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INTRODUCTION
The;lé;éls:of a Aﬁcléué can be diﬁided.into two energy iegions, namely
the "low eﬁergy"'énd "high eﬁeféy" excitationégv This;diviéion ariées naturally
from the difféfent apﬁ}oach'employed'for tﬁeir ahalysisﬁ fhe spectroscopical
wéﬁ@fbaéhnféf thé‘lovvenefgy'levéis«aﬂd the’sfatistical approéch‘for‘fhe high

energy levels. ~The low-lying nuclear excited levels are small in number, well

ééﬁarétéd;;and their structure is rather simple. For these levels the

spéctrdécoﬁiéal épbroaéh is the'most suitable and ieédé.to infbrmétipn cogcerning
- éoﬁfigufétionsgﬁfesidu;l interactions:and mixing.

! A With increasihg excitatioh enérgy, the spécingwbetwéen the levels is
progressively reduced and the nature of the eXcitatiéné becoﬁes vé}y complicated.
'Thetekisfénce”éf such:complexllevels'is beauﬁifﬁlly iilustrated by the neutron
‘capture resonances. Their average épadiné:ié‘about 106 times gmaller than the

¥Research supported in part by the U.S. Atomic Enerev Commission.



average single particle level spacing and their widths are also 106 times smaller

than expected for.a single particle excitation (1). This and other evidence

indicate that a large number of degrees of freedom is involved, with considerable M

" configuration mixihg. These expe;iméntal‘observations support the concept of
the compound nﬁcieus»introduced by N. Bohr (2,3). in ﬁhis deécribtion.the -
reacting system (nucleus + neutron) relaxes via two;body interactions to a
highly‘complgx cohfiguratign callgd'the coﬁpouhd gucleus,.which has no memory
of the original réaction, except;for the éonstants of motioh.

Because of these considerations and experimehtal Qbservations, it is
natural that, for nﬁclei with increasing excifatiOn energy, the spectroséopié
approach should be gbéndonédvin favor of a statisticalrapproach whigh allows
a more cqmprehenéive description of the average behavior.of the compound»puci?ué
and of its decay. In particular the decay process of the compound nucleus
becomes controlled by the phase space of the."prodﬁcts" and the matrixvglemen£51 .
between the differgnt states become averaged by the sheer number of levels.and
by their very high density (4,5).

The most relevant quantity describ;ng the sﬁatistical nuclear p%oéérﬁies,

is then the level density of the system, expressed as a function of -the various

v
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constants of motion like exéitation enefgy, number of partiéles, angﬁlar’
momentum, parity, isospin, etcf A-spedial kind of level density, importagt
in the description of the ngcléar'relaxation towards equilibrium is the level
density fof & fixed number of particles and holes.

In fhghpresent article a distinction isvmadé bereen level density and
‘state density. ‘The féfmér refers to nuclear levels irrespective of their
engular momentum degeneracy and is indicated by D(E); thé lgtter aécdunté.for
the 21 % 1 degeneracy of the levels and is indicated py w(E).

The present paper will be divided into two main sections. The firsﬁ_part

" “will outline the‘main methods and hodels ﬁhich have been used for the calculation

cf thé.ﬁﬁédréﬁicél leﬁel_dehsifies. The second will deal with thé sources éf

" experimental information for the level density.

THEGRETICAL OUTLINE OF THE METHODS AND MODELS EMPLOYED IN THE EVALUATION OF
LEVEL DENSITIES

¥ To some extent, the models used in the level density calculations have

followed the evolution of the knowledge of the,nuclear’properties. A certain

lag, which is still noticeable at present, can in part be attributed to the
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complexity of the statistical calculations and ﬁovéné's reluctance to abandoﬁ
analytical expressions in favor of more powérful numerical'methods;

iInitially, the nuCIeus.was répre;ented as a gas of non-interacting
fermions qonfined to the nuclear volume (Fermi gas) (7-13). More sﬁecifically,
the zeroth qrdef expansion of thig model was‘used; which corresponds to the
equidistagt model (eqﬁally spacgd energy levels). The equidistanf model.hés
been laigely employed in data analys;s and is very popular evén at presepf
although it cbntains little phys}cal’information.

Margenau (lh) and Bloch (15) have presented
a general procédu:é to include the shell mo&el into level dehsity calculatiohs.
However, a large amount of effort has been devoted to the development of
semiempirical_approaches to the problem, either by modifyigg the parameters of
the equidistantvmodel formula (16,17), or by introducing a shell correction in
terms.of-an energy shift in the ground state (18,19). A more fundsmental attempt
to understand tpe effectvof the shell model degenerécies has been made with
the Rosenzweig degenerate model (20,21). In the'same spirit more sophisticafed_
models Based on schematic single particle level sequences have been ;fudiedv(22—29)r

also.



The application of the pairing”Hamiltonian to - .excited nuclei has

provided a further improvement in the understanding of the low energy behavior

‘of the level density (10,30-34). The most recent studies in the field have profited

from. the use of numerical methods for the evaluation of level densities directly

from the shell model single particle level schemes (14,35-L42). Furthermore

numerical calculations have been performed to -evaluate level densities on the

basis.of the shell model single particle scheme and the pairing Hamiltonian as

t

.well (43-47). -Ab initio celculations including in a consistent way the nuclear

deformation as well as the shell model and the pairing Hamiltonian are also:

_possible (48,49).

To a large extent, the nuclear models employed in the level density
calculation have been determined by one's ability to find suitable methods of

calculation, - Therefore the most common methods of calculation willvbe illustrated

‘before describing in some detail the models themselves,

Methods of Calculation

The Combinatorial Method,—-

The combinatorial approach is suggested by the»definition of the level

density. For a system of non interacting fermions, this method amounts to
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finding the number of ways in which the nucleons can bg distributed among the
available single particle levels for a fixed enéréy of the system., A few .
authofs have'ﬁsed this method in limited calculatidnsv(35-38). kA ver& extgnded. v ﬂ
calculation has been performed by Hillman and Grover (kk). 1In their calculation
all the possible configur;tions are Sbtained by means of a simplg meﬁhod of
emmeration and classificétion. Tye céhfiéurat{pﬁs gre'geﬁerated by cycling
the occupation number of each of the'single-particle levélS‘ovér all its
allowable valuesf " The levelslare}theﬁ sorted out in tennsvof‘particle number,
energy and ahgular'momentum (énd possiblyvother quantum numbers). ihis method
has been generalized to evé;uate the levei>density with'the:inclusion of the»v‘
pairing interaction.

The advantgges.of such a procedure,ére related to the fact that‘an
"exact" counting is performed. Thé disadvgntages arise from the extremeiy
high value that the level densifies can reach. Typically, in a héavy nuqleué

far from a closed shell, the level density may be of the order of lO6 levels/MeV

at the neutron binding energy. Therefore such calculations can be performed

only with largé computers and are limited to small excitation energies especially ' » i

for heavy nuclei.
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Th? PartitigP Fﬁhctiqn Method.f—

Thi; fe#%_powerful.mgthod (SO)Ahas become g clas;ical too; in statistical
mechanic; dgg td'its génerality‘and flexiﬁility. Let.the_nucleus be defined
Py ?ﬁs pgu@ron_gndlpgoton nggpgrs N and‘Z and by its énergy E. The statisticai

properties of the system are contained in the grand partition function:

fe ) emloyworaz o) o, B
N',Z',E - .

where aN, aZ’ and B are Lagrange multipliers associated with the particle numbers

which is commonly

™}~

and- energy. Of‘particular significaﬁce is the qﬁantity t =
known as the staﬁiétiéal teméerature.

| The sum@ation is over all nuclei-with N'.neutron§ and 2' érotons, and
over éll the egergy e?genvalues E' of each nucleus. The sum ovér the egergy

:

eigenstates can be substituted by an integral:

eQ = Z [d.E"w(.E'_,N',Z")'exp,(aN N' + “2 Z' - BE') . 2.

N',2
The quantity w(E',N',Z') represents the densityvof energy eigenvalues for the
nucleus (N',-Z') ;t tﬁe energy E', or, in other words, the state density. The
above equation also shows that the grand partition function can be conéidered a

Laplace transform of the state density. A very elegant method for the inversion
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of Equation'(z) in thevcasé of‘a.system.of non inferacfihngermions has been
described by Wiliiéms.(39). :This method uses recursidn'felations for the
calculation of the coefficients of a finite order parﬁition function and yields ¥ .
the exacf state density. Thé method can bevqederalized to.account for quantum
numbers which cég bé expressed in terms of sums ofer single pﬁrticle levels.
A more éeneralvmethod yielding tﬁe state density mﬁkes:ﬁs§3of_the.inv§rse p
Laplace transform of Equation (2): o N S  ‘ ' o
w(E,N.,Z) = ——5—-3- ¢'do;N-'9§&azggds S, o 3.

. | (2mi) SN - -
where § = § - dﬁ N -'ozZ Z + BE.i The abovg contour inteérals are also kgowﬁ as
the Darwin-Fowler iﬁtegrals. So far’the only approximation intrgduced.into.fhe '
calculation is the contiguous approximation whgreby #hé ;tate density‘is.éonéidered
a continuous function. However, the generality of the mef@od arises from a
remarkable approx;mation Vhich‘allows one'té evaluate the integrals in
Equation (3).

It can be shown that the integrand has a Saddle point whose location is

defined by the equations:
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Tﬁe path; ofbintegfation can be choéen to p;;s through-this poiﬁt. By
expandigg thé e;ﬁonent S iﬁ ; Tayior series aboqt the saddle point éndvretaininé
only tﬁe quﬁdrafic terms, the infégrals in Equatipnv(B) yiel; the réllowing
result:

exp S

w(E,N,Z) =
(em

where D is a 3_X‘3 determinant of the second derivatives éf 2 with respect
N thﬁhe Lagran5e mg;tipli¢rs aN, az_énd B,. All of @hglqgantities contained in
.quatiqp‘(S) must be evaluateg gt the saddle point.

