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Abstract 

A discussion of classical transition state theory shows that the 

fundamental dynamical assumption in transition state theory is that the 

reaction mechanism is "direct", and for reactions with activation barriers 

it is reasoned that this is a good approximation for the threshold of the 

reactive cross section. Examples are presented which show that this is 

indeed true within the framework of classical mechanics. Analogous 

comparisons that have been made quantum mechanically, however, show transi­

tion state theory to be significantly poorer than in the classical case, 

and it is argued that this is a result of the fact that the conventional 

quantum mechanical version of transition state theory involves the 

assumption that motion along some reaction coordinate is separable from 

that of the other degrees of freedom. (This separability approximation is 

known to be poor in the threshold region.) It is then shown how a more 

general_ definition of quantum mechanical transition state theory can be 

constructed, which does not necessitate the assumption of separability, and 

sample calculations show this to be in good agreement with (exact) quantum 

s·cattering theory . 
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I. INTRODUCTION. 

. 1 
The transition State theory of chemical kinetics has without a doubt 

provided the most useful phenomenological framework for parameterizing rate 

constants for a wide variety of chemical reactions. 
.· 2-7 
Recently, however, 

there has been interest in investigating the dynamical basis of transition 

state theory and trying to learn the extent to which it provides a quanti-

tative description of rate constants for elementary bimolecular reactions. 

One of the practical motivations for this recent direction of research 

is the recognition that for ~hemical reactions with significant activation 

energy)transition state theory describes the threshold region of the reac­

'tive cross section quite well, and this8 is the energy regime most important 

for determining the thermal rate constant. Since the threshold region is 

often described rather poorly by classical trajectory methods 9--which are 

useful for describing many other aspects of the dynamics of simple chemical 

r'eact.ions--transition state theory is an important complement to trajectory 

methods. (It is interesting that an analogous complementarity also exists 

experimentally: the "modern" methods'of chemical kinetics--e.g., crossed 

molecular beams, infrared chemiluminescence, various laser techniques, etc.--

provide dyrtamical information about reactions which have little or no 

activation energy (or at energies signit'icantly above any threshold), but 

it is difficult to extract information about the threshold behavior of the 

reactive cross section from such measurements. More traditional kinetics 

methodology--i.e., determination of the rate constant as a function of 

temperature--on the other hand, provides a sensitive measure of the threshold 

region (but essentially only this).) 

Although it is apparent from the physical assumptions inherent in 

transition state theory (vide infra) that·it' should describe the threshold 
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region accurately, the most detailed comparisons
10 

of conventional 

transition state theory with "exact" results from quantum scattering 

calculations have shown it to be poor at moderate and low temperatures. 

This disappointing result seems to be a consequence of the fact that an 

assumption of separability of motion along a reaction coordinate is 

inextricably bound up· in the usual quantum mechanical version of transi-

tion state theory, and separability has been seen in a variety of 

calculations to be a poor approximation in the threshold region. If 

transition state theory is to provide a quantitative description of the 

reactive cross section in the threshold region (and thus the rate constant), 

it must therefore be applied quantum mechanically, because quantum 

effects are important at threshold, but without assuming the reaction 

dynamics to be separable. 

The weakness of the separability ap~roximatfon in conventional 

transition state theory was recognized quite clearly by Johnston and 

Rapp
11 

a number of years ago, and they proposed ways of trying to over-

' come it. While not rigorous or accurate quantitatively, these early 

attempts at deaiing with non-separability in transition state theory 

were important in identifying this feature as a crucial weakness. 

