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7.2 Example flow fields generated with the motion field model (Longuet-Higgins
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Animals use vision to traverse novel cluttered environments with apparent ease. Evidence

suggests that the mammalian brain integrates visual motion cues across a number of remote

but interconnected brain regions that make up a visual motion pathway. Although much is

known about the neural circuitry that is concerned with motion perception in the Primary

Visual Cortex (V1) and the Middle Temporal area (MT), little is known about how relevant

perceptual variables might be represented in higher-order areas of the motion pathway, and

how neural activity in these areas might relate to the behavioral dynamics of locomotion.

The main goal of this dissertation is to investigate the computational principles that the

mammalian brain might be using to organize low-level motion signals into distributed rep-

resentations of perceptual variables, and how neural activity in the motion pathway might

mediate behavior in reactive navigation tasks. I first investigated how the aperture problem,

a fundamental conceptual challenge encountered by all low-level motion systems, can be

solved in a spiking neural network model of V1 and MT (consisting of 153, 216 neurons and

40 million synapses), relying solely on dynamics and properties gleaned from known elec-

trophysiological and neuroanatomical evidence, and how this neural activity might influence

perceptual decision-making. Second, when used with a physical robot performing a reactive

xxiii



navigation task in the real world, I found that the model produced behavioral trajectories

that closely matched human psychophysics data. Essential to the success of these studies

were software implementations that could execute in real time, which are freely and openly

available to the community. Third, using ideas from the efficient-coding and free-energy

principles, I demonstrated that a variety of response properties of neurons in the dorsal sub-

region of the Medial Superior Temporal area (MSTd) area could be derived from MT-like

input features. This finding suggests that response properties such as 3D translation and

rotation selectivity, complex motion perception, and heading selectivity might simply be a

by-product of MSTd neurons performing dimensionality reduction on their inputs. The hope

is that these studies will not only further our understanding of how the brain works, but also

lead to novel algorithms and brain-inspired robots capable of outperforming current artificial

systems.
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Chapter 1

Introduction

1.1 Motivation

Animals are capable of traversing novel cluttered environments with apparent ease. In par-

ticular, terrestrial mammals use vision to routinely scan the environment, avoid obstacles,

and approach goals. Such sensorimotor tasks require the simultaneous integration of per-

ceptual variables within the visual scene in order to rapidly execute a series of finely tuned

motor commands. Evidence suggests that these functions might be mediated by a visual

motion pathway in the mammalian brain (Britten, 2008; Orban, 2008); that is, a densely

interconnected network of dedicated brain regions, where visual information flows from the

visual cortex (including the Primary Visual Cortex (V1), the Middle Temporal area (MT),

and the Medial Superior Temporal area (MST); which will be the focus of this thesis) along

the dorsal stream onto the Posterior Parietal Cortex (PPC) on to the motor cortex. Un-

derstanding how humans and other animals integrate visual motion information to adeptly

move around in the environment would require simultaneously recording from all of these

areas at a fine temporal and spatial scale—all while the animal is performing a behavioral

1



task.

Whereas it is possible today to record from either individual cells (e.g., using extracellular

single-unit recordings) or from entire brain areas on the order of 107 neurons (e.g., using

functional Magnetic Resonance Imaging (fMRI) or Electroencephalography (EEG)), it is

still difficult to record at the microcircuit (102 − 104 neurons) and mesocircuit (104 − 107

neurons) scales, which are believed to be the scales at which phenomena such as perception,

emotion, and understanding begin to take shape (Alivisatos et al., 2012). As a result of

these limitations, empirical findings typically provide only limited insight into how activity in

microcircuits and mesocircuits might relate to visual motion perception and active behavior

under natural conditions. On one hand, although there have been studies on the behavioral

dynamics of steering in humans (Fajen and Warren, 2003; Wilkie and Wann, 2003), only

recently did researchers begin to ask whether individual behavioral performance is reflected

in specific cortical regions (Billington et al., 2013; Field et al., 2007). On the other hand,

despite a wealth of data regarding the neural microcircuitry concerned with the perception

of self-motion variables such as the current direction of travel (“heading”) (Britten and van

Wezel, 1998; Duffy and Wurtz, 1997; Gu et al., 2006) or the perceived position and speed of

objects (Eifuku and Wurtz, 1998; Tanaka et al., 1993), little research has been devoted to

investigating how this circuitry may relate to active steering control.

Meso-scale neural network simulations, on the other hand, have the potential to overcome

these limitations. Thanks to recent developments in high-performance computing, it is now

possible to simulate Spiking Neural Networks (SNNs) on the order of 105 − 106 neurons

on a single off-the-shelf Graphics Processing Unit (GPU) in close to real time. By taking

into account computational and organizational principles of cortical circuits, gleaned from

electrophysiological and neuroanatomical evidence, we can gain insight into the guiding

computational principles that make these networks so powerful. In contrast to empirical

experiments, computer simulations allow to monitor and manipulate any variable in any
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neuron or synapse. This is a powerful approach that could allow neuroscientists to eventually

build a mechanistic understanding of meso-scale brain architectures and their functional

importance, and computer scientists could be able to extract the underlying computational

principles and condense them into abstract algorithms. Second, by integrating these models

into autonomous brain-inspired robots, we can study (in real time) the link between neural

circuitry and a system’s behavior in specific tasks, offering new theories of brain function

and stimulating future experimental research.

1.2 Contribution

The main goal of this thesis is to investigate the computational principles that the mam-

malian brain might be using to accurately and efficiently integrate low-level motion signals

into coherent percepts, how inferred perceptual variables might be represented at the popu-

lation level, and how neural activity in these populations might relate to behavior in visually

guided navigation tasks.

This research encompasses the design of computational models that reason about visual

motion information in a way that is comparable to the mammalian brain, the development

of open-source software libraries that provide the means to study these models, and the

conception of robotic systems that can evaluate both theories and simulations in a real-

world environment. As a result of these efforts, the contributions of this thesis span multiple

disciplines including computer science, computational neuroscience, and robotics.

In specific, the contributions of this thesis include:

• A large-scale SNN model of cortical areas V1 and MT, whose simulated neural activ-

ity replicates data recorded in vivo, and whose behavioral response emulates human

choice accuracy in a motion discrimination task. The model demonstrates how the
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aperture problem, a fundamental conceptual challenge encountered by all low-level

motion systems, can be solved in a biologically detailed SNN, relying solely on dy-

namics and properties gleaned from known electrophysiological and neuroanatomical

evidence, and how this neural activity might influence perceptual decision-making.

• The deployment of said SNN model on a robotics platform, used to steer the robot

around obstacles while approaching a visually salient target, making steering decisions

based solely on simulated neural activity generated from visual input. The study

demonstrates how a model of MT might build a cortical representation of optic flow in

the spiking domain, and shows—for the first time—that these simulated motion signals

are sufficient to steer a physical robot on human-like smooth paths around obstacles

in the real world.

• A computational model of optic flow processing in the dorsal subregion of the Medial

Superior Temporal area (MSTd), demonstrating that a wide range of neuronal re-

sponse properties of MSTd neurons can be derived from MT-like input features, based

on a dimensionality reduction technique known as Nonnegative Matrix Factorization

(NMF). This finding suggests that response properties such as 3D translation and ro-

tation selectivity, complex motion perception, and heading selectivity might simply be

a by-product of MSTd neurons performing dimensionality reduction on their inputs.

• CARLsim 3, an efficient open-source software environment developed as a group effort

in the Cognitive Anteater Robotics Laboratory (CARL) at the University of California,

Irvine. This C/C++ software is designed to aid in the conceptualization, utilization,

and research of brain circuit models of up to 106 neurons and 108 synapses by leveraging

off-the-shelf NVIDIA GPUs.

• An efficient and scalable open-source software implementation of the Motion Energy

(Simoncelli and Heeger, 1998), the de facto standard cortical model for visual motion

integration. This software outperforms Simoncelli and Heeger’s own implementation

4



by orders of magnitude in terms of computational speed and memory usage, which

enabled the practical feasibility of the empirical studies mentioned above.

The hope is that these studies will not only further our understanding of how the brain

works, but also lead to novel algorithms and computing systems capable of outperforming

current artificial systems.

1.3 Organization

The remainder of this thesis is organized as follows.

Chapter 2 provides some theoretical background on computational vision as well as the visual

motion pathway in the mammalian brain. First, general conceptual challenges in visual

motion processing are briefly reviewed—such as the correspondence problem and aperture

problem—and possible mechanistic solutions for these problems are discussed. Second, a

brief overview is given of cortical areas that are involved in visual motion processing in the

mammalian brain. Third, different approaches to modeling the brain are discussed.

Chapter 3 introduces CARLsim, the open-source software framework used in Chapters 5

and 6 to study the cortical mechanisms of visual motion integration at the neural-circuit

level. The chapter gives an overview of CARLsim’s user interface, highlights architectural

and algorithmic challenges overcome during development, summarizes its computational

performance, and discusses related work.

Chapter 4 introduces an efficient and scalable software implementation of the Motion Energy

model by Simoncelli and Heeger (1998). The chapter gives both a conceptual explanation of

the model as well as an overview of the software’s user interface. The software’s computa-

tional performance is also analyzed. The development of this software, in combination with
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CARLsim, enabled the practical feasibility of the studies described in Chapters 5 and 6.

Chapter 5 describes results from an SNN model of visual motion integration, modeled after

cortical areas V1 and MT. The purpose of this model was to understand how the aperture

problem could be solved in a biologically detailed SNN, relying solely on dynamics and prop-

erties gleaned from known electrophysiological and neuroanatomical evidence. The chapter

summarizes results from both simulated neural activity as well as behavioral performance in

a motion discrimination task.

Chapter 6 describes the deployment of the SNN model outlined in Chapter 5 on a robotics

platform, and summarizes behavioral results of the robot performing a visually guided nav-

igation task. The purpose of this model was to investigate how a simulated cortical repre-

sentation of optic flow in MT might relate to perceptual decision-making as well as active

steering control. The chapter summarizes results from both simulated neural activity as well

as behavioral performance in a reactive navigation task.

Chapter 7 introduces a novel computational model of optic flow processing in MSTd, based

on principles of the Efficient Coding Hypothesis (ECH). The purpose of this model was to

demonstrate that a wide range of neuronal response properties of MSTd neurons could be

derived from MT-like input features, suggesting that these empirically observed properties

might emerge from a statistically efficient representation of optic flow. The chapter compares

simulated neural activity to a variety of empirical findings, and aims to provide some struc-

ture to the multiple and often conflicting results from MSTd electrophysiology and modeling

studies.

Chapter 8 presents the main conclusions defended in this thesis, discusses limitations of the

work, and outlines possible avenues for future studies.
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Chapter 2

Background

2.1 Visual Motion Perception

2.1.1 Introduction

Visual motion captures a fundamental aspect of our interactions with the world around us.

The first steps in seeing begin in the retina, where visual motion appears as the change of

structured patterns of light that can occur for a number of reasons—either because something

in the environment moves, or because the observer moves within the environment. Because

retinal image motion has multiple possible causes, it is both computationally challenging

and richly informative, a phenomenon that was first described and conceptualized by von

Helmholtz (1925) and Gibson (1950). Gibson (1950) realized that the apparent motion in

our retinas that is caused by the relative movement between an observer and a visual scene

(termed “optic flow”) could be used to detect one’s own movement in the scene, to enable

perception of the shape, distance, and movement of objects in the world, and to aid the

control of locomotion.
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Figure 2.1: From retinal input to cortical processing and perception (adapted from Nassi
and Callaway (2009)). Visual input is initially encoded in the retina as a two-dimensional
(2D) distribution of light intensity, expressed as a function of position, wavelength, and time
in each of the two eyes. This retinal image is transferred to the visual cortex, where sensory
cues and (later) inferred attributes are eventually computed.

A general principle in the processing of visual motion by vertebrate brains appears to be the

evolution of specialized biological structures capable of efficiently extracting different types

of commonly used visual information. For example, when the vertebrate (“camera-like”) eye

evolved more than 540 million years ago, it already contained photoreceptors, capable of

converting incoming patterns of light into an electrochemical signal (Lamb et al., 2007). In

the visual system of today’s primates, different photoreceptors are specialized for different

attributes of light (e.g., color, luminance) and operate as part of a population of cells, where

each cell is concerned with only a small part of the visual field (“retinal tiling”) while being

largely oblivious to light changes that occur outside that small region (Nassi and Callaway,

2009). As a result of photoreceptor arrangement and properties, retinal images are initially

expressed as a function of position, wavelength, and time (see Fig. 2.1). Yet much information

is lost from the outset, such as the exact spectral composition of the images (Nassi and

Callaway, 2009). However, because movement is a feature that distinguishes many items of
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great behavioral relevance, biological vision systems must carry out intricate computations

that allow an animal to infer more abstract attributes about its surroundings, such as the 3D

form, position, and trajectory of potential predators, prey, and mates. In doing so, biological

visual systems face fundamental problems associated with low-level motion processing, such

as the correspondence problem and the aperture problem, which must be solved in order to

provide accurate representations of the visual world around them.

2.1.2 The Correspondence Problem

The correspondence problem (Ullman, 1979) refers to the problem of determining which

image elements belong to the same features for two images that are separated in space

and/or time (Pack and Born, 2008).

In the brain, this problem might arise in binocular vision, where the images that are pro-

jected onto the retinas of the left and right eyes are slightly displaced relative to each other

(“horizontal disparity”), and the brain has to match the features in both left and right eyes

(i.e., images are separated in space). Alternatively, the problem might arise in visual motion

perception, where the images that are projected onto the retina in one eye differ slightly over

time (i.e., images are separated in time). The correspondence problem is thus a central issue

that the visual system must solve in order to derive 3D information.

How exactly this is achieved in the brain is still an active field of research. For example

regarding binocular disparity, evidence suggests that neurons in early visual areas (such as

V1 (Cumming and Parker, 1997) or MT (Krug et al., 1999)) cannot discard false binocular

matches. But, neurons in the highest-order visual area 7a can (Janssen et al., 2003), indi-

cating that the correspondence problem must have been solved somewhere along the way. A

similar picture has emerged for the correspondence problem in motion perception.
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The correspondence problem may also result in false matches, where the luminance of a pixel

in the second frame happened to correspond to the luminance of a nearby pixel in the first

frame (Pack and Born, 2008). Such false matches are inevitable when dealing with inputs

that are corrupted by noise, jitter, or local image correlations.

The visual system possesses at least two mechanisms for reducing such noise in natural

images: directional opponency and local pooling. Directional opponency is manifested as a

suppression of the response to nearby stimuli moving in opposite directions, a mechanism

that is very common in early visual areas (Qian and Andersen, 1994; Snowden et al., 1991).

Subtracting opposite directions of motion is an efficient way to reduce their contribution

(Pack and Born, 2008), since many sources of motion noise have equal motion energy in all

directions (see Section 2.1.3.1 and Chapter 4). Another way to reduce motion noise is to

pool local measurements over some region of the visual field to produce something like an

average of the different local motion vectors (Britten and Heuer, 1999; Lisberger and Ferrera,

1997; Recanzone et al., 1997).

