gradient descent (SGD). We use node-wise max-pooling,

similarly to Chapter 4, to integrate the hidden layers and to obtain the final propagation

result. See the project page for the information of development details.

104

6.4 Experimental Results

We validate the SPN on the task of refinement of image segmentation masks. Given a

coarse image segmentation mask as the input to the spatial propagation module, we show

that the SPN can produce higher-quality masks with significantly refined details at object

boundaries (see Figure 6.2). Many models [66, 15] generate low-resolution segmentation

masks with coarse boundary shapes, to seek a balance between resolution and semantic

accuracy. On the one hand, producing an original high-resolution segmentation mask

usually requires the network to neither reduce the size of the input nor that of the output.

In such settings, configuring a network with both sufficient capacity and a global receptive

field is usually impractical due to the huge model size. On the other hand, keeping a

reasonable model capacity while maintaining semantic accuracy, which requires a large

receptive field usually results in some sacrifice of the output resolution. The majority of

the work [66, 15, 125] chooses the later option and tries to refine the results using either

post-processing [15] or jointly trained refinement modules [125]. It is a non-trivial task

for producing high-quality segmentation results.

We carry out the refinement of segmentation on two tasks: (a) generating high-resolution

segmentation results on the HELEN face parsing dataset [94]; and (b) refining generic

object segmentation on top of a pretrained model (e.g., VGG and ResNet based mod-

els [66, 15]. For the HELEN dataset, we directly use low-resolution RGB face images to

train a baseline parser, which successfully catches the global semantic information. The

SPN is then trained on top of the coarse segmentation to generate high-resolution output.

For the Pascal VOC dataset, we train the SPN on top of the coarse segmentation results

generated by the FCN-8s [66], and directly generalize it to any other pretrained model.

We implement the network with a modified CAFFE [47]. The SPN is parallelized during

propagating each row-column to the next one with CUDA. We used SGD optimizer, and

set the base learning rate to 0.0001. In general, we train 10 epochs, The inference time

of SPN on HELEN and Pascal VOC is about 7ms and 60ms for an image of 512 × 512

105

resolution, respectively. The source code will be made available to the public.

General network settings. For the HELEN dataset, we train the SPN with smaller patches

cropped from the original high-resolution images, their corresponding coarse segmenta-

tion maps produced by our baseline parser, and with the corresponding high-resolution

ground-truth segmentation masks for supervision. All coarse segmentation maps are ob-

tained by applying the baseline (for HELEN) or pre-trained (for Pascal VOC) image seg-

mentation ConvNets on their standard training splits [27, 15]. Since the baseline HELEN

parser produces low-resolution segmentation results, we upsample them using a bi-linear

filter to be of the same size as the desired higher output resolution. For the Pascal VOC

dataset, we use the original output image segmentation masks produced by the pre-trained

ConvNet models as is. These ConvNet models contain upsampling layers, that typically

upsample the internal feature representations by 8× (e.g., in [66, 15]) and produce output

segmentation masks that are of the same size as that of the input images. We set the SPN

as a patch refinement model on top of the coarse map with basic semantic information. We

fix the size of our input patches to 128×128, use the softmax loss, and use the SGD solver

for all the experiments. During training, the patches are sampled from image regions that

contain more than one ground-truth segmentation label (e.g., a patch with all pixels labeled

as “background” will not be sampled).

We combine the guidance network and the spatial propagation module similarly to [62].

We use two propagation units (e.g., the bottom dashed block in Figure. 6.2 is one prop-

agation unit) with cascaded connections to achieve better results. Differently, we feed in

the integrated hidden map of the first unit to the second unit, instead of cascading each

direction separately and integrate them at the end of the second unit. We use two more

convolutional layers with 32 channels before and after the propagation units to transfer

the input map to an intermediate feature map, to make it compatible with the node-wise

max-pooling. In addition, we maintain a smaller size of the propagation layer to make

the model more efficient w.r.t computational speed and memory. This is carried out by bi-

linearly downsampling/upsampling after the two convolutional layers, so that the hidden

106

maps of propagation module is with a smaller dimension of 64× 64. Note that to compare

the one-way with the three-way connection, we use exactly the same settings except the

propagation units. We do not apply any configuration used by [14] or [62] (Chapter 4).

HELEN Dataset. The HELEN dataset provides high-resolution photography-style face

images (2330 in total), with high-quality manually labeled facial components including

eyes, eyebrows, nose, lips, and jawline, which makes the high-resolution segmentation

tasks applicable. All previous work utilize low-resolution parsing output as their final

results for evaluation. Although many [94, 116, 64] achieve preferable performance, their

results cannot be directly adopted by high-quality facial image editing applications. We

use the setting that splits 100 samples for test following [116, 64]. We still take the hair

region as one category, but do not evaluate it for fair comparisons with the state-of-the

work [64] (also in Chapter 3). We use similarity transformation according to the results

of 5-keypoint detection [123] to align all face images to the center. Keeping the original

resolution, we then crop or pad them to the size of 1024 × 1024.