This Account first reviews the dynamical basis of transition state 

theory within the framework of classical mechanics, emphasiz-ing the 

"fundamental assumption" on which it is based~ Examples are presented 

showing.that in a classical world transition state theory is an excellent 

approximation in the threshold region. It is then shown how a quantum 

mechanical version of transition state theory can be constructed which 

escapes the necessity of assuming separability. Results of calculations 

based on this theory are seen to be in good agreement with (exact) quantum 

mechanical scattering theory. 
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II. CLASSICAL TRANSITION STATE THEORY AND THE 'FUNDAMENTAL ASSUMPTION' 

As Wigner
12 

emphasizes, transition state theory is a model essentially 

based on classical mechanics. (The validity of classical mechanics to 

d "b h 1 d · · w· ' 12 · b h" escr1 e t e nuc ear ynam1cs 1s 1gner s assumpt1on num er two; 1s 

first assumption is use of the Born Oppenheimer approximation to separate 

electronic and nuclear motion and the assumption that only one potential 

energy surfac·e is involved in the reaction.) To gain a feeling for the 

dynamical approximations ip.herent in transition state theory it is there-
. . . 

(ore useful first to discuss classical transition state theory before 

considering a quantum mechanical version of it. 

If the reactants are in a Boltzmann distribution of their internal 

states and relative translation, then the classical rate constant is a 

Boltzmann average of the flux of reactive trajectories through a surface 

which divides reactants from products. More precisely, the expression 

f h . 1 . 1 h . . . 13 or t e exact rate constant 1n c ass1ca mec an1cs 1s 

-1 
where B = (kT) , (p,q) = (p.,q.), i = 1, ... , Fare the momenta and 

. - - 1 1 

coordinates of the system with F degrees of freedom, Q is the partition a 

function per unit volunie of the non-interacting reactants, H(p,q) is the 

total Hamiltonian for the system, and f(q) is a function of the coordinates 

which defines the dividing surface via Eq. (2), 

f(q) = 0 (2) -
0 is the Dirac delta function (the factor o(f(q)) in Eq. (1) converts the 

"volume" imtegral over all F coordinates into a "surface" integral over 
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F-1 coordinates), and Xb+ (p,q) is the characteristic function for 
a - -

reaction. The definition of Xb (p,q) is that 
+-a - -

(3) 

if the trajectory determined by the phase point (p,q) is reactive in 

the a(A + BC) ~ b(AB + C) direction, and is zero otherwise. 

It is illustrative to write out Eq. (1) more explicitly for the 

simplest possible example, a collinear A + BC ~ AB + C reaction. F = 2 

in this case, and the two coordinates can be chosen to be r and R, which 

denote the relative B-C vibrational coordinate and the distance from A 

to the center of mass of BC, respectively; p and P are the momenta 

conjugate to r and R. The function f(r,R) which corresponds to choosing 

the dividing surface far out in the reactant region--surface s
1 

in 

Fig. l--is 

f(r,R) = R - R max 
(4) 

It is then not hard to see that Eq. (1) becomes 

00 00 00 

~+-a (- R_) -SH(P,R,p,r) ( ) (S) 
~ e Xb~a P,R,p,r. , 

with R = R and where ~ is the reduced mass for the A - BC translational max 

motion. If R is sufficiently large, the Hamiltonian is given by its max 

asymptotic form 

.Hm H(p,R,p,r) 
R-+<x> 

p2 

2~·+ h(p,r) 

where h(p,r) is the vibrational Hamiltonian for the isolated BC molecule; 
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also, it is clear that trajectories beginning on this surface with P > 0 

cannot be reactive in the a ~ b direction. Thus if the translational 

energy Et is introduced, 

Eq. (5) takes on its more conventional form 

with 

R R max 

P - J2l1Et' 

00 00 00 

-SEt -!3h(p,r) 
e e Xb+a(P,R,p,r),(6) 

Eq. (6) is the standard expression for which a Monte Carlo trajectory 

calculation
9 

is often carried out: the variables r, p, and Et are chosen 

randomly from their appropriate distributions and trajectories run to see 

whether Xb (P,R;p,r) is 1 (a reactive trajectory) or 0 (a non-reactive +a 

trajectory). 

