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Abstract 
Deep convolutional neural networks (DCNNs) have been 
found to demonstrate hierarchical mapping to human brain 
regions on tasks such as object recognition. However, it 
remains unclear if such hierarchical mapping also applies to 
action recognition, which involves dynamic visual information 
processing. Here, we compared action representations of two-
stream DCNNs to the human visual system. Five visual areas 
that are associated with object and action processing were 
selected. Nine human action categories were adopted from 
three semantic classes to examine the action representations of 
both DCNNs and human visual areas. In two fMRI experiments, 
actions were presented in the forms of computer-rendered 
videos and point-light biological motion videos. Results 
showed that although two-stream DCNNs demonstrated 
hierarchical representations of actions as layers grow deeper, 
DCNNs lack a hierarchical mapping to human visual areas. 
Consistently across different video displays and DCNN 
pathways, only the top DCNN layers demonstrated high 
similarity to representations in the human visual system. The 
results suggest that the dynamic representations of human 
actions may be different in DCNNs compared to the human 
visual system, even after big-data training.  

Keywords: action perception; deep convolutional neural 
networks; biological motion; fMRI; hierarchical representation 

Introduction 
One of the most robust and sophisticated abilities supported 
by the human visual system is the recognition of human 
actions. In daily life, humans can readily recognize actions 
despite changes in body forms and appearance and with 
various types of visual noise. Even in highly impoverished 
and rarely observed stimuli such as point-light videos 
(Johansson, 1973), the human visual system can still 
recognize actions despite visual noise (Lu, 2010; Neri et al., 
1998) and efficiently identify attributes of an actor (for 
example, Peng et al., 2017; Peng et al., 2021; Pollick et al., 
2002; Thurman & Lu, 2016; Thurman & Lu, 2014).  It is 
essential to understand how the human brain achieves 
sophisticated semantic-level representations of human 
actions. 

Over several decades, psychophysical and neuroscience 
research has provided evidence suggesting that recognition of 
biological motion may be supported by both the spatial 

structure of body forms and motion information (Beintema & 
Lappe, 2002; Cutting et al., 1988; Lange et al., 2006; Pinto & 
Shiffrar, 1999; Theusner et al., 2011; van Boxtel & Lu, 2015). 
In particular, fMRI experiments have shown that point-light 
videos activate not only motion-selective regions such as 
MT/MST, but also a projection from the primary visual 
cortex to the inferotemporal cortex that processes object 
appearance information (Grossman & Blake, 2002). In 
addition, the extrastriate body area (EBA) has been 
implicated in recognizing human body forms (Downing, 
2001; Lingnau & Downing, 2015). Finally, numerous studies 
have established that the posterior superior temporal sulcus 
(pSTS) is a region supporting biological motion perception, 
integrating motion processing and appearance processing 
(Grossman et al., 2005, 2010; Grossman & Blake, 2001, 2002; 
Thurman et al., 2016; Vaina et al., 2001).  

Inspired by the aforementioned findings on point-light 
videos and the hierarchical processing of static information 
as in object recognition, Giese and Poggio (2003) developed 
a parsimonious model for action recognition with two parallel 
processing streams: a “what” pathway and a “where” 
pathway. The “what” pathway is specialized for analyzing 
body forms in static image frames. The “where” pathway is 
specialized for processing optic flow or motion information. 
Both pathways comprise a hierarchy of feature detectors with 
increasing receptive fields and complexities in encoding form 
or motion patterns. Building upon previous works, Simonyan 
and Zisserman (2014) developed two-stream deep 
convolutional neural networks (DCNNs) (Krizhevsky et al., 
2012; Lecun et al., 1998) for action recognition. The two-
stream DCNN consists of two DCNNs: a spatial DCNN that 
processes appearance information taking pixel-level intensity 
as the input, and a temporal DCNN that processes motion 
information taking optical flow as the input. The two-stream 
DCNN performed well on action classification for two 
challenging datasets: UCF-101 (Soomro et al., 2012) and 
HMDB-51 (Kuehne et al., 2011). There are other deep 
learning models developed for video recognition. For 
example, slowfast networks by Feichtenhofer and colleagues 
(2019) also use two pathways for action recognition from 
videos, but both pathways operate on a clip of video as a 
spatiotemporal volume with different frame rates. The 
architecture in slowfast networks does not clearly map to the 
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“what” and “where” pathways in the brain. The other popular 
network is a two-stream inflated 3D convnet (I3D) developed 
by Carreira & Zisserman (2017). The I3D model is built on 
the basis of the inception-V1 network structure and includes 
9 inception layers. In contrast with many studies on 
comparing human visual regions with the DCNN models 
(such as AlexNet), there exists little evidence on the 
correspondence between visual areas and inception layers. 
Hence, this paper focuses on the two-stream DCNNs as an 
extension of standard DCNN models (such as AlexNet), 
which have rich literature on human and model comparisons. 