We first train a baseline ConvNet with a symmetric downsample/upsample structure.

The input image is 8× downsampled from the original version. The downsampling part

of the network is equipped with five consecutive conv+relu+max-pooling (with stride of

2) layers. Starting from 32, each one has double the number of channels, resulting in

a 4 × 4 × 512 feature maps at the bottleneck. In order to use the information at differ-

ent levels of image resolution, we add skipped-links by summing features maps of the

same dimensions from the corresponding upsample and dowsample layers. The upsample

part has symmetric configurations, except that the max-pooling is replaced with bilinear

upsampling, and the last sub-module has 11 channels for the 11 classes. We apply the

multi-objective loss as introduced in Chapter 3 to improve the accuracy along the bound-

aries. We note that the symmetric structure is powerful, since the results we obtained for

the baseline ConvNet are comparable (see Table. 6.1) to that of Chapter 3, who apply a

much larger model (38 MB vs. 12 MB) in comparison. We then train a SPN on top of

the baseline ConvNet results, with patches of input RGB image and coarse segmentations

107

Table 6.1: Quantitative evaluation results on the HELEN dataset. We denote the upper

and lower lips as “U-lip” and “L-lip”, and overall mouth part as “mouth”, respectively.

The label definitions follow that in Chapter 3, and denoted as Liu et al. [64] in the table.

method skin brows eyes nose mouth U-lip L-lip in-mouth overall
Liu et al. [64] 90.87 69.89 74.74 90.23 82.07 59.22 66.30 81.70 83.68
baseline-CNN 90.53 70.09 74.86 89.16 83.83 55.61 64.88 71.72 82.89
Highres-CNN 91.78 71.84 74.46 89.42 81.83 68.15 72.00 71.95 83.21

SPN (one-way) 92.26 75.05 85.44 91.51 88.13 77.61 70.81 79.95 87.09
SPN (three-way) 93.10 78.53 87.71 92.62 91.08 80.17 71.63 83.13 89.30

masks sampled from the preprocessed high-resolution image. For the guidance network,

we use the same structure as that of the baseline segmentation network, except that its

upsampling part ends at a resolution of 64 × 64, and its last layer has 32 × 12 = 384 chan-

nels. In addition, we train another face parsing ConvNet with 1024 × 1024 sized inputs

and outputs (CNN-Highres) for better comparison. It has three more sub-modules at each

end of the baseline network, where all are configured with 16 channels to process higher

resolution images.

We show quantitative and qualitative results in Table. 6.1 and 6.3 respectively. We

compared the one/three way connection SPNs with the baseline, the CNN-Highres and

the most relevant state-of-the-art technique for face parsing [64]. Note that the results of

baseline and [64]1 are bi-linearly upsampled to 1024 × 1024 before evaluation. Overall,

both SPNs outperform the other techniques with a significant margin of over 6 intersection-

over-union (IoU) points, especially for the smaller facial components (e.g., eyes and lips)

where with smaller resolution images, the segmentation network performs poorly. We

note that the one-way connection-based SPN is quite successful on relatively simple tasks

such as the HELEN dataset, but fails for more complex tasks, as revealed by the results of

Pascal VOC dataset in the following section.

Pascal VOC Dataset. The PASCAL VOC 2012 segmentation benchmark [27] involves
1The original output (also for evaluation) size it 250 ∗ 250.

108

original CNN-base CNN-Highres one-way SPN three-way SPN ground truth

Figure 6.3: Results of face parsing on the HELEN dataset with detailed regions cropped

from the high resolution images. (Images are all with high resolution and can be viewed

by zoom-in.)

20 foreground object classes and one background class. The original dataset contains

1464 training, 1499 validation and 1456 testing images, with pixel-level annotations. The

performance is mainly measured in terms of pixel IoU averaged across the 21 classes.

We train our SPNs on the train split with the coarse segmentation results produced by the

FCN-8s model [66]. The model is fine-tuned on a pre-trained VGG-16 network, where dif-

ferent levels of features are upsampled and concatenated to obtain the final, low-resolution

109

Figure 6.4: Visualization of Pascal VOC segmentation results (left) and object probability

(by 1 − Pb, Pb is the probability of background). The “pretrained” denotes the base

Deeplab ResNet-101 model, while the rest 4 columns show the base model combined

with the dense CRF [15] and the proposed SPN, respectively.

segmentation results (8× smaller than the original image size). The guidance network of

the SPN also fine-tunes the VGG-16 structure from the beginning till the pool5 layer as the

downsampling part. Similar to the settings for the HELEN dataset, the upsampling part has

a symmetric structure with skipped links until the feature dimensions of 64× 64. The spa-

tial propagation module has the same configuration as that of the SPN that we employed

for the HELEN dataset. The model is applied on the coarse segmentation maps of the val-

idation and test splits generated by any image segmentation algorithm without fine-tuning.