2.1.3 The Aperture Problem

A special case of the correspondence problem is the aperture problem (Marr, 1982), which oc-

curs when a moving pattern is observed through a small window or “aperture” (see Fig. 2.2).

Due to the limited field of view, a contour will always appear to be moving perpendicular

to the edge’s orientation (labeled “visible” in Fig. 2.2), because motion components that are

parallel to the edge’s orientation (labeled “invisible” in Fig. 2.2) do not contain time-varying

information. As a result, incorrect measurements will occur whenever an edge that is more

than one pixel in length moves in a direction that is not perpendicular to the orientation of

the edge (Pack and Born, 2008).

As it turns out, the aperture problem is prevalent especially in early stages of the primate
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Figure 2.2: The aperture problem (adapted from Bradley and Goyal (2008)). a, Even though
the rectangle is moving directly to the right (red arrow), it seems to be moving up and to the
right when sampled through an aperture (black arrow). b, This is because object velocity
can be decomposed into two orthogonal vectors, one perpendicular to the visible edge of the
edge and one parallel to it (black vectors). The parallel vector is invisible because one cannot
detect movement of an edge along its own length; thus, all we detect is the perpendicular
vector.

visual cortex, because neurons in these areas have extremely limited fields of view. Whereas

most neurons in V1 make systematic mistakes when signaling the direction of motion of a

contour, some neurons in MT are able to solve the aperture problem (Movshon et al., 1985;

Pack et al., 2001; Rust et al., 2006). How neurons in MT might perform such computations

using known biophysical mechanisms will be the topic of Chapter 5.

At a conceptual level, possible approaches to solving the aperture problem can be broadly

divided into two categories: integrationist models and selectionist models.

2.1.3.1 Integrationist Models

In the integrationist category of models, which includes what has become the standard model

(Heeger et al., 1996; Simoncelli and Heeger, 1998), the aperture problem is solved in two
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stages: In a first, relatively unintelligent stage, local 1D motion signals (labeled “visible”

components in Fig. 2.2) are extracted, which are then combined nonlinearly, at the second

stage, to recover 2D velocity (labeled “actual” in Fig. 2.2). In the model proposed by

Simoncelli and Heeger (1998), the first stage is assigned to motion processing in V1, whereas

the second stage is assigned to MT.

A neuron that suffers from the aperture problem is referred to as a Component-Direction-

Selective (CDS) cell, whereas a neuron that is able to signal the true, actual direction of

motion is referred to as a Pattern-Direction-Selective (PDS) cell. This terminology was

introduced by Movshon et al. (1985), who noticed that when these cells were presented

with a plaid stimulus consisting of two superimposed sine gratings, some neurons preferably

responded to the motion of each grating component (CDS cells), whereas others responded

to the global motion pattern produced by the combination of the two gratings (PDS cells).

Response properties of these two classes of cells will be discussed in detail in Chapter 5.

In the model proposed by Simoncelli and Heeger (1998), each V1 CDS unit is tuned to a rel-

atively narrow range of spatial and temporal frequencies (small Gabor patches in Fig. 2.3a).

The aperture problem is solved at the second stage, where MT PDS units collect inputs from

many V1 CDS cells of each whose orthogonal, 1D speed measurement is consistent with a

given 2D velocity (Fig. 2.3a, c). Conceptually, one can think of each 1D measurement as

being consistent with a number of possible 2D velocities, all of which must fall on a line in

velocity space (dashed lines in Fig. 2.3b). The intersection of any two of these constraint

lines—provided the 1D measurements have different orientations and belong to the same

object—provides the solution of the aperture problem. Therefore, this type of model is often

referred to as an Intersection-Of-Constraints (IOC) model.

While the velocity-space construction is conceptually useful, in practice the model is imple-

mented in the spatiotemporal-frequency domain (Fig. 2.3c). Here, the Fourier-transformed

visual stimulus is multiplied by the frequency-space representations of oriented Gabor fil-
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Figure 2.3: Integrationist model of pattern direction selectivity in MT proposed by Simon-
celli and Heeger (1998) (reprinted from Pack and Born (2008)). a, Partial collection of
Primary Visual Cortex (V1) inputs to a pattern cell tuned to a velocity of 10 ◦ s−1 upwards.
Each subunit corresponds to the Receptive Field (RF) of a V1 complex cell. b, Velocity-
space representation of the Intersection-Of-Constraints (IOC) calculation. Any 1D velocity
measurement (solid arrows) is consistent with a range of 2D velocities falling along a con-
straint line (dashed lines) perpendicular to its motion vector. For two such measurements
made at different orientations, the 2D velocity is given by the point of intersection of the
two constraint lines. Conversely, all 1D velocities consistent with a given 2D velocity (hol-
low arrow) fall on a circle in velocity space (Pack and Born, 2008). c, The frequency-space
representation of the model depicted in a.

ters whose output is half-squared (i.e., the negative values are clipped off and the result is

squared) and normalized to produce a measurement of motion energy (Adelson and Bergen,

1985) orthogonal to the orientation of the Gabor. When plotted in the 3D space comprised

of two dimensions of spatial frequency (ωx and ωy) and one of temporal frequency (ωt),

the selectivity of a given model V1 neuron appears as a pair of localized blobs positioned

symmetrically about the origin, and the different spatial scales of the filters fall along a line

passing through the origin (Adelson and Bergen, 1985; Heeger et al., 1996; Simoncelli and

Heeger, 1998). In this frequency space the locus of points corresponding to a unique 2D

velocity describes a plane, so a given MT cell sums up all of the spatiotemporal blobs within

the plane consistent with its particular preferred direction and speed (see Fig. 2.3c).

This model has been highly successful in explaining not only the original data that motivated

it (Movshon et al., 1985; Rodman and Albright, 1987, 1989), but a number of other known

MT response properties, such as responses to random dots embedded in noise (Britten et al.,
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1992; Newsome et al., 1989), making it one of the most supported working models of cortical

motion processing. The development of an efficient, scalable implementation of this model

will be the topic of Chapter 4.

2.1.3.2 Selectionist Models

In contrast, a second category of models places the emphasis on carefully selecting local

motion features that do not (or only weakly) suffer from the aperture problem, and are thus

most indicative of the actual, global direction of motion. Simply speaking, these features are

local regions of the image where multiple orientations are present (Pack and Born, 2008).

Once the brain has identified the most reliable local motion signals, all it has to do is to

track them over time in order to compute the true 2D velocity.

Here, the comparison between orientations happens in a first stage, by way of known mech-

anisms of the visual cortex such as end-stopping that suppress 1D motion signals in favor

of motion signals emanating from 2D features. The second stage then simply averages the

outputs from the first stage to compute the final 2D velocity.

2.2 Visual Motion Processing in the Mammalian Brain

There are at least 32 separate neocortical areas in the mammalian brain that are implicated

in visual processing (Felleman and van Essen, 1991). However, not all of these areas are

exclusively visual in function. Nonvisual contributions include inputs from other sensory

modalities (such as auditory and somatosensory), visuomotor activity (i.e., related to eye

movements), and attentional influences (Felleman and van Essen, 1991).

It has long been hypothesized that there are at least two distinct major pathways (or
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“streams”) in the primate brain that process vision (Goodale and Milner, 1992; Ungerleider

and Mishkin, 1982): the ventral stream (also known as the “what” pathway) is involved

with object recognition, whereas the dorsal stream (also known as the “where” pathway)

is involved with processing the object’s spatial location relative to the viewer. The visual

motion pathway is thought to be part of the dorsal stream (Britten, 2008; Orban, 2008),

characterized by a preponderance of neurons selective for the speed and direction of motion

(Fig. 2.4).

Each neuron in the early stages of the primate visual system responds to stimulation over

a very small part of the visual field. In visual neurophysiology, this limited field of view is

called the Receptive Field (RF), and most RFs of the primary visual cortex are smaller than

the width of one’s thumbnail held at arm’s length. It is useful to think of RFs as pinholes (or

apertures) through which neurons view the outside world. Their job is to measure certain

aspects of the visual world that occur within the pinhole, and they are largely oblivious to

events that occur outside this small region. Within any part of the visual cortex, neurons

are found whose RFs collectively tile the whole of visual space. In addition to having a

spatially delimited RF, each neuron has a limited range of visual stimuli to which it will

respond. Some neurons are tuned to the shape of the stimulus, some to the color, and others

are tuned to the motion that occurs within their RF. However, even in the early stages of

visual processing, there is much lateral and top-down influences on these RFs.

Early and middle areas in the visual motion pathway, such as V1 and MT (yellow and

orange tones in Fig. 2.4) have small- to medium-sized RFs and relatively simple, linear

directional preferences. Upper visual areas, most notably Medial Superior Temporal area

(MST) and Ventral Intraparietal area (VIP), respond to complex motion in relatively large

RFs, which makes them well-suited to process visual self-motion. In addition, some of these

areas also respond to vestibular, somatosensory, and auditory stimuli. Area 7a is thought to

be the highest-order parietal area, most important for spatial perception, which projects to
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Figure 2.4: Anatomy of the visual motion pathway in the macaque brain (reprinted from
(Britten, 2008)). a, Simplified schematic of the connections between areas known to play
a role in motion analysis. b, Anatomical locations of the areas on a slightly “inflated”
monkey brain to allow visualization of areas within sulci. The viewpoint is dorsal and
lateral. Nomenclature and area boundaries after Felleman and van Essen (1991); image
generated with public domain software CARET (http://brainmap.wustl.edu/caret; van
Essen et al. (2001)).

hippocampus, entorhinal cortex, and various subcortical structures.

In this work, we focus on the visual response properties of motion-selective neurons in areas

V1, MT, and MST.

2.2.1 Retina

The first steps in seeing begin in the retina, where a dense array of photoreceptors convert

the incoming pattern of light into an electrochemical signal (Nassi and Callaway, 2009).

As mentioned above, the photoreceptor mosaic encodes the intensity of light as a function
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Figure 2.5: Parallel pathways from the retina to the cortex (reprinted from Nassi and Call-
away (2009)). Midget, parasol and bistratified ganglion cells are well characterized and have
been linked to parallel pathways that remain anatomically separate through the Lateral
Geniculate Nucleus (LGN) and the Primary Visual Cortex (V1).

of retinal position (two dimensions), wavelength, and time (see Fig. 2.1). Owing to the

anatomical bottleneck of the optic nerve, retinal output must be efficiently condensed. The

strategy of the mammalian visual system is to reduce the representation of the visual scene

to a limited number of specialized, parallel output channels. Rather than sending visual

signals from the eye to the brain along a homogeneous population of ganglion cells, in the

primate at least 17 distinct ganglion cell types exist in the retina, and at least 13 of these

project in parallel to the LGN (Dacey, 2004). Each ganglion cell is thought to tile the retina,

providing a complete representation across the entire visual field (Field and Chichilnisky,

2007).

Midget, parasol, and bistratified ganglion cells (see Fig. 2.5) lie at the origin of three distinct,
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functionally complementary pathways that process red-green color opponency (parvocellular

pathway), motion (magnocellular pathway), and blue-yellow color opponency (koniocellular

pathway), respectively (Nassi and Callaway, 2009). Together they constitute approximately

90 % of all ganglion cells found in the primate retina (Dacey, 2000, 2004).

The most important type of retinal cells for motion perception are parasol ganglion cells,

which convey a broadband, achromatic signal to the magnocellular layers of the LGN. Cells

in this pathway typically have large RFs, high contrast sensitivity, fast axonal conduction

velocities, and sensitivity to high temporal and low spatial frequencies (Dacey, 2000; Nassi

and Callaway, 2009).

Midget ganglion cells, on the other hand, convey a red-green color-opponent signal to the

parvocellular layers of the LGN. Cells in this pathway typically have small RFs, low contrast

sensitivity, slow axonal conduction velocities, and sensitivity to high spatial and low temporal

frequencies (Nassi and Callaway, 2009).

2.2.2 Lateral Geniculate Nucleus (LGN)

The Lateral Geniculate Nucleus (LGN) is a relay center in the thalamus for the visual path-

way and the main central connection for the optic nerve to the occipital lobe. In mammals,

LGN has six layers of gray matter interleaved with layers of white matter (see Fig. 2.5), each

layer of neurons having its own characteristic response properties and projection targets in

the cortex.

This means that at the level of LGN, magnocellular, parvocellular, and koniocellular streams

remain anatomically segregated. Here, signals about visual motion are relayed from parasol

retinal ganglion cells to layers 4Cα and 6 of V1 (Blasdel and Lund, 1983; Chatterjee and

Callaway, 2003), whereas signals about color are relayed from midget retinal ganglion cells
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on to layers 4Cβ and 6 of V1 (Blasdel and Lund, 1983; Chatterjee and Callaway, 2003;

Dacey, 2000).

2.2.3 Primary visual cortex (V1)

Once the condensed and parallel signals from the retina and LGN arrive in the Primary Visual

Cortex (V1), the original components of the visual scene must be extracted, elaborated on

and integrated into a unified percept. The visual cortex uses both hierarchical and modular

processing to accomplish these goals (Zeki and Shipp, 1988).

Early studies suggested there is a clean anatomical segregation of magnocellular and parvo-

cellular inputs to layers 4B and 2/3 of V1, respectively, as well as a functional segregation of

fast, achromatic responses in layer 4B and color-opponent or orientation-selective responses

in blobs and interblobs, respectively (Hawken et al., 1988; Livingstone and Hubel, 1984).

More recent studies, however, provided evidence for extensive mixing and convergence of

magnocellular, parvocellular and koniocellular pathway inputs, suggesting that V1 outputs

bear little or no systematic relationship to its parallel inputs (Sincich and Horton, 2004).

Specialized and distinct populations of cells project from layer 4B of V1 to MT or V2.

MT receives input from a population of cells with large cell bodies and dense dendritic

trees in layer 4B of V1, which contain a quick, magnocellular-dominated signal (Movshon

and Newsome, 1996). These cells are highly functionally specialized and distinct from the

general population in V1 (an example cell is shown in Fig. 2.6). Most of these cells (80 %)

are stellates, but a smaller number of pyramids (20 % of the cells) also project to MT and

are positioned such that their apical dendrites can receive magnocellular inputs from layer

4Cα (Movshon and Newsome, 1996; Nassi and Callaway, 2007).
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Figure 2.6: Example of a directionally selective neuron in V1 that is projecting to MT
(reprinted from Movshon and Newsome (1996)). Polar plots show the responses of the
neuron to a drifting sine grating (A) and drifting plaids (B). Stimuli drifted in one of 16
directions of motion separated by equal intervals of 22.5◦. The plaid stimuli were created by
superimposing two sine wave gratings of equal contrast and spatial and temporal frequency,
whose orientations differed by 135◦. The direction of plaid motion is the direction of coherent
motion perceived by human observers. The solid lines and data illustrate the actual responses
of the neuron; the dashed lines depict the predicted tuning curve if the neuron responded
only to the motions of the two component gratings. The small circles at the center of each
plot show the spontaneous firing rates.

