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Abstract

A discussion of classical transition state theory shows that the
fuﬁdamenﬁal dynamical assumption in transition state theory is that the
reaction mechanism is "direct", and for reactions with activation barriers
it is reasoned that this.is a good approximation fqr tﬁe threshold of the
reactive cross section. Examples‘are préSented which show that thié is
indeed true within the framework of classical mechanics. Analogous
cbmparisonS‘thét have been made quantum mechanically, however, show transi-
tion state theory to be significantly poorer than in the classical case,
and it is argued that this is.a result of the fact that the conventioﬁal
quantum mechanical version of transition state theory involves thg
assumption that motion along some reaction coordinate is separable from
that of fhe other degrees of freedom. (This separability approximation is
known to be poor in the threshold region.) It is then shown how a more
general definition of quantum mechaniéal transition.state theory can be
constructed, which does not necessitate the assumption of separability, and
sample célculations show this to be in good agreement with (exact) quantum

scattering theory.



I. INTRODUCTION.

'The transition s‘tate'theory1 of chemical kineﬁics has without a doubt
proﬁided'the most useful phenomenological framewbrk foripa;ameterizing rate
constants fqr a wide variety of chemical feactions. '{Recently,z_7 however,
there has been interest in investigating the dynémical basis of transition
state theory and>trying to learn the extent to which it:prQVi&es a quanti-
‘tative'description of rate constants for elementary‘bimolecular reactions.

One of ;hé practical motivations for this recent direction of research
“is the regognitioq that for Ghemical reactions with significant activatipn
energy)transition state theory describes the thréshold region of the reac-
‘tive cross secfion-quité_well} and th'iS8 is the enérgyvregime most important
for determining the thermal rate constant. Since the threshold region is
often described rather poorly b; classical trajectofy_methodsg~—which are
useful for‘describing many other aspects of the‘dynamics of simple chemical
feéctions——transition state theory is an important complement to trajéctory
methods. (It is interesting that an analogous complementarity also exists
expetimenta11y5 the "modern" methods® of chemical kinetics--e.g., crossed
molecular'beams,vinfrared chemilumihescence, various laser techniques, etc.--
‘provide dynamica1>inf0rmation about reactions which have little or no
aétivation energy (or at energies significantly above any_threshdld); but
it is difficult to extract iﬁformatibh>about the_thfeshold behavior of the
reactive cross section from such measurements. More traditional kinetics
methodology--i.e., determination of the rate constant as a function of
. temperature—-on the other hand, provides a sensitive measure of the threshold
region (but essentiall& only.this).)

Although it is apparent from the physical'assumpfions inherent in

transition state theory (vide infra) that it should describe the threshold



regiqn accurately, the most detailed comparisonslo of conventional
transition state theory with "exact" results from quantum scattering
calculations have shown it to be poor at moderate end low temperatures.
This disappointing result seems to‘be a eonsequenee of the fact that an
assumption of'separability of motion along a reaction coordinate is
inextricably bound .up in the usual quantum mechanical version of transi-
tion state theory, and separebility has been seen in a variety of
calculations to be a poor approximation in the threshold region. If
transition state theory is to provide a quantitative.deecription of the
reactive cross section in the threshold region (and thus the rate conetant),
it must therefore be applied guantum mechanically, because quantuﬁ
effects are important at threshold, but without assuming the reaction
dynamics to be separable.

The weakness of the separability approximation in conventional
‘transition state theory was recognized quite clearly by Johnston and
Rappll'a number of years ago, and they proposed ways of trying to over-
come it. While not rigorous or accurate quantitatively, these early
attempts.at deaiing with non-separability in transition state theory
were important in identifying this feature as a crucial weakness.

This Account first reviewe the dynamical basis of transition state
theory within the:frameWork of classical mechanics, emphasizing the
"fundamental assumption" on which it is based. Examples are presented
showing .that in a classical world transition.étate theory is an excellent
approximation‘ih the threshold region. It is then shown how a quantum v
mechaﬁical versionAof trensition state theory can be constructed which
escapes the necessity of assuming separability. Results of calculations

based on this theory are seen to be in good agreement with (exact) quantum

mechanical scattering theory.



