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DEVELOPMENT of SCHEMATA DURING EVENT PARSING:

Neisser's Perceptual Cycle as a Recurrent Connectionist Network

Catherine Hanson
Department of Psychology
Temple University
Phildelphia, PA 19122

Abstract

The present work combines both process level
descriptions and learned knowledge structures in a
simple recurrent connectionist network to model
human parsing judgements of two videotaped event
sequences. The network accomodates the complex
event boundary judgement time-series and provides
insight into the activation and development of

schemata and their role during encoding.

Perceiving and Encoding Events

Day to day experience is characterized, remembered,
and communicated as a series of events. We think
about driving to work, we remember having an
argument with our spouse, and we tell a friend about
our plans to attend the theatre next Saturday.
Abreviated phrases such as driving to work act as a
type of shorthand notation for describing complex
action sequences. Thus, our abilty to communicate
sucessfully with others using such labels as driving to
work reflects a certain level of familiarity with the
referenced activities that we share or presume to share
with our intended audience.

How common is our knowledge about common
events? Empirical work suggests that there is
considerable consensus concerning the constituent
actions of familiar events (Bower, Black, & Tumer,
1979). Bower, et al. found that subjects showed
considerable agreement about the composition of
common events (e.g., going fo a restaurant), many
responses being offered by more than 70% of their
subjects and very few being unique. Considerable
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agreement about event boundaries extends to online
measures of parsing as well (e.g., Nowtson, 1973;
Hanson & Hirst, 1989) suggesting that familiarity with
events may provide the basis for understanding and
encoding new information.

Neisser’s Perceptual Cycle

Neisser (1976) has suggested that perception is a
cyclical activity in which: (1) memory in the form of
schemata guides the exploration of the environment,
(2) exploration yields samples of available
information, and (3) data collected from the
exploration process modifies the prevailing schema.
By focusing on the interaction of perception and
memory, Neisser’s "perceptual cycle” model offers a
particularly fertile context for studying the processsing
of event information. However, because this is a
processing model, rather than a model of knowledge
representation, little emphasis is placed on the
structure of schematized knowledge. Thus, it is not
clear how turning ignition might be related to driving
home or even what role the decomposition of events
might play in generating the expectations purportedly
used to guide sampling of available information.
Germane to this issue is another that arises in relation
to the proposed modification process. How does the
prevailing schema change in response to the sampling
process? In particular, what is the basis for the

1 Also a member of the Cognitive Science Laboratory, Princeton
University, 221 Nassau Street, Princeton, NJ 08540



similarity between the ongoing situation and the

schemata that are subsequently activated?

NEISSER'S MODEL

Figure 1: Neisser’s Perceptual Cycle and Recurrent Net

The Problem with Scripts

Perhaps the best known attempt to address the kinds of
questions raised here has been made by Schank (1982)
within an artificial intelligence framework. Schank’s
approach to the parsing problem is essentially a
taxonomic one in which relatively abstract knowledge
structures (i.e., MOPs and TOPs) are posited to
emerge from relatively specific action sequences (i.e.,
scripts). He suggests that comprehension emerges
from a "reminding" process in which we "pass through
old memories while processing a new input” (p.25).

"Reminding" is posited to occur when an online event
activates an appropriate knowledge structure as a
function of the similarity between the two. Thus,
“reminding” is a process not unlike that posited in
exemplar based categorization models (e.g., Medin &
Schaffer, 1978) or the myriad of "nearest neighbor"
algorithms posited to account for pattern recognition
performance  (Dasarathy, 1990). But, defining
similarity remains as much a problem for Schank as
for others wrestling with categorization issues.