It is not necessary, however, to choose the dividing surface in the. 

reactant region as was done above. Eq. (1) is, in fact, rigorously 

independent of the particular choice of dividing surface; 2 it is only 

necessary that the surface be one through which all reactive trajectories 

must pass. Fig. 1 shows two other possible choices, surfaces s2 and s
3

. 

This independence of the choice of dividing surface is a consequence of 

the classical continuity equation (i.e., Liouville's Theorem); this theorem 

states that if the surface defined by the equation 
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f(q) 0 

is a closed surface and if the distribution function p(p,q) is constant 

along a classical trajectory, then 

p(p,q) o[f(q).J 
.. - - df (n) / 

__,..._,..:=.:& -· p m aq - = 0 (7) 

in words, Eq. (7) states that the steady-state flux through a closed 

surface is zero. Eq. (1) corresponds to the distribution function 

(8) 

conservation of total energy implies that H(p,q) is constant along a 

trajectory, and it is clear from the definition of xb+a(~,~) that it 

also is (if the trajectory determined by (p,q) is reactive at one time 

it obviously cannot be otherwise at another time), so that the distribu-

tion function in Eq. (1), Eq .. (8), satisfies the condition of the theorem. 

Furthermore, it is clear that in Fig. 1 surfaces s
1 

and s 3 , for example, 

can be made into one closed surface by. joining them with segments at 

infinity. By the classical continuity equation, the flux through this 

closed surface is zero. Since no flux passes.through the pieces of the 

surface at infinity, this means that the flux into the closed surface 

through s 1 must be equal to the flux out of the closed surface through 

s3' or equivalently, that the flux in the reactive direction through sl 

must be equal to the flux in the reactive direction through s
3

. This 

argument is clearly valid for any surface which divides reactant and 

product space and thus proves the assertion that Eq. (1) is independent 

of the particular dividing surface. 

.. 

... 
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The stage is now set to introduce the "fundamental assumption" of 

transition state theory (Wigner's12 third assumption). The goal is to 

eliminate the characteristic function Xb (p,q) from Eq. (1), and there-
+-a - -

fore the need to determine the complete classical dynamics of the system 

(i.e., to compute classical trajectories), ·and this is done in the following 

way. The "fundamental assumption" is that if the dividing surface is 

chosen in the appropriate place, then any trajectory which crosses it in 

the reactive direction is indeed a reactive trajectory, i.e., that it does 

not subsequently re-cross the surface and become non-reactive. Put another 

way, it is the assumption that the dividing surface is one which no 

trajectory crosses more than once. Whenever this assUmption is true. 

transition state theory is exact (within the world of classical mechanics 

presently being considered). 6a 

Framed more quantitatively, suppose surfaceS 3 in Fig. 1 is chosen as 

the one through which one assumes no trajectory passes more than once. 

(It is clear that surfaces s
1 

and s
2 

would be poor candidates for such a 

surface). It is then convenient to choose the two coordinates to be s and 

u as depicted in Fig. 1, and the dividing surface s3 then corresponds to 

the following function f(s,u), 

f(s,u) s '. (9) 

i.e., s = 0 defines surface s
3

• Eq. (1) for the exact classical rate 

constant then reads 

oc) ()() ()() 

~+-a Q-1 h-2/' d 
a ps 

-00 

dp 
u 

-BH(p ,s,p ,u) p 
e s u (~) ( , xb+- p ,s,p ,u; m a s u 

s· 

(10) 
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with s = 0. The "fundamental assumption" of transition state theory 

corresponds to the replacement 

where h(x) is the step-function: 

h(x) 1, x > 0 

0, X < 0 / 
' 

i.e., it is assumed that if the trajectory has positive momentum in 

the reactive direction at the dividing surface, then it is indeed 

reactive in the a~b direction. Since the total Hamiltonian is of 

the form 

2 2 

H(p , s, p , u) s u 
ps pu 
2m + 2m + V(s,u) 

s u 

where V(s,u) is the potential energy surface, Eq. (10) becomes 

X [h-l 

00 00 

fdpu Jdu 
-00 

e 

-00 

-sv 
0 

e 

2 

2 -Sp /2m 
e s s 1 

pu 
V(O ,u)] -S[-+ 

2m 
u 

where V = V(O,O) and q* is the classical partition function of the 
0 

"activated complex", the system with one degree of freedom removed: 