Sugh_an gpprpximatiog éorrespondg ﬁb the S?irling approximation for‘
the gya;uation of fgcﬁorials and its accuracy depends upon the magnitude of fhe
statg.deps%ty it;elf.. The agréement of rgsults based‘upon thg saddle point
approximatioﬁlyith the exact results'is 500§ even at low exgi- -

tation energies (42). The elegance of the method is also quite apparent in the way
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in which the boundary.conditions of the problem are introduced. They appear
in a very'simple wey in Equations (U4) where the saddle point location is
defined. ’ S ‘ o | : v
‘This proéedure can be generalized for an arbitrary number of constants
of motiqn Kye  If n constents are introduced, the state density retains the form
N n-1 . . - .
of Equation (5) where S = Q + BE -~ I aiKl and the exponent of 27 is n/2. The
quantity D is now an nxn determinant of the second derivatives of Q with

respect to a, and B. All the qﬁhnfities a, and B are evaluated at the saddle

point.

Nuclear Models

System of Non-Interacting Fermions.--

For.such-a system, the 5rand partition function can be easily evaluated.
Let.the energy levels be represented by 8, for neutrons apd bK fqr protogs;
let also thevmggnetic quantum numbers for neutrons.and protonsrbe ﬁlK and B, s
réspectiVély. The constahts of motion are the negtron and proton ngmbers N and
Z, the energy E and the projection of the angular momenﬁum-on & space-fixed axis,

M. The, logarithm of the grand partition function is:
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Q= Zln[l_ +exploy +um ~-Ball+ Z»ln[l + exp(a, + u m, - 81bJ] . 6.

The saddle point is defined by the following equations:

L o 1 |
N=Z . ;Z=Z
Trep-log+um -Bea) | 1+ exp - (0 + umyk - Bb.)

-m2K .

M‘Zl+exp-(aN+um1K-Ba.K7+Zl+exp-(az+um2K-BbK7

E = Z - i
- 1+exp-(aN+um1K-Ba;Y+ l+.exp‘-(az+um2K-B-bKT T.
The entropy is given by:

.S = Zln[l +> exp + (aN tum, =8B aK)] + Zln[l + exp + (Olz.".' u'mé,( - B bK)]"‘_

+Z . Ba - -um, Z B by -0y - Um, |  8. 

1+ exp - (dN tum - ?zaK) +4o1 + exp - (az + U méK - B.bK) °

The second derivatives which appear in the 4 x U4 determinant in the denominator

of the state density formula are:

: :)O'Z

2 )
3 R _12. 21 ’
e Y ‘seChz(BaK'aN'“le)
N .
3% 1 21
2 ‘EZS“*‘ 5(8 bK_aZ_umEK)



12—

sech (Ba ;'_aN-ule) +FZ ech —-(Bb Z-ume'()

o
.

3°Q 1 21 |
ETRCITE, Ezle sech” 5 (B &, "__QN - wmy)

2
%0 1 21
daou B ZmQK sech” 3 (B b = o = um, )

Q. _ 1 Z 21

3°‘Na,6 =-7 | ‘a.K' sech > (B’ aK - CLN - U le)
5 ‘

3" _

30LZ38 =-1 Zb sech (B b %y — H m2|<)
2

Q '12 21
JuoR =Tl "1k ¥ Se°h 3 (8 aK-aN—ule)

= %Zmzrc by SeChZ

Because of the importance and simplicity of the pz:esent case, the formalism

(Bo -0y —nm,) .

P

has been reported in its entirety. The above formalism allows one to calculate'

(™

K'.sechz.-JZ;(Ba -aN-ule) +T4—Z sech (Bb az-umz{()
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the‘staté density for a nuqleus specified by N neﬁtrons, Z protons, total
energy E and angulhr momentum projecpion_M.f An épproximéte-expressibn for

‘w(E,N,Z,M) is the following:

, exp(= 1%/20°)
- Vomg?

m(E,N,z;M) = w(E,N,Z 9,

where w(E,N,Z) is obtained from the previous formalism by eliminating the
Lagrange ﬁultiplier M. The'quantity 02, called the spin cut-off parametef,'
determines the width of the M distribution and is given by"the expression:

_ é _ i-E: _ 21 1 E:. 21 : o S

6" =§ /) my, sech” 3 (B &, - aN) + i /Wy sech” 3 (B b, -‘az) . 10{
As suggested by Bethe (7), the dependence of the level deﬁsity upon the total
angularﬁmdentum'i is given by:

o(B,N,2,I) = w(E,N,Z,M = I) ~ w(E,N,Z,M = I +1) 11.

or
(2,8,2,T) i 2 W(EN,Z ] ;) 1 = _er+1 (&N i) ‘ (x+1/2)2
PLE4N,4, - = aM siisly M=1I+= 1/203 W ',‘, exp | - 202 . .

2 ) 2(2m)

12,
“The evaluation of the level density within the present formalism is dependent

upon ‘the solution of the saddle point equations which yield the quantities o s
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Qys M, 8. .Since, in general, the sédd;e.point equétionsxare non;linear, they
must be solved_numerically; However there are some highly simplified cases

where the level density can be expressed analytically.

. The Equidistant Model.——

In this}model'(7;13) the single particie levels are equidistant and non-
degeneraté. The total state density for a éystem composed of two kinds of

particies is givén approximately in analytical form by:

/T exp 2/aE_ o

. w(?) - 12 Es/ al/ D 13.

2 . \.. . . Co <
where a = %; g end g is the single particle level density. The explicit -

dependence of the state density upoh excitation energy arises from the simple

relation between excitation energy and statistical température:

Such an expression, or equivaient ones, has been widely used be#ause of its
simplicity although the model it is based upon is quite unrealistic. It is
a;so sometimes described as the Fermi gas level density expression. This is

incorrect: in a Fermi gas, the single particle level density increases
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apprpximately’aé the squa;é root 6f-the pgrticlé kineﬁicfgnergﬁ while in the
présent.@o@e},it ié_a‘constgnt: F§uchvan exp?esgicn is';ﬁly the zeroth order
,approximatigngto.tﬁe»level density.of a Ferﬁigas._

Becaus¢ of the'simplicity of thé'equidigtant model, wé’rgport here some
of.,_bt.:l_;‘e ;fo:ﬁp;ge _bésgd on it whic,h. are widely used :in d'av.ta‘ anelysis.(51,52). The 1ev§1
aensity fgr e singlé.angular'momentum-apd poth pgritieé @s a fu#ction of fhe,

excitation energy E is given by:

| /4 ) - o 2 . .
o(E,1) = == (& —15%5;,711 exp 22 (1 e PPy Lo

ou/2 B o
'I'h‘e‘_tota.l level density is related to 'p_(E,; = 0) by:
o(E) = 2{:2 plE,1=0) . - .15,
I; thése exﬁressiéns the spin cut‘off parémetér'is givgn'by the.relatiOn:.

F=glmre=L T S : 16.

=

where (m>) is the average of the square of the single particle spin projections.
The nuclear moment of inertia Jd is assumed to be that of a rigid sphere:
¥ = %-mA R2, where m is the nucleon mass, A is the mass number and the radius

is given by‘the relation: R = 1.2 Al/3 F. -
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In light nuélei, where fhe boulomb.effect§ are émall,.eaéh,single.
'pgrticle level has a fufther twofold deggnéracyg sipce if éan be occupied by a
neutron Qr, by a proton. This griseé b,eca.ﬁse of the nuclevonv isospin projections AVI
(¢ %—)_.

In complete gpgldgy vith the tr'eatﬁent of the a.ngula.r momentun, “the
level d».e.ns‘it'y for a total.i'so’spin projection T4 is:
2]

exp[-T’?/2oT!

7.
/2_1”1,1,}

pj(E,T').) = p(E)

where GT)? = %-gt. If the Coulomb effects can be disregarded, the level'déhsity
for a given iséspin value T is:

. '12
o7 4+ 1 (T+§)‘
2

o(om)t/2 5 3 20

T} T

p(E,T) = p(E) exp | - 18.

In problems related to the pre-equilibrium behavior of a nucleus it is
neéessary to calculate state densities for nuclei with fixed number of excited -
particles p and holes h (53,56). If a constant single particle level_spacing

of 1/g is assumed the energy can be expressed in dimensionless form:
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Ericson has given the following expression for'the state density (5k4):

_&(gE)PPL S o
BR (prR-DT 19,

w(l_E,'p,h-) =

Williams has improved the Ericson formula by properly accounting for the Pauli

prinéiple in his derivation (55)."His-approximate result in terms of a closed
form expression is:

g(gE - A)PB-1 | -
p! bl (p +h - 1)! i _ . 20.

~'\there A =.%n(P2'+:h2)'+'%-(p -h) - %-h and has the same dimensioﬁsiés.gE. 'qu-this

special kind 6f'staté'density, shell effects are also expected to pléy a major role.

Level Denéities_for~Mbredegp;ngSets éf*Single Particle Levels.-%.