2.2.4 Middle Temporal (MT) area

The Middle Temporal area (MT) is a region of the extrastriate visual cortex that is famous

for its role in visual motion processing. MT is retinotopically organized, each hemisphere

containing a more-or-less complete map of the contralateral visual hemi-field, with a marked

emphasis on the fovea (the central 15◦ of the visual field occupies over half of MT’s surface

area (van Essen et al., 1981)) and a bias toward the lower quadrant of the visual field

(Maunsell and van Essen, 1987).

There are multiple input streams from the LGN to MT (see Fig. 2.7). The major ascending

input to MT passes through magnocellular layers of the LGN (yellow) and through layers

4Cα and 4B of V1. V2 and V3 provide indirect inputs from layers 4Cα and 4B of V1, with

V2 probably providing inputs from parvocellular layers of the LGN (red) and layer 4Cβ
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Figure 2.7: Multiple input streams to MT (reprinted from Nassi and Callaway (2009)). The
major ascending input to MT passes through magnocellular layers of the LGN (yellow) and
through layers 4Cα and 4B of V1, which is the focus of this dissertation. Pathways ascending
through V2 and V3 likely provide visual cues about binocular disparity. The thickness of
the each arrow represents the approximate strength of the connection.

after a small number of additional synapses (Nassi and Callaway, 2009). Bypassing layer

4C altogether, a sparse monosynaptic projection from koniocellular layers of the LGN (blue)

to MT and a disynaptic projection from magnocellular and parvocellular layers of the LGN

through layer 6 Meynert cells in V1 to MT have both been identified (Nassi and Callaway,

2009). MT is likely to use similar strategies to those found in V1 to process these parallel

inputs and transform their signals into multiple output streams. The thickness of each arrow

in Fig. 2.7 represents the approximate strength of the connection. In this work, we focus

mainly on the pathway that travels from LGN through V1 to MT.

The visual responses of MT neurons are determined principally by five properties of the stim-
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Figure 2.8: MT response properties. a, Retinal positon. b, Direction of motion. c, Speed
of motion. d, Binocular disparity. e, Stimulus size (due to surround suppression). Panel c
reprinted from Nover et al. (2005), all others reprinted from Born and Bradley (2005).

ulus (see Fig. 2.8): retinal positon, direction of motion, speed of motion, binocular disparity,

and stimulus size (due to surround suppression) (Born and Bradley, 2005). Speed tuning

might be approximately log-Gaussian and scale-invariant (Nover et al., 2005), whereas direc-

tion tuning is broader (Duijnhouwer et al., 2013). Organization for direction and disparity

tuning is columnar, but organization for speed tuning is not (only weakly clustered).

MT RFs are up to ten times larger than RFs in V1 (Raiguel et al., 1995). In some neurons,

stimulus selectivity varies drastically in different subfields of the RF (Richert et al., 2013).

About half of the neurons in MT have receptive field with antagonistic surrounds (Allman

et al., 1985; Raiguel et al., 1995), and these surrounds can come in one of several shapes

(see Fig. 2.8e). In general, the surround effects are such that maximal suppresion occurs
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Figure 2.9: Different types of motion signals processed by MT and its satellites (adapted
from Orban (2008)).

when the surround stimulus moves in the same direction and at the same disparity as that

in the center (Allman et al., 1985). As such, the center-surround apparatus can act as a

differentiator over direction and depth, allowing some MT neurons to sense motion gradients

and act as a motion salience detector (Born and Bradley, 2005).

The signals from MT are sent in parallel to a number of neighboring regions (see Fig. 2.9,

including the dorsal subregion of the Medial Superior Temporal area (MSTd) for processing

of self-motion, the ventral subregion of the Medial Superior Temporal area (MSTv) for pro-

cessing of trajectories of moving objects as well as generating smooth pursuit eye movements,

and Floor of the Superior Temporal visual area (FST) for processing of actions and motions

of animate entities (Orban, 2008). Interestingly, MT neurons with antagonistic surrounds

mostly project to the ventral subregion of the Medial Superior Temporal area (MSTv) and

Floor of the Superior Temporal visual area (FST), but not to MSTd (Berezovskii and Born,

2000).

23



Figure 2.10: 3D heading tuning in MSTd (reprinted from Gu et al. (2006)). A, Data from
a neuron with congruent tuning for heading defined by visual and vestibular cues. Color
contour maps show the mean firing rate as a function of azimuth and elevation angles. Each
contour map shows the Lambert cylindrical equal-area projection of the original spherical
data (Snyder, 1987). In this projection, the ordinate is a sinusoidally transformed version
of elevation angle. Tuning curves along the margins of each color map illustrate mean SEM
firing rates plotted as a function of either elevation or azimuth (averaged across azimuth or
elevation, respectively). B, Distributions of 3D heading preferences of MSTd neurons. Each
data point in the scatter plot corresponds to the preferred azimuth (abscissa) and elevation
(ordinate) of a single neuron with significant heading tuning. C, Definitions of azimuth and
elevation angles used to define heading stimuli in 3D.
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2.2.5 Middle Superior Temporal (MST) area

The MST receives its main input from neurons in MT (Ungerleider and Desimone, 1986).

Whereas neurons in MSTv are involved in the analysis of visual trajectories of relatively small

objects and the generation of smooth pursuit eye movements, neurons in MSTd respond to

relatively large and complex patterns of retinal flow, implying a role in the analysis of self-

motion (Duffy and Wurtz, 1991a,b; Gu et al., 2010, 2012; Saito et al., 1986; Tanaka and

Saito, 1989).

The visual processing of MSTd neurons has been summarized as a template matching with

radial motion, rotation, and translation, or their combinations (Orban, 2008). Because ex-

pansion/contraction and rotation are basically spatial configurations of local translations of

the observer, MSTd has been implicated with the analysis of optic flow during self-movement;

that is, with the analysis of apparent motion in a visual scene caused by the relative move-

ment of the observer. Indeed, recording from MSTd in a macaque while the animal is

physically moving along trajectories in 3D space revealed that nearly all neurons in MSTd

were selective to at least one of these directions of travel (or “headings”) (Gu et al., 2006;

Takahashi et al., 2007). In contrast to earlier studies (Duffy and Wurtz, 1991a,b; Graziano

et al., 1994), all directions of heading in space seem to be (roughly) equally represented in

MSTd (see Fig. 2.10): there is no preference for straight-ahead trajectories or trajectories

along the ground plane.

However, neurons in MSTd are not just selective for heading, but often prefer a mixture of

translational, rotational, and to a lesser degree deformational flow components (Duffy and

Wurtz, 1991a,b; Graziano et al., 1994; Mineault et al., 2012), with receptive fields that can

encompass up to 40◦ × 40◦ of the visual field (Raiguel et al., 1997).

Besides pure retinal signals, neurons in MSTd are also driven by vestibular (Gu et al.,

2006, 2010; Page and Duffy, 2003; Takahashi et al., 2007) and eye movement-related signals
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(Komatsu and Wurtz, 1988; Newsome et al., 1988). Hence, MSTd could contain a number

of visual motion-related variables (Hamed et al., 2003), ranging from pure retinal to head-

centered stimulus velocity coding (Brostek et al., 2014; Chukoskie and Movshon, 2009; Yu

et al., 2010) that include intermediate reference frames (Fetsch et al., 2007). Finally, some

neurons are selective not just for heading, but also for path and place (Froehler and Duffy,

2002; Page et al., 2015).

2.2.6 Visual Motion Processing Beyond MST

The dorsal pathway consists of a large number of interconnected extrastriate cortical areas

in the parietal cortex downstream of MT, including MST, FST, the Superior Temporal

Polysensory (STP) area, Ventral Intraparietal area (VIP), Lateral Intraparietal area (LIP),

and visual area 7a, to name just a few (Andersen et al., 1990; Boussaoud et al., 1990; Lewis

and van Essen, 2000; Maunsell and van Essen, 1983). Motion processing gets increasingly

complex in these areas, involving not just visual but also vestibular, somatosensory, and

auditory signals. Collectively, these higher-order parietal areas might be involved in all

things related to spatial planning, including the coordination and planning of locomotion,

eye movements (i.e., saccades and smooth pursuit), head movements, and arm movements

(i.e., reaching). Evidence indicates that at this stage, the dorsal stream might actually

branch out into two relatively segregated circuits (Rizzolatti and Matelli, 2003), but motion

processing in these areas remains an active field of research to this day.

2.3 Approaches to Modeling the Brain

Because of the brain’s sheer complexity, it is important to choose an appropriate abstraction

level when designing a model of brain function (see Fig. 2.11). Each level of abstraction
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serves a different purpose, from theoretical models designed to understand the statistics of

sensory data and expressing cortical function as high-level mathematical principles (“systems

neuroscience”) to cellular models that aim to include as much biological detail as possible,

ranging from molecular, electrical, to morphological properties of neurons and synapses. Of

course, although the latter type of models are biologically accurate, they incur tremendous

computational costs for simulation, limiting the size and complexity of the network that can

be simulated.

Neural circuit models constitute a compromise between accuracy and simulation complexity

by abstracting away many molecular and cellular details of a neuron. This type of models

considers the brain as a massive circuit composed of four basic components: neurons for

computation, synapses for learning and memory storage, axons for communication, and

neuromodulatory systems for modeling state (Abbott and Nelson, 2000; Brette et al., 2007;

Furber and Temple, 2007). Models of this type are well-suited to study neural circuits at

the micro scale (102 − 104 neurons) and meso scale (104 − 107 neurons), as they are able to

exhibit a variety of empirically observed network dynamics such as random asynchronous

firing, oscillatory (synchronous) firing, sustained responses to transient stimuli, and chaotic

network activity. Such networks are complex dynamical systems involving the numerical

integration of many thousands of coupled differential equations (Vogels and Abbott, 2005).

In order to make the simulation of such networks feasible, a common compromise is to use

a relatively simple neuron model to model each node in the network, using either firing-rate

or spiking neurons. In biological neurons, brief electrical pulses (called action potentials or

spikes) travel along a wire (axon) to the connection site (synapse) of another neuron, where

they cause a small change in the electric membrane potential of the receiving neuron (Kandel

et al., 2000). Neurons integrate these small changes until their voltage reaches a threshold,

at which point the neuron is said to fire a spike. Firing-rate neurons describe the activity of

each neuron as the sum of spikes over a given time interval (i.e., firing rate), whereas spiking
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Figure 2.11: Possible levels of modeling abstraction (adapted from Nageswaran et al. (2010)).

neurons model the actual temporal evolution of each neuron’s membrane potential.

2.3.1 Firing-Rate Networks

In a firing-rate network, each neuron j is described at time t by a firing rate rj(t) that

relaxes with a time constant τr to a steady-state value given by a function F that describes

the relationship between firing rate and input current i(t) for the neuron (Vogels and Abbott,

2005):

τr
drj
dt

= −rj(t) + F (i(t)). (2.1)

Here, i(t) is the sum of the input from sources outside the network such as sensory input, and

the sum of inputs from other neurons within the network. The assumption behind Eq. 2.1

is that, on average, the input from a given presynaptic neuron is proportional to its firing

rate, which is only true for some neuron types (refer to Section 2.3.2.1).
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2.3.2 Spiking Neural Networks (SNNs)

An alternative is to use a model of spiking neurons to capture (to a varying degree) properties

of the neuronal and synaptic state. In contrast to firing-rate models, which describe neuronal

activity as the average firing rate of a neuron as a function of its inputs, Spiking Neural

Network (SNN) models use an explicit representation of spike timing (Brette et al., 2007;

Maass and Bishop, 2001), leading to inherently event-driven communication protocols.

One of the most widely used spiking models in computational neuroscience is the Leaky

Integrate-and-Fire (LIF) neuron:

dv

dt
= I + a− bv, (2.2)

v(v > vthresh) = c (2.3)

where v is the membrane potential, I is the input current, and a, b, c, and vthresh are the

parameters. When the membrane potential v reaches the threshold value vthresh, the neuron

is said to fire a spike, and v is reset to c. Due to its simplicity, the LIF is computationally

efficient. It can fire tonic spikes with constant frequency, but it cannot exhibit some of

the more sophisticated dynamics observed in biological neurons, such as phasic spiking,

bursting, rebound responses, threshold variability, bistability of attractors, or autonomous

chaotic dynamics (Izhikevich, 2004).

Because other spiking neuron models exist that are more biologically plausible, it has been ar-

gued that these models might be better suited than LIF neurons to study how the mammalian

neocortex processes spatiotemporal information (Izhikevich, 2004). One of the most impor-

tant models in computational neuroscience is the Hodgkin-Huxley neuron model (Hodgkin

and Huxley, 1954), which consists of four equations and tens of parameters, accurately de-

scribing single-cell dynamics with respect to synaptic integration, dendritic cable filtering,

and effects of dendritic morphology. However, it is extremely computationally expensive to
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Figure 2.12: Comparison of different neuro-computational properties of spiking and burst-
ing models (Izhikevich, 2004). “# of FLOPS” is an approximate number of floating point
operations needed to simulate the model during a 1 ms time span.

implement.

An interesting compromise between the computational efficiency of the LIF model and the

biological fidelity of the Hodgkin-Huxley model is the Izhikevich spiking model (Izhikevich,

2003) (see Fig. 2.12). Using only two coupled Ordinary Differential Equations (ODEs), the

model is computationally efficient yet exhibits complex neuronal dynamics that closely mimic

biological neurons.

2.3.2.1 Izhikevich Spiking Neurons

The Izhikevich model aims to reduce Hodgkin-Huxley-type neuronal models to a two-dimensional

system of ODEs:

dv(t)

dt
= 0.04v2 + 5v(t) + 140− u(t) + isyn(t) (2.4)

du(t)

dt
= a
(
bv(t)− u(t)

)
(2.5)

v(v > vcutoff) = c and u(v > vcutoff) = u− d. (2.6)
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Here, Eq. 2.4 describes the membrane potential v for a given synaptic current isyn, whereas

Eq. 2.5 describes a recovery variable u; the parameter a is the rate constant of the recovery

variable, and b describes the sensitivity of the recovery variable to the subthreshold fluctu-

ations of the membrane potential. Whenever v reaches peak (vcutoff = +30), the membrane

potential is reset to c and the value of the recovery variable is decreased by d (see Eq. 2.6).

The inclusion of u in the model allows for the simulation of typical spike patterns observed

in biological neurons. The four parameters a, b, c, and d can be set to simulate different

types of neurons (see Fig. 2.13). The most common type of excitatory neuron in mammalian

neocortex, the Regular Spiking (RS) cell, fires tonic spikes with decreasing frequency, as in

Fig. 2.13a (class 1 excitability). Other neurons—such as some local inhibitory interneurons—

cannot fire low-frequency spike trains, thus are either quiescent or fire a train at relatively

large frequency, as in Fig. 2.13h.