We test the refinement SPN on three base models: (a) FCN-8s [66], (b) the atrous spatial

pyramid pooling (ASPP-L) network fine-tuned with VGG-16, denoted as Deeplab VGG,

and (c) the ASPP-L: a multi-scale network fine-tuned with ResNet-101 [43] (pre-trained

on the COCO dataset), denoted as Deeplab ResNet-101. Among them, (b) and (c) are the

two basic models from [15], which are then refined with dense CRF [51] conditioned on

the original image.

Table 6.2 shows that through the three-way SPN, the accuarcy of segmentation is sig-

110

Table 6.2: Quantitative evaluation results on the Pascal VOC dataset. We compare the two

connections of SPN with the corresponding pre-trained models, including: (a) FCN-8s

(F), (b) Deeplab VGG (V) and (c) Deeplab ResNet-101 (R). AC denotes accuracy.

model F F+1 way F+3 way V V+1 way V+3 way R R+1 way R+3 way
overall AC 91.22 90.64 92.90 92.61 92.16 93.83 94.63 94.12 95.49
mean AC 77.61 70.64 79.49 80.97 73.53 83.15 84.16 77.46 86.09
mean IoU 65.51 60.95 69.86 68.97 64.42 73.12 76.46 72.02 79.76

Table 6.3: Quantitative comparison (mean IoU) with dense CRF-based refinement [15]

on Deeplab pre-trained models.

mean IoU ConvNet +dense CRF +SPN
VGG-16 68.97 71.57 73.12

ResNet-101 76.40 77.69 79.76

nificantly improved over the coarse segmentation results for all the three base image seg-

mentation models. It has strong capability of generalization, and can successfully refine

any coarse maps from different pre-trained models by a large margin. Different with the

Helen dataset, the one-way SPN fails to refine the segmentation, which is probably due

to its limited capability of learning preferable affinity with a sparse form, especially when

the data distribution gets more complex. Table 6.3 shows that by replacing the dense CRF

module with the same refinement model, the performance is boosted by a large margin,

without fine-tuning. One the test split, the DeepNet ResNet-101 based SPN achieves the

mean IoU of 80.22, while the dense CRF gets 79.7. The three-way SPN produces fine

visual results, as shown in the red bounding box of Figure 6.4. By comparing the proba-

bility maps (column 3 versus 7), SPN exhibits fundamental improvement in object details,

boundaries, and semantic integrity.

111

6.5 Summary

In this chapter, we propose spatial propagation networks for learning the affinity matrix

for vision tasks. The spatial propagation network is a generic framework that can be

applied to numerous tasks, and in this work we demonstrate the effectiveness in object

segmentation. Experiments on the HELEN face parsing and PASCAL VOC semantic

segmentation tasks show that the spatial propagation network is general, effective and

efficient for generating high-quality segmentation results.

112

Figure 6.5: Visualization of Pascal VOC segmentation results (left) and object probability

(by 1 − Pb, where Pb denotes the probability of the background region).

Chapter 7

Conclusion and Future Work

7.1 Summary

This thesis investigates problems of how to efficiently and effectively model pixel pair-

wise relationships in general deep learning framework. We explore a pure ConvNets based

approach through introducing multiple objectives in Chapter 3, and new spatial propaga-

tion structures that model the pairwise connections explicitly in Chpater 4 5 and 6. We

experimentally demonstrate the effectiveness of all the related theories and methods with

numerous applications in computer vision. In this Chapter, we specifically discuss the re-

lations among all these approaches according to the properties of their individual affinity,

and their performance with respect to the common applications.

Low-level vs high-level for recurrent propagation. In this part, we exploit the relations

between Chapter 4 and Chapter 5 that deal with low-level image filtering and high-level se-

mantic segmentation, respectively. Both work utilize very similar, one-dimensional propa-

gation module that either filters the original image, or refines an input coarse segmentation

label map. While they are targeting on diverse applications, both models are exploiting to

learn their desired affinity matrix on different levels in a data-driven manner. On the other

hand, their architectures are different: the low-level vision network takes the propagation

113

114

model as an image filter which takes in an original image and outputs the filtered result,

therefore, the filtering part is very shallow (with one propagation layer, two feature trans-

form layers). The high-level segmentation network, in contrast, takes the module as a label

refiner which requires the input to be a coarse semantic label probability map. Therefore, at

least one label regression network (e.g., FCN [66]) is needed before the propagation mod-

ule. Since the propagation guidance corresponding to the semantic boundary can share the

network weights with the label regression network, the whole network contains only one

sequentially connected ConvNet and a propagation layer. In addition, the motivations of

using propagation network are also different: The model in Chapter 4 demonstrates that

the affinity for low-level vision problems, or the guidance of propagation, can be learned

via an independent ConvNet as deep representations. In contrast, since the one in Chap-

ter 5 is targeting at a fast solution, the affinity is utilized to introduce reflexions to fully

convolutional structure in the front end.