Despite tremendous recent advances in AI, human 
intelligence is still far more adept at understanding the 
observed dynamic information in the real world. It remains 
unclear whether deep neural networks contain similar 
representations as human brains. In object recognition,  
numerous neural imaging studies have reported a hierarchical 
DCNN-brain correspondence: the representation of DCNN 
layers can predict image-driven responses along the ventral 
visual stream and reveals representations of increasingly 
complex information as the layers go deeper (Cadena et al., 
2019; Cadieu et al., 2014, 2014; Cichy et al., 2016, 2017; 
Eickenberg et al., 2017; Güçlü & van Gerven, 2015; Hong et 
al., 2016; Khaligh-Razavi et al., 2017; Khaligh-Razavi & 
Kriegeskorte, 2014; Seeliger et al., 2018; Yamins et al., 2013; 
Yamins et al., 2014). However, few studies have focused on 
dynamic stimuli such as motion and action stimuli. 
Comparisons between the two-stream DCNN and the human 
brain may open a window to reveal how action information 
gradually unfolds across regions of interest (ROIs).  

In the current study, we examined the mapping between 
representations of two-stream DCNNs and human visual 
areas on human action perception. We selected five ROIs 
along the two-stream visual pathways: the primary visual 
cortex (V1) for low-level visual information processing, 
middle temporal/medial superior temporal (MT+) for motion 
processing, lateral occipital complex (LOC) for object 
perception, extrastriate body area (EBA) for human body 
processing, and posterior superior temporal sulcus (pSTS) 
known for biological motion perception and theory-of-mind.  
We use both computer-rendered videos and decontextualized 
point-light videos to examine the processing of human 
actions in different presentation formats and generalization 
ability. Point-light videos remove detailed body-shape and 
contextual information and only keep the motion trajectories 
of major joints in actions, whereas computer-rendered videos 
present the same actions with greater ecological validity, 
rendering the actions with human avatars. 

If the process of action recognition resembles the process 
of object recognition, we would expect to see a hierarchical 
mapping between the representation of DCNN layers and 
human brain regions, such that early layers of DCNNs 
demonstrate representations more similar to V1 and MT+, 
and later DCNN layers demonstrate increasingly similar 
representations to layers such as pSTS. Additionally, we 
expected to find correspondences between the spatial DCNN 
and the “what” visual pathway for form processing, and 

between the temporal DCNN and the “where” visual pathway 
for motion processing. 

Model Structure and Training 
To investigate action representations in DCNN, we selected 
a two-stream DCNN model (Figure 1) with an architecture 
based on neurophysiological and computational studies in the 
biological motion literature (Giese & Poggio, 2003). 
Specifically, biological motion processing involves both 
form and motion pathways and integrates the two types of 
information at action-sensitive regions, presumably in the 
temporal lobe. The two-stream DCNN takes the same two 
types of information as inputs to classify a video into action 
categories. One source of information is the pixel-level 
appearance of moving bodies in a sequence of static images, 
which provide inputs to a spatial DCNN. The other source of 
information is motion represented by optical flow fields 
(Horn & Schunck, 1981), which provide inputs to a temporal 
DCNN. Both the spatial and temporal DCNNs contain 5 
convolutional layers followed by 3 fully-connected layers. At 
the 5 convolutional layers, a two-stream DCNN model 
combines the spatial and motion processes to achieve a fusion 
of decisions.  