(11) 

(12) 

(13) 
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2 
Pu 

-8[ 2~ + V(o,u) 
u 

- V(O,O)] 

(14) 

By invoking Eq. (11), the "fundamental assumption" of transition state 

theory, all explicit reference to classical dynamics (i.e., to the 

characteristic function xb ) is therefore eliminated, and one recognizes 
+a 

Eq. (13) as the usual expression for the rate constant in transition 

1 state theory. · 

In concluding this discussion of classical transition state theory 

it is interesting to note how different this dynamical view of tran&.ition 

h .. 1 w. 12 i f h . h. h f th state t eory a a 1gner s rom ot er presentat1ons w 1c re er to e 

following "mechanism" 

A+ BC ~(ABC)*-..... AB + C (15) 

to derive Eq. (13). It is often implied that some sort of equilibrium 

between reactants and "activated complexes" :is responsible for the ratio 

of partition functions that appear in Eq. (13). This in turn su~gests 

that transition state theory should perhaps be most applicable if A and. 

BC form a collision complex that lives for many vibrational periods. 

(Recall the desire in the early days of transition state theory for the 

H + H
2 

potential surface to have a well at the top of the barrier). The 

discussion in the above paragraphs show, on the contrary, that the funda-

mental assumption of transition state theory is that the mechanism is 

"direct", that all trajectories/move right across the dividing surface 

and do not return. This assumption of "straight-through" dynamics is 

essentially the opposite to that of a long-lived collision complex, for 

the latter would result in trajectories which re-cross the dividing 
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surface many times and thus invalidate the "fundamental assumption". 

III. ACCURACY OF CLASSICAL TRANSITION STATE THEORY 

Before considering quantum mechanical transition state theory, it 

is useful to look at the accuracy of classical transition state theory, 

i.e., the validity of the "fundamental assumption" that no trajectories 

cross the dividing surface more than once, that. the reaction dynamics 

is "direct". Thus consider a simple collinear reaction such asH+ H2 -+ 

H2 + H with the dividing surface chosen as the symmetric line (surface 

s
3 

in Fig. 1). It also simplifies matters to consider the microcanonica:L 

version of transition state theory, which corresponds to a fixed total 

energy E rather than a fixed temperature T: The dimensionless function 

N(E) is defined by 

N(E) = o[E-H(p,q)] o[f(q)] af(~)·p/m 
Clq -

in terms of which it is easy to see that the rate constant in Eq. (1) 

is given by 

00 

~a= Q~l (27Th)-l fEe-BENGE) 

0 

The transition state approximation to N(E) corresponds to replacing 

X~a in Eq. (l6) by the approximation in Eq. (11). 

N(E) is clearly zero for E < V , V being the position of the 
0 0 

saddle point in the potential energy surface, for no classical 

(17) 

trajectory can be reactive unless it has enough energy to go over the 
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barrier. For total energies E only slightly above the barrier it is not 

hard to conclude that the transition state approximation for N(E) will be 

exact~ai.e., there will be no trajectories ~1ich cross the dividing surface 

more than once. To see this, imagine beginning a trajectory on the 

symmetric line with a total energy only slightly above the saddle point; 

the trajectory will begin slowly, pick up speed as it runs down the hill 

toward products, and clearly not return. At sufficiently high energy, 

on the other hand, it is clear that there will be trajectories which 

rebound back across the symmetric line and thus invalidate the "fundamental 

assumption". 

