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Analysis of the Durability of Replicated Distributed Storage
Systems

Sriram Ramabhadran Joseph Pasquale

ABSTRACT
In this paper, we investigate the roles of replication vs. re-
pair to achieve durability in large-scale distributed storage
systems. Specifically, we address the fundamental questions:
How does the lifetime of an object depend on the degree of
replication and rate of repair, and how is lifetime maximized
when there is a constraint on resources? In addition, in real
systems, when a node becomes unavailable, there is uncer-
tainty whether this is temporary or permanent; we analyze
the use of timeouts as a mechanism to make this determina-
tion. Finally, we explore the importance of memory in repair
mechanisms, and show that under certain cost conditions,
memoryless systems, which are inherently less complex, per-
form just as well.

1. INTRODUCTION
Replication is a cornerstone of reliable distributed system
design. By replicating functionality (which may involve
data, computation, communication or any combination of
these), at multiple locations in the system, a distributed ap-
plication can achieve the redundancy necessary to tolerate
individual failures. Reliability has many aspects in this con-
text; one well-studied metric is availability, defined as the
fraction of time the system is able to provide access to the
replicated entity. The entity is available when any one of its
replicas is functioning; conversely, it is unavailable when all
of its replicas are not. Another metric of reliability, which
is the focus of this paper, is durability, defined as the du-
ration of time the system is able to provide access to this
entity. This is significant when the replicas in the system
are susceptible to failures of a more permanent nature; if
such attrition is ignored, the system will eventually lose all
replicas of the entity in question. Thus, while availability
deals with temporary inaccessibility when all replicas are
non-operational, durability deals with more permanent loss,
when the system no longer has even a single replica.

Our work is motivated by several recent efforts [12, 18, 14, 6,
4] that use replication to build distributed wide-area storage

systems in a peer-to-peer environment. Engineering relia-
bility in this environment is a complex and challenging en-
deavor; storage is provided by autonomous peer nodes (con-
nected by a wide-area network such as the Internet) whose
participation in the system is generally entirely voluntary.
The lack of control over peer participation implies that the
underlying storage substrate in such a system may be highly
unreliable. A peer node may be offline for significant peri-
ods of time, resulting in the temporary unavailability of any
data stored on it. In addition, it may cease its participation
in the system at any time, resulting in the permanent loss of
that data. Given that these failures are significantly more
frequent than, say, disk failures in a conventional storage
system, achieving high reliability is far from trivial.

Replication can be used by the system to provide high avail-
ability in a statistical sense 1. To significantly extend the
durability of an object for periods exceeding individual node
lifetimes, the system must also implement a repair mecha-
nism that compensates for lost replicas by creating new ones.
The repair process must be automated; the system monitors
the set of replicas, and creates a new one when necessary.
The decision to trigger a repair is necessarily based on in-
complete information, as in general, the system cannot de-
termine exactly when a replica is lost. It may have to infer
this based on, for example, if a particular node is unrespon-
sive for a significant period of time. Clearly, durability is
a function of both replication and repair, as, in addition to
the number of replicas, it also depends on how aggressively
the system responds to the potential loss of a replica 2.

We note that the concept of durability, and more specifi-
cally, maximizing the lifetime of some entity using a com-
bination of replication and repair, is fundamental to other
types of distributed systems as well. For example, compu-
tational grid applications may execute long computations
over a peer-to-peer system of user computers [2], each of
which may “fail” (be turned off or have its processes re-
moved/killed by its owner) long before the computation is
complete. Another example is a wireless sensor network [7]

1Under the assumption of independence, if the availability
of an individual node, and therefore replica, in the system
is p, the availability of an object with r replicas (each on
a different node, and assuming nodes fail independently) is
given by 1 − (1 − p)r.
2In abstract terms, the repair process may be associated
with a rate parameter [15] that quantifies how aggressive or
lazy the system is in carrying out a repair. In practice, this
depends on the exact repair mechanism used.
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Figure 1: Node behavior: a node alternates between periods of uptime and downtime, which correspond to
being in the states online and offline, respectively. The transition online to dead (rather than offline) signifies
the end of a node’s lifetime.

where a monitoring application runs on motes, whose life-
time is limited by battery power and environmental wear
and tear. In general, trends towards larger and larger dis-
tributed systems comprised of increasingly more unreliable
participants imply that applications based on such systems
will likely out-live the nodes they run on by orders of mag-
nitude. In this case, such applications will have to explicitly
address durability considerations.

In this paper, our objective is to investigate durability of ob-
jects in distributed storage systems as characterized by the
most basic of parameters: degree of replication, replication
rate, and failure rate. The key features of the problem we
deal with are that (1) applications are expected to signifi-
cantly outlive the nodes on which they run; (2) replication
and repair are used to achieve durability, and both must be
automated; (3) there is an inherent uncertainty in the re-
pair process in that the system cannot perfectly distinguish
between components that are temporarily down vs. those
that have permanently failed. The last point raises interest-
ing questions, such as “Is repair actually needed (or will just
waiting solve the problem)?”, and “If a mistake is made (a
repair is made that is actually not needed, or no repair oc-
curs when it actually was needed), what should the system
do, if anything, to compensate?”.

Durability in this context is significant for a number of rea-
sons. From the perspective of a user, it is desirable that
the system be able to provide some reasonable expectation
that his or her data is secure against loss, preferably in the
form of strong statistical guarantees. For example, the user
may require that the system keep the stored data safe for
10 years, with 6 nines of certainty (i.e., a probability of
99.9999%). We study whether or not the system can pro-
vide such strict assurances of data durability. On the other
hand, from the perspective of the system, it is essential to
understand how to implement such guarantees, and what
resources are required to do so. Both replication and repair
consume resources; replication requires storage (disk space),
and repair incurs communication (network bandwidth and
message processing). Thus, the two parameters the system
can modulate, i.e., the degree of replication and the rate of

repair, impact not only durability, but also resource usage.
We study this relationship using a very simple and general
model, and address the question of maximizing durability
when constrained by finite resources.