The DCNN models were trained to perform an action 
classification task with the 15 categories using naturalistic 
videos in the Human 3.6M dataset (Ionescu et al., 2014). We 
followed a two-phase protocol to train the network as 
developed by Feichtenhofer, Pinz, and Zisserman (2016). We 
first trained the single-stream networks (i.e., the spatial 
DCNN and the temporal DCNN) independently with the task 
of 15-category action recognition. Then activities from the 
conv5 layers of these two trained single-stream DCNNs were 
concatenated as inputs to train the fusion network in the two-
stream DCNN. These 15 categories include giving 
directions, discussing something with someone, eating, 
greeting someone, phoning, posing, purchasing (i.e., 
hauling up), sitting, sitting down, smoking, taking 
photos, waiting, walking, walking a dog, and walking 
together.  

 

 
Figure 1: The architectures of the spatial DCNN, the 
temporal DCNN, and the two-stream DCNN.  

Methods 

Participants 
Twelve subjects (7 female, age (M±SD) = 21.17±1.85) 
participated in the study, with half presented with Computer-
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rendered videos and the other half presented with biological 
motion stimuli. Each subject went through five fMRI 
sessions on separate days to maximize the robustness of 
acquired neural representations. All subjects were right-
handed and had normal or corrected-to-normal vision. They 
had no known neurological or visual disorders and gave 
written, informed consent in accordance with the procedures 
and protocols approved by the human subject review 
committee. 

Stimuli 
Action stimuli were generated from the Carnegie Mellon 
University Motion Capture Database. We adopted the same 
superordinate categories from a study by Dittrich (1993): 
human actions can be considered as falling into three 
semantic classes: locomotory, instrumental, and social 
actions. We selected 3 actions for each class (Locomotory 
action: jumping, running, & walking; Instrumental action: 
ball bouncing, playing an instrument, & golf swing; Social 
action: dancing, greeting, & showing directions; Figure 2A), 
each with 4 different motion-tracking instances, resulting in 
9 cation categories and 36 action instances in total. Point-
light videos (Figure 2B) were processed using the Biological 
Motion Toolbox (van Boxtel & Lu, 2013). Autodesk Maya® 
was used to render motion-tracking data with human avatars 
to generate computer-rendered videos. Hence, body 
movements in computer-rendered and point-light videos 
were the same, despite the differences in body shape and 
visual appearance in these two displays.  

 
Figure 2: Sample frames of the nine action categories selected 
from the CMU motion capture database, falling into three 
semantic classes of locomotory, instrumental, and social 
actions. Actions were presented in (A) Computer-rendered 
actions or (B) point-light biological motion displays.  

Procedure 
The whole experiment was conducted across five days. As 
shown in Figure 3A, on day 1, subjects completed the 
behavioral practice, the structural scan, and the localizer tasks. 
Subjects first went through a behavioral practice session, 
during which they were trained to classify actions into the 
three semantic classes. Subjects went through two practice 
runs, where all 36 videos were presented during each run. 
Overall, the subjects all reached near-perfect behavioral 
accuracy. After the behavioral practice, subjects underwent 
an MRI session including structural scans and the localizer 
tasks, aiming to define five ROIs, namely V1 (Engel et al., 

1997), MT (Watson et al., 1993), LOC (Malach R et al., 
1995), EBA (Downing et al., 2001), and pSTS (Grossman et 
al., 2000).  

In the following four days, after finishing a structural scan, 
subjects performed eight runs of the action classification task 
each day, resulting in 32 runs.  Each run started with 10s of 
fixation, followed by 36 trials of action presentations, each 
presented for 3 seconds, interleaved by a period for response 
and jitter of 3, 5, or 7s, ending with another 10s of fixation. 
During the response period, subjects were asked to judge the 
semantic class of the action by pressing one of the three 
buttons on the response box. 

 

 
Figure 3: (A) Experimental procedure across five days. (B) 
Illustrations of ROI positions from one subject. 

Data analysis  
Representational similarity analysis (RSA) was used to 
compare neural representations with the DCNN 
representations. Specifically, for each layer of the DCNN, we 
extracted condition-specific neuron activation values of 
video clips (every 10 frames) in each action instance. For 
convolutional layers, we used a max-pooling approach to take 
the maximum response value from each 2D response field. 
First, features for video clips in each action instance were 
concatenated into a vector. Then, for each pair of actions, we 
computed the Euclidean distances dissimilarity between the 
model activation pattern vectors, yielding a 36 × 36 DCNN 
representational dissimilarity matrix (RDM), summarizing 
the representational dissimilarities for each model layer.  