II. CLASSICAL TRANSITION STATE THEORY AND THE 'FUNDAMENTAL ASSUMPTION'

As Wigner12 emphasizes, transition state theory is a model essentially
based on classical mechanics. (The validity of classical mechanics to
describe the nncleer dynamics is Wigner’s12 assumption number two; his
first'assumption is use of the Born Oppenheimerjapbroximation co separate
elect:onic end'nucléar motion and the assumpticn‘that'only one potential
»energy sufface is involved in the reaction.) To gain a feeling for the
_dynamlcal approx1mat10ns 1nherent in transition state theory it is there-
. fore useful first to dlSCUSS classncal tran31clon state theory before
considering a quantum mechanical version of it.

If the:reactants are in a Boltzmann distribntiOnfof their internal
states and relative translation, then the classical rate constant is a
Boltzmann everage of the flux of reactive trajectories chrough a surface
which divides reactants from products. 'More precisely, the expreesion

for the exéct rate constant in classical mechanics is
kea® = G107 fap fag FHED s1e(q)) (3)~p/m Yo @0 (D)

where B = (kT)—l, (p,q).= (pi,qi), is= 1, «+.s F are the momenta and
coordinates of the system with F degrees of.freedom, Qa is the partition
functlon per un1t volume of the non—1nteract1ng reactants, H(p q) is the

' total Hamiltonian for the system, and f(q) is a function of thé coordinates

which deflnes the d1v1d1ng surface via Eq. (2),
f(@ =0 ; - @

§ is the Dirac_delta function (the factor §(£(q)) in Eq. (1) converts the

"volume" imtegral over all F coordinates into a '"surface" integral over



F-1 coordinates), and xb+a(p,q) is the characteristic function for

reaction. The definition of Xb+a(p’q) is that

Xb*a(g’g) =1 (3)
if the trajectory de;ermined by the phase point (E’S) is reactive in
the a(A + BC) ~ b(AB + C) direction, and is zero étherwise.

" It is illustrative to write out Eq. (1) more explicitly for the
simplest possible example, a collinear A + BC - AB + C reaction. F = 2
in this.case, and the two éoordinates can be chosen to be r and R, which
denote the relative B-C vibrational cbordinate and the distance froﬁ A
to the center of mass of BC, respectively; p and P are the momenta
conjugate to r and R. The function f(r,R) which corresponds to choosing

‘the dividing surface far out in the reactant region--surface Sl in

Fig. l1--is

f(;,R) =R _.-R - . (4)

It is then not hard to see that Eq. (1) becomes

' -1 -2 P, -BH(P,R,p,
kb<—a - Qa_ R '/c.lr ﬁp ﬁp (- H) © - ’ r) Xb+a(P’R’p’r)- > 9

with R = Rmé#fandehere K is the redﬁced mass for.the A - BC translational
motion. If Rmax is sufficiently large, the Hamiltonian is given by its
asymptotic form

. _ 2
fim H(p,R,p,r) = g—'+ h(p,r) s
R H

where h(p,r) is the vibrational Hamiltonian for the isolated BC molecule;



'3

also, 1t is clear that trajectories begiﬁning onbthis surface with P > O
cannot be reactive in the a + b direction. Thus if the translational

energy Et is introduced,

"Eq. (5) takes on its more conventional form

- L ' ~ © oo [ . -BE .‘_
Kpeg = Qal. (l(ﬁ'll) h l ﬁr ﬁp fd(BEt) e Fe Bh(p’%)xb(_a(P,R,P,r),(ﬁ)
. . : =00 —0° 0

with

- max

”—,/2uEt .

g
I

Eq. (6) is the standard expression for which a Monte Carlo trajectory

. 9 , . .
calculation™ is often carried out: the variables r, p, and Et are chosen