Since the transition state approximation to N(E) begins correctly 

at the classical threshold V , the primary question in classical transi­
o 

tion state theory is how high above V can E be increased and it still be 
. 0 

true that there are no re-crossing trajectories. 
6a 

Pechukas and McLafferty 

have made an ingenius contribution to answering this question by discovering 

a simple geometrical criterion for finding a critical energy below which 

the.transition state approximation to N(E) is exact. Another approach 

to investigating this question is the "experimental" one of simply compar-

ing the exact N(E) function, determined by carrying out classical trajectory 

calculations, with the transition state approximation to N(E). 

. 14,15 
Figure 2 shows such a compar1son of the exact and the transition 

state approximation for N(E) as a function of total energy for·the 

collinear H + H2 reaction. As expected, at low energy--up to about 0.3 eV 

above the barrier height in this case--the transition state approximation 

is essentially exact, i.e., there are no trajectories at these energies 

that re-cross the symmetric line. At higher energies, however, there do 

exist trajectories that rebound back across so that the transition state 

approximation to N(E) is too large. 
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.Fi 3 h . "1 . 14 ' lS h h d. . 1 gure s ows a s1m1 ar compar1son for t e t ree- 1mens1ona 

H + H
2 

reaction, the exact N(E) being evaluated by Monte Carlo trajectory 

calculations. Again one sees that transition state theory is essentially 

exact for energies up to about 0.3 eV above the barrier, and even when 

it begins to fail it is in much less error than in the collinear case; 

at 1 eV above the barrier the transition state approximates to N(E) is 

only 10% too large. 

The above relation between the collinear and three-dimensional 

16 
H + H2 reaction (both with the same Porter-Karplus potential energy 

surface) illustrates a feature which one expects to be general, namely 

that other things being equal, the fundamental assumption of transition 

state theory is better the higher the dimensionality of the system. 

This is understood qualitatively in that fewer trajectories, having 

departed from'the dividing surface towards products, are able to find 

their way back in the higher dimensional phase_ space; i.e., they are 

more likely to get "lost" and not return. 

IV. TOWARDS A QUANTUM TRANSITION STATE THEORY 

The previous sections have shown that within the realm of classical 

mechanics transition state theory describes the threshold region of the 

reactive cross section quite accurately. This success of classical 

transition state theory is somewhat hollow, however, because quantum 

effects are important in the threshold region, particularly so if the 

reactive dynamics involves light atoms (i.e., H atom transfer). The 

task, then, is to implement the "fundamental assumption" of transition 

state theory in a fully quantum mechanical framework. 
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There are several reasons for believing that the·assumption of "direct 

dynamics" through the saddle point region is valid for the threshold region 

also in a quantum mechanical theory. The streamlines of flux computed by 

Kuppermann et a1. 17 for the H + H2 reaction, for example, show "straight­

through" dynamics at low energy, even in the tunneling regime below the 

classical threshold. (At higher energies, though, the streamlines 

develop "whirlpool effects", corresponding to re-crossing classical 

trajectories.) Similarly, the semiclassical calculations of George and 
18 

Miller show complex-valued classical trajectories which tunnel "straight-

through" the saddle point region. 

The first step in constructing a quantum version of transition state 

theory is to write the exact quantUm mechanical expression for the rate 

constant (assuming a Boltzmann distribution of reactants). This can be 

expressed in a number of ways, but the form most useful for present 

7 purposes is one which is the direct analog of the classical expression 

in Eq. (1), 

(18) 

where "tr" means a quantum, mechanical trace, the quantum analog of a 

classical phase space average; H, f(q), and pall have their same 

meanings as in Eq. (1) except that they are now quantum mechanical 

operators. The projection operator P is the quantum analog of the 

characteristic function Xb+a in Eq. (1), and it is given explicitly by
7 

P = .Hm 
t-+-oo 

eiHt/h h(-P) -iHt/h 
e 

P being the momentum operator conjugate to R. The appearance of the 

(19) 
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-iHt/h 
quantum mechanical evolution operator, e in P shows that it is 

the factor which contains all the quantum scattering dynamics, analogous 

to the dynamical content of the classical function Xb . In words, P 
+-a 

projects onto all states that have evolved in the infinite past from 

reactants. 