Similarly, a correlation-based approach was used to 
compute RDMs for ROIs. For each ROI, condition-specific 
beta-value activation patterns of voxels were concatenated 
into vectors. We then calculated the correlation-based 
dissimilarity between t-value patterns for every pair of 
conditions within the ROI, leading to a 36 × 36 ROI RDM 
indexed in rows and columns by the compared actions. 

We compared layer-specific model representations to 
region-specific brain representations by calculating 
Spearman’s correlations between the lower half of the DCNN 
and ROI RDMs, excluding the diagonal. The comparison was 
done on a single-subject basis. We estimated the noise ceiling 
for each ROI, and the DCNN-ROI correlations were 
normalized by dividing the raw correlation coefficients with 
the corresponding noise ceiling. The noise ceiling was 
defined as 	!

"
∑ 𝑟(𝑣# , �̅�)"
#$! , where 𝑣#  represents each 

subject’s RDM, �̅�	 represents the averaged RDM across 
subjects, and r stands for Spearman’s correlation coefficient 
(Neli et al., 2014; Khaligh-Razavi et al., 2018).  

Day 1

Behavioral practice

T1 structural scan
fMRI run 1-8

Behavioral Functional MRI Structural MRI

MRI Localizer

Day 2 Day 3 Day 4 Day 5

T1 structural scan
fMRI run 9-16
T1 structural scan

fMRI run 17-24

T1 structural scan
fMRI run 25-32

T1 structural scan

(B)

(A)
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To provide theoretical guidance to the representation of 
action categories, we made a full-knowledge design matrix of 
RDMs, as shown in Fig. 4E. The full-knowledge design 
matrix assumes higher similarities between videos within one 
main semantic class category on top of similarities within one 
action category (e.g., jumping, walking, and running are all 
locomotory actions). DCNN and ROI RDMs were compared 
to design matrices to investigate whether model layers and 
ROIs demonstrate low-level representations based on action-
specific visual features or semantic-level action 
representations beyond visual similarities of actions from the 
same action category.  

Results 

DCNN Action Representations 
We first examined the representations in DCNN layers and 
how well they discriminate action categories and semantic 
classes. As shown in Fig. 4A and 4B for both computer-
rendered videos and point-light videos, all three DCNN 
pathways demonstrated more information about individual 
action categories with the increase of layers, revealed by 
more apparent mini-blocks pattern along the diagonals. 
Spatial DCNN processing appearance information 
demonstrates rather different dissimilarity patterns for 
computer-rendered videos from dissimilarity patterns from 
point-light videos. This difference in the spatial DCNN was 
likely due to distinct appearance differences between the two 
displays. In contrast, the temporal DCNN processing optical-
flow information was less impacted by different display 
formats, showing similar diagonal block patterns organized 
by action categories.  

Correlations between DCNN layer RDMs and the design 
matrix are shown in Fig. 5C and 5D. Regression analyses 
revealed significant linear relationships between layers and 
correlation coefficients of the temporal DCNN and the full-
knowledge design matrix (Computer-rendered: b=0.060, 
t(4)=6.15, p=.004; Point-light: b=0.058, t(4)=3.86, p=.018). 

The results further confirmed the pattern observed in the 
decoding analysis: as DCNN layers go deeper, the action 
representation of corresponding layers increasingly 
resembles the full-knowledge design matrix. We also found 
that the regression between spatial DCNN layers and design 
matrices was only significant for computer-rendered videos 
(b=0.024, t(4)=3.59, p=.023) and not significant for point-
light videos, suggesting body form cues can still contribute to 
action recognition given the similarity between computer 
avatars and humans in naturalistic videos.  

Action Representations in Human Brains 
We next examined the RDMs of selected ROIs along the 
visual pathways. As shown in Fig. 4C and 4D, all five ROIs 
demonstrated diagonal block patterns indicating 
discrimination of action categories and semantic classes.  

To investigate how well the representations discriminate 
action categories and semantic classes, correlations between 
ROI RDMs and the full-knowledge design matrix were 
calculated (Fig. 5C and 5D). For correlations to the full-
knowledge design matrix, paired-sample t-tests showed 
significant contrasts between ROIs. For computer-rendered 
videos, V1 yielded significantly lower correlations than MT+, 
LOC, and EBA. Additionally, MT+, LOC, and EBA 
produced significantly greater correlations than pSTS, 
surviving Bonferroni corrections (p corrected < 0.05). For 
point-light videos, V1 produced significantly lower 
correlations to the full-knowledge design matrix than EBA 
and survived the Bonferroni correction (p corrected < 0.05).  