2.3.2.2 Synapses

In this type of neural-circuit models, ionic currents are typically modeled as dynamic synaptic

channels with zero rise time and exponential decay:

dgr(t)

dt
= − 1

τr
gr(t) + ηrw

∑
i

δ(t− ti), (2.7)

where gr is the synaptic conductance, ηr is a receptor-specific efficacy (or “synaptic gain”),

w is the weight of the synapse, δ is the Dirac delta, the sum is over all presynaptic spikes

arriving at time ti, and the subscript r denotes the receptor type. The most prominent

receptor types in the mammalian brain include AMPA (fast decay, τAMPA = 5 ms), NMDA

(slow decay and voltage-dependent, τNMDA = 150 ms), GABAa (fast decay, τGABAa = 6 ms),

and GABAb (slow decay, τGABAb = 150 ms) (Izhikevich et al., 2004). Typically, a spike

arriving at a synapse that is post-synaptically connected to an excitatory (inhibitory) neuron

increases both gAMPA and gNMDA (gGABAa and gGABAb). Receptor-specific efficacies may vary
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Figure 2.13: Summary of the neuro-computational properties of biological spiking neurons,
simulated with the Izhikevich neuron model (Izhikevich, 2004). Each horizontal bar denotes
a 20 ms time interval.
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depending on which brain area (and cortical layer) is being modeled. However, ηAMPA is

often greater than ηNMDA (Myme et al., 2003).

The total synaptic current isyn in Eq. 2.4 is then given as:

isyn = −gAMPA(v − 0)

− gNMDA

(
v+80

60

)2

1 +
(
v+80

60

)2 (v − 0)

− gGABAa(v + 70)

− gGABAb(v + 90). (2.8)

2.3.2.3 Synaptic Plasticity

Synapses in the brain can also undergo plasticity, where they change their efficacy or weight

strength according to recent presynaptic and postsynaptic activity.

Synaptic plasticity was first proposed as a mechanism for learning and memory on the basis

of theoretical analysis (Hebb, 1949), who postulated that when one neuron drives the activity

of another neuron, the connection between these neurons is potentiated. Hebbian learning

describes the change in the i-th weight strength, ∆wi, as:

∆wi = ηxiy, (2.9)

where η is the learning rate, xi is the i-th input to the neuron, and y is the neuron’s

postsynaptic response. This principle became later known as “Cells that fire together, wire

together”.

The principle of Hebbian-like synaptic potentiation was later supplemented with the com-

plementary principle of synaptic depression between two neurons that are not sufficiently

coactive (Sejnowski, 1977; Stent, 1973). The experimental correlates of these theoretically
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proposed forms of synaptic plasticity are called Long-Term Potentiation (LTP) and Long-

Term Depression (LTD) (Bi and Poo, 2001; Song et al., 2000), and together form an update

rule called Spike-Timing Dependent Plasticity (STDP):

dwi,j
dt

= δ + β(LTPi,j + LTDi,j), (2.10)

where wi,j is the synaptic weight from presynaptic neuron i to postsynaptic neuron j, β is

the learning rate, and δ is a bias often set to zero or a positive to push the network towards

positive weight increases for low synaptic input.

Although prevalent in cortical synapses, the model presented in this thesis does not attempt

to model synaptic plasticity. However, Chapter 7 describes a computational principle that

might be the result of synaptic plasticity mechanisms in the brain (Carlson et al., 2013).

Synaptic plasticity may be included in future iterations of the model presented in this thesis

(see Chapter 8).
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Chapter 3

CARLsim: A Large-Scale Spiking

Neural Network Simulator

3.1 Introduction

Spiking Neural Network (SNN) models play an important role in understanding brain func-

tion (Eliasmith et al., 2012; Maass, 1997; Rieke et al., 1999) and in designing neuromor-

phic devices with the energy efficiency, computational power, and fault-tolerance of the

brain (Boahen, 2006; Cassidy et al., 2014; Khan et al., 2008; Minkovich et al., 2014; Schem-

mel et al., 2010). These models represent a compromise between execution time and biolog-

ical fidelity by capturing essential aspects of neural communication, such as spike dynamics,

synaptic conductance, and plasticity, while foregoing computationally expensive descriptions

of spatial voltage propagation found in compartmental models (Izhikevich, 2007; Koch, 2004).

However, developing efficient simulation environments for SNN models is challenging due to

the required memory to store the neuronal/synaptic state variables and the time needed to

solve the dynamical equations describing these models. A number of simulators are already

35



available to the public (for an overview see Beyeler et al. (2015a); Brette et al. (2007)), each

providing their own unique qualities and trade-offs based on the employed abstraction level

and supported computer hardware. Given the considerable potential for parallelization of

artificial neural networks (Nordström and Svensson, 1992), it is not surprising that most

simulators today offer implementations on parallel architectures, such as computer clusters

or GPUs. However, in order to be of practical use to the computational modeling community,

an SNN simulator should not only be fast, but also freely available, capable of running on

affordable hardware, have a user-friendly interface, include complete documentation, and

provide tools to easily design, construct, and analyze SNN models.

To meet these challenges, we have developed CARLsim 3, a user-friendly, GPU-accelerated

SNN simulation framework written in C/C++ that is capable of simulating large-scale neu-

ral models without sacrificing biological detail. Due to its efficient GPU implementation,

CARLsim is useful for designing large-scale SNN models that have real-time constraints

(e.g., interacting with neuromorphic sensors or controlling neurorobotics platforms). To

promote its use among the computational neuroscience and neuromorphic engineering com-

munities, CARLsim is provided as an open-source package, which can be freely obtained

from: http://www.socsci.uci.edu/~jkrichma/CARLsim.

3.2 CARLsim

CARLsim is a C/C++ based SNN simulator that allows execution of networks of Izhikevich

spiking neurons (Izhikevich, 2003) with realistic synaptic dynamics on both generic x86

CPUs and standard CUDA-enabled GPUs. CARLsim can be understood as a computational

framework for the exploration of experimental data, functional applications, and theoretical

models of brain function, with applications to theoretical neuroscience, real-time computing,

and neuromorphic engineering (Fig. 3.1).
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Figure 3.1: CARLsim: A neuromorphic framework for constructing functional SNN models.

The simulator was first introduced in 2009 (now referred to as CARLsim 1), where it demon-

strated near real-time performance for 105 spiking neurons on a single NVIDIA GTX 280

GPU (Nageswaran et al., 2009). CARLsim 2 added basic support for synaptic conductances,

Spike-Timing Dependent Plasticity (STDP), and Short-Term Plasticity (STP) (Richert et al.,

2011). The most recent release, CARLsim 3, greatly expands the functionality of the sim-

ulator by adding a number of features that enable and simplify the creation, tuning, and

simulation of complex networks with spatial structure (Beyeler et al., 2015a). These features

include: i) real-time and offline data analysis tools, ii) a more complete STDP implementa-

tion that includes dopaminergic neuromodulation, and iii) an automated parameter tuning

interface. In addition, several software engineering techniques and more complete documen-

tation were introduced in the latest release to ensure the integrity of the current code base

and to lay the groundwork for the success of future releases. The following subsections will

explain these achievements in detail.
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Figure 3.2: CARLsim state diagram. The user specifies neuronal and network details in the
CONFIG state. Calling setupNetwork moves the simulation to the SETUP state, where data
monitors can be set. Calling runNetwork moves the simulation to the RUN state, where input
stimuli are set and the simulation is executed. Data can be analyzed either on-line (e.g., by
accessing collected spike data or by taking a snapshot of the current synaptic weights), or
off-line via the Offline Analysis Toolbox (OAT).

3.2.1 CARLsim User Interface: General Workflow

The workflow of a typical CARLsim 3 simulation is organized into three distinct, consecutive

states (see Fig. 3.2): the configuration state (CONFIG), the set up state (SETUP), and the

run state (RUN). User functions in the C++ Application Programming Interface (API) are

grouped according to these stages, which streamline the process and prevent race conditions.

State transitions are handled by special user methods such as CARLsim::setupNetwork and

CARLsim::runNetwork. The basic workflow is outlined in Listings 3.1 – 3.3, which are

explained in detail below.

3.2.1.1 The Configuration State

The first step in using CARLsim 3 (libCARLsim) is to import the library and instantiate

the main simulation object, which prepares the simulation for execution in either CPU MODE

or GPU MODE. From then on, the simulation is in CONFIG state, allowing the properties of the
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neural network to be specified.

Similar to PyNN (Davison et al., 2009) and many other simulation environments, CARLsim

uses groups of neurons and connections as an abstraction to aid defining synaptic connec-

tivity. Different groups of neurons can be created from a one-dimensional array to a three-

dimensional grid via CARLsim::createSpikeGeneratorGroup or CARLsim::createGroup,

and connections can be specified depending on the relative grid placement of neurons via

CARLsim::connect. This allows for the creation of networks with complex spatial structure.

Listing 3.1: CARLsim CONFIG state

1 #include <carlsim.h>

2

3 // ---------------------------------- CONFIG STATE ----------------------------------- //

4 CARLsim sim("basic", CPU_MODE, USER);

5

6 // create groups

7 Grid3D grpSize(10, 10, 5); // 10x10x5 neurons in each group

8 int gIn = sim.createSpikeGeneratorGroup("input", nNeur, EXCITATORY_NEURON);

9 int gOut = sim.createGroup("output", nNeur, EXCITATORY_NEURON);

10 sim.setNeuronParameters(gOut, 0.02f, 0.2f, -65.0f, 8.0f); // RS

11

12 // connect input to output group

13 sim.connect(gIn, gOut, "gaussian", RangeWeight(0.01f), 0.1f, RangeDelay(1, 20),

14 RadiusRF(3, 3, 3), SYN_PLASTIC);

15

16 // enable STDP on all incoming synapses to gExc

17 float alphaPlus = 0.1f, tauPlus = 20.0f, alphaMinus = 0.1f, tauMinus = 20.0f;

18 sim.setESTDP(gOut, true, STANDARD, ExpCurve(alphaPlus, tauPlus, -alphaMinus, tauMinus));

19

20 // disable conductances to run CUBA mode

21 sim.setConductances(false);

An example network is being configured in Listing 3.1. Here, the CARLsim object is in-

stantiated (line 4), two neuronal groups are created (lines 8–10), a connection between these

two groups is established (lines 13–14) as well as subjected to STDP (lines 17–18), and all

synapses are defined to be conductance-based (line 21).
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CARLsim currently supports Izhikevich spiking neurons (Izhikevich, 2003) with either current-

based or conductance-based synapses, but more neuron types are planned for the future. In

the above example, two groups of 500 Izhikevich neurons each are arranged on a 10 ×

10 × 5 three-dimensional grid (lines 7–9). The keyword EXCITATORY NEURON denotes that

all neurons in these groups have glutamatergic synapses, although it is also possible to

create neurons with GABAergic synapses (INHIBITORY NEURON) or dopaminergic synapses

(DOPAMINERGIC NEURON). In order to refer to these groups in later method calls, the meth-

ods createSpikeGeneratorGroup and createGroup return a group ID, stored in gIn and

gOut, respectively. Line 10 specifies the Izhikevich parameters of group gOut, making these

neurons of class 1 excitability (i.e., regular spiking neurons), where 0.02, 0.2, −65.0, and 8.0

correspond respectively to the a, b, c, and d parameters of the Izhikevich neuron.

The two groups, gIn and gOut, are connected topographically using a Gaussian connection

profile (lines 13–14), which connects neurons based on their relative distance in 1D, 2D, or

3D space as defined by the Grid3D struct (line 7). The spatial extent of these connections is

given by the RadiusRF struct (line 14), which allows the receptive field of each neuron to be

specified in 1D, 2D, or 3D space. The connection pattern in the above example script has

a synaptic weight of value 0.01, 10 % connection probability, a synaptic delay uniformly dis-

tributed between 1 ms and 20 ms, and plastic synapses (SYN FIXED) whose weights can range

between 0 and 0.01. If one is not satisfied with the built-in connection types ("one-to-one",

"full", "random", and "gaussian"), a callback mechanism is available for arbitrary, user-

specified connectivity.

CARLsim 3 allows users to choose from a number of synaptic plasticity mechanisms. These

include standard equations for STP (Senn et al., 2001; Tsodyks et al., 1998), various forms

of additive nearest-neighbor STDP (Izhikevich and Desai, 2003), and homeostatic plasticity

in the form of synaptic scaling (Carlson et al., 2013). STDP is a paradigm that modu-

lates the weight of synapses according to their degree of causality. In CARLsim, STDP is
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specified post-synaptically, and can either apply to all glutamatergic synapses (i.e., where

the pre-synaptic group is excitatory; E-STDP) or all GABAergic synapses (i.e., where the

pre-synaptic group is inhibitory; I-STDP). In the present example, E-STDP is enabled on

group gOut, and the shape of the STDP curve is set to the standard exponential curve (see

Section 2.3.2.3).

For a selective list of other available function calls in CONFIG state, please refer to Fig. 3.2.

3.2.1.2 The Set Up State

Once the network has been specified, CARLsim::setupNetwork optimizes the network state

for the chosen back-end (CPU or GPU) and moves the simulation into SETUP state (see

Fig. 3.2). In this state, monitors can be set to record variables of interest (e.g., spikes,

weights, state variables).

An example is shown in Listing 3.2, where a SpikeMonitor is set to record spikes for the

duration of the simulation and dump the data to a "DEFAULT" file location (line 3). Analo-

gously, a ConnectionMonitor will track synaptic weight changes over the time course of the

simulation and dump the data to file (line 4). The default file location is given by the name

of the group (as specified on lines 8 and 9 in Listing 3.1), which is a means to easily find

relevant files during off-line analysis (see Section 3.2.3).

Listing 3.2: CARLsim SETUP state

1 // ---------------------------------- SETUP STATE ------------------------------------ //

2 sim.setupNetwork();

3 SpikeMonitor* spkOut = sim.setSpikeMonitor(gOut, "DEFAULT");

4 sim.setConnectionMonitor(gIn, gOut, "DEFAULT");

New in CARLsim 3 is a means to access recorded variables at run-time, without the com-

putational overhead of writing data to disk. This is achieved by means of a SpikeMonitor
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handle that is returned by CARLsim::setSpikeMonitor. This handle then allows read access

of collected data during the RUN state.

For a selective list of other available function calls in SETUP state, please refer to Fig. 3.2.

3.2.1.3 The Run State

The first call to CARLsim::runNetwork will take the simulation into RUN state. In this state,

input stimuli can be specified, and the simulation can be repeatedly run (or “stepped”) for

an arbitrary number of milliseconds.

Input can be generated via current injection or spike injection (the latter using Poisson

spike generators, or a callback mechanism to specify arbitrary spike trains). CARLsim also

provides plug-in code to generate Poisson spike trains from animated visual stimuli such as

sinusoidal gratings, plaids, and random dot fields created via the VisualStimulus toolbox1.