Our approach is model-based; we develop a stochastic model
for system behavior. The core of this model is a Markov
chain that approximates the behavior of a single replica; the
system is then modeled as a collection of such replicas. We
take this approach because an empirical evaluation of dura-
bility is difficult to perform due to the long time periods
involved. For example, the availability of objects in a de-
ployed system can be observed over periods of months [19];
measuring durability, on the other hand, could require sev-
eral years. For the same reason, trace-based simulation [11]
is of limited value. We note that in contrast to availability,
durability is non-trivial to quantify analytically, even for rel-
atively simple models [15]. Thus, our results are based on
a mixture of analysis and simulation. The simplicity of the
model is key; it enables simulation of system behavior over
long time periods and for a wide range of values for the
design parameters. However, we also show that when we
perform similar experiments using empirically-derived dis-
tributions for uptimes, downtimes, and node lifetimes based
on trace data from PlanetLab nodes, the resulting character-
istic behavior is very similar to that of the purely stochastic
model.

2. SYSTEM MODEL
The system consists of and controls some population of stor-
age nodes on which it can replicate objects. By the term
system, we mean the distributed logic whose function is to
ensure the durability of the objects it stores. This objective
would be trivial if the storage substrate were perfectly reli-
able; unfortunately, it is not. A node may “leave,” i.e., no
longer be part of, the system at any time, at which point the
system cannot retrieve any objects stored on that particu-
lar node. Nodes that leave the system are replaced by new
ones; thus, we assume that the system is never limited by
the inability to find a node on which to replicate. However,
it must take measures to ensure that objects persist over a
constantly changing population of nodes.



The behavior of a node is illustrated in Figure 1. A node par-
ticipates in the system for some duration of time called its
lifetime. This is the time that elapses between the instant a
node initially “joins,” i.e., becomes part of, the system, and
the instant the node permanently leaves it. As shown in Fig-
ure 1, the lifetime of a node consists of alternating periods
of availability and unavailability. Node uptime refers to pe-
riods when the node is online (or available), while downtime

refers to periods when the node is offline (or unavailable).
When a node is offline, it is temporarily unable to partic-
ipate in the system; thus, any objects stored on that par-
ticular node are inaccessible until the node becomes online
again.

In the following subsections, we further develop our sys-
tem model, and derive a stochastic model for node behavior
that serves as the basis of analysis in the rest of the paper.
We then address how the system can use a combination of
replication and repair mechanisms to achieve its objective of
durable storage. Finally, we establish the metrics by which
we will evaluate the system.

2.1 Node model
Our model for node behavior is based on simple statisti-
cal assumptions of node lifetime, uptime and downtime. In
particular, we assume that node lifetimes are exponentially
distributed with mean T . (We discuss the validity of this
assumption below.) In addition, we assume that node upti-
mes and downtimes are also exponentially distributed with
means t and t̄ respectively, where T ≫ t, t̄. We assume that
nodes are homogeneous, i.e., the behavior of each node is
governed by an i.i.d. random process.

1 2

3

DEAD

ONLINE OFFLINE

λ21

λ12

λ13

Figure 2: A Markov model of node behavior. The
node alternates between states 1 (online), the start
state, and 2 (offline), before it is finally absorbed in
state 3 (dead), the end state.

Exponentially distributed uptimes and downtimes imply that
the underlying random process is Markovian; consequently,
we model node behavior by a continuous Markov chain with
three states, as shown in Figure 2. A node may be either

online (state 1), offline (state 2) or dead (state 3). A node
always begins its existence in state 1, alternates between
state 1 and state 2, before it is finally absorbed in state 3.
3 The model in Figure 2 generates the behavior illustrated
in Figure 1. It remains to ensure that the lifetime, the time
between beginning in state 1 and ending in state 3, is expo-
nentially distributed. We must also obtain the appropriate
values for the transition rates λ12, λ13 and λ21, in terms of
t, t̄ and T . Uptimes Xi are identically distributed as the
sojourn time of the chain in state 1, denoted by the random
variable X ∼ Exponential (λ12 + λ13). Equating E [X] to t,

(λ12 + λ13)
−1 = t (1)

Similarly, downtimes X̄i are identically distributed as the
sojourn time of the chain in state 2, denoted by the random
variable X̄ ∼ Exponential (λ21). Equating E

ˆ

X̄
˜

to t̄,

λ
−1
21 = t̄ (2)

Finally, the lifetime is the absorption time of the chain in
state 3, denoted by the random variable Y , having begun in
state 1. If the chain visits state 2 N times (N ≥ 0) before
being absorbed in state 3, Y is given by

Y =

N
X

i=1

`

Xi + X̄i

´

+ XN+1 (3)

Let p13 = λ13

λ12+λ13
be the transition probability from state

1 to state 3. With probability p13, N = 0, and with proba-
bility 1 − p13, N ∼ Geometric (p13), which implies

E [N ] =
1 − p13

p13

=
λ13

λ12
(4)

Therefore

E [Y ] = E

"

N
X

i=1

`

Xi + X̄i

´

+ XN+1

#

= E [N ] E
ˆ

X + X̄
˜

+ E [X]

=
λ13

λ12
(t + t̄) + t

Equating E [Y ] to T ,

λ13

λ12
(t + t̄) + t = T (5)

Solving Equations 1,2 and 5, and using T ≫ t̄ to simplify

3Despite the symmetry it adds to the model, we do not con-
sider the transition 2 → 3 because it does not correspond to
any directly observable behavior by the node. It is certainly
conceivable that a node does not return to the system while
offline, and thus becomes dead. But since the system can-
not determine the point at which such a transition occurs (it
may not even be well defined), it is simply considered dead
from the point it became offline.



yields

λ12 =
1

t
−

1

p T

λ13 =
1

p T

λ21 =
1

t̄
(6)

where

p =
t

t + t̄
(7)

where p is the node availability, i.e., the fraction of time a
node is online. Finally, verifying that lifetime Y is exponen-
tially distributed, we show in the appendix that if T ≫ t̄,
Y ∼ Exponential

`

1
T

´

.
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Figure 3: Uptime and downtime cumulative distri-
butions for PlanetLab nodes from October 2003-
June 2005 derived from the all pairs ping dataset [1].