Regrettably, similarity is invoked again when
questions about structure development are raised.
Structures at high levels in the hierarchy are posited to
function as prototypes and to be abstracted from lower
order structures. According to Schank (1982), these
new high level structures develop “where the essential
similarities between different experiences are
recorded" (p. 81).
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In addition to an inherent vagueness about the
mechanism underlying the retrieval and development
of knowledge structures, another problem with
Schank's (1982) approach is its failure to deal with the
temporal character of event knowledge in any
straightforward way. Events persist for a given
duration. Moreover, not only do different events
persist for different durations, but the same event may
last for different periods of time as a function of any
number of factors such as the age of the actor, the
experience of the actor, the time of day when the
event takes place, the location of the event, and so on.
An event not only persists for a given duration but
derives its meaning from the context in which it
occurs, that is, the events that precede and follow it. In
itself, ordering means very little and ordering after
eating makes little sense. It is only when ordering
occurs in its rightful place among sitting, eating, and
leaving that any real understanding can occur.

Precict EVENT BOUNDARY Probabiity

¢

output (N}

f[Hidden(N), Hidden (N-1))

1
State of Hidden Layer Input (N) State of OurpulJ
Pas! Feature Projections EVENT Descnipon Prediction last
at esch Second Made

Figure 2: The Present Recurrent Net

Event Parsing

One way to avoid some of the difficulties that arise
when a script structure is implemented is to model
data derived from a task that creates context in terms
of meaningful sequences of actions. That is, the
nature of organizing schemata can be abstracted from
human judgements conceming event boundaries for
everyday situations. Data from a study by Hanson and
Hirst (1989) provide such information. Briefly,
subjects in this study were asked to watch videotapes
of common event sequences. One videotape showed
two people playing a game of Monopoly and the other
showed a woman in a restaurant who drinks coffee
and reads a newspaper.



TAPE AGENT ACTION TYPEofVERB OBJECT MOVEMENT

game mark puts
restaurant pam puts

transitive money yes
transitive money yes

Figure 3: Input Encoding Example

Subjects watched the videotapes under various
orientations and pressed a response button whenever
they believed a new event was beginning. In the
present study, we used reponses made when subjects
had been oriented toward “small” events while
viewing the tapes. This orientation produced the
greatest number of perceived event boundaries and
therefore a rich data set for use in training and transfer
simulations.

Recurrent Nets and the Perceptual Cycle

A connectionist simulation provides an opportunity to
examine how prior experience affects the parsing of
actions into events. Recurrent networks, for example,
inherently resemble Neisser's perceputal cycle ' (See
Figure 1). A recurrent net provides feedback
information from hidden layers or from outputs
creating information from either past actions at
various moments in time or from past judgements
about the presence or absence of an event change. For
the net, an input frame consisting of a set of features
and an arbtrary unit of time represents an object and
moment of time in the world. The hidden layer of the
network, which is driven by the input, also retrieves a
learned category (Neisser’s schema) which causes
some moments in time to have a certain similarity to
others (based on features). The feedback to the
hidden layer creates a state (Neisser’s expectancies)
that influences in a top-down fashion judgements
about the similarity of the present moment to an active
schema retrieved via the hidden layer by the input
frame.

A second reason for using a connectionist simulation
is the opportunity it affords to examine the "black
box" between input and output. By analyzing the
hidden units of the network we hoped to gain some
understanding about the kind of information needed to

1. Rumelhart first suggested this connection between the perceptual
cycle and reccurrent nets.

represent events and additionally, to learn how
memory about events changes with experience. Thus,
we hoped to be able to shed some light on how event
knowledge is: (a) acquired, (b) represented, and (c)
used to guide parsing. Our approach was a direct one;
we examined how the representation of event
knowledge changes with experience and observed the
net's ability to transfer its knowledge about events to

related and unrelated action sequences.