In Listing 3.3, input is generated via a Poisson spike generator object, poissonIn (line 3),

which is associated with the group gIn (line 4). The PoissonRate object will then generate

Poisson spike trains from a specified mean firing rate (i.e., given by the λ parameter of the

Poisson process), which increases as a function of simulation time (line 9). The network is

run for a total of ten trials, each of which has a 1 s duration (line 14).

In the above listing, the SpikeMonitor handle from the SETUP state is used to selectively

record spike events of the group gOut. This is achieved by surrounding CARLsim::runNetwork

with calls to SpikeMonitor::startRecording and SpikeMonitor::stopRecording. Pub-

lic members of the SpikeMonitor class can then be accessed to either print a summary of

the recorded network activity (line 18) or retrieve sophisticated activity metrics, such as the

1VisualStimulus is a MATLAB toolbox for generating, storing, and plotting 2D visual stimuli related to
neuroscience. The toolbox was created during CARLsim development, but is also available as a standalone
download from: https://github.com/UCI-CARL/VisualStimulusToolbox.
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Listing 3.3: CARLsim RUN state

1 // ------------------------------------ RUN STATE ------------------------------------ //

2 // associate PoissonRate container with group gIn

3 PoissonRate poissonIn(nNeur.N);

4 sim.setSpikeRate(gIn, &poissonIn);

5

6 // run the network repeatedly for 1s (1*1000 + 0 ms) with different Poisson input

7 for (int i=1; i<=10; ++i) {

8 // update Poisson mean firing rate

9 float inputRateHz = i * 10.0f;

10 poissonIn.setRates(inputRateHz);

11

12 // run for 1 second, record spikes

13 spkOut->startRecording();

14 sim.runNetwork(1, 0);

15 spkOut->stopRecording();

16

17 // print summary of spike information

18 spkOut->print();

19

20 // return the percent of neurons with firing rates from 0 to 5 Hz

21 spikeMon->getPercentNeuronsWithFiringRate(0.0, 5.0);

22 }

population’s mean firing rate or the percentage of neurons whose mean firing rates range

between 0 Hz and 5 Hz (arbitrary range; line 21). CARLsim provides a wide range of these

metrics, which become particularly useful when the simulation is used to search large pa-

rameter spaces using the built-in parameter tuning interface (Beyeler et al., 2015a; Carlson

et al., 2014).

In addition to the real-time monitors, CARLsim 3 provides a versatile OAT written in

MATLAB (see Section 3.2.3), which allows users to quickly visualize and easily analyze their

network simulations.

For a selective list of other available function calls in RUN state, please refer to Fig. 3.2.
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3.2.2 CARLsim Kernel: Simulation Engine

An important feature of CARLsim is the ability to run spiking networks not only on CPUs,

but also on off-the-shelf NVIDIA GPUs using the CUDA framework.

The basic structure of the CUDA GPU architecture is shown in Fig. 3.3. Each GPU consists

of multiple Streaming Multiprocessors (SMs) and a global memory accessible by all SMs.

Each SM is built from multiple floating-point scalar processors, a cache/shared memory,

and one or more special functions units, which execute transcendental functions such as

sine, cosine, and square root operations. CUDA groups parallel threads into “warps”, where

the number of threads per warp varies depending on the specific CUDA architecture. Each

SM also has at least one warp scheduler that is built to maximize the number of threads

running concurrently. The warp scheduler monitors threads within a warp and automatically

switches to another warp when a thread makes a time-consuming memory access.

The GPU implementation of CARLsim was written to optimize four main performance

metrics: parallelism, memory bandwidth, memory usage, and thread divergence (Nageswaran

et al., 2009). The simulation is broken into steps that update neuronal state variables

in parallel (N-parallelism), and steps that update synaptic state variables in parallel (S-

parallelism). Sparse representation techniques for spiking events and neuronal firing decrease

both memory and memory bandwidth usage. Thread/warp divergence occurs when a thread

executes a different operation than other threads in a warp causing the other threads to wait

for its completion. CARLsim prevents thread/warp divergence by buffering data until all

threads are ready to execute the same operation. At the same time, this technique enables

efficient run-time access of recorded variables (e.g., via SpikeMonitor) that are stored on the

GPU (Beyeler et al., 2015a).

The CARLsim 3 kernel introduces a number of software engineering techniques to assure

the integrity of the current code base and to enable successful growth of the project in the
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Figure 3.3: Simplified diagram of NVIDIA CUDA GPU architecture.

future (Beyeler et al., 2015a). For example, the pointer to implementation idiom (Eckel,

2000, Chapter 5: Hiding the Implementation) is used to programmatically separate user

interface from implementation, which will simplify the addition of different front-ends and

back-ends in the future. Regression testing (Kolawa and Huizinga, 2007), via Google Test2,

is used to ensure that the development of new functionality does not compromise the existing

code base, and new features are validated using both functional and unit testing. The full

test suite is visible to the user for automatic quality assurance after installation.

CARLsim development was mostly based on the M2090 Tesla GPU that utilizes the CUDA

Fermi architecture. The Tesla M2090 has 6 GB of global memory, 512 cores (each operating

at 1.30 GHz) grouped into 16 SMs, and a single precision compute power of 1331.2 GFLOPS.

Each SM is composed of 32 SPs, 16 load/store units, 4 special function units, and two warp

schedulers (Corporation, 2009). However, CARLsim is compatible with any NVIDIA GPU

2Google’s C++ test framework can be obtained from: https://github.com/google/googletest.
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that supports either the Fermi, Kepler, or Maxwell versions of the CUDA architecture. In

addition, the software was tested on a variety of platforms such as Windows 7 and 8, Linux

(Ubuntu 12.04, 12.10, 13.04, 13.10, and 14.04; CentOS 6; Arch Linux; OpenSUSE 13.1), and

Mac OS X to ensure maximal user support.

3.2.3 MATLAB Offline Analysis Toolbox (OAT)

In addition to real-time monitors, CARLsim provides a versatile Offline Analysis Toolbox

(OAT) written in MATLAB for the visualization and analysis of neuronal, synaptic, and

network information. The OAT is designed to produce meaningful plots with minimal user

input, by operating on binary files that were created during CARLsim simulations.

The OAT is organized into a hierarchy of classes, deriving either from a Reader base class to

operate on raw binary files or from a Monitor base class to visualize data. Reader objects in-

clude a SimulationReader class for reading simulation configuration files, SpikeReader for

reading Adress Event Representation (AER) spike files, and ConnectionReader for read-

ing synaptic weight files. Monitor objects utilize reader objects to visualize network ac-

tivity, either on a per-group basis via GroupMonitor, or for every group in the network

via NetworkMonitor. Similarly, synaptic connections can be visualized and analyzed via

ConnectionMonitor.

Listing 3.4: Visualizing network activity using the OAT.

1 initOAT

2 NM = NetworkMonitor(’../results/sim_carl_logo.dat’);

3 NM.plot;

The easiest way to visualize network activity after running a CARLsim simulation is illus-

trated in Listing 3.4. In three simple lines of code, the OAT environment is initialized by

adding relevant directories to the MATLAB search path (line 1), a NetworkMonitor object
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Figure 3.4: Visualizing network activity with the NetworkMonitor object of the OAT. A
200×200 input group is connected with a Gaussian connection profile to a 100×100 output
group, effectively implementing a blur and subsampling step of the Gaussian image pyramid.
Each pixel in the heatmap corresponds to the mean firing rate of a single neuron recorded
over a 1 s duration (the hotter the color, the higher the activity). Plots can be retrieved by
the user with only three lines of MATLAB code (see Listing 3.4).

is created and pointed to ../results/sim carl logo.dat, a file automatically generated

by running a CARLsim network with name “carl logo” (line 2), and network activity for

every group is visualized in a way that best suits both group size and simulation duration

(line 3).

An example output is shown in Fig. 3.4 for a network consisting of two groups ("input"

and "output") connected with a Gaussian connection profile, with neurons arranged on a

200× 200 and 100× 100 grid, respectively. Because in this example neurons are arranged on

a 2D grid, the NetworkMonitor object decided to visualize neuronal activity as 2D heatmap,

where every pixel corresponds to the mean firing rate of a particular neuron (the hotter the

color, the higher the activity).

Plots can be easily customized by passing optional arguments to the plot method of the

47



time

n
e
u
ro
n
s

0180

90

270

o

o

o

o

Figure 3.5: Supported OAT plot types include heat maps, flow fields, polar plots, and raster
plots. Shown is the activity of a network of directionally selective neurons in response to a
drifting sinusoidal grating (left).

NetworkMonitor class, such as by specifying the plot type or the binning window. A single-

line command is available to store the frame-by-frame animation of network activity to a

movie file. Similar functionality is provided on a per-group basis via the GroupMonitor

object.

The OAT provides a number of different ways to visualize data, as illustrated in Fig. 3.5.

Here, a grayscale movie of a sinusoidal grating drifting in an up-right direction was generated

using the VisualStimulus toolbox (left), and served as input to a network of directionally

selective neurons, akin to neurons in the primary visual cortex (see Chapter 4). The resulting

network activity can be visualized either as a heat map (top), a flow field, a polar plot, or a

raster plot (bottom row), making it easy for the user to visually inspect and verify arbitrarily

complex networks created with CARLsim.

3.3 CARLsim Performance

In order to demonstrate the efficiency and scalability of CARLsim 3, we ran simulations

consisting of various sized SNNs and measured their execution time (Beyeler et al., 2015a).
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Figure 3.6: A, Ratio of execution time to simulation time versus number of neurons for sim-
ulations with 100, 200, and 300 synapses per neuron. The dotted line represents simulations
running in real time. B, Simulation speedup versus number of neurons. Speedup increases
with neuron number. Models with 104 neurons or more have the most impressive speedup.

GPU simulations were run on a single NVIDIA GTX 780 (3 GB of memory) using CUDA,

and CPU simulations were run on an Intel Core i7 CPU 920 operating at 2.67 GHz.

The results of these benchmarks are summarized in Fig. 3.6. Networks consisted of 80 %

excitatory and 20 % inhibitory neurons, with an additional 10 % of neurons being Poisson

spike generators that drove network activity. The two neuronal populations were randomly

connected with a fixed connection probability, and E-STDP was used to generate sustained

irregular activity as described by Vogels and Abbott (2005). The number of synapses per

neuron ranged from 100 to 300 connections, and the overall network activity was ∼10 Hz.

GPU simulation speed, given as the ratio of GPU execution time over real-time, is plotted in

Fig. 3.6A. Execution time scaled linearly with workload, both in terms of number of neurons

as well as number of synapses. In Richert et al. (2011) we reported that networks with

110, 000 neurons and 100 synaptic connections per neuron took roughly two seconds of clock

time for every second of simulation time (CARLsim 2). The current release (CARLsim 3)

was slightly slower in this scenario, taking roughly 2.5 s of clock time for every second of

simulation time, which is not surprising given the large number of additional features in the
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present release. On the other hand, GPU mode still significantly outperformed CPU mode

(see Fig. 3.6B). GPU execution time was up to 60 times faster than the CPU. This result

is due to a combination of newer hardware (GTX 780) as well as code-level optimization

that allowed the effective use of S-parallelism (Nageswaran et al., 2009) for new features

such as synaptic receptor ratios and different shaped STDP curves, which are not possible

in a single-threaded CPU simulation. In summary, despite the additional features and new

programming interface, CARLsim 3 is similar in performance to our previous releases and

is highly optimized for SNNs on the order of 105 neurons and 107 synapses.

3.4 CARLsim Applications

CARLsim has been used to construct large-scale simulations of cognitive processes on the

order of 104 − 105 neurons and millions of synapses, with examples that include models

of visual processing (Beyeler et al., 2013, 2014, 2015b; Richert et al., 2011), neuromodula-

tion (Avery and Krichmar, 2015; Avery et al., 2012), neural plasticity (Carlson et al., 2013),

and somatosensory processing (Chou et al., 2015). Although their efficient implementation

is challenging due to the associated computational cost, investigating large-scale models of

cortical networks in more biological detail is widely regarded as crucial in order to understand

brain function (Honey et al., 2007).

One of our recent works (Beyeler et al., 2013) concerned the ability of a large-scale spiking

neural network model to rapidly categorize highly correlated patterns of neural activity such

as handwritten digits from the MNIST database (LeCun et al., 1998). Although many studies

have focused on the design and optimization of neural networks to solve visual recognition

tasks, most of them either lack neurobiologically plausible learning rules or decision-making

processes. In contrast, our model demonstrated how a low-level memory encoding mechanism

based on synaptic plasticity could be integrated with a higher-level decision-making paradigm
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to perform the visual classification task in real-time.

The model consisted of Izhikevich neurons and conductance-based synapses for realistic ap-

proximation of neuronal dynamics, an STDP-like synaptic learning rule for memory encod-

ing (previously described by Brader et al. (2007)), and an accumulator model for memory

retrieval and categorization (Smith and Ratcliff, 2004). Grayscale input images were fed

through a feed-forward network consisting of visual cortical areas V1 and V2 (selective to

one of four spatial orientations, in 45◦ increments), which then projected to a layer of down-

stream classifier neurons through plastic synapses that implement the STDP-like learning

rule mentioned above. Decision neurons were equally divided into ten pools, each of which

would develop selectivity to one class of input stimuli from the MNIST dataset (i.e., one of

the ten digits) as a result of training. Population responses of these classifier neurons were

then integrated over time to make a perceptual decision about the presented stimulus.

The model constitutes an important proof of concept; that is, i) to show how considerably

hard problems such as visual pattern recognition and perceptual decision-making can be

solved by general-purpose neurobiologically inspired cortical models solely relying on local

learning rules that operate on the abstraction level of a synapse, and ii) to do it in real-

time. The network achieved 92% correct classifications on MNIST in 100 rounds of random

sub-sampling, which provides a conservative performance metric, yet is comparable to other

SNN approaches (Brader et al., 2007; Querlioz et al., 2011). Additionally, the model correctly

predicted both qualitative and quantitative properties of reaction time distributions reported

in psychophysical experiments. The full network, which comprised of 71, 026 neurons and

approximately 133 million synapses, ran in real-time on a single NVIDIA Tesla M2090,

which demonstrates the efficacy of the CARLsim implementation. Moreover, because of the

scalability of the approach and its neurobiological fidelity, the model can be extended to

an efficient neuromorphic implementation that supports more generalized object recognition

and decision-making architectures found in the brain.
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3.5 Related Work

Today, a wide variety of simulation environments are available to the computational neuro-

science community that allow for the simulation of SNNs. Although many simulators share

similar approaches and features, most have unique qualities that distinguish them from the

others. In an effort to identify and highlight these qualities, we compared a list of features

provided by a number of other SNN simulators with CARLsim 3 (Beyeler et al., 2015a). We

limited this comparison to large-scale SNN simulators that are most common to CARLsim in

that they: i) are open source, ii) support the clock-driven and parallelized simulation of point

neurons, such as LIF, Izhikevich or aIF neurons, iii) have conductance-based synapses, and

iv) provide some form of synaptic plasticity. Specifically, we chose (in alphabetical order)

Brian 2 (Goodman and Brette, 2008), GeNN 2 (Nowotny, 2011), NCS 6 (Hoang et al., 2013),

NeMo 0.7 (Fidjeland et al., 2009), Nengo 2 (Bekolay et al., 2014), NEST 2.6 (Gewaltig and

Diesmann, 2007) and PCSIM 0.5 (Pecevski et al., 2009).