The simplesf systgp of:non—equidistant iéyels.is the'Fermi.gas-system,
wherg the sin?ie pérticle leyel density-incregses'wiﬁh fhe squaré‘?oot of .the
kinetic energy §f‘the part}cles; The mprg ggnera; set of single particle levels
8iv¢n ﬁy tyg she}} model, however, has a:muph more complex vgriation in its level
spacings. ‘

In order to simuiate to some extent the bunching and the degeneracies

typical of the shell model, various single particle level schemes have been
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considered. A completely bunched-?ériodiéai Systeﬁ‘hés bggg éxplbred:by
Rosenzweig'(ZO).v His.single paftic;e sﬁéétrum ié_q?tqined by dividing the
equivalent'eqﬁidistant spectruh intp_ed#al.groups ofvlevé;s; separaﬁed by a.
gap-. Each'grqup of levels is}constrggﬁed to gérge into one single level of
fixed-degeﬁgfééy; and gll the resulting.degene;gte iéve;s aré-gquglly.spaced.
'The-remérkable reéults of this ihvéstigatioﬁ show.thaﬁ, fof>high ’

excitation energiés, the level densiﬁj is givén by an expreséion equivaient
to that for thé'égui@istant model, except'thét an effective exciﬁafion energy

. I , , .
E is substituted for E. The effective excitation energy is given by:

2 . 2
* n4q d-n © p.2 pd_ d
- = _n . _P__.2 _ B2
E=EB+35 -5 (K -3 +53 -5 (K -3 , 21.

where n and p a?é the neutron ana prgton level degepérﬁcies, K# énd KP are the
neutron and proton numbers in the last occupied lefels, dn'and dp are the

average spaéings between neﬁtron and proton levels,respectively. in this model

the level density‘is lowest when the singlé particle levels in the éround sfate

are completely filled or empty whilevit is hiéhést when the last océﬁpied level

is half—filled. These two cases do.éimulate a magic nucleus.ahd a mid-shell nucleus,r

respectively.



The‘equidiétant épectrum.§ah be partiélly.bunched’éo that the groﬁps
of-lévels do nof ﬁuite merge intb é ;ing;g deggngratéxlévei. It has been shown
by Ka;.hni and Rosenz.w'eig (24,25) and by Giibgrt (26) that for this model and for
all the modéls characterized by a periodic §ingie_§arti§l§'scﬁeme, the.level
deﬁsi#? gﬁ.hiéh énérgyféan be given ﬁy a réiatiOnianalqgous ﬁé that of thé“'
_ppifo%?lmodel;v:The effectvof the,shell_strucﬁure cap be accounted for by-the

‘substitution of an effective excitation energy for the true excitation energy:

S E:..._'-AE -,
whére AE is an'enérgy'shif# which depénds uﬁon the.strgcfuré'of fhe groﬁnavéﬁate,
If ﬁhevéiﬁgle:pérfiéle spectrum ié néf periédic,it is impértang to note that
>it,is not possiblé fo reduge‘ the effects of thevéhell.strﬁcture into a

constant energy shift.

.Level Dengitiés from thé.Shell Mbdel.-f

All the models which nave been describe@ so far, yield analytical
expressions for fhe levgl dgnsity.  However, becéuserof their unféa1istic
Hamiltoniéns,'they do not pgedict thé structure obSérved in the levelydensiﬁies

near closed shélls. More detailed and aécurate theoretical information'about
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the level densiﬁy is_possible whén‘dne gsés sinélé pafticle levels obtained
from a éheli'modei“éalculation;' These more realistic.singlg particle levels
“have been usédiby some'authors to calculate the state density by either the ‘
comﬁinatorial approach (35-38;hh) or by meaﬁs of the.Darwianbwler method
(lh;39-h3,h5-h9). Thg‘last method; when cogpléd“to tﬁe saddl§ point app:oximatibn
as described e’érlier, , yie;ds i)erhaps the simplest and most general‘"w'ay
of evaluating level densities in berms of the shell model.

In Figure i level density_calculatiohs ffbm.the Nilsson model are
presented.fbr‘nuclei.CLOSe #o 2OBPb (hO). The‘shell effects.éppear'in a remarkably'

clear way, indicating that the most magic nucleus 208

Pb has the lowest level
density. The level densities increase-forvnﬁcléi which gre farﬁher and férthér
away from the déuble closed shell. Also noticeable in this figure are the
different exciﬁation energy dependences of the level-densifies of different
nuclei . . In Figure 2 the gpin'cut—Off parameters are
presented for»theléame nuclei. The shell effééts manifested in the values of -

02 have two different origins. One origin of the shell effect is related to

fluctuations in the spacings of single particle levels



gnd the‘second‘origin of the sﬁell effécts-is.relateajté fluctuations in the
spin projectioh'of:the singie,particlé‘iévels;‘ Bofh types of flucfuations

. are responsible-fbr the strong differgn¢e§ in the ébsolute values and energy
;dgpéndence'of the spin,cut-off,parameteré;-‘

Frog;thé“examplés presented above, one'gee; thatrfhe shéllﬂé#ructure
influences the low energy behavior of the level denéity in a rathe; complicated
way. At_high excitation energy.the efféct‘gf'thé shells on:thé-lef;i.deﬁsify
becomesxsbméwhatfsimpler,' 1t ﬁas pointed out previously that,
for g periodic Single pdrticle Spectrum whiéh on fhé a#e;age has‘constanf
density, the high energy limit for the entropy is: § = 2 ValE - AE). In this
limit the sh’el_l effect takes the form of a constant energsr'shift. This is not
true fof-the general case of én érbitrary set of.single partigie levels and it is
insfructive tdvgbservé the behavior of the ef;ectivg shift AE'for différent
exéitatio§ enéréies. The results of ; cglculation (575.bﬁs§d qn a set of Nilsson
single'partiqle levels ig shown for the nucleus lehfd in Figure 3. Thié nucleus
is four protoﬁs removed from the fifty prqton shell and four.neutrohs removed from

the 82 neutron shell, The quantities AE and the proton chemical potential are

plotted versus the excitation energy.. The chemical potential has the property of '



-20- .
moving towards the region of low single particle level density. This rule is very
useful in underStanding the behavior of the systém;és the excitation energy increases.

12
The initial averaging over the shell structure results in a drifting of the chemical
potentialAinfo the fifty pxgton shell gap. Whén:the shéll'struéture.is washed out
the chemical pétential continues to decrease beéause it senses the smoothly
decreasing behavior of the single particle_lével’degsity. .This slow decreaéé_
of the chemicel potential with increasing excitation energy:is responsible.

for the slow decrease of AE with energy even after the shell structure is

washed out.

System of Interacting Fermions.—-

A realistic treatment of the statistical nuclear prbperties requires
the'introductioﬁ of the fesiduallinteractions. This can be done'in a rather
simple way by means of the pairing interaction: in this case the prosiem
reduceé to thevchoice of the BCS quasi particles (58) as the bésic non-interacting ;;
fermions (30-32,43-L49). Very‘recently a ﬁore fundamentgl attempt has beéﬁ. v  ¥
made | to include realistic residual interactiqns in level densities in the

very same spirit as they are introduced in spectroscopical studies (59-61). The
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apparently inextricable problem associated with many intgr@cting particles in‘
a large spectroécbpical space:can be overcome by the statistical simplifications
associated with the central limit.theoreﬁ. Since a detailed presentation
of this method gées beyond the scope of.this‘wérk gnly a brief.descriétion will
be made Qf the simplgst rgsidugl intergétiop,‘namely the-pairing'gor?elation.
The Hami%tonian'including the pairing infé?actip#vcan'ﬁe expressed in
1its second qﬁanti?ation form:
H - ZEK a.z 8, .- G Z ..a:,aiK,a_Ka‘.K s | | | | 22,
‘i‘K‘ KK! . ’
where eKlare the single particle‘eﬁergy levéls, aI and a  are the creation‘aﬁd
énnihilation opérator; and G is the pairing stfeﬁgth. Such g Hamiltonian can
be approximately diag?nalizgd-p& meaps of the quasi particle_t:anéfonnation
described first bvaogoliubov (62). In'such a’deséription,thé excitations are

" considered to befindépendent-férmions whose energy is given by:

Be=Vle - 02402 | 23.

-

where A is the chemical potential and the quantity A or gap paramefer is a
neasure of the pairing correlation. The logarithm of the grand partition function

is:
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Q=-8 'Z(e,.< -A-E)+2 Zln[l + exp (-'B.“EK)]‘ -8 %— > 2b.

provided that A, X, B are connected by the following relation: -

N[

S E B tanh B E. i o v , 25. |

which is ‘called' the gap equation because it defines the gap parameter A. The

first integrals of motion and the entropy of the system can be obtained from Q:

€ =A L _ o
N = Z [1-—= ta.nh,-]é'- BEJ] - | 26.
o K
' _ €. A ' _ A2 ' T
E=ZeK[1_-%—-tanh-lé-.B Ek]-—-Aa- , o,
s = 2 Zln[l + exp(-B-ﬁ )] '+ QB'Z B . o
L B LTS -

The gap equation describes the dependence of A on the temperature T. The gap
parameter A decreases with 'increasing temperature and vanishes at a critical

temperature t_ which, for the uniform model, is:
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v_Ab0v¢~thisAtemperature"the'pairing qorrelatiOn'disappeérs‘and the system reverts
to.theunCOrrelaﬁed conditioﬁ. This ié~caUs§d by'the Blockihg'effect of the
quaéi particlgs;ﬂihe levels occubiéd by themvbecome uqavailéble to the pairing
;interactién.whiéhudeCreases and evenﬁuaily'disappears. The only recollection.of

the pairing interaction is associated to a shift of the effective ground state:
o 1 S ' .
BB tgel - | D 2

A complete presentation of this formelism is available in References 47 and 49.
" The behavior of a paired system restricted to a fixed angularvmomentum can élso
be described (46,47).. Angulsr momentum, as excitation energy, tends to destroy
-pairing. At zero tempefature, the dependence of the gap parameter A upon angular

momentum is given by the relation:

. 1/2
KA"‘= (1 —‘I;/IM") , ’ . . : V : ‘ 30.
o ¢

iwhere Mc‘= g A m, The quantity Mc is called_the'critical angular momentum because
for higher.anguléf momenta the pairing correlation disappears.
The coﬁbined effect of angular momentum end temperature on the gap parametef

can be dbsérved in Figure 4 where the lines of equal A are projected in the T, .M



~26~

plane. A very_interésting'effect called thé#mally assiStéd pairing correlation -
can be observed for angular:moménta largé? th#n-zerq'but ;ess than the critical
angular momentum,' An initial increase'in”temperéture actually increasés the
pairing ccrrelatién instead of.decreésing‘it; :Furthermore for angular momenta
-somewhat higﬁer than ?ge criticg;‘value,an‘ipq:ease of tempérafu;e produges

the onset of thg'pgiring.correlation.'.The_éause-of sgch peculiar‘phenqﬁgngn

is the‘following. At low temperature the quasi particleé,,necgssar& for fhe
generation of'éngular momentum'aré tigﬁtly packed a;ound the éhé@ical pot;htial,‘
blocking the levgis most relevant to thg pairing interaction. An increa§e in
témperature épreads the quasi particles éwéy from the chemical pétenti;l thus

' decreasing thg'overall‘blocking. A further increasg.;n'temperature generates'

more and more quasi particles until the'pairing correlation breaks down.