-randomly from their appropriate distributions and trajectories run to see

whether Xb+a(P’R‘p’r) is 1 (a reactive trajectory) or 0 (a non-reactive
trajectory).
It is not necessary, however, to choose the dividing surface in the .

reactant region as was done above. Eq. (1) is, in fact, rigorously

independent of the particular choice of dividing surface;z'it is only

necessary that the surface be one through which all reactive trajectories

must pass. TFig. 1 shows two other possible choices, surfaces S2 and'S3.
This independence of the choice of dividing surface is a consequence of
the classical continuity equation (i.e., Liouville's Theorem); this theorem

states that if the surface defined by the equation



f(g) = 0

is a closed surface and if the distribution function p(p,q) is constant

along a classical trajectory, then

ﬁzﬁs P SLE@] Zpep/m = 0 5 7

in words, Eq. (7) states that the steady—state flux through a closed

surface is zero. Eq. (1) corresponds to the distribution function

p(p,q) = e PR, D) Xpea P20 5 | , | (8)

conservation‘of total energy implies that H(E,g) is constantvalong a
trajectory, and it is clear from the definition Of_Xb*a(E’g) that it
alsovis (if the trajectory determined by (E,g)ﬁis reactive at one time

it obviously cannot be otherwise at another time), so that the distribu-
tion function iﬁ Eq. (1), Eq._(8), satisfies the condition of the theorem.
Furthermore,.it is éiear that in Fig. 1 surfaces Sl and S3, for example,
can be made into oné closed surface by joining them with segments at
infinity. Byvthe classical continuity equation, the flux_through this
closed surface is zero. Since no flux passes(thfough'the pieces of the
surface at infinity, this means that the flux EEEQ the closed surface

through S, must be equal to the flux out of the closed surface through

1

S3, or equivalently, that the flux in the reactive direction through S1

must be equal to the flux in the reactive direction through S3. This

argument is clearly valid for any surface which divides reactant and
product space and thus proves the assertion that Eq. (1) is independent’

of the particulat dividing surface.

1
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The stage.ié now set to introduce the "fundamental assumption" of
transition state theory (Wigner's12 third assumptién). The goal is to
éliminate the’charactefistic function Xb+a(g,%)'from‘Eq. (1), and there-
fore the need fo determine the complete glassical-dynamics of the system.
(i.e., to compﬁte classical trajectories),'and this is done in the following
way. The "fundamental assumption" is thatiif the dividing surface is
chosen in the appropriate place, then any trajectory which crosses it in
the reactive difection is indeed a reactive tfajectory, i.e., that it does
not subsequently re-cross the surface and become non-reactive. Put another
way, it is fhe'aséumption that the dividing surface is one which no
trajectory crosses more than once. Whenever this aséumption is true.
transition‘state theory is exact (within the world of classical mechanics
presently being cdnsidered).6a

Framed more quantitati&ely, suppose surface'S3 in Fig. 1 is chosen as
the one through which one assumes no tfajectory passes more than once.

(It is‘clear‘that surfacesfﬁ;and 82 would be poor.céndidates for such a
surface). It is then convenient to choose the two coordinates to be s and
u as depicted in Fig. i, and the dividing‘sufface S3.then gorresponds ;o

the following function f(s,u),
f(s,u) = s ; o : 9

i.e., s = 0 defines surface 83. ‘Eq. (1) for the exact classical rate
constant then reads

| Y y, - o, )‘
-1 -2 : - pS’S’pu’u pS .
ke = b f dp_ / du f dp e (—n;;) Xb<—a(ps’s’pu’u )

-0 O

(10)



with s = 0. The "fundamental assumption" of transition state theory

corresponds to the replacement

Xb*—a(ps’s‘_’pu’u) ——’h(PS) > ‘ (11)

where h(x) is the step-function:

h(x) = 1, x>0

0, x <O s

i.e., it is assumed that if the trajectory has positive momentum in
the reactive direction at the dividing surface, then it is indeed
reactive in the a»b direction. Since the total Hamiltonian is of

the form

2 .2
pS pu
H(PSaS,Pu,u) = sty * V(s,u) , : (12)
: S u

where V(s,u) is the potential energy surface, Eq.. (10) becomes

a .
S

o 2
-1 -1 . pg,  Bpg /2mg
kKieg = Q [h /:ips h(ps) — e )