ROI-DCNN RDM correlations 
The normalized correlations between DCNN and ROI action 
representations were shown in Fig. 6. Most correlations 
between ROI and DCNN RDMs were significant, except for 
early spatial DCNN layers (e.g., convolutional layers 1 to 3). 
Furthermore, for all ROIs, as the DCNNs go to deeper layers, 
the correlations between RDMs increased for both spatial and 
temporal DCNNs and the two-stream DCNN.  

 
Figure 4: DCNN RDMs with (A) Computer-rendered videos and (B) point-light videos, and averaged ROI RDMs with (C) 
Computer-rendered videos and (D) point-light videos across subjects. (E) The full-knowledge design matrix RDM. The action 
categories were labeled as 1-9, corresponding to label numbers in Fig. 2. 
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A repeated-measures ANOVA was conducted with ROIs, 
DCNN networks (spatial and temporal DCNNs), and layers 
as within-subject variables. Results showed significant main 
effects of DCNN in both experiments (ps<.001), suggesting 
that the temporal DCNN yielded greater correlations to ROI 
RDMs in general compared to the spatial DCNN. Results also 
showed significant main effects of layers (ps<.05) in both 
experiments. Thus, in contrast to the expected pattern that 
different ROIs would reach the maximum correlation with 
different DCNN layers, all ROIs yielded the greatest 
representational similarity to the later layers of the DCNN, 
namely the Conv5 layer and the fully-connected FC2 layer. 

 
Figure 5: Correlations between DCNN and the full-
knowledge design matrix of Computer-rendered videos (A) 
and point-light videos (B). Normalized correlations between 
ROIs in the human visual system and the full-knowledge 
design matrix of computer-rendered videos (C) and point-
light videos (D). 

Searchlight analyses 
To identify brain areas with action representations similar to 
those of the DCNN layers, we used a spatially unbiased 
volume-based searchlight approach. For each subject, we 
constructed fMRI RDMs for each voxel (3-voxel radius) 
based on the local activity patterns. We then correlated each 
voxel’s RDM with the layer-specific DCNN RDMs, 
generating a continuous spatial map of similarity for each 
DCNN layer. The searchlight approach also revealed a 
gradually increasing correspondence between the DCNN 
layers and human cortices as layers go deeper. The strongest 
correlations were observed between the Conv5 layer and FC2 
layers of DCNNs and brain regions such as anterior 
intraparietal sulcus (IPS) and superior parietal lobule (SPL). 
These results further suggested that the anterior parietal 
cortex may play a crucial role in action processing. 

 

 
Figure 6: Normalized correlations between ROI RDMs and 
DCNN RDMs for computer-rendered videos and for point-
light videos. Blue, green, and orange lines correspond to the 
spatial, temporal, and two-stream DCNNs. Error bars 
indicate standard deviations across subjects. The stars above 
bars indicate the significance of ROI-DCNN correlations of 
layers with corresponding colors (ps < 0.05, FDR-corrected). 

Discussion 

DCNN Action Representations 
In the present study, we examined the representation mapping 
between DCNN layers and visual regions in human brains 
supporting action perception. For DCNN, results showed a 
robust hierarchical representation of human actions where 
representational dissimilarity matrices yielded clearer 
clustering patterns that discriminate action categories as 
layers go deeper. For human visual areas, all selected regions 
were able to discriminate action categories. However, 
comparisons between DCNN layers and ROIs across two 
experiments consistently revealed a lack of hierarchical 
correspondences, as DCNN layers yielded the highest 
similarity to brain representations at later layers 
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(convolutional layer 5 or fully connected layer 2), regardless 
of the type of action displays, the DCNN pathways, or ROIs. 