Network Structure and Training

A simple recurrent network used sources of
information including features of events from the
present moment in time, past event-moment features
and past predictions of an event change (see Figure 2).
It is known that simple recurrent networks (Elman,
1988; Rumelhart, Hinton & Williams, 1986) can
represent at least a finite state machine (Servan-
Schreiber, Cleremans & McClelland, 1988; Watrous
& Kuhn, 1991; Giles et al., 1991) and thus are good
candidates for encoding temporal event sequences.
The present recurrent network received feedback from
hidden layers and outputs delayed by one time step.
Inasmuch as these activation values were combined
over time they potentially can represent, a complete
sequence from the start of the event parsing.

Input Encoding. As stated before, two kinds of
videotaped action sequences were used as data, one
involving two people playing a Monopoly game and
another involving two people in a restaurant sequence.
Each tape was transcribed to the resolution of one
second. Five variables were chosen to represent each
second of the event sequences. These variables
included AGENT, ACTION, OBJECT, TYPE of
VERB (transitive or intransitive) and MOVEMENT
(whether any movement occurred in that second). In
Figure 3 are examples of a single second transcribed
for each kind of videotape: Hereafter, this attribute-
value structure will be referred to as the frame-second.
The combined information from both tapes included a
total of 4 AGENTS, 33 ACTIONS and 43 OBJECTS.
Sixty percent of ACTIONS and 9% of OBJECTS
overlapped between the two event sequences. The



network was provided a binary representation (17 bits)
of this input frame.

Training. The network’s task was to leam to map the
current frame-second, any past frame-second, and the
past event change probability to the next event change
probability. Event change probability was computed
from the number of subjects (out of 20) who judged
that an event boundary had occurred (by pressing a
response button) during that frame-second. Shown in
Figure 4 are the event change probablities® for the
Monopoly game. On the x-axis are the 420 frame
seconds corresponding to the transcribed features.
The y-axis shows the relative frequency of button
presses at that second.

The network was trained by 1st-order gradient descent
("back-prop in time") to produce the event change
time series. Due to the noise present in the time series
other methods such as line-minimization or conjugate
gradient methods (e.g. BFGS optimization) fared
poorly in terms of speed of convergence and reliability
to the same solution as a function of starting point.
Simple 1st-order back-prop, converged quickly and
reliably to the same solution in spite of the target
noise.

Standard Models. The event change probabilities
were not modelled well as an ARIMA (Box-Jenkins)
time-series suggesting few periodicities were present
in the time-series independent of the frame-seconds.
A standard multiple regression accounted for less than
5% (Pearson r correlation of .07) of the data variance
suggesting that the mapping was significantly
nonlinear.

Learning of Game and Restaurant Tapes

Using split halfs of the Game and Restaurant tapes the
recurrent network was able to acount for over 45%-
50% of the data variance with Pearson r correlations
of .75 for the Game and .68 for the Restaurant tape.
The difference appears to be related to the differences
in length of the tapes (Game-420 seconds,
Restaurant-287 seconds) and the higher diversity of
actions in the Game event sequence.

2. Subsequent figures of event change probabilities show a
smoothed (4-second window) version of this data in order to
make visual comparisons only. All prediction values from
network training are for the raw data shown in Figure 4.
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Transfer. The Game tape learning was then
transferred to the Restaurant tape®. Shown in Figure §
in the left panel is the result of training on the Game
tape, The dashed line represents the event-change
data and the solid line is the second-by-second
prediction of the reccurrent network. Using all the
data for the Game tape boosted the variance accounted
for to 80% (r=.9). Transfer to the Restaurant tape,
was significant (40%, r=.65) in spite of large
attribute-value differences at each second of each
tape. Hidden unit sensitivity was explored for 5 to 30
hidden units. Variance accounted for on transfer went
up slowly, reaching asymptote near 15-20 hidden
units.

OF EVENT CHANGE

RELATIVE FREQUENCY

SECONDS
Figure 4: Event Change Judgements over Time (seconds)

Internal Representation

Hidden unit patterns were analyzed (Hanson & Burr,
1990) over each second in order to determine the
similarity of frame-seconds that the reccurrent net
discovered to make the event change predictions. A
hierarchical cluster analysis (Centroid, and Farthest
Neighbor agreement) was performed on the hidden
unit activations over the 420 seconds and over the 287
seconds. Very regular dendrograms were produced
and an examination of successive differences over the
merge history indicated 10-15 clusters to be present.