Before proceeding further, we wish to address the validity
of the assumptions that lead to the model as described so
far. Empirical evidence suggests that using exponentials to

model node uptimes and downtimes is not unreasonable for
certain uses. Figure 3 shows the distribution of uptimes
and downtimes for nodes on PlanetLab [3] over a period of
21 months, and also shows the closest fitting exponential
distributions. One immediate observation is that, visually,
the curves are not overly dissimilar. Perhaps the biggest
difference is that the empirically-derived distributions have
heavier tails. 4 Despite the differences, we have found (and
will present) that the results produced by the model when
using exponentially distributed times and the empirically-
derived ones are similar.

Another empirical study [22] of machine availability on Plan-
etLab determined that while neither exponential nor Pareto
distributions perfectly fitted uptimes and downtimes, expo-
nential was the better fit. The exponential distribution is
not the only reasonable candidate; for example, a study [9]
of machine availability on the Microsoft corporate network
determined that downtimes could be modeled by a gamma
distribution with shape parameter 0.68. Finally, and most
relevant to our study, we note that the sum of a geometric
number of i.i.d. random variables tends to exponential in
the limit (Renyi limit theorem [13]). Thus, irrespective of
the uptime and downtime distributions, the node lifetime
tends to exponential as long as there is a constant probabil-
ity that a node will return after going down. This is perhaps
the strongest reason for why the results we obtain seem to be
robust regardless of using either exponential or empirically-
derived distributions for uptimes and downtimes.

We now focus our attention on how the system can imple-
ment durable storage. As noted earlier, the system must
use a combination of replication and repair for this purpose.
The process of replication consists of making copies of an
object; the system is said to create a replica when it copies
the object onto some node in the system. For simplicity, we
will assume that a node stores at most one replica, allowing
us to characterize the state of a replica based on the state of
its underlying node. Thus, a replica may be either online,
offline or dead, depending on the node that stores it. The
degree of replication is defined by the number of replicas of
the object initially created by the system; we denote this
system parameter by r.

Given a degree of replication r, the system starts by creating
r replicas of the object 5. Subsequently, the system attempts

4This and other dissimilarities must be tempered by the
fact that deriving accurate distributions from trace data is
fraught with difficulties. For example, the time of a node
becoming up or going down is typically determined by ping-
ing by other nodes on the network. These pings generally
occur periodically, e.g., every 15 minutes or even every hour,
and then events of interest must be inferred from responses
or lack of responses. No response from a single ping may
simply mean that there is a network problem, and so, a lack
of response from a sequence of pings is required to declare
a node down. And if after a sequence of pings, the node
does respond, was it actually up the entire time, or did it
momentarily go down? This can affect the accuracy of the
distribution for small times. For large times, the problem
becomes one of having collected data over a long enough pe-
riod of time for there to be statistical significance for those
corresponding events.
5By object we mean a file; however it could also be a smaller
unit, such as a file block, or a large unit, such as a group of
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Figure 4: A simple example illustrating the repair process for r = 2. The Nx’s are replicas. When N3 and N4

go nonline at times H and I, and time out at times J and K, respectively, the object is no longer recoverable.

to maintain r replicas of the object at all times6 through a
process of repair. Repair is necessary to replace replicas that
are dead; otherwise, node departures will eventually result
in the permanent loss of the object when all its replicas are
dead. To guard against this, the system must effect a repair,
i.e., create a new replica of the object whenever it detects
that an existing replica is dead. Ideally, a repair should be
made only when a replica is dead; however, as we will now
discuss, the temporary unavailability of an offline replica has
significant implications for the repair process.

First, the system cannot distinguish between a replica that is
dead, and one that is merely offline (in both cases, its node
is unresponsive). Thus, the system cannot reliably detect
when a replica is dead; each time a replica transitions out of
the online state, the system is dealing with the potential loss
of a replica, and must decide whether to make a repair or
not. We will call a replica that is not online, i.e., is in either
the offline or dead state, as nonline. A natural mechanism
to decide when to trigger a repair is to wait some period
of time for the nonline replica to return to the online state,
i.e., to use a timeout 7. If the replica returns before the
timeout occurs, no repair is necessary; on the other hand, if
it does not, the system assumes that it is dead, and triggers a
repair. Of course, this mechanism is not perfect; the system
will occasionally time out a replica that is not dead, but is
merely offline for a long time.

Second, when a timeout occurs, the system attempts to cre-
ate a new replica; however, it may not be able to do so
immediately. If all replicas of the object are nonline, the

files belonging to the same user.
6Note that not all r replicas need be online simultaneously.
7While a timeout is certainly not the only repair mecha-
nism that the system could use, its simplicity makes it an
attractive candidate for actual implementation.

repair must be delayed until at least one of the replicas is
online so that the object is available to be copied onto a new
node. This delay depends on node availability; in general,
higher availability implies it is less likely the system will
have to wait to make a repair. We revisit this relationship
between availability and repair in Section 3.2.2.

Figure 4 illustrates the repair mechanism for r = 2 replicas.
Initially, the system starts out with two replicas N1 and N2.
At time A, N2 goes offline but at time B returns before a
timeout occurs; therefore, no repair is required. However,
when N1 goes nonline (offline or dead) at time C, it does
not return before a timeout occurs, and therefore the system
responds by making a repair (immediately creating replica
N3) at time D. Subsequently, at time E, N2 goes nonline
but times out this time, necessitating a repair. However,
in this case, the other replica N3 is nonline at time F , and
the repair (creating replica N4) must be delayed until it is
online, which occurs at time G. Finally, both N3 and N4

go nonline in quick succession at times H and I , and then
both time out at times J and K, at which point the object is
considered permanently lost. The critical condition is that
if the replicas go nonline within one timeout period (e.g., at
times H and I), they cannot be repaired. Note that while K

is the point at which the object is no longer recoverable, we
define the end of the object’s lifetime as I since this marks
the last moment where the object is online and therefore
accessible.