Inclusion of ColleCtive.Degreés of Freedom,~-

In the formalisms described so far, no specific account has been taken
for the effect of the collective degrees of freedom. It has been shown that
shell effects tend to disappear with increasing excitation energy. The nuclear

deformation is itself a shell effect: therefore it is important to know how
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the defprmat;onvchanges yith excitgfion energyi Assumiﬁg that the collective
degreeé qf“frgedoé grg statistically cogpled-to the ;nternal degrees of freedom,
N an excitgd gucleg§ ;s=e?p§ct¢d to bé character;Zed b& a distribution.of‘deforma-
tiong. ?he p%obgpility of_dgformation gaﬁ be calculated.within thé assﬁmptions
1i§te&_abo#é.§na cen be exp?esseg és‘?olidws.(h8?h9):

v ﬁ € A._1/2 w(ET,é) ,-’ . - o S 31.

P(E;e) =

where € is the deformation parameter, h is the Planck's constant, ms is the
inertial parameter associéted'to the‘collective motion, m(ET,E)‘iS the state
density of the nucleus calculated at the deformation € and at an excitation energy

Ep = E - V(e), V(e) being the potential energy at the deformation €. The

quantity A' is defined as:

' ; d1nw(x)
dx - *

X = By

A

An example of "ab initio" calculations of the deformation probabilities
based on the Nilsson diagram and the BCS Hamiltonian is shown in Figure 5o,
These deformation probabilities must be compared with the potential energy

curve vs. deformation shown in Figure 5a. It can be observed that at low.
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excifation enérgies, the deformgtion propabilityvclqsely'reflects thé @etails

Of the pptential energy. 'HOwéver as the-exgiiaﬁion.ehergy increases,the;'
structure in the deformation prdbability is g%aduallyvsﬁoothed oux Until,_at
sufficiéntiy large energy,the deformation:probgbili#f'peéks.at_sphericity,
with.g largevéispersidn. -At these enefgies-the‘deformation‘probabilities feflect
more theitrénd of the liquid drop poténtia;»éhergy thaﬁ_the gcpﬁal potential.v
energy which 1s modu;ated by‘the shell'effectg. ‘This exaﬁple shows dr;matica;ly
héw’the washiﬁg out of the sheli efféct takes place with‘ihcreasing.e#éitation'

energy.



- EXPERIMENTAL SOURCES OF INFORMA'T'ION,.ON 'LEVEL DENSITIES

- Expérimental data on nuclear level dénsitiés has gen-

erally been analyzed with‘a'théoretical‘éxpressibnwbésed on the

"»'*e&;uidi;étant ‘model (see Equation (14)) .~ Although an expression

- of this ‘type is usually referred to as a Fermi gas level densi-

ty, this is not strictly'true°sincé;the'equidistant model as
discussed eafliér'repfeSeﬁts{only a zeroth order approximation
to the single particle déqsity‘df a Fermi gas. The levelv
density~par;métérs'g”ldefined'after Equation (13)) and 5 
Kdéfingd“beIOWN“#afy with A but for a particular nuc1eus‘arév
assumed fo be’ constants independent of excitation energy. The
quantity 4 is anenergy shift which defines a fictive ground
state with réspect to the actual ground state. Hence, the
quéhtity E in Equation (14) ié replaced with an'éffectiveb
energy E*=E-A. .In most‘anaiysésvof'data A*is assumed to be a
pairing energy“(63,64,19)"(sée g$ection on Neutron Resonanqes).
However, in ﬁbre’feéeﬁt‘analyses of data, A is treated as an
adjustable pérameter includinébthe effééts of nuclear sﬁells

as well as pairing (42,65-68).
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'If'one-ad0pts the point 6f &iew thétig‘and A are adjustable
parametérs, it'ié sométimes'poSsip}éfih limi£ea'regions 9f
ex¢itation énefgy to apprOximat§ with géod §ccﬁra¢y level
éensitiés aséoqiated with non-uniform singie particle structures
with eq. i4.wﬁere a and A arevindééendent ofgexéitation energy.
Such é proceddfe usually fails, however; near ﬁajdr ciOsed
shells where a simple constant températﬁ;e-formula o

o (E) =I COnst. exp(E/f) - ' v"32.l
isbdftep beFter (42,69,70). _It*must,be emph&éized.fhatthese
simple forms‘of'the level dénsity.are approkimatiénS'which ﬁay;
not reproduce very well the level density of a nucleusxwhich
has marked étfucture in its single particle_ievels. Eveﬁ so,
_thevpresent'state of gxperimentalfdata is such that essentially
all analyses have been performgd with level density formulas
which contain energy independent parameters.

‘The third level density parameter détermined from expgri—
mental dataiis the spin cutoff.paraméter 02 which characterizes
the angular mémentum distribution of the level density.

Information on this parameter will be discussed in a later

section.



Neutron Resdnéndeé
Neutron'resonanCe:datg cohtﬁibute thé most extensive.
- source of infprmation on nucleaf levél_dénéitiesf In this type
of“eXperimept;fthe nuclear)energy levels.éréobﬁerved at an
energY'jﬁst exééeding the:neuﬁrbn biﬁdingIenergy and the
number of:;evels”afé obtained by codntihg the resonances in
a:particular ﬁeutron ehergy-in#ervai.' Ié'ié ﬁécessary_in
such'ekperimepts»that the width T of eéch‘lgvei be less than
the‘leve1 spacing‘D and thaf»the expefimental'fésolutidn i$
good enoughlt§'resolve individual leVe;s. The levelsvexcited”.
by neutron-rgsonance‘speCtrdscopy‘have narrowly selected values
of~angular‘homentum I and parity m guantum nuﬁbers.

.-‘Levelvspacing ihformatibn has been thained from slow-
:neut;On iesqnanée.(s-wave) data for about 200 nuclei. Average
' resonanceqspacings <DIkE)> and references to the experiméntal'
data-aregiyen in several compilations (16,18,19,71-74).

One of_the.importanF aspécts of this method is its applica-
bility'to‘the.entire rangé of A values across the whole-

1

periodic table. Hence, it is poSsible'to‘investigaté trendsv
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and sYstematiCs:of the nucleér'level dehsi#y‘ésfa fﬁnCtion of
A. Although thé ﬁechﬁique of peufrthtéthaﬁcé'spectroscopy
is.an extremely-important one in'termé'ofvlevel density infdr-
- mation, it.suffers from a number ¢f_§ources of experimentai
error. First ofvali,.the strength§ of.résbpanéés of a par4
' ticuié# spin:and p;rity.vary_grgatly:from one :eSonance to
another. Hence, from cross section meaéurements over a givén._
ehergy regiqn,‘one cannot be certaiﬁ that ali.the s—ane_reso¥.
nances have_been_detected. Secondly, if positi#e means of
identification have not been ﬁsed, one cannot be cert;in ﬁhat
some of the‘resonances detectgd are not of p—wgve charactef.b
The probability of obsgrving p~wave fesonén;ésuwith low energy
neutrons is greater forilightvnuclei and regions of A where
a ﬁaximum exists in the_p—wave strength function; Fortunately,
the above two errors are to a certain egtent compensatory.
Finite'instxumental resolution may lead to an underestimate
of the number of reéonances in cases where close-lying resonances
are unresqlved.

For a target with zero spin, s-wave neutron capture
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gives.ﬁhe depsity of»levéls:cf é sihgle‘angular momentum and
parity‘l/2+. If'the'ahgular moﬁentum'dependenée_of the level
density is giVen by Equation'(l4);vthetota1 ;eVel_density
p(E) is relatéd to-the.average'épacing between 1/2+ levels
5D1/2+> by; y

p(E) = 20%/<D 33.

172+
Authofs K16—19;29,73,75,76) havé tradiﬁiohalif_anaiyzea néutroﬁ
resonance data'with 1evel density'formulas df the-typé given
by Equétion (14). A recent compilation‘(29) df tﬂe lévéi
denéity parémétér g as a functioﬁ of atomic mass A is-shown‘in_
Figure (é); Each level densitykparametef in figure (6) depend;
upon’a knowledge of two other parémeters, o and A. Thelspin
cutoff parameter in*this analysis waé calculated from Equation (16)
whgre‘g<m?> is assumed qual to the rigid-body-mqment of inertia
$Vh2.* The'enefgy shift A was assumed equal to the pairing
energy values of Gilbert.and'Cameron (}9)..