The finding of hierarchical representations of two-stream 
DCNNs was consistent with previous evidence that after big-
data training, early layers of DCNN capture low-level visual 
features that resemble receptive fields of early visual areas, 
and later DCNN layers capture informative visual patterns 
with increasing visual complexity for visual recognition (e.g., 
Yamins et al., 2014). The increasingly categorical 
representation was expected in deep neural networks. As 
proposed by Saxe et al. (2019), it is possible that the ability 
of DCNNs to capture abstract semantic knowledge consisting 
of useful categories may be inherent in the deep connection 
structure. But it is also possible that abstract categorical 
information is highly associated with some visual features 
that the networks learn to capture in feature extraction.  

However, the lack of a hierarchical mapping between 
DCNN layers and brain regions was at odds with the findings 
in object recognition with static images. One possibility may 
be due to differences in the nature of the tasks. Previous 
research focused mostly on object recognition, and the 
current study targeted dynamic visual stimuli of human 
actions. Object recognition can possibly be achieved in a 
single stream of feedforward processing where low-level 
visual features are extracted and integrated to capture the 
essence of complex object patterns in later layers. This 
feedforward process emulates bottom-up visual processing in 
the human brain. However, the processing of dynamic visual 
information may require large spatial-temporal windows to 
accumulate information over time and space. Action 
recognition unfolds over time during which communications 
between brain regions happen, and iterations of bottom-up 
feature extraction and top-down influences both may play 
important roles in making decisions and responses (Lu, Tjan 
& Liu, 2006). Even though the two-stream DCNN provided 
a qualitative account of some behavioral results observed in 
human action perception, DCNNs are limited to only 
operating in a purely bottom-up manner and lack top-down 
regulation apparent in human brains (Peng, Lee, et al., 2021).  

The current results cannot rule out hierarchical structures 
of action representations in the human brain, but may support 
a fast unfolding of action perception over time.  
Neuroimaging techniques with a greater temporal resolution 
have provided evidence that supports the fast unfolding of 
action representations in human brains. Previous 
magnetoencephalography (MEG) studies showed that the 
recognition of human social interactions may involve 
different visual mechanisms than simple feedforward pattern 
recognition (Isik et al., 2020). Different types of human social 
interactions can be decoded at around 500 ms after the onset 
of videos, which is substantially later than the visual 
processing of objects, faces, emotions, gestures, and actions. 
For example, object pattern recognition can be decoded 
within 100 ms of the image onset (e.g., Carlson et al., 2013; 
Isik et al., 2014). Face perception elicits the signature N170 
response at around 170 ms after face image onset (Bentin et 
al., 1996), while many facial properties such as age, gender, 

and identity can be decoded even earlier (Dobs et al., 2019). 
Communicative gestures (Redcay & Carlson, 2015) and 
single-person actions can be decoded as early as 200 ms (Isik 
et al., 2018). Thus, unlike visual processing of static images 
or single-agent movements, inference of intentions from 
human social interactions may involve the recognition of 
high-level semantics and relational reasoning that go beyond 
visual pattern recognition.  

A few limitations can be addressed in future studies to 
further illuminate action representations underlying human 
and artificial neural networks. First, while fMRI provided a 
good spatial resolution to reveal specificities of ROI 
representations along the visual pathway, it lacks the 
temporal resolution to reveal the neural dynamics across time. 
Future studies can use MEG or EEG to investigate how 
representations of human actions unfold over time, and 
whether DCNN representations demonstrate hierarchical 
relationships to evolving brain representations. Secondly, the 
current fMRI paradigm was based on a classification task that 
may not require social cognitive processes, such as theory-of-
mind, which are involved in daily action processing. In 
addition, we only examined a small number of categories of 
actions; future research can expand to a larger variety of 
action stimuli and semantic classes. Lastly, the 
correspondence between DCNNs and human neural 
dynamics on a finer scale can be investigated. The current 
study was limited to several classic visual regions, but future 
studies can explore whole-brain neural responses and 
connectivities between brain regions.  

In summary, the current study adopted the two-stream 
DCNN trained with big data to examine the relationship 
between action representations of artificial neural networks 
and human visual pathways. The findings indicate a lack of 
hierarchical relationship between DCNN layers and human 
visual regions. Instead, while the DCNN layers demonstrate 
increasingly high-level representations, they may not 
resemble the efficient representations in the human brain. The 
current study provides evidence that deep neural networks 
open a window for understanding the dynamic visual 
processes in human brains. Human neuroimaging studies can 
also reveal limitations and provide guidance for 
developments in artificial intelligence. 
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