2
P
-Bl5— + VO,u)]

o] oo
x '[‘h_1 /‘dpu /du e u
' -0 -0 ’

_ISII_ i -Bvo , | (13)
h Q

a

v . _ .
where Vd = V(0,0) and Q 1is the classical partition function of the

"activated complex", the system with one degree of freedom removed:



2
Py :
o o -S[En_ + v(0,u) - V(0,0)]

o ?h-l'fdpu /d“ e : : (14)

By invoking Eq. (11), the "fundamental assumption' of transition state
theory, all exﬁlicit referénce to classical dynamics (i.e., to fhe
characteristic function X$+a) is therefore eliminated, and one recognizes
Eq. (13) as the usual expression for the rate constant in transition

state theory.l

In concluding this discussion of classical transition state theory
it is. interesting to note how different this dynamical view of transition

state theory-éla Wigner12 is from other presentations which refer to the

folldwing."mechanism"

A + BC :(ABC)*'—-»AB +C : ' (15)

to derive Eq. (13). It is often implied that some sort of equilibrium
betﬁeen reactants and "activated complexes" is responsible for the ratio
of partition functions that appear in Eq. (13). Thisbin turn suggests
that transition state theory should perhaps be most applicable if A and.
BC form a collision.complex that lives for many vibrational periods.
(Recall the desire in the early days of transition state theory for the
- H+ H2 potentia} surface to have a weli at the top of the barrier). fhe
discussion in the above paragraphs show, on the contrary, that the funda-
mental assumptién of transition state theory is that the mechénism is

- M"direct", that,ail_trajectories/mbve right across the dividing surface
and do_not‘retutn. This assumption of "straight-tﬁrough" dynamics is
essentially the opposite to thaf of a lqng—lived coilision complex,‘fof

‘the latter would result in trajectories which re-cross the dividing
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surface many times and thus invalidate the "fundamental assumption'.

III. ACCURACY OF CLASSICAL TRANSITION STATE THEORY

Before considering quantum mechanical transition state theory, it
is useful to look at the accuracy of classical transition state theory,
i.e., the validity of the "fundamental assumption' that no trajeétories
cross the dividing surface more than once, that.fhebreaction dynamics
' -

is "direct". Thus consider a simple collinear reaction such as H + H,

H2 + H with the diViding surface chosen as the symmetric line (surface

' S3 in Fig. 1). It also simplifies matters to consider the microcanonical
version of transition state theory, which corresponds to a fixed total -

energy E rather than a fixed temperature T: The dimensionless function

N(E) is defined by

N(E) = 2mh h'Fﬁgfig sE-(p, )] 81 ] L Bep/m % (o0
) (16)

in terms of which it is easy to see that the rate constant in Eq. (1)

is given by

2]

Kpeg = Q- 277 ﬁE e . , (17)
0

The transitioh'state approximation to N(E) éorresponds to reflacing
Xb*a in Eq. (ié) by the approximation in Eq. (11).

| N(E) is clearly zero for E < Vo’ V0 being the position of the
saddle point in the potential energy surface, for no classical

trajectory can be reactive unless it has enough energy to go over the
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berfier. " For total energies E only slightly ebeQe thevbafrier it is not
hard to cehclﬁde that.tﬁe transition state approximation for N(E) will be
g§§g£§ai.e;, the;e will be no trajectories whicﬂ croes the dividing surface
more ﬁhan once. To see this, imagiﬁe beginning a trajectory en the
symmetric line with a total energy only slightly abeve the saddle point;
the trajectery‘will begin‘sloﬁly, piek up speed as‘it'funs down the hill
toward prdducts, and clearly not return. At Sufficiently high.energy,
on the other hand, it is clear that therevwill:be_trajecedries'which
‘rebound back‘ecresé the sfmmetric.line and thus‘invelidate tﬁe "fundamental
assumption".