One observes from Figure () that-there.is énboverall
incréase30fv§ with ih;reasingivélﬁes of A. Howevef,'ﬁarked

deviations occur from the straight’line where a=A/8, especially
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for A values near clésed'shelis. For ekaméle,:in thévvicinity
of the.Z=82'and N=126 shells,»g'valueS>are'mqre than a factor
éf two smaller than those_of'nearby nuclei; ;Su;h irregularities
are aSsoéiated with shell structure of thé single pérticle'
.spect:um near the Fermi enerqy and have been d;scussed by a
number of authors k16,17,i9,29,72,73;75;76). Gilbert aqd.
Cameron (19) have élso»appiied.a‘composite_nuélear—level.v
depsity formula with shell corrections to the neutrqn

resonance data.

There afé also.other difficulties in the determination
of level densiﬁies byvthevngutrOn resonance technique. When
the aVéragé séécing is large and few resonances are obsérved,
there ié a source of uncertainty of a s?atistical nature
that is due_to the irregularity in spacing between individual
levels (72). The calculation of the total.level density
from the density of levels of é single spin and parity
requires a knowledge of both the angular momentum and parity
dependence of_the level density. At the neutron binding

energy, calculations of the ratio of positive.to negative



parity levels for some nuglei sﬁgw that £hi; quantity varies
cqnsidérably from.unity (44) . Fiuctuationsjin the dénsity

of levels Qf a particular J and = are-exéécted to oécur

due to nuqléaﬁ shell structure; Hence) for égch nuclei the
density éf 1/2+ levels at the neutron bipding ehérgy may not
give a true representatibn'of ﬁhe tota1 levg; dgnsifY.
Capture of s-wave neutrons inltargets'bf non-zero spin

leads to the excitation of levels of two'classeé with angular '
momenta differing by one unit. This makes.the interpretation
of such'data‘more difficult.

The neutron resonance data gives a measure of the.density
of leVels'fdr a single parity and one or two values of angular
momentum in a single energy region just above the neutron
- binding enefgyi The level»density parameters extracted from
these data by Equations (33) and (14) do not necessarily
hgve géneral applicability, especially in regions of higher
and lower'excitation energy. This subject will be discussed

in later sections.
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Charged-particle ReéonénceéA'

Information on the density of levels of restricted angular
momentum is obtained ffdm charged.pafticlé capfure resonances
in the samg'way as described for neutron captﬁre resonances.

In addition to the requirement that r<D, the:charged-particle-
resonance dafa aré restricted to light and medium nuciei

due to’ﬁhe Coulomb barriéf. One‘of the heavier targets

64

studied by this technique is "~ 'Ni. 1In this case, for ex-

ample, the capture of 3.11 to 3.28 MeV protons on a target

of 64Ni has led to the identification of a number of s-wave

and p-wave resocnances (77) in the compound nucleus_GSCu.

From the density of observed resonances Pres’ the total

s
density of levels p (E) is calculated from the relation

bres = (B) 2_ [(21+1)/40%lexpl-(1+1/2)%/20%]  3a.
I,n o '

by summing over the spins and parities of the resonances.

In some cases considerable error may arise due to the assump-
tion which is made about the % waves contributing to the
total numbe; of resonances. The other uncertainties in the

determination of the level density from charged-particle
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capture resonances are similarv£o those'discuésed’previously
for neutron capture reSonanqes.

‘The étudonf Charged;partiéle fesonances giVes'ievel
dgnsity information for a ngmber_of huclei which'qannot be
studied by neutron resonance spectroscopy. A compilation
- of such data for a number of light nuclei has been published
by Endt and van der Leun (78). ‘Some nuclei have been studiéd
by more than one reaction. For example,_levéls ih thé compound

28 .. - - L IR
nucleus Si have been observed as resonances in the

27Al(p,y), 24Mg(a,y) and 27Al(p,a) reactiéns.’ This data has

- been analyzed to give the total number of levels in 28

Si in
the vicinity of 12.5 MeV (67).

Receptly, a high resélutionlteqhnique has been developed
and used in the measurement of protoh excitation funcﬁions
for even-even targets in the mass region 40§A$64.(77,79—86).
With protons of energy between 2 and 3 MeV, a resolution'of
approximately 400 eV has been obtained for thin solid térgets.

Spins, parities, total and partial widths of the compound

states are determined. For even-even targets, s-wave protbn
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capture excites 1/2+.cpmpound levels. Level densitiés‘in the
compound nucleﬁs‘(E=Bp+Ep)'ba$ed on fhe l/2+ reSon;hces are
consistent with other level density'data (87)f .One of the
unique featuresrexploited with'this techniqﬁe is the study of
~fine structure of analogue states. Since the analogﬁe stgte,
T, ., mixes tq some-aegree with the T, levels of the excited
compound nﬁcleus, the number of resonances one‘obsefves is
‘a function of the density of T, levels which have the same
spin and parity as the analogue state. Since'fhe p;oton
bdmbarding energy is low, few p-wave resonénces.are observed
for nuclei in the mass range 40 to 64 except at energies in
the vicinity of an analogue state. In the energy region of
an analogue state, the strength of the T  state is shared with
the T_ background states. The widths of the T_ levels are
sufficiently enhanced to make a number of them experimentaily
observéb%e. Even so, an examination of the p-wave resonances
(1/2° and 3/2 1levels) in the vicinity of an analogue state
indicate that there are too few such resonances relative.to

the number of s-wave resonances (1/2+ ievels). If all the
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1/2+ and 1/2_:1¢Véls were gxcited-asvs— andAhWa#e feﬁbnan¢e§,
it would bé.§635ible to heasure directly ;he~poéitive to
negative pa:ity ratio of fhese lévels..
- Inglastic Scattering.and Nuclear Re;¢£ions
to Resblved;LeVéls
- Level density'information from neut£0n and charged-particle

resonénces as described in the above sections is»limited
to_energies.exceeding the appropriate binding energy. These
levels are.in-the'COmpound'nucleus aﬁd they'are separable
due to high-resolution experimental teéhniques. A large
number of levels-have been studied also in residual nﬁclei
at lower;energiesvby excitation through ineiasticvscattering
-and a~var;ety>of other nucleaf reactions. Theiresolution
‘obtained in these experiments is orders of magnitude poorer
than that achieved with s-wave neutron spectroséopy, A
typical resolutiop obtained with a Van de Graaff acclerator
and a magnetic spectrograph is of the 6rder of 10 keV for
energetic charged particles. With such equipment, it'is

possible to study isolated levels up to an excitation energy

of approximately 5 to 6 MeV for a nucleus with atomic mass
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arouné 60. The résolution qbtainable by;these ﬁechniques may be
improved: to approximétely 1 keV in the near fututé (88) and‘thié
will make this téchnique,morg_éttractive,

Typical nuclear reactions whiéh haﬁé beép émpldyed to study
levels at low energies are the (p,p'), (n,n'),.(a,a') and (p,q)
réactions. Although a number of‘leveis havé been stu&ied with
(d,p) aﬁd_(d,t)»reactions, these andvother similar direct re-
actions are more ;ikely not tpjexcite all the nuclear‘levels.

If this technique is to be used for accurate‘level_density in-
formation, one must be assured that levels of all-ahgular mo-
menta are ekcited. For qompound nucleus’reactions; the relative
cross sections for populatingvlevels of different i can be cal-

culated. Results of such statistical calculations are discussed

5 59

in ﬁhe literature (89) for the 6-Fe(p,p') and ~ Co(p,a) reactions
for 11 MeVv proﬁon bombardiﬁg energy. The relativé intensities
for exciting low and high angular momentum levels by the two re-
actions are very different; The relative cross‘Section for_ex—
citing high spin states such as I=8 states is still large for ﬁhe

59Co(p,a) reaction. On the basis of the spin dependent
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level ‘density given by Equation (14), and a spin cutoff factor
of 3.7 for *®re (90), one calculates that only a very small

percentage of thé levels have I>8.’ Hence, by choosing the

appropriate reactions it is pQésiblelto excite ‘essentially

all the.nuéleatA}eyels. The levéls in the 56Fe(§,p') re-
action (89) above 3 ‘Mev 6f excitétion energy are shown in
Figuré (7). Levels 8 and 11 are.vérvaeakly excited,.however,
these levels are more strongiy»ekcited in thé»SQCo(p,a)
_‘reaction‘ahd must have I26.
With this method, a second question must bé_raised about

the fraction ofblevéls Whiéh lie so near andther level that

. . : . o
the'pair'is unrésolyed'due to the finite experimental reso-
‘lution. It is true that at sufficiently high exditation
energies the levels are unresolved, but hqw can one éstimate
the number 6f_unresolved pairs of levels at lower excitation
energies? The spacing between adjacent levels hévipg the
séme sbin and parity is distributed relative to the meanv
spacing according to the Wignér distribution given by (91)

 p(S/S) = (vS/28)exp(-152/a8%) - 3s.



a2
where S is the 'spacing épd S thé é&eragé'Spacing between
levels.  This distribution‘hasra déficienéy.of'émall épacings.
If on the other hand, levels occur.in a.§om§létely'random
way, Qng obtains an exponepﬁiai distribution given by,

P(S/5) = exp(-S5/8) 36.
which has a maximum value fdr (S/§)=0. In the'present‘case
wherg we are‘dealing with levels of mixed spin.and parity,
Wigner proposed that these levels of different spin and/or
parity are not'injany yay‘co;related in position.! The re-~
sulting distribution of spacingé from a sequence of levéls
which is a superposition of sets of different spin and/or
parity has a shape i;termediate between the.wigner_distribution
-and the equnentiai distribution. The theoretical distribution
of spacing reéulting from the random superposition ofva
number of unrelated sequences, each of which has a Wigner
distribution, has been derivedvby Rosenzweig and Porter.(92).
For a spin erendent leyel density given by Equatioh<(l4) and

levels of both parities, the distribution of spacing apprbaches

the exponential distribution even for rather small values of
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¢ (93). An analysis of the expérimental spacing distribution
for 622 levels with 5230 keV has been made (93) for levels in

40

nuclei 6ar (94), *ar (94), ¢§ <95), 4586'(96); 7y 91, o1y,
%cr (98), v (99), 52Cr'(39,98),.53Cr.(98),‘54Cr (98), >re
(106);)55§n (89),.56Fe (101,102),‘§7fe (103), 58Fel(¥03),

900 (101) . and zn ( e

Co (101), and ~"2n (89). The experimental data fit an

'exponential‘spacing distr%buti;n as sgowq.in Figpre,(S)i"
If»the experimenta% rgsolution is known, it is possible to

use the expphential spacing distributiop léw to cofrect the
experimental level'dgnsity for missgd levels due to unresolve&
levels with Spacingsbless than the gxperimental resqlution
(éé, ib4)::‘At 5 to 6 MeV, the correctign for a nucleus with
,Aﬁsd ma? ;péréaEh 50%.