7 As in the classical case, one can show that the exact quantum 

rate constant in Eq. (18) is independent of the specific choice of the 

dividing surface. Quantum transition state theory is thus defined in 

a manner analogous to the classical case: A specific choice is made 

for the dividing surface (e.g., surface s
3 

in Fig. 1), and then the 

"dynamical factor" P is approximated by invoking the fundamental 

assumption of transition state theory. Analogous to Eq. (ll),one 

makes the replacement 

p -+ h(p ) 
s 

this approximate projection operator projects onto all states that have 

positive momentum in the s-direction, and it is the "fundamental assump-

tion" that positive momentum in the s-direction at the dividing surface 

implies evolution from reactants in the infinite past. 

7 This approach to quantum mechanical transition state theory thus 

gives the rate constant as 

~+-a (20) 

If one does introduce the assumption that the Hamiltonian is separable 

in s and u coordinates, 

H = li +h +V 
s u 0 

(21) 
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then it is easy to show7 that the conventional expression for the rate 

constant results 

-sv 
0 (22) e 

·where q* is the quantum mechanical partition function of the "activated 

complex" 

-Bh 
q* = tr(e u) 

u 

and r is a one-dimensional tunneling coefficient, 

-Bh p 
r = 27ThB tr(e so(s) ~ h(p )] 

m s 
s s 

The assumption of separability of the Hamiltonian, however, one 

(23) 

(24) 

knows to be a poor approximation in the threshold region where quantum 

effects are important. One manifestation of this is the "corner-cutting" 

effect that has been seen in a number of different kinds of calculations 

17-19 
f~~ the H + Hz reactiort: at low energies in the threshold region the 

tunneling from reactants to products "cuts the corner", going through the 

side of the barrier rather than directly under the saddle ·point itself. 

Other evidence for the breakdown of the separability approximation is the 

poor agreement that Eq. (22) gives with the exact quantum scattering 

10 calculations of Truhlar and Kuppermann. 

To make a fair test of the "fundamental assumption" of transition 

state theory in the quantum mechanical case one thus needs to evaluate 
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Eq. (20) without incorporating any kind of assumption of separability. 

This is a considerably more difficult task, however, because the 

Boltzmann operator e-SH does not now factor into separate one-dimensional 

operators. 

A first step toward evaluating Eq. (20) without assuming separability 

has be. en mad.e
20

• 
21 

by 1.'ntroduc1.'ng a 1 · 1 semic ass1.ca approximation for the 

Boltzmann operator and evaluating the trace within the semiclassical 

limit; no assumptions involving separability, however, were made. In 

addition to simplifying the calculation, the semiclassical limit of 

Eq. (20) leads to a very interesting physical picture of the non-

separable tunneling dynamics; the interested reader should consult 

refs. 20 and 21. 

Figure 4 shows the comparison of the "exact" function N(E), obtained 

from quantum scattering calculations, 22 to that obtained by this semi­

classical evaluation
21 

of Eq. (20), again for the collinear H + H2 reaction. 

Also shown is the result for N(E) given by conventional (i.e., separable) 

1 1
. . 10,23 

transition state theory with a one-dimensiona tunne 1.ng correct1.on. 

The comp~rison of the corresponding rate constants as a function of 

temperature, obtained from the functions N(E) via Eq. (17), is shown in 

Fig~ 5. 