One-way connection for Chapter 4 and 5. While we refer the propagation structures

proposed in Chapter 4 and 5 as spatially variant recurrent networks (see Section 4.3.1

and 5.2.2), they are substantially reviewed and formulated as “one-way connection” under

the general framework of spatial propagation network introduced in Chpater 6. Similarly,

the “one-dimensional propagation” refers to the same structure. The reason for using

different naming is that Chapter 4 (also mentioned in 5) analyzes the structure with a

standard, arbitrary order recursive filter (usually for one-dimensional signal). While we

prove that they are equivalent, the name is more suitable for such concept. On the other

hand, the “one/three-way connection” describes the spatial propagation with a much bor-

der range: the concept is no longer restricted to one-dimensional signals, and can be fitted

into the general framework of image diffusion. The name of “one/three-way connection”

also helps to distinguish different ways of connections, with respect to their respective

properties of the affinity matrix. In addition, as demonstrated in the experimental anal-

ysis in Chapter 6.4, the one-way connection is not powerful enough to handle complex

semantic segmentation tasks very likely due to the sparsity of its affinity.

115

Learning affinity for face parsing. The application of face parsing is validated for the

majority of methods proposed in the thesis, including Chapter 3, 5 and 6. Compared to

the task of semantic segmentation in general or other domains, the domain of faces is

more constrained by introducing the face alignment as a preprocessing step, making the

problem easier to solve with simpler and lighter network and fewer training data. However,

the faster solution proposed in Chpater 5 can be also generalized to more general cases

other than facial images. Moreover, the Helen face parsing dataset [1] is a good example

for investigating the high-resolution image segmentation problem, such as the relative

experiments proposed in Chapter 6.

7.2 Future work

In the near future, we will continue to focus on how to apply the spatial propagation

network to a border range of applications, in order to facilitate better models and reduce

the data redundancy. For example, a similar framework as Chapter 6 can be utilized to

refine the images of optical flow, depth map and surface normal under the guidance of

the corresponding RGB images, or applied to more interesting applications, including but

not limited to affinity-based image editing and colorization from user-defined scribbles, to

name a few. In this section, we are more interested in analyzing the algorithm itself: what

is learned from SPN and which applications can be significantly accelerated through it.

7.2.1 What is Learned from Spatial Propagation Network?

A typical way of investigating what is learned from SPN is to visualizing the output

feature maps from the guidance network. This is relatively easy for the one-dimensional

propagation networks. For example, in Chapter 4, we show the affinity, namely “weight

map” by training a single-scale image without any linear transform layers before or after

the propagation module, and illustrating the output maps from the guidance network. We

116

specifically use two output maps for the x and y-axis, respectively, as explained in Sec-

tion 4.4.1 and shown in Figure 4.4 and 4.10. In Chapter 5, the visualization is even easier

(see Figure 5.1) since the affinity, namely the “recurrent gates” in this work is directly

supervised by the semantic boundaries.

In contrast, visualizing the three-way connection SPN is not easy and direct. A possible

solution is as follows:

• Reformulating the output maps into a full matrix according to (6.3). In this way,

each direction can obtain an upper/lower triangular matrix.

• We can analyze each axis (e.g., x-axis includes left-to-right and its reverse direction)

respectively, by averaging the non-zero part of the upper and lower triangular metrics

(e.g., by transposing the upper triangular matrix to a lower one, and averaging it

with the lower triangular matrix). We then duplicate this part by summarizing it to

its transposed copy, so that to formulate a symmetrical matrix.

• For each axis, we can visualize the spectral gap [53] of the corresponding symmet-

rical Laplacian matrix. The spectral gap can show rich pixel-level distance or class

information that is learned through SPN.

7.2.2 Acceleration for Real-time Rendering

Other than restoring or refining images as mentioned above, SPN also has a great po-

tential in computer graphics, e.g., for acceleration of ray tracing. Recently, although ray

tracing generates highly realistic images, simulating millions of virtual light rays for each

image still carries a large computational cost. Partially computed images appear noisy,

like a photograph taken in extremely low light. The proposed SPN can used to predict fi-

nal, rendered images from partly finished results with even better computational efficiency

than refining a feature map. The main reason is that, the guidance information, which is

commonly the original RGB image in computer vision tasks, can be the predefined mate-

117

rial and surface normal in the tasks of ray tracing. Once the SPN is trained, the affinity can

be preprocessed and stored. During denoising, the propagation network is the only mod-

ule that is involved in the inference step. The computation can be further accelerated by

transferring the recurrent process to direct matrix multiplication, since the multiplication

of each individual transform matrix can also be calculated beforehand. Therefore, we can

expect high resolution, high quality results generated by the extension method of SPN.

Bibliography

[1] http://www.ifp.illinois.edu/ vuongle2/helen/.