Since theutransition state approximation to NkE) begins correctly
at the classical threshbld‘Vo, the pfimery questioﬁ in classical transi-
tion state theory is how high above Vo can E be increased and it still be
true that there ere no re-crossing trajeetoriee. Pechukas end McLafferty6a
have made an ingenius contribution to answering thie‘question by discovering
a simple geometrical criterion for finding a critical energy below which
thevtrensition/state approximation to N(E) is exact; .Another approach
;o:investigating this question is the‘"experimental" one of simply compar-
ing the exact ﬁ(E) fﬁnction, determined by carrying out classical trajectory
calculations; with the transition state approximafioﬁ to N(E).
| Figure 2 shows such a comparisonl4’§? the'exeee and the transition
state epproximation for N(E) as a function of totai energy for the
2

above the barrier height in this case-—the transition state approximation

collinear H + H, reaction. As expected, at low energy--up to about 0.3 eV

is essentially exact, i.e., there are no trajectories at these eﬁergies
that re-cross the symmetric line. At higher energies, however, there do

exist trajectories that rebound back across so that the transition state

approximation to N(E) is too large.
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‘Figure 3 shows a similar comparisonlA’%gr thé three~dimensional

H + HZ rea;tion, the exact N(E) being evaluated by Monte Carlo trajectory
calculationé: Again one sees that transition state theory is essentially
exact for,enefgies up to about 0.3 eV above the barrier, and even when
it begins to fail it is in muéh less error than in the cpliinear case;
af 1 eV above the barrier the transition state approximates to N(E) is
only 107 too iarge;. |

| The ab@ve relatién between the collinear and three-dimensional
H + HZ

surface) illustrates a feature which one expects to be general, namely

: 16
‘reaction (both with the same Porter-Karplus potential energy

that other things being equal, the fundamental assumption of transition
state theory is bétter the higher the_dimensionélity of the system.
This is uﬁdérstood qualitatively in that fewer trajectories, having
departed frbm‘the dividing sﬁrface towaras'products,.are able to find
fheir way back iﬁ the higher dimensional phase space; i.e., they are

more likely to get "lost" and not return.

IV. TOWARDS A QUANTUM TRANSITION STATE THEORY

The previous sections have shown that within the realm of classical
mechanics transition state theory describes the fhreshold region of the
reactive crosé section qﬁite accurately. This success of classical
.transition sta;e theor& is.somewhat hollow, however, because quantum
effects are important in the threshold region, particulafly so if the
.reactive dynamics involves light atoms (i.e., H atom transfer). The
task, then,_is to implement the "fundamental aésumption" of transition

state theory in a fully quantum mechanical framework.



i
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fhere-afe several reasons for believing that the “assumption of "direct
dynamics" tﬁfough the saddle point region is valid for the threshold region
also in a quantﬁm mechanical theory. The streamliﬁes of flux coﬁputed by
Kuppermann.gg_glL;7 for the H + H2 reaction, for example, show "spraight—
through" dynﬁmics at low energy, even in the tunneling regime below the
classical threshold. i(At higher energies, thodgh, the streamlines
develop "whiripool effects", cgrresponding to‘re—crossing classical
trajectories.’ Similarly, thezsemiciassical caicplations of George and

18 : ,
Miller show complex-valued classical trajectories which tunnel

straight—
through' the'séddle point region.

| The first Step in constructing a quantum version.of transition state
theory is to write the exact’ quantum mechanical expression for‘the rate
gonstant (assuming a Boitzmann distribution of reactanté). This can be
expressed in a nﬁmber of ways, but the form most_useful-for present
purposes is one7 which is the direct analog of the classical exbression

in Eq. (1),

Kpea® = QG erle ™ 5e) Eepmrr L (18)

where "tr" means a quantum mechanical trace, the ﬁuantum analog of a
classical phase space average; H, f(g), and P a11 have their same
meanings.és in Eq. (1) exéep; thaf they are now quantum mechanical
operators. The projection operator P is the quanfum analog of the
characteristic: function Xpea in Eq. (1), and it is given explicitly by7

-iHt/h

eth/h H(-P) e R : | 19)

P = %im

t>-00 ’

P being the momentum operator conjugate to R. The aﬁpearance-of the
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quantum mechanical evolution operator, e—th/h, in~? shows that it ié
the factof which contains all the quantum scattering dynamics, analogous
to thé dynamical content of the classical function Xpea In words, P
" projects onto all states that have evolved in the infinite past from
reactants.