Choosing a timeout period depends on how aggressively the
system wants to repair. Intuitively, it would appear that
there is a balance between causing frequent, and perhaps
unnecessary, repairs when the system prematurely times out
a replica (i.e., one that would return if the system waited
longer), and delaying replacing a replica when it actually is
dead. To investigate this tradeoff, we assume the timeout
is given by α t̄, where α is a system parameter. It is nat-



ural to express the timeout period in terms of mean node
downtime: on average, a node is down, and hence a replica
is offline, for a period of t̄. In addition, if downtimes are
exponentially distributed, we can compute the probability
that an offline replica will be prematurely timed out simply
as Pr{X̄ > α t̄} = e−α, i.e., the probability that downtime
exceeds the timeout period. Thus, the repair parameter α

allows the system to trade off how aggressively it responds to
the potential loss of a replica versus how many unnecessary
repairs are made.

The degree of replication r and the repair parameter α rep-
resent the space of possible strategies for system to achieve
durability. There is one additional factor that we now con-
sider, viz., the role of memory. A replica that has been
timed out will subsequently “return” if it was simply offline
but not dead. There are two broad approaches to how the
system can deal with this.

Repair without memory Repair is said to be memory-

less if the system simply discards such a replica, i.e., it does
not reintegrate this replica into the set of remaining ones.
Rather, it assumes that the replica is lost (in effect, treat-
ing its node as though it were joining the system for the
first time). The advantage of the memoryless approach is
its simplicity, not just in terms of modeling but also in ac-
tual system implementation. In addition to the system not
having to “remember” replicas that time out, its resource
usage is predictable as the number of replicas of an object
never grows beyond r. The disadvantage of the memoryless
approach is that it is potentially inefficient by not making
use of replicas that were previously considered lost. A key
question is, how significant is this inefficiency, and can it be
tolerated to enjoy the benefits of design and implementation
simplicity? We address this in Section 3.

The alternative to memoryless repair is memory-based re-
pair, in which the system remembers the timed-out replica,
and may decide to readmit it to the set of existing repli-
cas. This enables the system to take advantage of what is
essentially a “free” repair. Depending on the specific condi-
tions under which the system readmits a timed-out replica,
there could be many possible memory-based repair strate-
gies. In this study, we adopt the following strategy: the
system readmits a timed-out replica only if the number of
replicas is currently below the target number r. Since the
system always attempts to effect a repair as soon as possible
after a timeout, this scenario would occur when the system
was unable to complete the repair due to all other replicas
being nonline. We choose this strategy because it is both
reasonable and fairly comparable to the memoryless repair
strategy. It enables the system to take advantage of memory
by readmitting a replica when necessary, while retaining the
property that the number of replicas does not exceed the
target of r, just like the memoryless strategy.

2.2 Metrics
The main measure of durability that we will use in our eval-
uation is object lifetime 8. This is defined as the time that
elapses between the instant the system starts by creating r

replicas of the object, and the instant the system no longer

8Note that this is different from node lifetime.

has any replica of the object. Object lifetime is a variable
that depends on the random processes governing node be-
havior; therefore, in most cases, we will use its expected
value, denoted by L, as our yardstick.

Durability cannot be considered in isolation; we need metrics
for resources consumed by replication (storage) and repair
(communication), respectively. For simplicity and general-
ity, we characterize these in a way that is independent of
replica size. Thus, the number of replicas r itself is a mea-
sure of the storage consumed by replication. To model com-
munication incurred by repair, we define the cost of repair,
denoted by C, to be the long-term rate of replica regenera-
tion. We normalize this quantity in terms of the mean node
lifetime T (for reasons that will soon be apparent); therefore,
the cost C is simply the number of copies of the object that
the repair process makes, on average, over a time period of
T . Clearly, both L and C depend on node parameters T , t

and t̄, system parameters r and α, and finally, the nature of
repair (memoryless versus memory-based). In Section 3, we
characterize this dependence.

We conclude this section by considering what range of costs
constitutes a reasonable cost regime. Adopting the approach
in [6], we consider a hypothetical scenario in which the sys-
tem has access to an oracle that can precisely predict the
behavior of each node; in particular, it can tell when a node
is about to leave the system permanently. 9. In this case,
the system can achieve an infinite object lifetime with just 1
replica by making a repair just before that replica is about
to leave. The long-term rate of replica regeneration for this
process is 1 replica every mean node lifetime T , resulting
in a normalized cost of C = 1. While the existence of such
an oracle is obviously unrealistic, it serves as a guideline for
what a reasonable cost regime might be (within the same
order of magnitude, for example).

3. ANALYSIS
Although our node model is Markov, the use of a fixed time-
out complicates a completely analytic characterization of L

and C. Our evaluation is therefore a mixture of analytical
(Section 3.1) and simulation results (Section 3.2).

3.1 Analytic results
Our analytic results in this section consist of deriving an ex-
pression for the expected amount of time that elapses before
a replica is timed out by the system (Equation 11). Bounds
on the cost of repair C (Equation 12) follow directly.

3.1.1 Frequency of timeouts
Let Yα denote the time that elapses between the instant a
replica is created, and the instant it leaves the online state
before being timed out (i.e., it is either dead or offline for
a period exceeding the timeout). Note that this does not
include the timeout period itself; the “time to timeout” is
Yα and the timeout value itself, i.e., Yα + αt̄ . Clearly, this
quantity depends on α; the smaller α is, the more likely
a replica will be timed out when it is offline. Similar to

9Note that we do not assume that the oracle can tell the
lifetime of a node in advance; rather, it can only inform the
system about an event just before it happens.