[2] F. Agostinelli, M. R. Anderson, and H. Lee. Adaptive multi-column deep neural
networks with application to robust image denoising. In NIPS, 2013.

[3] A. Arnab, S. Jayasumana, S. Zheng, and P. H. Torr. Higher order conditional ran-
dom fields in deep neural networks. In ECCV. Springer, 2016.

[4] G. Bertasius, L. Torresani, S. X. Yu, and J. Shi. Convolutional random walk net-
works for semantic image segmentation. arXiv preprint arXiv:1605.07681, 2016.

[5] L. Bertelli, T. Yu, D. Vu, and B. Gokturk. Kernelized structural svm learning for
supervised object segmentation. In CVPR, 2011.

[6] F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of
deformations. IEEE Transactions on pattern analysis and machine intelligence,
11(6):567–585, 1989.

[7] H. C. Burger, C. J. Schuler, and S. Harmeling. Image denoising: Can plain neural
networks compete with bm3d? In CVPR, 2012.

[8] X. Burgos-Artizzu, P. Perona, and P. Dollár. Robust face landmark estimation under
occlusion. In CVPR, 2013.

[9] W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki. Scene labeling with lstm recur-
rent neural networks. In CVPR, 2015.

[10] X. Cao, Y. Wei, F. Wen, and J. Sun. Face alignment by explicit shape regression.
International Journal of Computer Vision, 107(2):177–190, 2014.

[11] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Semantic segmentation
with second-order pooling. ECCV, 2012.

[12] A. J. Champandard. Semantic style transfer and turning two-bit doodles into fine
artworks. arXiv preprint arXiv:1603.01768, 2016.

118

119

[13] S. Chandra and I. Kokkinos. Fast, exact and multi-scale inference for semantic
image segmentation with deep gaussian crfs. In ECCV, 2016.

[14] L. Chen, J. T. Barron, G. Papandreou, K. Murphy, and A. L. Yuille. Semantic image
segmentation with task-specific edge detection using cnns and a discriminatively
trained domain transform. arXiv preprint arXiv:1511.03328, 2015.

[15] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. CoRR, abs/1606.00915, 2016.

[16] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic
image segmentation with deep convolutional nets and fully connected crfs. In ICLR,
2015.

[17] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. Attention to scale: Scale-
aware semantic image segmentation. In CVPR, 2016.

[18] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio. On the proper-
ties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[19] D. Ciresan, A. Giusti, L. Gambardella, and J. Schmidhuber. Deep neural networks
segment neuronal membranes in electron microscopy images. In NIPS, 2012.

[20] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d
transform-domain collaborative filtering. Image Processing, IEEE Transactions on,
16(8):2080–2095, 2007.

[21] G. David, B. Léon, and C. Ronan. Deep convolutional networks for scene parsing.
In ICML Deep Learning Workshop, 2009.

[22] R. Deriche. Recursively implementating the Gaussian and its derivatives. PhD
thesis, INRIA, 1993.

[23] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual
recognition and description. In CVPR, 2015.

[24] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network
for image super-resolution. In ECCV, 2014.

[25] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network
for image super-resolution. In ECCV. 2014.

[26] D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with
a common multi-scale convolutional architecture. In ICCV, 2015.

120

[27] M. Everingham, S. A. Eslami, L. V. Gool, C. K. Williams, J. Winn, and A. Zis-
serman. The pascal visual object classes challenge: A retrospective. International
Journal of Computer Vision, 111(1):98–136, 2015.

[28] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features
for scene labeling. IEEE PAMI, 35(8):1915–1929, 2013.

[29] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski. Edge-preserving decom-
positions for multi-scale tone and detail manipulation. In ACM TOG, volume 27,
page 67, 2008.

[30] B. Fulkerson, A. Vedaldi, and S. Soatto. Class segmentation and object localization
with superpixel neighborhoods. In CVPR, 2009.

[31] B. Fulkerson, A. Vedaldi, and S. Soatto. Class segmentation and object localization
with superpixel neighborhoods. In ICCV, 2009.

[32] E. S. Gastal and M. M. Oliveira. Domain transform for edge-aware image and video
processing. In ACM TOG, volume 30, page 69, 2011.

[33] E. S. Gastal and M. M. Oliveira. High-order recursive filtering of non-uniformly
sampled signals for image and video processing. In Computer Graphics Forum,
volume 34, pages 81–93, 2015.

[34] S. Geršgorin. Uber die abgrenzung der eigenwerte einer matrix. Bulletin de
l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et na,
1931.

[35] J. M. Gonfaus, X. Boix, J. V. D. Weijer, A. D. Bagdanov, J. Serrat, and J. Gonzalez.
Harmony potentials for joint classification and segmentation. In CVPR, 2010.

[36] A. Graves, S. Fernndez, and J. Schmidhuber. Multi-dimensional recurrent neural
networks. In ICANN, 2007.