As in the classical case, one can show?.thaf the exact quantum
rate constant in Eq. (18) is independent of the specific choice of the
diviaing surface. Quantum transition state theory is thus defined in
a manner anaiogous to the classical case: ‘A specific choice is made
for the &iﬁiding surféce (e.g., surface 83 in Fig.‘i), and then the
"dynamical factor" P is approximated by invoking the fundamental
assumption of transition state theory. Analogous to .Eq. (il),oﬁev

makes the replacement
P>h(p)

this approximéfe'projection operator projects onto all states that have
posiéi&e momentum in the s-directionm, and it is the '"fundamental assump-
tion" that positive momentum in the s-direction at the dividing surface
implies evolution from reactants in the infinite past.

This approach7_to quantum mechanical transition‘state theory thus

gives the rate constant as

-1 - p
ko, = QL erle ™ o) 2hp)) . (20)
S .

If one does introduce the assumption that the Hamiltonian is separable

in s and u coordinates,

H o= ho+h +V o, (21)
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then it is easy to show7 that the conventional expression for the rate

constant results

(22)

4‘”'0 ,'o*
1]

_pkr
kbf-a =T h

* » | e P .
-where Q is the quantum mechanical partition function of the "activated

complex"
- -Bh
Q = tr(e ) o, (23)
’ u
énd 'is a one-dimensional tunneling coefficient, 
~_~Bh_ . pg - A
‘T = 21hB trl[e - “&8(s) o h(ps)] . : . ' (24)

S S

fhé assumption of separability of the Hamiltonian, however, one
knows to be abboor approximation in the threshoid region where qugntum
effects are important. One manifestation of this is the "corner—cutting"
effect that has been seen in a number of different kinds 6f calculations

qu;_the H % H2 reaction: at low energies iq thg'threshold region the
tunneling from reactanﬁs to products 9éuts the cprner", going through the
sidéiof thé barrier rather than direcfly under'the.saddleipoint itself;
Other évidence fof the Bréakdown of the separability approximation is the
poor agreement that Eq. (22) gives with thevexact qﬁantum scattering
.calculatipns Af'Truhlar and Kuppermann.

To make a fair test of the "fundamental assumption'" of transition

state theory in the quantum mechanical case one thus needs to evaluate
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Eq. (20) without incorporating any kind of assumption of separability.
This is a considerably more difficult task, howevér, because the
Boltzmann operator e_BH does not now factor into seﬁara;e one-dimensional
operators. |

A first sfep toward evaluating Eq. (20) without assﬁming separability

. . 2
has been madezo’ 1

by introducing a semiclassicél approgima;ion for the
Boltzmann opera&or and evaluéting the trace within the semicléssical
limit; no assumpfions involving separability, however, were madefv In
addition to éimplifying‘the célculatign, the semiélassical limit of

Eq. (20) leadé'to a very intereéting physical picture of the non-
'separable tunheling dynamics;‘the interested reader should éonsult
refs. 20 and 21.

Figure 4 shows the comparison of the fexact"'funCtion N(E), obtained
from quantum scattering calculatiohs,22 to that obtained by thig semi-
classical evaluation21 of Eq. (20), again for the collinear H + H, reaction.
Also shown is the result for N(E) given by conventional (i.e., separable)
transition state theory with a one-dimensional tunneling correction.lo’23
The comparison of the corresponding rate constants as a function of
temperature, obtained from the functions N(E) via Eq. (17), is shown in
Fig. 5.