Equation 3, Yα is given by

Yα =

Nα
X

i=1

`

Xi + X̄α,i

´

+ XNα+1 (8)

where the random variable X̄α denotes replica downtime
given a timeout period of α t̄. We note that uptime remains
unchanged due to a timeout; however, downtime, the time
during which a replica is offline, must be conditioned on the
fact that it is less than the timeout period 10. A simple
application of Bayes’ theorem gives the p.d.f. fX̄α

of X̄α as

fX̄α
(x) =

8

>

<

>

:

1

(1−e−α)
e−

x
t̄ if x < αt̄

0 if x ≥ αt̄

9

>

=

>

;

Therefore

E
ˆ

X̄α

˜

=

Z

∞

0

x fX̄α
(x) dx

= t̄

„

1 −
α e−α

1 − e−α

«

(9)

The random variable Nα(Nα ≥ 0) denotes the number of
times the replica goes offline without being timed out. In
state 1, the replica goes to state 3 with probability p13,
where a timeout will occur. With probability 1 − p13, the
replica goes to state 2, where either a timeout occurs with
probability e−α, or the replica goes back to state 1 with
probability (1 − e−α). Recall from Section 2 that the prob-
ability that the system will prematurely time out an offline
replica is e−α. Thus, with probability p13, Nα = 0, and with
probability (1 − p13)

`

1 − e−α
´

, Nα ∼ Geometric
`

p13 + (1 − p13) e−α
´

,
which implies

E [Nα] =
(1 − p13)

`

1 − e−α
´

p13 + (1 − p13) e−α
(10)

Equations 9 and 10 yield

E [Yα] = E [Nα]
`

E
ˆ

X + X̄α

˜´

+ E [X]

=
(1 − p13)

`

1 − e−α
´

h

t + t̄
“

1 − α e−α

1−e−α

”i

p13 + (1 − p13) e−α

+ t (11)

For α = 0, i.e., a replica is timed as soon as it leaves the
online state, Equation 11 reduces to E [Y0] = t, the mean
node uptime. For α = ∞, i.e., a replica is never timed out,
Equation 11 yields E [Y∞] = 1−p13

p13
(t + t̄) ≈ T , the mean

node lifetime.

Figure 5(a) shows both E [Yα] and E [Yα] + αt̄ (mean time
to timeout) as a function of α. The values of T , t and t̄

are 1 month, 12 hours, and 12 hours respectively. For small
α, a replica is more likely to be timed out in state 2; this
happens relatively quickly. On the other hand, for large α,
the replica is less likely to be timed out in state 2, and times
out in state 3 after, on average, a duration close to T . In be-
tween, there is a transitional behavior during which E [Yα]

10This is the reason why the system is no longer Markov.
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Figure 5: E [Yα] and E [Yα] + αt̄ as a function of α, as
given by Equation 11. The Y-axis is scaled by the
mean node lifetime T . Note the similarity in the
shapes of the curves derived from both exponential
and empirically-derived distributions.

increases rapidly 11, before tapering off. This “knee” is the
point where the tradeoff of increasing α to avoid prematurely
timing out an offline replica and decreasing α to avoid delay-
ing a necessary repair is optimally balanced. We note that
this is reflected in the disparity between the two curves in
the graph - while they are relatively close initially, beyond
the knee increasing the timeout increases the mean time to
timeout without significant increasing Yα. Figure 5(b) shows
the same graphs except that the node uptimes and down-
times are drawn from the empirical distributions (Figure 3)
rather then exponential. We note that the same trends are
observed, except that the knee in the curve occurs at larger
values of the timeout, a fact that can be attributed to the

11It is straightforward to verify that the probabilities that a

replica is timed out in states 2 and 3 are (1−p13)e−α

p13+(1−p13)e−α and
p13

p13+(1−p13)e−α respectively. Therefore the replica is more

likely to timeout in state 3 when e−α < p13

1−p13
≈ t+t̄

T



heavier tail of the empirical distributions 12. Finally, we note
that in both cases the point where E [Yα] +αt̄ = T , i.e., the
point where the upper curve intersects 1, is the point where
the repair process generates exactly one new replica every
node lifetime. Intuitively, this seems like a desirable oper-
ating point for the system, a fact we will demonstrate in
Section 3.2.4.

3.1.2 Bounds on cost
Equation 11 can be used to derive bounds on the cost C of
repair as follows. Consider any one of the r replicas; it times
out after a duration given by the random variable Yα + αt̄.
In response, the system creates a new replica immediately if
possible; if not, it may have to wait until at least one other
replica is online. Therefore, the expected time that elapses
between the instant replica is created, and the instant it is
replaced is at least E [Yα]+αt̄. The long-term rate of replica
regeneration is therefore at most 1

E[Yα]+αt̄
. Normalizing for

node lifetime T , and accounting for r replicas, we get

C ≤
r T

E [Yα] + αt̄
(12)

We note that this bound applies to both memoryless and
memory-based repair. In the case of memoryless repair, it
is possible to derive a lower bound on cost as well. After a
replica times out, if the system cannot make a repair imme-
diately, it must do so within another timeout period αt̄. If
this were not the case, all the other replicas would be timed
out as well, and in the case of memoryless repair, the object
would no longer be available. Therefore, the expected dura-
tion after which a replica is replaced is at most E [Yα]+2αt̄,
and therefore,

C >
r T

E [Yα] + 2αt̄
(13)

Figure 6 shows the bound on cost for r = 1, i.e., the cost
per replica.

3.2 Simulation results
This section presents the results of our simulation study. For
each (r, α) pair, we simulate the behavior of the system over
a large number number of runs (typically 1000). For each
run, we record the lifetime and the number of repairs that
were made. We estimate L by computing the mean lifetime
over all runs. We estimate C by dividing the total number
of repairs made over all runs by the total lifetime. Unless
otherwise mentioned, the values of T , t and t̄ are set to 1
month, 12 hours and 12 hours respectively.

3.2.1 Basic behavior
Figure 7 shows the lifetime L as a function of α for r = 3
and r = 4, for both memoryless and memory-based repair.
Intuitively, one might expect more aggressive repair, i.e.,
smaller α, to result in higher lifetime. This is certainly true
in the case of memory-based repair; however, memoryless
repair unexpectedly shows a peak in lifetime for α between
5 and 6.