[37] A. Graves, A. rahman Mohamed, and G. Hinton. Speech recognition with deep
recurrent neural networks. In ICASSP, pages 6645–6649. IEEE, 2013.

[38] A. Graves and J. Schmidhuber. Offline handwriting recognition with multidimen-
sional recurrent neural networks. In NIPS, 2009.

[39] K. Gregor, I. Danihelka, A. Graves, and D. Wierstra. DRAW: A recurrent neural
network for image generation. arXiv preprint arXiv:1502.04623, 2015.

[40] D. Guo and T. Sim. Digital face makeup by example. In CVPR, 2009.
[41] A. W. Harley, K. G. Derpanis, and I. Kokkinos. Learning dense convolutional em-

beddings for semantic segmentation. arXiv preprint arXiv:1511.04377, 2015.
[42] K. He, J. Sun, and X. Tang. Guided image filtering. IEEE transactions on pattern

analysis and machine intelligence, 35(6):1397–1409, 2013.

121

[43] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015.

[44] G. Huang, M. Narayana, and E. Learned-Miller. Towards unconstrained face recog-
nition. In CVPR Workshop, 2008.

[45] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild:
A database for studying face recognition in unconstrained environments. Technical
Report 07-49, University of Massachusetts, Amherst, 2007.

[46] K. Iryna, S. Wenzhe, D. Joni, and T. Lucas. Fast face-swap using convolutional
neural networks. arXiv preprint arXiv:1611.09577, 2016.

[47] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093, 2014.

[48] A. Kae, K. Sohn, H. Lee, and E. Learned-Miller. Augmenting CRFs with Boltz-
mann machine shape priors for image labeling. In CVPR, 2013.

[49] N. Kalchbrenner, I. Danihelka, and A. Graves. Grid long short-term memory. arXiv
preprint arXiv:1507.01526, 2015.

[50] L. Karacan, E. Erdem, and A. Erdem. Structure-preserving image smoothing via
region covariances. ACM TOG, 32:176, 2013.

[51] P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with gaus-
sian edge potentials. In Advances in neural information processing systems, pages
109–117, 2011.

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, 2012.

[53] A. Levin, D. Lischinski, and Y. Weiss. Colorization using optimization. ACM TOG,
23(3):689–694, 2004.

[54] A. Levin, D. Lischinski, and Y. Weiss. A closed-form solution to natural image
matting. IEEE PAMI, 30(2):228–242, 2008.

[55] X. Liang, X. Shen, D. Xiang, J. Feng, L. Lin, and S. Yan. Semantic object parsing
with local-global long short-term memory. arXiv preprint arXiv:1511.04510, 2015.

[56] G. Lin, C. Shen, I. D. Reid, and A. van den Hengel. Deeply learning the messages
in message passing inference. arXiv preprint arXiv:1506.02108, 2015.

[57] T. Lin, M. Maire, S. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO: common objects in
context. 2014.

122

[58] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via label transfer.
IEEE PAMI, 33(12):2368–2382, 2011.

[59] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via label transfer.
PAMI, 2011.

[60] R. Liu, G. Zhong, J. Cao, Z. Lin, S. Shan, and Z. Luo. Learning to diffuse: A
new perspective to design pdes for visual analysis. IEEE transactions on pattern
analysis and machine intelligence, 38(12):2457–2471, 2016.

[61] S. Liu, S. D. Mello, J. Gu, G. Zhong, M.-H. Yang, and J. Kautz. Learning affinity
via spatial propagation networks. In NIPS, 2017.

[62] S. Liu, J. Pan, and M.-H. Yang. Learning recursive filters for low-level vision via a
hybrid neural network. In ECCV, 2016.

[63] S. Liu, J. Shi, J. Liang, and M.-H. Yang. Face parsing via recurrent propagation. In
BMVC, 2017.

[64] S. Liu, J. Yang, C. Huang, and M.-H. Yang. Multi-objective convolutional learning
for face labeling. In CVPR, 2015.

[65] Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Semantic image segmentation via
deep parsing network. In ICCV, 2015.

[66] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3431–3440, 2015.

[67] P. Luo, X. Wang, and X. Tang. Hierarchical face parsing via deep learning. In
CVPR. IEEE, 2012.

[68] P. Luo, X. Wang, and X. Tang. Hierarchical face parsing via deep learning. In
CVPR, 2012.

[69] M. Maire, T. Narihira, and S. X. Yu. Affinity CNN: learning pixel-centric pairwise
relations for figure/ground embedding. CoRR, abs/1512.02767, 2015.

[70] S. Martin, K. Pushmeet, and H. Derek. Learning CRFs using graph cuts. In ECCV,
2008.

[71] F. Ning, D. Delhomme, Y. LeCun, F. Piano, L. Bottou, and P. E. Barbano. Toward
automatic phenotyping of developing embryos from videos. TIP, 14(9):1360–1371,
2005.

[72] H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic seg-
mentation. In ICCV, 2015.