The results in Figures 4 and 5 éhow quite clegrly the degree to which
the separability approximation fails in the threshold region. They also
show that once non-separability is taken properly into account, quantum

mechanical transition state theory provides an accurate description of the

threshold region and thus the rate constant.
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V. CONCLUSIONS AND PROGNOSIS

Although one should be Qary of drawing too many'conclusions from
only one example, a few seem safe. Forbthe threshold region of a simple
chemical reaction it does seem that thev"fundamenfal assumption" of
transition stéte theory is accurate quantum mechanically, as it is
classically,'grovided the sepérability approximagion‘is not introduced
to simplify the quantum calculat{on.: Since the ‘effects of non-separability,
and quantum effects in generai, are probably moré prominent in the
coliinear H + HZ reaction discussed in the previous sections ;han in any
real chemical reaction, it indeed provides a severe test. Thus the
generalized definition of quantum mechanical transitidﬁ state theory is’
seen to be.a useful ahd accuraté one (although thefe are some subtle
ambiguities7'not'discussed here).

For the future one needs to explore other ways of evaluating Eq. (20)
and to investigaté the effects that non-separability might have for real
chemical reactions; e.g., are they neglible except.perhaps for H-atom
fransfer réactions. Even more interesting is the question of how one can
define transition state models for chemical reactions which do not have a
single saddie point sepafating reactants and prqdudts. 1 Suppose; for
example, the #riatomic molecule A-B-C has a stable poteh;ial well with
_two different saddle point regions leading to either AB + C or A + BC.

The A + BC coliision would then likelyvleadvto é collision complex (if
the reactions is not too endo- or exothermic) which would invalidate the
Simple version‘of the "fundamental assumption" of transition state theory.
By considering two dividing surfaces, however, drawﬁvthrough the two
saddle point regions, it may be possible to develop é transition state

model by assuming the flux through each of the two surfaces individually
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is direct. Also of importance is the extent to which transition state
models can be developed for describing non-adiabatic reactions%4i.e.,

chemical reactions involving more than one potential energy surface.
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FIGURE CAPTIONS

‘Sketch of a collinear potential energy surface for a symmetric

A + BC > AB + C reaction (i.e., A = C). x and y are mass weighted,

or "skewed" coordinates that diagonalize the kinetic energy: :

X = R(u/M)l/z, y = r(m/M)l/z, where R and r are the translational

and vibrational coordinates, respectively, and u and m the corre-

'Sponding reduced masses [m = BC/(B+C), u-= A(B+C)/(A+B+C)]). M is

any arbitrary mass, and the classical kinetic energy is~% M().c2 + ;2).

s and u are the linear combinations of x and y which diagonalize the
potential:enérgy at the saddle point. Sl’ SZ’ and S3 indicate the
"surfaces'" which are referred to in the text.

Reaction ﬁfobability for the collinear H + H2 reaction on the Porter-
Karplus potential surface from a microcanoniéal-cléssical trajectory
calculation (CL DYN) and microcanonical classical transition state
theory (CL‘TST), as a function of total energy above the barrier
height. (l.eV = 23.06 kcal/mole).

Same as - in Figure 1, except that O(E) is the miéfocanonical reactive
cross section for the three dimensional H + H2 reaction. |

The function N(E), défined by Eq. (16), for the collinear H + H2 >
H2 + H reaction, as a function of totgl energy-Eo_above the ground
state of H,. (In this energy regime N(E) is simply the ground state i~
to ground state reagtion probability.) QM SCAT denotes the (exact)
result éf quantum scattering theory (ref. 22), and SEP TST is that

pf conventional (i.e., separable) traﬁsition state theory witﬁ a one
dimensional tunneling correction (refs. 10, 23). NON-SEP TST is the
reéult based on a semiclassical evalﬁation of Eq. (20) (ref. 21), the

generalized transition state theory that takes account of non-separability.
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5. Rate constant as a function of temperature for the collinear H + H2 >

H, + H reaction; the labels have the same meaning as in Fig. 4. These

2
results were calculated by Eq. (17) with thé N(E) functions in Fig. 4.
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