12Since there is a larger chance that a replica will be offline
for a longer time, the system must wait a correspondingly
longer time before increasing the timeout starts producing
diminishing returns
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Figure 6: Bounds on the cost of repair. When α is
small, many repairs occur that are unnecessary, as
the likelihood of timing out a replica that is simply
offline (rather than dead) is high. This leads to high
cost, as the replication rate is high. Cost then de-
creases sharply as α increases beyond small values,
as an offline replica will have had a chance to return
(which is “free”), rather than requiring a repair.

This striking difference in behavior can be explained by
a fundamental inefficiency in memoryless repair. When a
replica that was prematurely timed out by the system sub-
sequently returns, the system, if using memory, has the op-
tion of reusing this replica if necessary. Thus, the system
can afford to be aggressive about repair, i.e., use a smaller
α, without suffering any penalty despite that it inevitably
makes more mistakes. Without using memory, the system
does not have this option; it must discard this replica, even
though retaining it would clearly be useful 13. Beyond a
point, the penalty associated with prematurely discarding
replicas that are only offline outweighs the ability to quickly
replace a replica that is actually dead. Thus, in the case
of memoryless repair, using a smaller α is actually counter-
productive.

To further understand this behavior, we observe that in the
case of memoryless repair, the critical condition that results
in the loss of the object is if all r replicas are timed out
within a period of αt̄. Note that since the system is forced
to discard replicas that were prematurely timed out, it is ir-
relevant whether this timeout occurred because the replica
was in state 3 (dead), or state 2 (offline). On the other
hand, in the case of memory-based repair, the correspond-
ing condition is if all r replicas transition to state 3 (dead)
within a period of αt̄. Note that a timeout in state 2 cannot
affect lifetime, as the system has the option to “correct” its
mistake when the timed-out replica eventually returns. The
probability that a replica goes to state 3 from state 1 is p13,
which is independent of α. Therefore, in the case of memory-
based repair, L is influenced only by increasing the timeout
period, which increases the chance of concurrent timeouts,

13This would be the case, for example, if all existing replicas
were nonline.
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Figure 7: Lifetime L as a function of α for r = 3 and
r = 4. For small α, repair with memory produces
superior lifetimes than memoryless repair. Note the
difference in lifetimes when r = 3 vs. r = 4: a single
additional replica results in an order-of-magnitude
improvement in lifetime (regardless of strategy).

and therefore decreases lifetime. In the case of memoryless
repair, the probability of a timeout in either state 2 or state
3 is p13 + (1− p13)e

−α. Thus, when α is small, even though
the window for concurrent timeouts is small, what domi-
nates is that the probability of a replica timing out is high,
resulting in smaller lifetime. As α increases, this probabil-
ity drops and lifetime increases. Finally, when α is large
enough, i.e., (1 − p13)e

−α is small compared to p13, lifetime
decreases, and memoryless and memory-based repair show
practically identical behavior.

Not coincidentally, the peak in the memoryless lifetime curve
corresponds to the region of the curve in Figure 5 where
the E [Yα] curve begins to taper off (where the upper curve
intersects the horizontal line at 1). This is significant, as it
allows prediction of an optimal timeout value for a multi-
node system by simply knowing the behavior of a single
node. Specifically, the timeout value that causes the mean
time to timeout to be 1 for a single node is the timeout value
that all nodes should use in a memoryless multi-node system

to achieve a peak lifetime.
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Figure 8: Lifetimes resulting from empirically-
derived distributions. Note the similarity in the
shapes of these curves to those of Figure 7.

When using the empirically-derived distributions to drive
the model, the corresponding lifetime curves for memory-
less and memory-based repair are shown in Figure 8. As
can be observed, the respective memory-based and memo-
ryless curves have similar shapes to those in Figure 7. What
is different, however, are the time scales; in Figure 8, the
peak in lifetime for memoryless repair occurs between 10
and 12. The difference seems to be a result of the heavier
tails in the empirically-derived distributions. Despite this
difference, what is important is that the peak is similarly
predicted by the region of the curve in Figure 5 where E [Yα]
begins to taper off (again, where the upper curve intersects
the horizontal line at 1).

In terms of lifetime, using memory is superior to repair with-
out memory. However, this difference is significant only for
small α; for larger α, the lifetimes are roughly comparable.
The question of whether it is worthwhile to use memory can
be answered only by looking at cost as well.

Figure 9 shows cost as a function of α for both memoryless
and memory-based repair. In addition, the simulated cost is
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Figure 9: Cost C as a function of α for r=3 and r=4.
Cost varies with α in the same way for both memo-
ryless and memory-based repair strategies. Further-
more, they closely follow the bound given by Equa-
tion 12. For small α, cost is high for both strategies.
As α increases, C quickly decays and then stabilizes
to a region of α where Figure 7 shows there is little
difference in resulting lifetimes between memoryless
and memory-based strategies.

compared with the bound given by Equation 12. Our first
observation is that, for a given (r, α), cost is roughly the
same whether the system uses memory or not. The cost is
also close to the bound, indicating that the bound is indeed
tight. For small α, cost may be very high; for example, for
r = 3 and α = 2, the system makes approximately 15 copies
of the object every node lifetime, compared to the optimal
value of 1. For such small α, using memory is significantly
better in terms of lifetime. For larger α, cost is more rea-
sonable; for example, when α = 6, the system makes only 3

copies every node lifetime. However, at this value of α, the
benefits of using memory are not great, the lifetimes being
roughly comparable. Thus, although using memory is in-
deed superior, the benefits are realized only at the price of
higher cost.
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Figure 10: Lifetime as a function of r for α = 6.
Since the Y-axis is logscale, lifetime is exponential
with increasing number of replicas.

Figure 10 shows lifetime as a function of r for α = 6. Since
the Y-axis is logscale, this indicates an exponential depen-
dence of lifetime on the number of replicas. This is ex-
pected; the probability of r timeout events occurring within
the same window of time goes down exponentially with r.
Figure 10 has strong predictive value; since the graph is lin-
ear, it is easy to predict the lifetime for a larger value of r

when simulation becomes infeasible.