Insofar as clusters represent groups of frame-seconds
that are similar from the reccurrent net’s point of

3. The Restaurant tape was also tranferred to the Game tape, but
with less success, probably because the sample size of the
restaurant tape was about 75% that of the Game tape.
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Figure 5: Transfer from the Game to the Restaurant Event Sequence

"MONOPOLY"

EATS

" SUSAN  \
PRETZELS

Figure 6: Internal Representation for Monopoly Game

view, each cluster was identified as a schema, and
used to relabel the sequence of frame-seconds in each
tape. For example, the 420 seconds of the Game tape
was relabelled with the 11 identified clusters or
schemata. A graph of the new sequence, with the
schemata labelled using the common features of each
frame second (e.g., if PUTS was the only common
feature in the cluster the schema was labelled "PUTS",
if MARK TAKES MONEY was common to every
frame-second then the schema was labelled "MARK
TAKES MONEY"), is plotted in Figure 6.

The size of each ball is based on the relative
frequency of the schema in the tape, and the arrows
represent the state transition (a state transition would
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predict an event change for the recurrent net). Note
that the sequence of Monopoly events is representated
in this graph, and that different schema level
abstractions have resulted as a function of learning the
event change probabilities. Some schemata represent
information at the exemplar level whereas others have
generalized by dropping AGENT or ACTION or
OBJECT or subsets of these variables. Finally,
notwithstanding the differences in frame-second
content (especially in terms of objects) and poorer
prediction performance, a representation was
extracted that did correspond to action sequences
consistent with the actual events in the Restaurant

sequence.



The Nature of Event Perception

We conclude by providing answers to the questions
about schemata posed earlier in this paper. Based on
the computation of the recurrent net and the internal
representations of schemata extracted, several aspects
of event perception might be clarified.

On what basis are schemata activated? Several
factors determine whether a schema is activated or
not. One, similarity (in this case dot-product to the
hidden layer) of a schema to a present frame-second
(in terms of attribute and value presence) can activate
and retrieve new schemata in a bottom-up fashion.
Two, past schemata will resist bottom-up input at a
given frame-second and will tend to block the
activation of new schemata. The more specific a
schema is (in terms of attributes and values) the less
likely transitions to a new schema will occur. Three,
each schema has been associated with an expected
duration. The duration of a schema can be determined
by clamping the plan vector with a given attribute
value and starting input values at ambiguous values
(.5) and counting the number of seconds passed before
the output approaches a value between .75 and 1.0.
All 11 schemata for the Game tape were clocked in
this way. If a schema is expected to continue for a
long time, inconsistent input data will be ignored until
a sufficient number of instances appear. Some
schemata occur frequently having brief durations
while others occur rarely but at longer durations. In
fact, there was a significant negative correlation (-.52)
between schema duration and frequency.

What role do schemata play during encoding? The
active participation of schemata help to select input
and maintain resistance to change. Within the context
of the recurrent nets, schemata create expectations
about the level of abstraction that will appear in the
input frame and the specific content that should be
found, Finally, once a schema is activated there is an
expectation about its duration (due to the feedback)
and a search for confirmation continues until the
schema terminates.

How do schemata develop? The frequency of events
and their duration within the frame-seconds determine
how schemata develop and what properties they will
possess. As stated above, there is an inverse relation
between duration of schemata and their frequency in
the Game tape. High-frequency, short-duration
schemata tend to be more asbtract or general, whereas
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low-frequency, long-duration schema tend to be more
specific or exemplar based. Examination of the
schemata as they develop during learning indicate that
they tend to evolve from specific exemplar based
clusters into more abstract based clusters by accepting
increasingly more diverse input over time.
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