Compilationsqqf the.energies of'nuclear levels and in
some cases information on their spins and parities are pub—‘
lished for a mumber of muclei (78,105,106) . The use of level
densi£§ counfihg infbrmation at }ow energy in conjunction with
particle capfure resonance data giyes a mgre critical.test of

level density formulas. 1In the calculation of the values of
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a plotted in‘FiggreIG), the greund state gf tﬁeeqdd;bdd nuclei
served as theifictiye ground'stete of the Fefﬁi Qase The
excitatiop_eﬁetgies-of the odd A and.even-ev¢§-A nﬁclei were
reduced (29) by the appfopriate pairing éné;gy of Gilbert
and Cameron (19). Such a'fermulatieh ef the 1evel density
is inadequete'to»fit both thelloﬁ'exCitationvenergy (level
counting) end partiele capture resonance data; A'better fit
to all the data is obtained if the level density:parameter a
‘and the energy'shift A, which defines e fictive.groupd state
with respec£ to the aétual ground state, are treated as ed4.
justable pafameters. Except in the neighbofhoed.of clbsed-'
shells,'the experimental level densities are best fitted with
an energy shift corresponding to avfictive grdund'stete of
the Fermi gas being located between the actual ground states
of the even-even and odd A nuclei (65-68,i07). This model
has been referred to as a back-shifted Fermi,gas model (65,67).
Values of effective level density parameters a.ff and Aeff
have been determined from state density calculations (42)

which use Nilsson single particle states by fitting the
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.theoretical lével_densities withja formula sgéh as Equation
(14). Such calculations'give effective values of,é apd A in
reasonable_agfeement with the experimentally»determined

values (42).

'Specérum of EvapOtated Particles
“The énergy and angular distribution of particles emitted
from a éompéund nucleus in.a nuclear reactiqn ié given by
(10s-112),
ffiigiigl = gf; BL(eb) PL(cosé) ' , - 37.
« de, A = : .

>™"b even

The function BL(eb) is given by |

(21_+1) " L2i_+1)7t k72
_ a a a
' S rsbr le' rlblI
Sa Sb 2
(-) (e ) T (E )Z(l I I S L)Z(JL I2.I;S L)p(E ' 1)
b b b’"b 38
G(I) .
and G(J) is given
S, ,+i
b 'max [} b'
A b' .
G(I) =Z( ; Ty (g (Eb,,Ib,) 39.
. .b' o "zbnl IS b'l

The quantities I_,i_,I,I,, and ib.are the spins of the target,
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projectile, compound nucleus, resiauél-hucleus,‘and'thevemitted
‘particle, respéctivelf; Sa ;nd SE érejﬁhe éhanggl Spins i#

the incident and outgoing channelé, respéctivé;y; 2% agd L, are
the orbita; angular momenta of ﬁhe_incidgntfand outgoing par-
ticles; respectively;‘ka is the wave number of the incident
particles;va(cose)'is the,Legendrévpolynpmial'of'the_order L?
Tza(ea) and,Téb(eb) a;evthe transmission coefficients.for the

projectile and emitted particle,'respectively, with the channel

a and €y (the channel energy ¢ is defined as the

energies ¢

sum of the center of mass kinetic energies of the emitted

particle and recoil nucleus); Z(laIZaI;SaL) apd_z(zblzb

I;SbL)
are the so-called Z coefficiehts and.aré defined-as the product
of the Racah coefficient W, and the Clebsch-Gordan coefficient
(£200;L0) as
Z(2I2I;SL) = (20+1) (2I+_1) (2200 |LO)W(2ILI;SL) 40.
dne of the properties of thg Z coefficients is tha£ they
vanish unless 22+L is even.r This means that L must be even.

This property has the'consequencé that only the even order

Legendre PolYnomials‘PL(cqse) are present, i.e. the angular
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distribution ié'symmet;ié'around 90° in?the cénté;'of mass
system,vAThg éuantity pb(Eb,Ib)’is tﬁe'energy and spin depen@ent
.level density 6f the residﬁalfnﬁcleus formed by‘the'emission
of particles'b’with éhannei energy.ebf.and the primed éuantity,
b" refers:td the different types of emitted Pérticles. The
sums in.thé numerator ¢an be perfofﬁéd independently with
respgct:to the:quantum numbers za,zb,I and_Ib:since the 2
‘COefficients'yaniéh for cbmbin;tions of thekqganfum_numbers
which violate #he ¢ogéervatioh of angular momentum.

_Thefghergy dependent differential cross section is Qb—
tained by in;egrating Equatién (37)‘0vér ali angleé. Only the
term with L=d contributes to the energy dependeht differential
cross Section si¢ce‘the higher ofder’Legendre polynomials
vapish’when inﬁégrated over the golid ahgle.

The pféduct: of the Z coefficients
:eqdceé to_a Qery simple form sinée er L¥0 the Clebsch-Gordan
‘and the Racah céeffigients have the form -

(£200]00) = (-)“//f2z+1'

'W(ILIILI;‘SO)" = (=)57F I/ /al+l)(21+1)
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and L must bbeY'the tfiangular

Noting the fact that_za,zb

relationship and that integration of Equation (37) over dQ intro-
duces a factor of 4w, the energy distribution of the evaporated

particles is given by (87,108,113)

b(eb)

If one assumes that the spin dependent level density has
a (2I+1) dependence, p(Eb,Ib) = (21b+1)p(Eb,Ib=0),'then
Equation (42) reduces to

ddab(eb)

. = K ob(eb)'eb pb(Eb,Ib=0) 43.

b
Substitution of the spin dependent level density given
by Equation (14) for zero spin levels into Equation (43) gives

dop, (ep)

deb

B | __'-2 - /
= K ob(eb) €y (Eb+tb Ab) exp{Z[a(Eb Ab)] . 44.

where K' is a new constant for a pa:tiCular bombarding energy.
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From Equation (44),'the'valueiof”#he.Fe;mi gés constant'é
can be.détermined from the slope of'thefstraightbl;ne obtained
from a'plot<of‘

In{ [do (s)/ds 1 (B, +t, -A ) /e c (e, )} vs. (E -4 )1-/2 45.

ab'"b b b b "b° “"b b b’ b "b

where the pa#émeter‘n=2; If, oﬁwthefother hand, the constant
.temperatﬁre iéﬁelwdénsity is subétiénted.ipto~Equation (43),
thevééhétant témpefatﬁre Tb:mﬁy be obtained from the slope of
thé séfaigh£ iiﬂé éiven by a‘plbt of

1nt’[a‘aab'<;b>‘/a;bi (B +ty-8, )%y o (ep)} vs. Booa .
wh;re thé p&ramét;r-m;l/z. 'fhe latter plof can.equallvaell
be méde as a function of'Eb.

A largefnumbef éf particle spectra inéluding those from

the (n,n'), (p,n), '(o_t,n.),f (n,é), (p,p'), (p,a), (n,é), (p,a)
and.(;,a')fréécéioné havé béeh anél?zed to determine infor-
mation oﬁ ié§e1 densitieé (65,70,8%,107,114—171). Most of
thé spécﬁré”have been analy?éd with Equations.(45) and (46).
The Qaiuesibf n ﬁsed in Equation (45) have ihcluded 5/4, 3/2

and 2 cbrrespondinq to the use of the state density, the level

- density and the level density of a particular angular momentum,
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respeciively.' In'addition; some authors h;ve s¢£vn=0 which
assumes tha£~theApreexpOnential.terﬁ in the level density
formula is ipéignifiCant in"terms"ofxthé}ovérall‘exponential
dependence of thé level density on E.

In orderltd illustraﬁe.the.dependenée of the parametérv
a on thevvalue}of”h-when spéctra'are analyzed with the
.Weisskopf type formula_given by'ﬁquation (45), we show such
6

analyses of theoretical spectra (87). The 3Cu(p,p')63Cu

- and 60Ni(a,d')60Ni spectra were calculated with the exact
statistical theory including angular momentum given by Equa- -

tion (37), employing level density parameters a=6.8 MeV—l,

A=-0.5 MeV and 5.8 MeV *

,'A=0.5 MeV, respectivély (and rigid-
body moments of inertia). As shoﬁn in Fighfe (9), the
approximatevslépe_technique of Equation (45) gives a different.
valué of a for each value of n. The value qf.n needed to
reproduce £he.input value of a depends on the reaction type,
with smaller values of n required'for (¢,a') reactions than_

for (p,p') reactions. The value of n needed to reproduce the .

actual value of a depends on reaction angle also, especially
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'f&f reactions where large I Vélﬁes.are éxgitedi

Level dénéity ﬁarameteré'in.the litefatufe which are de-
duced from the conventional anélysié of épeétga'(Equation
(45)) with Vaiués of n'rangingffroﬁ 0 to 2 ére subject to
sizeable errdr§. 1The errors in é are up to 50§‘depending on
the value'of'ﬁ: The slope technique requires also a knowledge
of & andvthié'ieads to further ambiguity in £h¢ derived
vaiue.Of éf The experimental $pectral data are usually not
sﬁffibiéntly'accuraté to distinguish between a constant
tempefaturéj(Equatibn (32))vand Fermi‘gas‘(Equation (15))
type of levél aensity. In some cases, the values bf a
déiiVéd from (n,ni) spectra are a factor of‘two different
‘from thésevdérived by cher méthods. Thege discrepancies
appear to bé;related to experimental difficulties and the
methods of daﬁa analysis.