The results in Figures 4 and 5 show quite clearly the degree to which 

the separability approximation fails in the threshold region. They also 

show that once non-separability is taken properly·into account, quantum 

mechanical transition state theory provides an accurate description of the 

threshold region and thus the rate constant. 
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V. CONCLUSIONS AND PROGNOSIS 

Although one should be wary of drawing too many conclusions from 

only one example, a few seem safe. For the threshold region of a simple 

chemical reaction it does seem that the "fundamental assumption" of 

transition state theory is accurate quantum mechanically, as it is 

classically, provided the separability approximation is not introduced 
··. 

to si~plify the quantum calculation. Since the -effects of non-separability, 

and quantum effects in general, are probably more prominent in the 

collinear H + H2 reaction discussed in the previous sections than in any 

real chemical reaction, it indeed provides a severe test. Thus the 

generalized definition of qua~tum mechanical transition state theory is 

seen to be a useful and accurate one (although there are some subtle 

ambiguities7 not discussed here). 

For the future one needs to explore other ways of evaluating Eq. (20) 

and to investigate the effects that non-separability might have for real 

chemical reactions; e.g., are they neglible except perhaps for H-atom 

transfer reactions. Even more interesting is the question of how one can 

define transition state models for chemical reactions which do not have a 

single saddle point separating reactants and products. ~suppose; for 

example, the triatomic molecule A-B-C has a stable potential well with 

two different saddle point regions leading to either AB + C or A + BC. 

The A + BC collision waul~ then likely lead to a collision complex (if 

the reactions is not too endo- or exothermic) which would invalidate the 

simple version of the "fundamental assumption" of transition state theory. 

By considering two dividing surfaces, however, drawn through the two 

saddle point regions, it may be possible to develop a transition state 

model by assuming the flux through each of the two surfaces individually 
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is direct. Also of importance is the extent to which transition state 

models can be developed for describing non-adiabatic reactions; 4 i.e., 

chemical reactions involving more than one potential energy surface. 
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FIGURE CAPTIONS 

1. Sketch of a collinear potential energy surface for a symmetric 

A+ BC ~ AB + C reaction (i.e., A= C). x andy are mass weighted, 

or "skewed" coordinates that diagona.lize the kinetic energy: 

x = R(~/M) 112 , y = r(m/M) 112 , where Rand rare the translational 

and vibrational coordinates, respectively, and ~ and m the corre-

sponding reduced masses [m = BC/(B+C), ~·= A(B+C)/(A+B+C)]. His 

1 • 2 • 2 
any arbitrary mass, and the classical kinetic energy is 2 M(x + y ). 

s and u are the linear combinations of x and y which diagonalize the 

potential energy at the saddle point. sl, s2, and s3 indicate the 

"surfaces" which are referred to in the text. 

2. Reaction probability for the collinear H + H2 reaction on the Porter-

Karplus potential surface from a microcanonical classical trajectory 

calculation (CL DYN) and microcanonical classical transition state 

theory (CL TST), as a function of total energy above the barrier 

height. (1 eV = 23.06 kcal/mole). 

3. Same as in Figure 1, except that O(E) is the microcanonical reactive 

cross section for the three dimensional H + H
2 

reaction. 

4. The function N(E), defined by Eq. (16), for the collinear H + H
2 
~ 

H2 + H reaction, as a function of total energy E
0 

above the ground 

state of H2 . (In this energy regime N(E) is simply the ground state 

to ground state reaction probability.) QM SCAT denotes the (exact) 

result of quantum scattering theory (r~f. 22), and SEP TST is that 

of conventional (i.e., separable) transition state theory with a one 

dimensional tunneling correction (refs. 10., 23). NON-SEP TST is the 

result based on a semiclassical evaluation of Eq. (20) (re'f. 21), the 

generalized transition state theory that takes account of non-separability • 

. . ~ 
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5. Rate constant as a function of temperature for the collinear H + H2 + 

H2 + H reaction; the labels have the same meaning as in Fig. 4. These 

results were calculated by Eq. (17) with the N(E) functions in Fig. 4. 
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