[73] A. V. D. Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural net-
works. arXiv preprint arXiv:1601.06759, 2016.

123

[74] S. Osher and L. I. Rudin. Feature-oriented image enhancement using shock filters.
SIAM Journal on Numerical Analysis, 27(4):919–940, 1990.

[75] S. Paris, S. W. Hasinoff, and J. Kautz. Local laplacian filters: edge-aware image
processing with a laplacian pyramid. ACM Trans. Graph., 30(4):68, 2011.

[76] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. In ACM TOG, pages
313–318, 2003.

[77] P. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene
parsing. arXiv preprint arXiv:1306.2795, 2013.

[78] G. Proakis John and G. Manolakis Dimitris. Digital signal processing, principles,
algorithms, and applications. Pentice Hall, 1996.

[79] H. Qin, J. Yan, X. Li, and X. Hu. Joint training of cascaded cnn for face detection.
In CVPR, 2016.

[80] S. Qin, S. Kim, and R. Manduchi. Automatic skin and hair masking using fully
convolutional networks. In ICME, 2017.

[81] R. Ranftl and T. Pock. A deep variational model for image segmentation. In
X. Jiang, J. Hornegger, and R. Koch, editors, Pattern Recognition, Lecture Notes in
Computer Science, pages 107–118. Springer International Publishing, 2014.

[82] J. S. Ren, L. Xu, Q. Yan, and W. Sun. Shepard convolutional neural networks. In
NIPS. 2015.

[83] J. S. J. Ren and L. Xu. On vectorization of deep convolutional neural networks for
vision tasks. In AAAI, 2015.

[84] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 60(1-4):259–268, 1992.

[85] H. Schulz and S. Behnke. Learning object-class segmentation with convolutional
neural networks. In ESANN, volume 3, page 1, 2012.

[86] A. G. Schwing and R. Urtasun. Fully connected deep structured networks. arXiv
preprint arXiv:1503.02351, 2015.

[87] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat:
Integrated recognition, localization and detection using convolutional networks.
arXiv preprint arXiv:1312.6229, 2013.

[88] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[89] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image catego-
rization and segmentation. In CVPR, 2008.

124

[90] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost for image understand-
ing: Multi-class object recognition and segmentation by jointly modeling texture,
layout, and context. Int. Journal of Computer Vision (IJCV), 2009.

[91] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[92] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[93] B. Smith, L. Zhang, J. Brandt, Z. Lin, and J. Yang. Exemplar-based face parsing.
In CVPR, 2013.

[94] B. M. Smith, L. Zhang, J. Brandt, Z. Lin, and J. Yang. Exemplar-based face parsing.
In CVPR, 2013.

[95] R. Socher, C. Lin, C. Manning, and A. Y. Ng. Parsing natural scenes and natural
language with recursive neural networks. In ICML, 2011.

[96] M. F. Stollenga, W. Byeon, M. Liwicki, and J. Schmidhuber. Parallel multi-
dimensional lstm, with application to fast biomedical volumetric image segmen-
tation. arXiv preprint arXiv:1506.07452, 2015.

[97] Y. Sun, X. Wang, and X. Tang. Deep convolutional network cascade for facial point
detection. In CVPR, 2013.

[98] Y. Sun, X. Wang, and X. Tang. Deep convolutional network cascade for facial point
detection. In CVPR, 2013.

[99] S. Tan, J. L. Dale, and A. Johnston. Performance of three recursive algorithms for
fast space-variant gaussian filtering. Real-Time Imaging, 9(3):215–228, 2003.

[100] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In ICCV,
1998.

[101] J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolu-
tional network and a graphical model for human pose estimation. arXiv preprint
arXiv:1406.2984, 2014.

[102] S. Tsogkas, I. Kokkinos, G. Papandreou, and A. Vedaldi. Semantic part segmenta-
tion with deep learning. arXiv preprint arXiv:1505.02438, 2015.

[103] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural
networks. arXiv preprint arXiv:1601.06759, 2016.

[104] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural
networks. arXiv preprint arXiv:1601.06759, 2016.

125

[105] F. Visin, K. Kastner, K. Cho, M. Matteucci, A. Courville, and Y. Bengio. Renet: A
recurrent neural network based alternative to convolutional networks. arXiv preprint
arXiv:1505.00393, 2015.

[106] J. Warrell and S. J. Prince. Labelfaces: Parsing facial features by multiclass labeling
with an epitome prior. In ICIP, 2009.

[107] J. Weickert. Anisotropic Diffusion in Image Processing. B.G. Teubner Stuttgart,
1998.

[108] J. Weickert. Anisotropic diffusion in image processing, volume 1. Teubner Stuttgart,
1998.

[109] R. J. Williams and D. Zipser. Gradient-based learning algorithms for recurrent
networks and their computational complexity. Back-propagation: Theory, architec-
tures and applications, pages 433–486, 1995.