Table 3.1 compares different simulation environments with respect to features of both biologi-

cal realism and technical capability. A specific feature is indicated as either fully implemented

(‘ X ‘) or absent (blank, ‘ ‘). A ‘ / ‘ denotes a feature that is only partially implemented

(e.g., neuromodulation in NEST), requires substantial user efforts to implement (e.g., DA-

STDP in Brian), or is reportedly untested (e.g., Windows support for PCSIM). Although

we tried to be as objective as possible in assigning labels, categorization remains subjective

in nature. In addition, some of these features were not well-documented; but we were still

able to verify their existence by reading through the actual source code and reaching out to

the authors for clarification. Overall, we believe that the table accurately and fairly reflects

the development status for each of the listed SNN simulators at the time of this publication.

All of the simulators listed in Table 3.1 offer many features that allow the simulation of com-

plex neural networks on several back-ends. In addition, if users are interested in modeling
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certain details of the biological model that are not natively supported, all of the simulators

offer ways to extend the code base, either by ways of plug-in code, implementation inheri-

tance, or dynamic code generation. For example, both Brian and GeNN offer ways for the

user to formulate any neuronal, synaptic, or learning model they please. This fact makes

the simulators invaluable for power-users, but may be difficult for less-experienced program-

mers and may prohibit code-level optimizations for certain user-defined functionality. Nengo

provides flexibility through its scripting interface, and also provides a graphical user inter-

face to construct SNNs at different levels of abstraction. In Nengo, large-scale functional

networks can be achieved using the Neural Engineering Framework (NEF), which is a the-

oretical framework that can use anatomical constraints, functional objectives, and control

theory to find the set of weights that approximate some desired functionality (Eliasmith and

Anderson, 2002).

Although all of the simulation environments listed in Table 3.1 have their own pros and cons,

we believe that CARLsim 3 has advantages when it comes to efficiently simulating large-

scale SNNs without having to sacrifice biological realism. In particular, we have made serious

efforts to improve the usability of our platform by means of platform compatibility (Linux,

Mac OS X, and Windows), rigorous code documentation (including an extensive user guide

and tutorials), a regression suite for functional code verification, and a MATLAB toolbox

for the visualization and analysis of neuronal, synaptic, and network information. CARLsim

3 provides native support for a range of spike-based synaptic plasticity mechanisms and

topographic synaptic projections, as well as being among the first to provide support for a

network-level parameter tuning interface (Carlson et al., 2014). Additionally, the PyNN-like

interface, flexible visualization tools, and much improved documentation make CARLsim 3

easy to use.
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3.6 Conclusion

CARLsim is an open-source, C/C++ based SNN simulator that allows the execution of

networks of Izhikevich spiking neurons with realistic synaptic dynamics on both generic

x86 CPUs and standard off-the-shelf CUDA-enabled GPUs. The simulation library has

minimal external dependencies and provides users with a PyNN-like programming interface.

Additionally, CARLsim provides online and offline data analysis tools as well as support

for an automated parameter tuning framework. The library, documentation, tutorials and

examples can be obtained from: http://www.socsci.uci.edu/~jkrichma/CARLsim.
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Chapter 4

CUDA Implementation of the Motion

Energy Model

4.1 Introduction

Several software packages are available to the public that deal with the neurobiologically plau-

sible modeling of motion perception in the mammalian brain, such as spatiotemporal-energy

models like the motion energy model of Simoncelli and Heeger (1998) (see Section 2.1.3.1), or

gradient-based models like ViSTARS (Browning et al., 2009a,b). However, in order for these

frameworks to become practical in, for example, neuromorphic or robotics applications, they

must be capable of running large-scale networks in real time. Yet real-world integration is

often prohibited due to engineering requirements, programming intricacies, and the sheer

computational cost that come with large-scale biological models. Instead, such models often

find application only in constrained or virtual environments, which may severely limit their

explanatory power when it comes to generalizing findings to real-world conditions.

In this chapter I describe an efficient software implementation of the motion energy model (Si-
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moncelli and Heeger, 1998), one of the most supported cortical models for visual motion

processing. After a rigorous mathematical treatment of the motion energy model (hence-

forth referred to as the S&H model), I will discuss details of the new implementation, and

compare its computational performance to Simoncelli and Heeger’s own C/MATLAB based

code. By leveraging the parallel processing capabilities of GPUs, I aim to develop a CUDA

implementation of the S&H model that can handle constant video streams (∼ 360×480 pix-

els) of up to 30 frames per second in (near) real time, which will play a key role in enabling

the practical feasibility of the empirical studies described in the following chapters.

4.2 Spatiotemporal-Energy Model of V1

As described in Section 2.1.3.1, the S&H model belongs to the “integrationist” class of

models, which solve the aperture problem in two stages: In a first stage (assigned to motion

processing in V1), local 1D motion signals are extracted. In the second stage (assigned to

motion processing in MT), these signals are combined nonlinearly to recover 2D velocity.

In the following I will concentrate on the V1 stage, which transforms a series of image frames

into simulated neural activity that is modulated by the direction and speed of local motion.

At the end of the V1 stage, the model is conceptually equivalent to an elaborated Reichardt

detector (van Santen and Sperling, 1985). How signals from V1 can be combined in MT

to recover 2D velocity, by relying solely on dynamics and properties gleaned from known

electrophysiological and neuroanatomical evidence, will be the focus of Chapter 5.

4.2.1 Input Stimuli

Input to the S&H model is a visual stimulus that is represented as a light intensity distri-

bution I(x, y, t), which is a function of two spatial dimensions (x, y) and time t.
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Typically, a visual stimulus is processed at different spatiotemporal resolutions (or scales),

r, in order to extract motion cues that are invariant to feature size. In the following we will

consider three different scales. The first scale, r = 0, was equivalent to processing at the

original image (and time) resolution. The other two scales (r = 1 and r = 2) were achieved

by successively blurring the image with a Gaussian kernel. The three stimuli Ir(x, y, t) can

thus be expressed as:

I0(x, y, t) = I(x, y, t) (4.1)

I1(x, y, t) = exp

(
−(x2 + y2 + t2)

2

)
∗ I0(x, y, t) (4.2)

I2(x, y, t) = exp

(
−(x2 + y2 + t2)

2

)
∗ I1(x, y, t), (4.3)

where ∗ denotes convolution. In order to circumvent the noncausality of these convolutions

(i.e., where the response depends both on past and future stimulus intensities), a time delay

of four frames was introduced (see Simoncelli and Heeger (1998)).

4.2.2 V1 Simple Cells

A large body of research has found that neurons located in V1 that project to MT are

directionally selective and may be regarded as local motion energy filters (Adelson and

Bergen, 1985; DeAngelis et al., 1993; Movshon and Newsome, 1996). In our network, V1

simple cells are modeled as linear space-time oriented filters whose receptive fields are third

derivatives of a Gaussian (Simoncelli and Heeger, 1998). These filters are very similar to a

Gabor filter, but more computationally convenient as they allow for separable convolution

computations.

An example of a spatiotemporal receptive field is illustrated in Fig. 4.1, where the colored

ovals correspond to the orientation of the positive (green) and negative (red) lobes of the

spatiotemporal filter. If a drifting dot traces out a path (dashed line) in space (x, for now
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Figure 4.1: A drifting dot traces out a path (dashed line) in space (x, ignoring y) and time
(t). The colored ovals correspond to the orientation of the positive (green) and negative
(red) lobes of a spatiotemporal filter. A, If the filter is oriented in the same way as the dot’s
space-time path, it could be activated by this motion. B, A dot moving in the opposite
direction would always contact both positive and negative lobes of the filter and therefore
could never produce a strong filter response. Adapted from Bradley and Goyal (2008).

ignoring y) and time (t) that is oriented in the same way as the lobes, then the filter could

be activated by this motion (Fig. 4.1A). A dot moving in the orthogonal direction would

not elicit a filter response because its path intersects both positive and negative lobes of the

filter (as depicted in Fig. 4.1B).

The full set of V1 linear receptive fields consisted of 28 space-time orientations that are evenly

distributed on the surface of a sphere in the spatiotemporal frequency domain (Fig. 2.3).

The k-th space-time oriented filter in the V1 population can be described by a unit vector

~uk = (uk,x, uk,y, uk,t)
′ that is parallel to the filter orientation, where k = 1, 2, . . . , 28, and ′

denotes vector transposition. For more information please refer to Simoncelli and Heeger

(1998).

First, input images were filtered with a 3D Gaussian corresponding to the receptive field size
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of a V1 simple cell:

fr(x, y, t) = exp

(
−(x2 + y2 + t2)

2σ2
v1simple

)
∗ Ir(x, y, t), (4.4)

where ∗ is the convolution operator, r denotes the scale, and σv1simple = 1.25 pixels.

Then the underlying linear response of a simple cell at spatial location (x, y) and scale r

with space-time orientation k is equivalent to the third-order derivative in the direction of

~uk; that is,

Lk,r(x, y, t) = αv1lin

3∑
T=0

[
3−T∑
Y=0

[
3!

X!Y !T !

(
uk,x

)X(
uk,y

)Y (
uk,t

)T ∂3fr(x, y, t)

∂xX∂yY ∂tT

]]
, (4.5)

where ! denotes the factorial, X = 3 − Y − T , and αv1lin = 6.6084 is a scaling factor. Note

that the two sums combined yield exactly 28 summands. This operation is equivalent to

Eq. 2 in the original paper, and can also be expressed using vector notation:

~Lr = αv1lin M~br, (4.6)

where ~Lr is the set of all k V1 responses at scale r, each element of ~br is one of the separable

derivatives in Eq. 4.5 at scale r, and each element of the 28 × 28 matrix M is a number

3!/(X!Y !T !)
(
uk,x
)X(

uk,y
)Y (

uk,t
)T

. Each row of M has a different value for k, and each

column of M has different values for X, Y , and T . I will make use of this notation in

Section 4.2.3, where I will explain the construction of synaptic projections from V1 simple

cells to V1 complex cells.

At this stage of the model it is possible that filter responses Lk,r at positions (x, y) close to

the image border have become unreasonably large. These edge effects can be suppressed by

applying a scaling factor to Lk,r whenever (x, y) is near an image border.

Simple cell responses can then be constructed by half-squaring and normalizing the linear

responses Lk,r from Eq. 4.5 within a large Gaussian envelope (Fig. 4.2). Critically, the nor-

malization process implements a division operation, which allows for a close approximation
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Figure 4.2: V1 simple cell responses are generated from a visual stimulus (such as a field
of randomly moving dots) by applying a bank of linear spatiotemporal filters, a half-square
operation, and divisive normalization.

of maximum likelihood estimation (Denève et al., 1999), and is a ubiquitous operation in

the brain (Carandini and Heeger, 2012).

A simple cell response was then described as follows:

Sk,r(x, y, t) =
αfilt→rate,rαv1rectL

2
k,r(x, y, t)

αv1norm exp
(
−(x2+y2)

2σ2
v1norm

)
∗
(

1
28

∑28
k=1 L

2
k,r(x, y, t)

)
+ α2

v1semi

(4.7)

where ∗ is the convolution operator. The scaling factors αv1rect = 1.9263 and αv1semi = 0.1

(the semi-saturation constant) had the same values as in the original S&H model. Instead

of having a single global normalization, our normalization occurs within a large spatial

neighborhood (Gaussian half-width σv1norm = 3.35 pixels), which is thought to be more

biologically realistic. Therefore the scaling factor αv1norm = 1.0 had to be adjusted to

compensate for the implementation difference. This was done simultaneously by setting

αfilt→rate,r = 15 Hz, a scaling factor to map the unit-less filter responses at each scale r

onto more meaningful mean firing rates, as will be explained below. In brief, we opted to

reproduce the contrast sensitivity function reported for V1 cells projecting to MT (Movshon

and Newsome, 1996). Other than that, the computation in Eq. 4.7 is conceptually equivalent

to Eqs. 3–4 in Simoncelli and Heeger (1998).
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4.2.3 V1 Complex Cells

V1 complex cell responses were computed as local weighted averages of simple cell responses,

Ck,r(x, y, t) = αv1comp exp
(−(x2 + y2

2σ2
v1comp

)
wk,r, ~ψ Sk,r(x, y, t), (4.8)

where the half-width of the Gaussian was σv1comp = 1.6, αv1comp = 0.1 was a scaling factor,

and wk,r, ~ψ was a weight value as follows.

In order to arrive at V1 complex cells that are tuned for a particular direction and speed of

motion, filter responses needed to be “steered” into a specific direction. Freeman and Adelson

(1991) showed that the response of an arbitrarily oriented filter could be synthesized from a

fixed bank of basis filters (such as the 28 V1-like filters described above). Thus the projection

weights from V1 simple cells to V1 complex cells, wk,r, ~ψ, could be interpolated as follows.

Let ~ψ = (ψx, ψy, ψt)
′ be the unit vector parallel to an arbitrary space-time orientation (i.e.,

direction and speed of motion), akin to the unit vectors ~uk in Eq. 4.5. Then we can write

the third directional derivative in direction of ~ψ analogously to Eq. 4.5 as:

∂3fr

∂ ~ψ3
=
[
αcollapse M−1

]
~br (4.9)

= ~w~ψ
~br, (4.10)

where the matrix M and the vector ~br were the same as in Eq. 4.6, each element of the

vector ~w~ψ was a number 6!/(X!Y !T !)
(
ψx
)X(

ψy
)Y (

ψt
)T

, and ′ denoted vector transposition.

The product
[
αcollapse M−1

]
thus was a set ~w~ψ = (w~ψ,1, . . . , w~ψ,28) of interpolated weights,

where the k-th element determined the strength of the projection from the k-th V1 simple

cell onto a V1 complex cell. The two cells were connected only if they were in a local spatial

neighborhood (Eq. 4.8). A V1 complex cell received projections from V1 simple cells at all

three spatiotemporal resolutions, r.
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Figure 4.3: The contrast sensitivity function of model V1 simple cells (blue) is plotted
against electrophysiological data adapted from Fig. 7 of Movshon and Newsome (1996).
Each data point is a V1 mean response to a drifting grating, averaged over both 1 s of
stimulus presentation and all neurons in the subpopulation. Vertical bars are the standard
deviation on the population average.

4.2.4 Converting Filter Responses to Firing Rates

In order to find a meaningful mapping from unit-less filter responses to neuronal mean

firing rates, we opted to reproduce the contrast sensitivity function reported for V1 cells

projecting to MT (Movshon and Newsome, 1996), which is shown in Fig. 4.3. The red line is

the electrophysiological data adapted from Fig. 7 of Movshon and Newsome (1996), whereas

the blue line is our simulated data.