Thefe is evidence for some nuclei, however, that_the
level density is increasinngith energy in a way predicted by
.the fermi gas model. For'example, the neutron spectra

10

from the »3Rh(p,n)103Pd reaction (133) show an increase in
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temperatﬁre with inéreasing bombardiﬁg éﬂgrgy: .if.ﬁhe energy
range of the emitted’neutrons is_képt fixedvﬁith'increasing
bombarding.energy,Fﬁhe spectfa’sample regions'of ipcreasing
energy in the residual nucleus. - The results of theoretical
spectré calculated with‘Eqﬁatioﬁ’(37) aﬁd analyzed with the
approximate Equatibn (46) are shoﬁn in Figﬁre (10).vahev
variation of temperature with bombarding energy is in excel-
lent agrgement.with experimental ;esults analyzed (52) with
the samé ap?foximate Equation (46) and supports an energy
- dependence similar to that of the Fe;mi gas level‘density'

(Equation (15)).

Evidence exists also in support of a constant temperature
type 1evei densit§ at low excitation energy,:especially for
nuclei in the viqinity of closed shells (42;52;69,70).

Several analyses have been made on portions of evapor-
ation spect;a corresponding always to the saﬁe range of
ehergy in the residual nucleus for different incident energies.
In this case, a variation in the lgvel density parametér with
bombarding energy is not expected and impliés some error in

the analysis procedure. Bodansky (151) has reviewed some
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of~the‘explaha£ions'f§r the dbsérveq increase in temperature
with incidént’énerg?. As the incidentvenergy_is‘increased,
there is-an}incregsga probabili£y of'particle emiésion before
thermal'equilibriﬁm is establiShed 6r'preequilibrium emission
(172-175),  ThiS'leads to a hiqher pércentage of high energy
particles‘in:such spectra.: Sgcondly,'observedvcrOSSgsectiOns
depénd not qnly on the'level'density'but‘alsovonvthé.inverse
cross-sectioné which may be in error. Thirdly, the
conventional'analysis with the Weisskopf formula.producés
the effect dfﬂa higher temper;tu;é because thé angular mo-
mentum is igndred. In some cases at least,'the observed
Avariatiqn of level density parameters with.bombarding,energy
cannot be-entirgly dué to the peglect of angular momentum,
and must pe due to one or both of the other two.factors.'

-As;alxeédy indicated, erroneous values of the level
density.parameter a may be obtained when nﬁclear evapofation
spectra are analyzed with the ¢onventiona1.f9rmali3m that
does not ex?licitly take account of the spin depgndent

level density‘ The apparent value of a from a reaction Spectrum
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depends both on the mode of fprmation of the compound nucleus
and the type of partiCie emitted; 'Thi§'makes it-difficult
to extract a meaningful‘va;ue of a from a single evaporation
spectrum with the conventionél theo;y;.‘Recent}y, the level
densities of several puclei.with mass around.A=60 have been_
studied by measurihg spectra.from several,sﬁitably éhosen
reactions which populate the same résidual nucleus (87,160,
161) . Such studies give a more stringent test bf the validity
of the varibus approximate formulas and show the neéessity
in a number of cases of gmploying the exacﬁ statiStical
theory with angulaﬁ momentum in evaluating the level density -
parameterf demparison of (p,a), (a¢,a'), . and (a,p)
spectra give the same level density parameter'wher%is the
(p,p') spectfum leads to a smaller wvalue of E‘(87,160);
This may be understood in terms of a contribution of pre-
equilibrium protons in the (p,p') evaporation specﬁrum
leading to aiharder spectrum and a smaller value of a.

In mdst‘analyses of reaction spectra by the conventional

slope technique one obtains only the level density parameter
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a. Occasionélly,'the'absolute level dehs@ty’is obtained»by
normalizing “the ievel density;in a:particular_iQW energy
range to thé=khown number Qf'1e§els in this.engrgy_region
,determined;by high—résolutioﬁ @agnetic spectroscopy (165).
"Exéitatioﬁ Functions of'iédléted Levels

“"hbsoiﬂté‘cross sectiéns for formation of iéolated re-
sidual levéléfin compound nucleus féacﬁions can be used to
dete:miﬁe nﬁéléar_leVel densitiesv(GS); This was first
‘pointéd out by Ericsoﬁ (6). Since the cross séction'for
wféfmatibﬁvbf'any particular level (or levels) is governed:
by.the boﬁééfiﬁion of decay probability thfough this selected
reaction éhahhéll(or channels) to that for'aii other channéls,
the number §f cbmpétingfchahnels.cén be detefﬁined'fﬁom the
cross sécﬁidh of é’single ch;hﬁel. Measurements of the abso-
lute drosé'ééétibhs-for isolated finalrléVéls as a function
»of'bdmbardihg energy héVe'beén used to détérmine the energy :
-aépéndenéerénd absolute»ﬁalueé of.the leVél densities of the.
fesidual nuclei’(65). Iﬁ'the'limiting case wherevoné type of

exit particle dominates (usually the neutron channels), the
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level density éf a singie nucleus is obtained.

| According fo the Statisticél‘theory of hucléafyféactions,l
the differential cross sectiop for‘a reactionyleading to.av.
final statg.with.angular.mémentﬁm IB’ parity ié and excitagibn
.energybEB in the residual“nucleus'B,,can be efpressed'by
Equatioqs (37)vtoi(39) where the level density‘in the numér-
ator of'Equapion (38) is replaced by a‘singlg leQel. The
excitation function of thé single level (or levels) is
fitted_with different choices of the level denéity.parameters
for thevother exit channels in order to give the best‘agreemeht 
between ekperiment and‘theory} In ordgr to fit both the
;bsolute value of the cross‘sectidn and its energy dependehcg-
with a Ferﬁi ggs.type level density, both a and A need be
adjustedA(GS). Hencg, this technique has some intrinsic
édvantages and giyes an absolute measure of the level density.
On the othgr hand, the technique suffers frém the expénentially
decreasing cfbés section'with energy of a single level and the

possible admixture of direct reaction particles. Improvement'v

in statistical accuracy can be attained by examining
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the energy”depéndence-of_the-crdss séétiQn'of'mahy final
leVels'(143,144). ~ However, othér uncértaiﬁtiés’in the analysis
offset the advéntage gained by Bétter statistics.
EricsonvFluEtugtion_Wiaths

A ﬁum@ér of nuclear réactiqn cross sections have been
measured wiﬁh'good eﬁergy résolution at é cqmpOund nucleﬁs
excifation energytof appréximately’zo MeV..vTheSe Cross sec-
tions fluctuate markedly as a'function of projectile energy
and have beeﬁ:e#tensively anélyzed in terms of statistical
r;heopyff/Fgr the energy region where the aVeragelleVel width
T is_la;ggr than theiave;age spacing D bétween compound huclear.
1evels( I is obtainable from coffelation fuqétions of the
f;uctuatihg‘cfoss séctipns;'AThis éVerage width T of the com-
pound ;tatgs i;_related by statistical theory to a sum of the
partial widﬁhs of all the exit channels,

_(E)/2m) G(T) | 47.

rp(E) = (b

where G(I) is defined by Equation (39). If the width T of the
compound nuclear states is known from cross section fluctuation

measurements and information on the exit channels is known from
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other measufements, the 1eve} dehsity 6f~thé»¢ompound nucleus
at a high excitation energy of;approximétely'zb MeV is obtained
(65,66,107,176,177) .
Substitution of Equation.(4i) intququatibns (37) and

(38) and making some simplifying assumptions gives,

do | x>
ab(I 7 ,E.,8) T (E) - _a .
do "B’ B'"B’ DOZES Am(2I,+1) (2I_+1)
m, .,S82-81 -
6, (-1) Ta1. (e.) b1, (e.) Z1%2Py (c088)
. 1'°1 272 _ 48
| ~ ) .
S1117:8571,,1,L (21+1)exp[-1(I+1)/ 204" ]
where D (E.) is the spacing of zero spin levels of one parity
. o,m °C

and’cc'is the spin cutoff factor of the compound nucleus at

excitation‘EC.

The width T'(E) is now defined as a weighted -
average over the width FI(EC) of the various coﬁpound_spin
states. The above weighting factors are dependent on exci-
tation energy, angle 6, and the spin and parity of the final
state. However, the influence of these factor; on T'(E) is
rather weak and Equation (48) is quite a good approximation.
The right-hand side of this equation depends on the qﬁantum

numbers IB and.nB of the populated level in the residual
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nucleus, transmission coefficients of the entrance and exit

channelé and the spin cutoff factor o, of thé-compound nucleus.