3.2.2 Impact of availability
In this section, we study the impact of node availability on
object lifetime. Recall that node availability is the fraction
of time a node is up, given by p = t

t+t̄
. We simulate system

behavior for three different values of availability, keeping
both node lifetime T and cycle time t + t̄ fixed.

Figure 11 shows lifetime as a function of α for r = 4 in the
case of both memoryless and memory-based repair. Our first
observation is that node availability does not significantly
change the fundamental nature of the lifetime curves. As
can be seen from Figure 11, the shapes of the curves are
similar for all three availabilities. However, availability does
have a dramatic effect on lifetime. At p = 0.75, lifetimes are
about an order of magnitude greater than at p = 0.5 for all
α.

The effect of availability on lifetime can be explained as fol-
lows. When a node has poor availability, its average down-
time t̄ is larger. For a fixed α, this implies that timeout
is correspondingly larger for a node with lower availability
(because timeout equals αt̄). A longer timeout increases the
window of time in which concurrent timeouts have to occur
to cause loss of the object, thereby decreasing lifetime. As
can be seen, increasing the node availability from p = 0.5 to
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Figure 11: Object lifetime as a function of α for r = 4
and different node availabilities.

0.75 results in a larger increase in lifetime than increasing
node availability from p = 0.25 to 0.5. This is because, as
the “window size” gets bigger (i.e., as availability decreases),
the rate of increase of the probability of concurrent failures
gets smaller.

In contrast to the effect of availability on lifetime, cost seems
fairly insensitive to availability, as shown in Figure 12. Cost
is identical (and varies identically with α) for all three chosen
values of p.

The effect of availability on lifetime and cost has implica-
tions for the design of such replicated systems. Clearly, given
a choice, the system should choose to replicate on nodes with
higher availability, as this results in higher lifetime at no ad-
ditional cost. In fact, choosing nodes with higher availability
may even be preferable to increasing the number of replicas
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Figure 12: Cost as a function of α for r = 4 and
different node availabilities.

r. Both result in higher lifetimes, but increasing r increases
the cost of repair as well.

3.2.3 Distribution of lifetime
Till now, we have only considered the expected value of ob-
ject lifetime L; we now consider how it is distributed. Fig-
ure 13 shows the cumulative distribution function for life-
time for r = 4 replicas and α = 6. As can be seen, for
both memoryless and memory-based repair, the distribu-
tion of lifetime is quite skewed. For example, even though
the mean lifetime in the case of memoryless repair is greater
than 25 years, there is a 19% chance that the object will be
permanently lost in less than 5 years, and a 4.5% chance it
will be lost in less than 1 year. If the system uses memory,
these numbers are 13.4% and 2.6% respectively. Thus, if the
system is required to guarantee lifetime with several nines
of certainty, it is necessary to choose a replication strategy
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Figure 14: Lifetime as a function of r keeping C constant. For both memoryless and memory-based repair,
there is clearly an optimal value for r that maximizes lifetime (and therefore a correspondingly optimal value
of α), which in fact coincides with the value of cost C.
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that results in an expected lifetime that may be many orders
of magnitude larger.

Providing precise probabilistic guarantees on lifetime is prob-
lematic; it requires us to know the exact distribution of life-
time. As far as we know, this is analytically intractable;
however, we have empirically determined that lifetime can
be approximated by an exponential distribution with the
same mean. For example, in the above case of r = 4 and
α = 6, we carried out a Chi-Square goodness of fit test to
evaluate the hypothesis that the memoryless and memory-
based data sets fit exponential distributions with means 25.4
and 35.8 (years), respectively. The computed chi-square
statistics are 13.9 and 10.4, respectively, both of which are
below the critical value of 15.5 (0.05 significance level, 8
degrees of freedom) to accept the hypothesis. There is also
theoretical evidence to support this hypothesis, as the Renyi
limit theorem [13] tells us that the sum of a geometric num-
ber of i.i.d. random variables tends to exponential in the
limit. Thus, irrespective of the uptime and downtime dis-
tributions, the node lifetime tends to exponential as long as
there is a constant probability that a node will return after
going down.

Modeling the lifetime by an exponential random variable
allows us to make probabilistic guarantees on lifetime, given
its expected value. The expected value itself can be obtained
either by simulation for small values of r, or by extrapolation
(using Figure 10 for example) for larger values of r.

3.2.4 Choosing r and α

In the previous sections, we have studied lifetime and cost
as a function of the system parameters r and α. In this
section, we will consider the question of how can the system
maximize lifetime when given a certain amount of resource.
Specifically, given a constraint on repair cost C, what is the
optimal choice of r and α the maximizes lifetime L?

To obtain an answer to this question, we plot lifetime as
a function of r for a constant value of cost. Given a cost,
and the number of replicas r, we determine the value of

α that produces the required cost using Equation 12 14.
Naturally, the greater the number of replicas r, the larger
α is required to be to produce the same cost. We then
obtain the corresponding lifetime for this (r, α) pair through
simulation. The value of cost we use ranges from 3 to 6; as
noted earlier in the paper, the desired cost regime is a small
multiple of the optimal cost of 1. The results are shown in
Figure 14.

Figure 14 indicates that there is an optimal value for r, (and
therefore a correspondingly optimal value of α). For both
memoryless and memory-based repair, the optimal value of r

is in fact C, where C is the constraint on cost. For example,
when the cost is limited to 4 replicas per node lifetime, life-
time peaks at r = 4. 15 The optimal value of r is precisely
the number of replicas the system is budgeted to create ev-
ery node lifetime. In other words, there is no benefit in using
either more replicas (and less aggressive repair) or less repli-
cas (and more aggressive repair) than the system can afford
to create every node lifetime. Therefore, the corresponding
optimal value of α is approximately given by T

E[Yα]+αt̄
= 1,

i.e., the per-replica repair cost (Figure 6) is 1.