In order to arrive at this plot, we presented a drifting sinusoidal grating of varying contrast

to V1 simple cells coding for scale r = 0, and computed their mean response Sk0 from

Eq. 4.7 over a stimulation period of 1 s. The drifting grating had a spatial frequency of

ωspat = 0.1205 cycles per pixel and a temporal frequency of ωtemp = 0.1808 cycles per frame.
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Because the grating was drifting to the right, we only looked at the subpopulation of V1

simple cells that responded maximally to this stimulus (which was true for k = 24). The

mean firing rate of neurons in this subpopulation, S24,0, was then averaged over all cells in the

subpopulation and plotted in Fig. 4.3 (blue curve) for αv1norm = 1.0 and αfilt→rate,0 = 15 Hz.

Vertical bars are the standard deviation on the population average. The scaling factor αv1norm

was gradually changed until the curvature of the blue graph approximated the curvature of

the electrophysiological data. The scaling factor αfilt→rate,0 was then adjusted such that the

simulated responses saturated at approximately 100 Hz. In order to tune V1 simple cells at

the other two scales, that is, Sk,1 and Sk,2 from Eq. 4.7, we used a RDK stimulus, which

is depicted as the sample input in Fig. 4.2. We chose scaling factors that would give equal

response magnitudes at all three scales in response to the RDK stimulus, which resulted in

αfilt→rate,1 = 17 Hz and αfilt→rect,2 = 11 Hz.

4.3 The Software

The software for this motion energy model is freely and publicly available under the MIT

license, and can be obtained from https://github.com/UCI-CARL/MotionEnergy. In order

to run the code, users need to have the NVIDIA CUDA Toolkit installed. The code also easily

integrates with other software development efforts from the Cognitive Anteater Robotics

Laboratory (CARL), such as VisualStimulus1 and CARLsim (see Chapter 3).

1A MATLAB toolbox for generating, storing, and plotting 2D visual stimuli related to neuroscience
such as sinusoidal gratings, plaids, random dot fields, and noise: https://github.com/UCI-CARL/

VisualStimulusToolbox.
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Listing 4.1: Motion Energy Python Interface

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from motionenergy import MotionEnergy

4

5 # grayscale stimulus showing sine grating and plaid

6 file_str = ’inp_grating_plaid_gray_32x32x2400.dat’

7 num_stims = 2 # number of stimuli (grating, plaid)

8 num_frames_per_trial = 50 # number of trials per stimulus

9

10 file_stream, dim = read_input_header(file_str)

11 width, height, length = dim

12

13 ME = MotionEnergy(width, height, 1)

14 speed = 1.5 # pixels per frame

15

16 for stim in xrange(num_stims):

17 for trial in xrange(length/num_frames_per_trial/num_stims):

18 for _ in xrange(num_frames_per_trial):

19 # read new frame from file

20 frame = read_input_frame(file_stream, dim)

21

22 # calculate V1 complex cell responses

23 out = ME.calcV1complex(frame, speed)

24 out = out.astype(np.float32)

25

26 # plot, ...

27

28 file_stream.close()

4.3.1 User Interface

For ease of use, both a C/C++ and Python user interface are provided. Both interfaces

are based on functionality from the same underlying CUDA code. Similar to the original

C/MATLAB code by Simoncelli and Heeger (1998), a number of API calls are provided

that streamline the work flow. Using methods such as MotionEnergy.calcV1linear and

MotionEnergy.calcV1complex, it is possible to easily retrieve simulated neural activity at

various stages of the model.
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An example is shown in Listing 4.1, where an input file is parsed that contains 2400 frames of

32×32 pixel images depicting a sinusoidal gratings and plaids drifting in different directions.

For convenience, two functions are provided that either read the header section of the input

file (read input header, line 10), or retrieve the next frame in the file (read input frame,

line 20) (source code not shown). An input frame is then converted to a V1 complex cell

response with a single API call (line 23).

The resulting network activity is summarized as a tuning curve in Fig. 4.4. Here, polar plots

of V1 direction tuning were calculated in response to a sinusoidal grating (Fig. 4.4A, B) and

a plaid stimulus made of two superimposed sinusoidal gratings of equal contrast (Fig. 4.4C,

D), where the angle denotes motion direction and the radius indicates neuronal activity

(arbitrary units). The direction tuning is unimodal for gratings, but bimodal for plaids.

This is due to V1 complex cells picking up the motion direction of the individual grating

components (black arrows in Fig. 4.4C) instead of the overall direction of plaid motion (red

arrow in Fig. 4.4C), which can only be inferred if the cell is able to solve the aperture

problem.

4.3.2 Kernel

In order for our implementation to be useful to researchers already working with the S&H

model, we tried to stay as close to the S&H C/MATLAB implementation as possible. How-

ever, there are a few minor differences worth mentioning. First, as explained in Section 4.2.2,

we normalize V1 simple cell responses in a large Gaussian neighborhood rather than across

the whole population. Second, whereas the S&H model deals with edge effects by temporar-

ily “padding” the input image with an invisible border, we opted for the computationally

more economical alternative to simply decrease the responses of V1 simple cells located close

to image borders. Third, in the S&H C/MATLAB implementation there are two additional
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Figure 4.4: Polar plots of direction tuning for V1 complex cells in response to a sinusoidal
grating (A, B) and a plaid stimulus (C, D) drifting upwards, where the angle denotes motion
direction and the radius is the simulated neural activity (arbitrary units). The plaid stimulus
was constructed from two superimposed sine wave gratings of equal contrast, drifting into
two different directions (black arrows) 120◦ apart. The red arrow indicates the perceived
direction of motion.

scaling factors (called v1Blur and v1Complex, with values 0.99 and 1.02, respectively) that

we do not apply in order to save execution time. Fourth, our model processes input images

at three different scales as described in Eqs. 4.1–4.3, which is a feature that is not imple-

mented in the original S&H model. The most crucial mathematical operation in the V1

stage of the model is the convolution. Because the filter kernels used in our implementa-

tion are relatively small, employing the Fast Fourier Transform (FFT) would actually hurt

performance. Instead we perform all convolution operations in the space-time domain using

a custom function, which makes use of the fact that the Gaussian filter and its derivative

are dimensionally separable. Future work could be directed towards further optimizing the

convolution operation in CUDA.
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Figure 4.5: A, Execution time of a MATLAB implementation (blue) of V1 complex cells
versus a CUDA implementation (red). B, Observed memory usage for the MATLAB imple-
mentation (blue) and CUDA implementation (red).

4.3.3 Computational Performance

In order to compare our CUDA implementation of V1 to the original, unmodified S&H

implementation (which features code in both C and MATLAB) we computed V1 complex

cell responses (see Section 4.2.3) at a single spatiotemporal scale to a drifting sinusoidal

grating and recorded the model’s execution time. The S&H C/MATLAB code was executed

as shModel(stim, pars, ’v1Complex’), where stim was the input stimulus, and pars were

the default parameters (shPars).

Fig. 4.5A shows the execution time per video frame for both models. Our GPU imple-

mentation (red) was not only faster (except for relatively small networks) than the S&H

C/MATLAB implementation (blue), but it also scaled better with network size. Note that

the C/MATLAB implementation was a single-threaded computation. The largest speedup,

a factor of 12, was observed for a network consisting of 96 × 96 = 9, 216 neurons. It is

likely that even greater speedups could have been achieved on larger networks, but these

networks could not run with the S&H C/MATLAB implementation because they ran out of
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memory. Timing was performed using standard commands tic and toc in MATLAB, and

the <ctime> function time in C++/CUDA. For the S&H C/MATLAB implementation, the

time it took to create the stimulus was not included in the time measurement. On the other

hand, in the CUDA implementation the stimulus had to be read from file frame-by-frame

and copied to the GPU card. However, we did not include the time it takes to transfer the

response back from the device to the host.

Additionally, the S&H C/MATLAB implementation is memory-intensive (see Fig. 4.5B),

and execution times for networks above size 128 × 128 = 16, 384 could not be computed

because the CPU ran out of memory, even though we had a relatively large amount of

Random-Access Memory (RAM) (24 GB) available. Measuring memory usage in MATLAB

is not straight-forward. In order to demonstrate the excessive memory consumption of the

S&H C/MATLAB implementation (see Fig. 4.5B) we opted to measure two metrics: the

size of the output argument ans to function call shModel (blue, filled circle in Fig. 4.5B)

and the maximum memory usage of the MATLAB process at any point in time (blue, open

circle). The first was measured with native MATLAB command whos, and the latter was

measured by running a bash script in the background that reported the memory usage of

the process every second (using linux command ps). The blue dashed line is the 24 GB limit

of the system’s RAM. Note the log scale on the ordinate. Less memory was required to

run the process than to store the output argument, which consisted of a matrix whose size

was proportional to the product of the stimulus dimensions and the number of frames. A

straightforward way of making the S&H C/MATLAB implementation capable of handling

large inputs would thus be to break up the output argument into smaller chunks of data.

On the other hand, the memory usage of the GPU implementation was significantly lower

(red line in Fig. 4.5B) and scaled better with network size. We used the CUDA command

cuMemGetInfo to identify the amount of allocated memory on the GPU. The red dashed line

is the upper limit of GPU memory available to the user (roughly 5.2 GB on our card).
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Chapter 5

Efficient Spiking Neural Network

Model of Pattern Motion Selectivity

5.1 Introduction

In the last chapter I described an efficient implementation of the motion energy model

(Simoncelli and Heeger, 1998), which is based on the observation that directionally selective

neurons in V1 act as linear spatiotemporal filters. The resulting V1 complex cells were tuned

to a specific direction and speed of motion, but when presented with a more complicated

pattern such as a plaid stimulus, they were unable to resolve local motion ambiguities (see

Section 2.1.3) and signal the overall direction of pattern motion.

In this chapter I turn to the question of how V1-like motion signals can be integrated

in order to solve the aperture problem. Conceptually speaking, this computation can be

performed using the Intersection-Of-Constraints (IOC) principle (see Section 2.1.3.1). Rust

et al. (2006) revealed a procedure that could implement an IOC solution to the aperture

problem (see Section 2.1.3.1) in three consecutive steps: 1) spatial pooling over V1 or MT
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CDS cells with a wide range of preferred directions, 2) strong motion opponent suppression,

and 3) a tuned normalization that may reflect center-surround interactions in MT. Whereas

the implementation by Rust et al. (2006) was restricted to simple firing-rate neurons (see

Section 2.3.1) and inputs that are mixtures of sinusoidal gratings of a fixed spatial and

temporal frequency, it remains to be demonstrated how these computations can be performed

in a network of spiking neurons (Izhikevich, 2003) and conductance-based synapses that

respect the detailed temporal dynamics of neuronal and synaptic integration of biological

neurons.

5.2 Methods

In the following section I describe a two-stage SNN model of MT that can not only solve the

aperture problem, but also be used to make perceptual decisions about ambiguous visual

motion stimuli.

5.2.1 Two-Stage Spiking Model of MT

The two-stage model of MT is based on the idea that Component-Direction-Selective (CDS)

cells represent an earlier stage of motion processing than Pattern-Direction-Selective (PDS)

cells (Movshon et al., 1985; Smith et al., 2005) (see Section 2.1.3.1), making MT CDS

cells similar in terms of direction and speed tuning to the model V1 complex cells used by

Simoncelli and Heeger (1998). In fact, it has been shown that some MT cells exhibit speed

tuning characteristics similar to V1 complex cells (Priebe et al., 2006), which has led to the

suggestion that speed tuning in MT might be inherited from V1. Livingstone and Conway

(2007) have shown that even some V1 simple cells are speed-tuned in macaque. Whereas

CDS cells give responses whose selectivity is stable and consistent from the time they are
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first activated, PDS cells often respond with different and broader selectivity when first

activated, sometimes even resembling CDS cells, and only over a time-course on the order

of 100 ms do they establish pattern selectivity (Smith et al., 2005). At least in anesthetized

monkeys, MT is believed to consist of roughly 40 % CDS cells, 25 % PDS cells, and 35 %

unclassified cells (Movshon et al., 1985). However, in awake animals the situation might

be more complicated (Pack et al., 2001). All cells in MT were Izhikevich spiking neurons,

whose membrane potential was thus described by a pair of coupled differential equations (see

Section 2.3.2.1).

5.2.1.1 Component-Direction-Selective (CDS) Cells

Component-Direction-Selective (CDS) cells are selective to a particular direction and speed

of motion (an orientation in space-time). The name is an indication that these cells, when

presented with a plaid stimulus consisting of two superimposed sinusoidal gratings, preferably

respond to the motion of each grating (component) rather than the global motion pattern

produced by the combination of the two gratings (Movshon et al., 1985).

MT CDS cells had the same direction and speed preferences as V1 cells; that is, they pref-

erentially responded to motion in one of eight different directions (in 45◦ increments) and

three different speeds (1.5 pixels per frame, 0.125 pixels per frame, and 9 pixels per frame)

at any pixel location. The only difference was that MT cells had a larger receptive field,

achieved by Gaussian spatial pooling.

In order to model response normalization equivalent to the one in Eq. 6 of Simoncelli and

Heeger (1998), we introduced a pool of inhibitory interneurons, which integrated the activity

of all MT CDS cells within a large Gaussian neighborhood (across direction and speed),

and projected back to all three pools of MT CDS cells with one-to-one connections. This

response normalization is important to qualitatively reproduce the speed tuning curves (see
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Figure 5.1: PDS cells can be constructed in three steps: 1) spatial pooling over MT CDS
cells with a wide range of preferred directions, 2) strong motion opponent suppression, and
3) a tuned normalization that may reflect center-surround interactions in MT (Rust et al.,
2006).

Section 5.3.2).

5.2.1.2 Pattern-Direction-Selective (PDS) Cells

Pattern-Direction-Selective (PDS) cells differ from CDS cells in that they, when presented

with a plaid stimulus consisting of two superimposed sine gratings, preferentially respond to

the overall motion direction, not the individual components (Movshon et al., 1985). Because

visual stimuli typically contain many oriented components, local motion measurements must

be appropriately combined in order to sense the true global motion of the stimulus (aperture

problem). Thus it has been suggested that PDS neurons reflect a higher-order computa-

tion that acts on V1 or MT CDS afferents (Movshon et al., 1985). MT PDS cells in our

model received direct input from CDS cells, and thus conserved their speed and direction

preferences.

Pooling over MT CDS cells and opponent suppression were implemented by pooling CDS

responses across spatial position and across direction preference (see Fig. 5.1), such that

the strength of a projection from a CDS cell selective to motion direction θCDS at location

(xCDS, yCDS) to a PDS cell selective to motion direction θPDS at location (xPDS, yPDS) can be
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expressed as:

wCDS→PDS = αCDS→PDS cos(∆θ) exp

(−((∆x)2 + (∆y)2
)

2σ2
PDS,pool

)
, (5.1)

where ∆θ = θPDS−θCDS, ∆x = xPDS−xCDS, ∆y = yPDS−yCDS, the half-width of the Gaussian

neighborhood σPDS,pool = 3 pixels, and αCDS→PDS is a scaling factor. If the resulting weight

was negative, due to |∆θ| > π/2, the projection was relayed to a population of inhibitory

interneurons. Following the reasoning of Rust et al. (2006), the pattern index of a MT cell

can be reduced simply by sharpening the cosine tuning component in Fig. 5.1 (see third

column of Fig. 6 in Rust et al. (2006)).