C
As information exists on all_thgse_quahtities, it.is possible-
to.évaluate;the‘right-hand ;ide ofiEquation (48);’ The quantity
r(Ec)/bo(Eciicén thenbe.cbmputed:as.é function of excitation

energy EC if ﬁeasurements of dcab/aQ(IB’"B’EB'e)_ére évailable.
Values of‘P/ﬁo.for the compound nuclei'SGFe and GdNi'érg-piotted
in the Literatﬁre.(GS) as a functioﬁ of energy for both rigid-
‘and half-rigid-body moments ofvinertiég .The-quaptities D, (Eg)
and_p(E)cﬁcan}be calcul;ted from the'values_ofﬂP(EC)/Do(EC) if
independent.khoyledgeiof the level width’F(EC)-as a function of 
energy-i#_avaiiable,

Level density results from this technique for ekcitation
energie$ near 20 MeV are published (65, 66, 1?6, 177) fqr'Several‘

nuclei. An example of such results for 60

Ni is shown in
Figure (11). Presently, this is the only method which gives
~information On-the level density at such high excitation energies.

References to the original literature on fluctuation widths

are available in review articles (178f180).
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Compouhd_NuCleus Lifetime apd‘Level beﬁéity from the
Bloéking Effect
Severa; measurements have been repérted Of-thezmean
compound nucleus lifetimes based on'the_blockiﬁg‘effect of
inelastic charged particles in single:crystalé_(181-183).
This technique offers a method of‘determihiné ;ifet;mesin

the neighborhood of 10717

seconds. If a small number of final
states are exciteé with known yields, it is.possiblé to calcu-
late the density ofvcoﬁpouﬁd levels from such lifetime
measurements'with the Hauser-Feshbach ‘l}O)&SFatistical ﬁheofy.
'Furthermoré, it has’beep~obsefved that the final stété SPins_
affect the effective lifetimes in a manner which'canvbe
understood on the basis of selective contributibns by the -
various cbmpound nuclear angular momenta (184).
Spiﬁ Distribution of thée Nuclear Level Denéiﬁy

A property of the nuclear level density which is of great

general inte;est is its spin dependence. The angular momentum

dependence is explicitly contained in Equaﬁions-(lZ) and (14)

through the quantity 02, which is called the spin cutoff
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parameter. vThe_Simple form of the spin dependent level density
given in these equations'is expeCted,tb fail for largebvalues
of the angular momentum. Hence, theexperiﬁentelidata dis-
cussed invthiS-section is limifed to systems with relatiuely
small values of angular mementum."Information en the density
of levels with Vefywlarge‘uelues of anéular momentum may be
obtained~f?om'EquaticnS”(G;B)Q

Infermatien about 62~c6mes mostly from a) isomer raﬁiov
measurements‘1185,186), b) angular distributions of particles.
emitted’infeompound nucleus réactions'(112,165;90,176}143),
c)fénaIYSiS'of leﬁelé'of known epin; and d)‘particle capture
to levels' of two or more known spin values (187).

The'uhcerﬁéinties'involved in the derivation of the spin
cutoff factof”from‘experimental data has oftentimes led to
results which are subject t0'large'errbrs. These experimental
values df?oé*heve been interpreted invterme ef Equation (16),
where the moment' of inertia ie'allowed to take on values less
than the rigid-body value. Autho;s.in reporting the fractional

decrease of the rigid-body moment have used different values
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of the radius parametefs. For éxaﬁple;'a rigid4body'ﬁoment
of inertia“éomputed on the basis of a ;édiusvpéraﬁeter of 1.2 F
corresponds té only a 64% rigidébody mément on the basis ofv
a radius parameter of 1.5 F. ‘For AilQZ; the exPerimental o
values arefﬁell represented within tﬁe large §xperimental
uncertainties by Equation (16) with a rigid-body moment'éf
inertia-(R=l.2’A1/3F). The liﬁifed amoﬁnt 9f ipf6fmation bn
heavy nuclei indicatéé thaf o remains almost constant for
A>100 (léB),, Near A=200,-the moment of inertia‘may be reduced
in some cases to the extent of half the rigid-body va1ue.

Comp#rison of the experimental values of ¢ with theotét—.
ical values bésed on Equation (16) is not too meaningful for
particular nuclei ip that no account is taken'of'Specific
structure in the single particle spectrum. Comparisons of
experimental o values with those predicted fqr :ealistic sets
of singlg particle levels are now being made (90). Examples
of such comparisons for 56Fe and 59Co are shown in Figure (12).
The solid lines are based on Nilssqn single particle lévels.

56

The dashed line for Fe is calculated for a set of single
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particle levels based on a potential very similér to that of
a Woods-Saxon potential (189). TgébdoﬁfdaShéd curves are
based on ﬁhe rigid—body'momenfs of inertia. The experimental
data for these nuclei is in good agreement with bbtﬁ theoties.
However, in evaluation of 02 froﬁ'Equation'(IO), one observes
strong effects due to the particular orbits near the Fermi

56

energy. At low energies for Fe the proton contribution

(unfilled £ orbital in the ground state) to 02 is

7/2
essentially twice the neutron contribution (unfilléd p3/2
Qrbital in the ground state). It is obvious that‘shell
structure.Will influence the spin dependent_lével density in
some regions of A so .that the values will deviate markedly
from the prédictions of Equation (16) based on the rigid-
body moment of inertia. For example, experimental'measure-
ments on ngclei below lead indicate that o is approximately
4%1 in the vicinity of the neutron binding energy (a value
much smaller than predicted by Equation (16)). Calculatioﬁs

based on various single particle level schemes give similar

values for nuclei at and just below the double closed 2=82,
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Nél26 shell asvshown in Figure'(2).-Aiﬁgge daicuiations do
not includé pairing which in some cases réducés conSiderably
~the valué of’oz; In'conclusidﬁ;_it appéars that our present
_exper;mentalbinformation on the spin depehdent.levél density-
can be qﬁaiitatively understood in terms of nuclear shéll

structure.
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FIGURE CAPTIst -

Fig. l;- Thééfétical 1éve1»densities as a fgnqtidn of excitation
energy for nuélei in‘the neighborhéod of thev208Pb ddubly
closed.shell (Ref. 40), Thé Nilsson shglivmodel has
been used to obtain the #phéfiéal sef df sing;e particle
levels.

Fig. 2. Theoretical spin cut-off parameters 02 as a function
of excitation energy ?or nuclei in the.zoan fegion (Ref.
40). The calculations have been perfofmgd on the basis
of the Nilsson diégram.

Fig. 3. Energy.intercepts AE ofvtﬁe tangents to ﬁhe function

| S2 vs E (left scale) for the nucleus ;24Pd; proton chemical
potential (fight scale) as a function of excitation
enefgy (Ref: 57).

Fig. 4. ContOuf ﬁap of the gap parameter A as a function both of
temperatu?e;T and ahgular momentume. The spacing in A
between_two successive lines is 0.05 MeV from A = 1.0 MeV

at the origin to A = 0.1 MeV. The outer line corresponds

to 4 = 0. The calculation has beenAperformed on the basis

v
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‘of-the'equidistant'mbdel.'_The density of'the;dbubly-

&ﬁ degenerate sin§le particie.stateS'ié 7‘Mévf1 and the
'spin'pféjécfion of thé Singlé pértic1e léles isbzﬁ (Ref. 47).
Fig. 5. a) foténfial énérQY'asxa funcﬁion of defqrmation fqr
“the nuélgus 172Yb; 'Thevsolid lineifep:gsénts_the pre-
dictidn'éf the liquid drop ﬁodei, while'the dotted line is
calculaﬁéd‘frOm fhé Nils$0n model and theﬂStrutinski
procedu#e" b) Natural logarithms of the défdrﬁation
prdbébiliﬁies for 172f£”at ekcitation energies ranging
from 6 Mev to 60 MeV (Ref. 49).
Fig. 6. Level density parameter a as a functipn_of’atomic.
' mass A'(ﬁef. 52).
Fig. 7. .Spectrﬁm of'ﬁfofops inelaStically.scattered'ﬁrom SGFe.
The numbered lines'represent excitéd levels in 56
v(Rgf. 101 ) .
Fig.'g. Experimental spaéihg distribution for 622j1§ve;s with
S>30 keV;-'The data for‘(S/g):Q.ZSvgre ngrﬁalized to and

cdmpared with an exponential spacing distribution (Ref. 93).

Fig. 9. Dependence of the level density patémétef‘g,deduced
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from_the_cqnventional:app#oximgtg.theory Qn,the.parameter
‘ni[seg gquation_(45)].: T#e!theo;e;icél spectra gpalyzed
ip th%s figure'are.calculatédIWith Equétions)(37f39).and
a 1evel.dgnsitylbf the_forﬁ given by Equgt;qn (l4).’ The
ipput valugs of_g uggd‘in‘the cqmputationvo# the theoretic;l

1

~ spectra are 6.8 and 5.8 MeV - for the residual nuclei

60

63 Ni, respectively (Ref. 87).

Cu and

Fig. 10. Analyses of theoretical neutron spe¢tra from the

10

3Rh(p,p);q;Pd peaétidn with the approx%mate constant
temperature theory. The_theoretical spectra are ca;cu-
1;§§d yitb Equations (37-39):and analyzed‘with quation
(46) . ?he theoretical and experimental temperatures-are
sﬁown as a;functiop of bombardiﬁg energy“(Rgf, 52).

Fig. 11. Plot of the experimental level density of.60

Ni as a
functiqn-éf excitation energy (Ref. 87);

Fig. 12, _Comparison’of theoretical and'experiméntal values of ¢.
The solid lines are based on Nilsson single particle levels.

. The dashed line for 6re is calculated for a set of single

particle'levels based on a potential very similar to that of
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a Woods-Saxon potential (189). The dot-dashed lines are

based on the rigid-body moments_of ineftia'(Ref. 90).
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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