4. RELATED WORK
Our work is closely related to two distinct bodies of research:
reliability research in the distributed systems community,
and system reliability theory in the performance and mod-
eling community. In recent years, the peer-to-peer model has
emerged as a paradigm for building large-scale self-managing
distributed systems. This has led to several efforts to build
highly available distributed storage systems based on this
paradigm; prominent among these are CFS [12], PAST [18],
TRFS [5, 6], Oceanstore [14, 17], and Farsite [4, 9]. These
systems use replication and/or erasure coding to primarily
ensure high availability; more recent work such such as Car-
bonite [11] and Antiquity [21] considers durability, which is
the focus of this paper. The use of a timeout to mask tran-
sient failures is proposed in [8], in which the authors argue
that cross-system bandwidth limitations make it impossible
to implement reliable storage over a unreliable peer-to-peer
system. Their focus was on guaranteeing high availability,
which requires a much higher level of replication than dura-
bility, as also observed in [11]. In [20], the authors assess the
impact of churn on object maintainance strategies. In [11],
the authors propose a replica maintainance protocol called
Carbonite. Based on their experience, they conclude that
re-integrating replicas that return after transient failures is
key to ensuring low overhead. This is in apparent conflict
with our observation that at low cost levels, using memory
does not have significant advantages, in terms of cost or re-
pair, over memoryless repair. The key observation is that
unlike Carbonite, in our model, we did not allow the number
of replicas to go above r, even in the case of memory-based
repair. When we considered alternate strategies that made
more aggressive use of memory, we did observe significantly
higher lifetimes and lower costs; however, these are likely

14This procedure relies on the fact that Equation 12 appears
to be tight. We subsequently verify that the cost obtained
by simulation is close to the target cost.

15Note that in the case C is not an integer, the optimal num-
ber of replicas (which is an integer) may be determined by
inspecting whether lifetime is maximized at the nearest in-
teger below C or the nearest above.



the result of having more replicas in the system, rather than
the effect of memory, per se. Finally in [15], the authors
evaluate expected object lifetimes in a distributed storage
system for more general notions of repair; a similar model
is also considered in [21].

This work is also related to work in system reliability the-
ory [16], which attempts to model the failure properties of
multi-component systems. For example, the seminal work
of Brown [10] deals with analyzing the time-to-failure of a
parallel system of components with repair. However, the
key difference in this paper is that our model incorporates
several features that are unique to the domain of distributed
storage systems, and distinguish it from existing models of
repairable systems. For example, the model described in
Section 2 takes into account not only the long-term partic-
ipation of a node in the system, but also its limited avail-
ability. As a result, we are able to incorporate the notion of
uncertainity in the repair process, wherein the system can-
not determine precisely when a repair is necessary. Rather,
it can only decide when a repair is likely to be required. Fur-
thermore, unlike other repair models, the process of repair
is not performed by an external agent; rather, repair is tied
to the availability of other replicas in the system.

5. CONCLUSION
In this paper, we characterized data durability in distributed
storage systems based on replication and repair. Using a
stochastic model, we determined how object lifetime de-
pends on the degree of replication and rate of repair, and
how lifetime is maximized when there is a constraint on re-
sources. Our model uses a timeout mechanism to explicitly
account for the inherent uncertainty a system has in whether
“failures” are temporary (a replica is simply offline, but will
eventually return) or permanent.

Our main conclusions are as follows:

• There is a threshold for cost below which memoryless
repair is nearly as good as memory-based repair. On
the other hand, if cost is not an issue, then using mem-
ory is superior to memoryless repair.

• When there is a constraint on cost, there is an optimal
number of replicas – more or less will only degrade life-
time – and this is exactly the number of replicas that
the system can create per node lifetime without violat-
ing the cost budget. For the correspondingly optimal
α, memory-based repair is not signficantly better than
memoryless repair.

• Availability is strongly correlated with lifetime. As
availability goes up, the corresponding increase in life-
time is dramatic. However, higher availability does not
affect the long-term cost of repair.
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APPENDIX
If T ≫ t̄, Y ∼ Exponential

`

1
T

´

.

Proof: Equation 3 implies that the p.d.f. fY of Y is the convolution
of fX+X̄ N times and fX , where N ∼ Geometric (p13). Therefore

the Laplace transform 16 of fY is given by

L{fY } =
p13

1 − (1 − p13)L
˘

fX+X̄

¯ L{fX}

=
p13

1 − (1 − p13) 1
1+st

1

1+st̄

1

1 + st

=
p13 (1 + st̄)

(1 + st) (1 + st̄) − (1 − p13)

=
p13 (1 + st̄)

s2tt̄ + s (t + t̄) + p13

Substituting p13 =
λ13

λ12+λ13
= t

pT
gives

L (fY ) =
1 + st̄

s2pt̄T + sT + 1

Splitting into partial fractions,

L (fY ) =
c1

1 + s τ1

+
c2

1 + s τ2

and inverting the transform gives

fY (x) = c1.
1

τ1

e
−

x
τ1 + c2.

1

τ2

e
−

x
τ2 (14)

Thus, fY is a mixture of two exponential distributions with rates 1
τ1

and 1
τ2

respectively. Now

τ1 + τ2 = T

τ1 τ2 = p t̄ T

which implies that τ1 and τ2 are roots of the quadratic equation

equation τ2−T τ +p t̄ T = 0, given by T
2

„

1 ±
q

1 − 4pt̄

T

«

. If T ≫ t̄,

τ1 =
T

2

0

@1 +

s

1 −
4pt̄

T

1

A

≈ T

τ2 =
T

2

0

@1 −

s

1 −
4pt̄

T

1

A

≈
T

2

„

1 − 1 +
2pt̄

T

«

= p t̄

In addition,

c1 + c2 = 1

τ2 c1 + τ1 c2 = t̄

Solving for c1 and c2, and substituting for τ1 and τ2,

c1 =
1 − t̄

T

1 − pt̄

T

≈ 1

Thus, fY (x) ≈ 1
T

e
−

x
T , i.e., Y ∼ Exponential

`

1
T

´

.

16The Laplace transform L{f} of a function f (x) is defined
as F (s) = E

ˆ

e−sx
˜

=
R

∞

0
e−sx f (x) dx.