[110] J. Xie, L. Xu, and E. Chen. Image denoising and inpainting with deep neural net-
works. In NIPS, 2012.

[111] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via l-0 gradient minimization. In
ACM TOG, page 174, 2011.

[112] L. Xu, J. S. Ren, C. Liu, and J. Jia. Deep convolutional neural network for image
deconvolution. In NIPS, 2014.

[113] L. Xu, J. S. Ren, Q. Yan, R. Liao, and J. Jia. Deep edge-aware filters. In ICML,
2015.

[114] L. Xu, Q. Yan, and J. Jia. A sparse control model for image and video editing. ACM
TOG, 32(6):197:1–197:10, 2013.

[115] L. Xu, Q. Yan, Y. Xia, and J. Jia. Structure extraction from texture via relative total
variation. ACM TOG, 31(6):139, 2012.

[116] T. Yamashita, T. Nakamura, H. Fukui, Y. Yamauchi, and H. Fujiyoshi. Cost-
alleviative learning for deep convolutional neural network-based facial part label-
ing. IPSJ Transactions on Computer Vision and Applications, 7:99–103, 2015.

[117] J. Yang, B. Price, S. Cohen, and M.-H. Yang. Context driven scene parsing with
attention to rare classes. In CVPR, 2014.

[118] J. Yang, Y.-H. Tsai, and M.-H. Yang. Exemplar cut. In CVPR, 2013.

[119] Q. Yang. Recursive bilateral filtering. In ECCV. 2012.

[120] I. T. Young and L. J. V. Vliet. Recursive implementation of the gaussian filter.
Signal processing, 44(2):139–151, 1995.

[121] Q. Zhang, X. Shen, L. Xu, and J. Jia. Rolling guidance filter. In ECCV. 2014.

126

[122] Q. Zhang, L. Xu, and J. Jia. 100+ times faster weighted median filter (wmf). In
CVPR, 2014.

[123] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark detection by deep
multi-task learning. In ECCV, 2014.

[124] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In Pro-
ceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[125] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang,
and P. Torr. Conditional random fields as recurrent neural networks. In ICCV, 2015.

[126] S. Zhu, C. Li, C. C. Loy, and X. Tang. Face alignment by coarse-to-fine shape
searching. In CVPR, 2015.

[127] J. G. Zilly, R. K. Srivastava, J. Koutnı́k, and J. Schmidhuber. Recurrent highway
networks. arXiv preprint arXiv:1607.03474, 2016.

[128] D. Zoran and Y. Weiss. From learning models of natural image patches to whole
image restoration. In ICCV, 2011.

[129] Z. Zuo, B. Shuai, G. Wang, X. Liu, X. Wang, B. Wang, and Y. Chen. Convolutional
recurrent neural networks: Learning spatial dependencies for image representation.
In CVPR Workshops, 2015.

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Vita and Publications
	Abstract
	Introduction
	Overview
	Affinity Learning for Computer Vision Problems
	Solutions
	Affinity Learning with Deep Convolutional Networks
	Affinity Learning with Spatial Propagation Networks

	Organization

	Literature Review
	Pairwise Learning
	Affinity Related Vision Applications
	Face Parsing
	Learning Low-level Vision Filters
	Object Segmentation

	Multi-Objective Convolutional Learning for Face Labeling
	Introduction
	Multi-Objective Convolutional Learning
	ConvNet Architecture
	Nonparametric Prior
	Adaptive Inference

	Experimental Results
	Datasets and Settings
	LFW-PL
	HELEN

	Summary

	Learning Recursive Filters for Low-Level Vision via a Hybrid Neural Network
	Introduction
	Recursive Filter via RNNs
	Preliminaries of Recursive Filters
	Recursive Decomposition
	Constructing Recursive Filter via Linear RNNs

	Learning Spatially Variant Recursive Filters
	Spatially Variant Linear Recurrent Network
	Learning Weight Maps of Recurrent Networks via ConvNets

	Experimental Results
	Edge-Preserving Smoothing
	Image Denoising
	Image Propagation Examples

	Summary

	Face Parsing via Recurrent Propagation
	Introduction
	Proposed Algorithm
	Recurrent Neural Networks
	Spatially Variant Recurrent Network
	Hybrid Model of ConvNet and RNN

	Sub-networks for the Detailed Components
	Experimental Results
	Datasets and Settings
	Coarse-grained Face Parsing
	Fine-grained Face Parsing

	Applications
	Eyebrow Editing
	Eyelash Editing
	Lip Color Adjustments
	Skin Smoothing
	Makeup Transfer

	Summary

	Learning Affinity via Spatial Propagation Networks
	Introduction
	Proposed Approach
	Linear Propagation as Spatial Diffusion
	Learning Data-Driven Affinity

	Implementation
	Experimental Results
	Summary

	Conclusion and Future Work
	Summary
	Future work
	What is Learned from Spatial Propagation Network?
	Acceleration for Real-time Rendering

	Bibliography