Tuned normalization was implemented by an inhibitory self-connection with a narrowly

tuned Gaussian across direction (see second column of Fig. 6 in Rust et al. (2006)). Analogous

to previous projections, this was implemented by relaying the inhibitory projection to a pool

of inhibitory interneurons:

wPDS→PDS,inh = exp

(
−(∆θ)2

2σ2
PDS,tuned,dir

)
exp

(−((∆x)2 + (∆y)2
)

2σ2
PDS,tuned,loc

)
, (5.2)

where σPDS,tuned,dir < 45◦ (such that only one of the eight subpopulations was activated),

σPDS,tuned,loc = 2 pixels, and the inhibitory population sent one-to-one connections back to

the pool of MT PDS cells.

5.2.2 Spiking Layer of LIP Decision Neurons

A layer of decision neurons was responsible for integrating over time the direction-specific

sensory information that is encoded by the responses of MT PDS cells. This information

was then used to make a perceptual decision about the presented visual stimulus, such

as determining the global drift direction of a field of random moving dots in a motion

discrimination task (presented in Section 5.3.3). A good candidate for such an integrator area
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in macaques might be Lateral Intraparietal area (LIP), where neurons have been found whose

firing rate are predictive of the behavioral RT in a motion discrimination task (Roitman and

Shadlen, 2002; Shadlen and Newsome, 2001). Spiking neurons in a simulated LIP area

were grouped into eight pools of 50 neurons, each pool receiving projections from exactly

one of the eight pools of MT PDS cells with 10 % connection probability. As a result of

this connectivity profile, each pool of decision neurons accumulated sensory evidence for a

particular direction of motion, based on the response of MT PDS cells. Additionally, each

decision pool received inhibitory projections from other decision pools if the two preferred

directions of motion were close to opposite. More precisely, a decision neuron in pool i (thus

selective to direction θi) received an inhibitory projection from neurons in pool j (selective

to direction θj) with strength:

wdec,inh→dec = cos(θi − θj + π), (5.3)

and 10 % connection probability.

LIP did not employ any internal noise.

5.3 Results

We conducted a number of experiments to ensure the accuracy and efficiency of our im-

plementation. Here we demonstrate that the network is able to exhibit direction and speed

tuning for drifting bar and plaid stimuli that are in agreement with neurophysiological record-

ings, and that the network qualitatively reproduces both the psychometric and chronometric

function in a Two-Alternative Forced Choice (2AFC) motion discrimination task. Addition-

ally, we measured both the computational performance and memory consumption of our

model and compared it to the S&H C/MATLAB implementation.

GPU simulations were run on a NVIDIA Tesla M2090 (6 GB of memory) using CUDA, and
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CPU simulations (including Matlab) were run on an Intel Xeon X5675 at 3.07 GHz (24 GB

of RAM). The same exact network running on a single GPU produced all results; the only

difference per experiment was the presented input stimulus. The full network consisted of

153, 216 neurons and approximately 33 million synapses, which corresponds to a 32 × 32

pixels input resolution.

5.3.1 Direction Tuning

We tested the ability of our model MT cells to signal the direction of motion for drifting

grating and plaid stimuli. Responses were simulated for CDS cells and PDS cells in MT. The

first stimulus was a drifting sinusoidal grating consisting of spatial and temporal frequency

components that were preferred by MT neurons selective to a speed of 1.5 pixels per frame

(that is, ωspat = 0.1205 cycles per pixel, ωtemp = 0.1808 cycles per frame). The second

stimulus was a pair of superimposed gratings drifting in a direction orthogonal to their

orientation, which together formed a coherently drifting plaid pattern. The two gratings

both had the same spatial frequency ωspat, but their orientation and drift direction differed

by 120◦. The direction of these particular patterns lay equidistant between the directions

of motion of the two component gratings. The stimulus contrast for both grating and plaid

was 30 %.

Our model was able to reproduce direction tuning curves that are in agreement with single-

cell electrophysiological data (Movshon and Newsome, 1996; Movshon et al., 1985; Rodman

and Albright, 1989) for V1 cells, MT CDS cells, and MT PDS cells. Fig. 5.2 shows polar

plots of direction tuning for V1 neurons (Panels B and F), MT CDS cells (Panels C and

G), and MT PDS cells (Panels d and h), where the angle denotes motion direction and the

radius is the firing rate in spikes per second (compare also Fig. 9 in Simoncelli and Heeger

(1998) and Fig. 1 in Rust et al. (2006)). Tuning curves were obtained by calculating the
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Figure 5.2: Polar plots of direction tuning for a sinusoidal grating a–d and a plaid stimulus
e–h drifting upwards, where the angle denotes motion direction and the radius is the firing
rate in spikes per second. Tuning curves were obtained by taking the mean firing rate of a
neuron to a drifting grating during 2 s of stimulus presentation, averaged over all neurons
in the population selective to the same stimulus direction (black: mean neuronal response,
blue: mean plus standard deviation on the population average, green: mean minus standard
deviation). Shown are mean responses for V1 complex cells (b and f), MT CDS cells (c and
g), and MT PDS cells (d and h). Only MT PDS cells h responded to the motion of the
entire plaid pattern rather than to the motions of the individual component gratings.

mean firing rate of a neuron’s response to a drifting grating during two seconds of stimulus

presentation. These responses were averaged over all neurons in the population selective to

the same direction of motion (black: mean neuronal response, blue: mean plus standard

deviation on the population average, green: mean minus standard deviation). As a result

of suppressing edge effects, neurons that coded for locations closer than five pixels from

the image border were only weakly activated, and were thus excluded from the plot. The

tuning curves in the top row were generated in response to the sinusoidal grating drifting

upwards, which is illustrated in Panel A. Analogously, the tuning curves in the bottom row

were generated in response to the plaid stimulus drifting upwards, which is illustrated in

Panel E (red arrow: pattern motion direction, black arrows: motion direction of the grating
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Figure 5.3: The pattern index is computed for all MT CDS cells (blue) and all MT PDS
cells (red), and plotted as a Fisher Z-score. The black solid lines are the classification region
boundaries, indicating that all MT CDS cells have indeed been classified as component-
selective, and all MT PDS cells have been classified as pattern-selective.

components). The direction tuning curve for gratings is unimodal for all three neuron classes,

but the direction tuning curve for plaids shows two distinct lobes for V1 complex cells (Panel

F) and MT CDS cells (Panel G). Each lobe corresponds to one of the component gratings of

the plaid. Only MT PDS cells (Panel H) responded to the motion of the entire plaid pattern

rather than to the motions of the individual component gratings.

In order to quantify the pattern selectivity of our model PDS cells, we computed the pattern

index for each CDS and PDS cell (see Fig. 5.3) using the standard technique (Movshon and

Newsome, 1996; Movshon et al., 1985; Smith et al., 2005). Based on the tuning curve for the

drifting grating described above, we generated two predictions for each cell’s tuning curve

to drifting plaids (Fig. 5.3A); either the cell would respond to the plaid in the same way

as it responded to the grating (“pattern” prediction, black solid line), or it would respond

independently to the two grating components (“component” prediction, black dashed line).

We then computed the correlation (rc, rp) between the cell’s actual response to a plaid

stimulus and the component and pattern predictions. To remove the influence of correlations
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between the predictions themselves, we calculated partial correlations Rc and Rp for the

component and pattern predictions, respectively, using the standard formulas:

Rc =
rc − rprpc√

(1− r2
p)(1− r2

pc)
, (5.4)

Rp =
rp − rcrpc√

(1− r2
c )(1− r2

pc)
, (5.5)

where rc and rp are the simple correlations between the data and the component and pattern

predictions, respectively, and rpc is the simple correlation between the predictions (Movshon

and Newsome, 1996). Because the sampling distribution of Pearson’s r is not normal, we

converted the correlation measures Rc and Rp to a Fisher Z-score,

Zc =
0.5 ln

(
1+Rc

1−Rc

)√
1
df

=
arctanh(Rc)√

1
df

, (5.6)

Zp =
arctanh(Rp)√

1
df

, (5.7)

where the numerator is the Fisher r-to-Z transformation and df is the degrees of freedom,

equal to the number of values in the tuning curve (in our case 24) minus three (Smith

et al., 2005). The Z-scores of all CDS and PDS cells (excluding neurons coding for locations

closer than five pixels from the image border) in the network are plotted in Fig. 5.3B. Each

value of Zc and Zp was tested for significance using a criterion of 1.28, which is equivalent

to p = 0.90 (Smith et al., 2005). For a PDS cell (red) to be judged as pattern-selective,

the value of Zp had to exceed the value of Zc by a minimum of 1.28 (black solid lines).

All PDS cells in Fig. 5.3B met this criterion and, therefore, were indeed pattern-selective.

Analogously, all CDS cells (blue) could be judged as component-selective.
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5.3.2 Speed Tuning

We next considered the ability of our implementation to reproduce MT speed tuning curves

as demonstrated in Simoncelli and Heeger (1998). MT neurons have been divided into three

distinct classes based on their speed tuning properties (Rodman and Albright, 1987). The

first class of neurons is relatively sharply tuned for a particular speed and direction of motion

(“speed-tuned” or “band-pass”). This class of neurons is also strongly suppressed by motion

in the anti-preferred (opposite) direction; the suppression is strongest when the stimulus

moves in the opposite direction at roughly the preferred speed. The second class of neurons

prefers low speeds in both the preferred and anti-preferred direction (“low-pass”). The third

class responds to high speed stimuli in both directions (“high-pass”).

As shown in Fig. 5.4, our implementation faithfully reproduces the speed tuning character-

istics of these three distinct classes (compare also Fig. 10 in Simoncelli and Heeger (1998)).

The stimulus consisted of a single bar drifting over the entire visual field either to the right

(preferred direction) or to the left (anti-preferred direction) at different speeds. Each data

point is the mean firing rate of a particular MT CDS neuron located near the center of the

visual field, averaged over the time course of a specific speed and direction configuration.

The relatively low mean firing rates can be explained by the fact that the stimulus resides

outside the neuron’s receptive field for most of the time. The first neuron class (Panel a,

“band-pass”) preferentially responded to a bar moving at 1.5 pixels per frame to the right,

and was strongly suppressed when the bar moved at the same speed to the left. The second

neuron class (Panel b, “low-pass”) exhibited a preference for low speeds (0.125 pixels per

frame) in both directions. With increasing speed the response of the neuron to dots moving

in the anti-preferred direction weakened. This behavior can be explained by the fact that

the Fourier planes corresponding to low speed motions in opposite directions are both close

to the ωt = 0 plane, and thus close to each other (Simoncelli and Heeger, 1998). Also, this

class of neurons was suppressed by fast stimuli moving in either direction. Similarly, the
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Figure 5.4: Speed tuning curves for three different classes of MT neurons. The stimulus
consisted of a single bar drifting over the entire visual field either to the right (preferred
direction) or to the left (anti-preferred direction) at different speeds. A, Response of a
“speed-tuned” neuron (selective to motion at 1.5 pixels per frame). B, Response of a “low-
pass” neuron (selective to motion at 0.125 pixels per frame). C, Response of a “high-pass”
neuron (selective to motion at 9 pixels per frame).

third neuron class (Panel c, “high-pass”), which had a high preferred speed (9 pixels per

frame) in one direction, was excited by fast stimuli moving in the opposite direction, but

was suppressed by slow stimuli moving in either direction.

5.3.3 Random Dot Kinematogram

In order to compare the performance of the model with behavioral data from 2AFC mo-

tion discrimination tasks, we developed a paradigm equivalent to the RDK experiments
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Figure 5.5: Random Dot Kinematogram (RDK). The RDK stimulus was constructed of
approximately 150 dots (15 % dot density, maximum stimulus contrast) on a 32× 32 input
movie. a, Psychometric function. The network’s accuracy increased with increasing motion
strength (coherence level). b, Chronometric function. The network’s RT decreased with
increasing motion strength.

performed with monkeys and humans (Resulaj et al., 2009; Roitman and Shadlen, 2002).

We constructed a simple decision criterion based on the race model (Shadlen and Newsome,

2001; Smith and Ratcliff, 2004), in which eight pools of decision neurons (one for each of

the directions of motion, 50 neurons per pool) sum the responses of MT PDS cells selective

to a particular direction and speed of motion. The first decision pool to emit 500 spikes (on

average ten spikes per neuron) “won the race” and thus signaled a choice for that direction.

A correct decision was the event in which the winning decision pool was selective to the

actual motion direction of the stimulus. The time it took the network to reach the decision

threshold was termed the RT.

The RDK stimulus was constructed of approximately 150 dots (15 % dot density, maximum

stimulus contrast) on a 32 × 32 input movie. Each stimulus frame was presented to the

network for 50 ms. A trial consisted of 20 stimulus frames of a particular motion direction
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and coherence level. Motion coherence in the stimulus was varied between 0 and 50 %.

Coherently moving dots drifted in one of eight possible directions, in 45◦ increments, at a

speed of 1.5 pixels per frame. Note that, therefore, only MT PDS cells that were selective

to this particular stimulus speed were connected to the decision layer.

Choice accuracy and RT as a function of task difficulty (coherence of dot motion) are shown

in Fig. 5.5 (Panel a and b, respectively), where the thick red lines are human behavioral

data extracted from a RT experiment (see Fig. 3 and Table 2 in Roitman and Shadlen

(2002)) and simulated data is shown in blue. Each data point (blue) is the mean outcome

of 80 trials (fixed coherence level, ten repetitions per motion direction), and the vertical

bars are the standard error and standard deviation for accuracy (Panel a) and RT (Panel

b), respectively. As in Fig. 3 in Roitman and Shadlen (2002), we did not show RTs on

error trials. Our network performance is comparable to human accuracy, and it qualitatively

emulates the effect of motion strength on RT. Decreasing RT for a relatively easy task (e.g.,

high motion coherence) is a direct consequence of the race model. Conversely, when the

difficulty of a decision is high (e.g., low coherence level), information favoring a particular

response grows more slowly (Smith and Ratcliff, 2004), and the probability of making an

error is higher (Shadlen and Newsome, 2001). The quantitative difference between behavioral

and simulated RT in Fig. 5.5 could be eradicated by fine-tuning the excitatory weights from

MT cells to the decision layer. However, such an exercise would be meaningless, because

our model does not take into consideration neural areas involved in characteristics of the

decision-making process that influence the length of RT, such as the time-course of LIP

neuronal dynamics or the gating of saccadic eye movements (Shadlen and Newsome, 2001),

which have been successfully modeled in detail by others (Grossberg and Pilly, 2008).
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Figure 5.6: a, Simulation speed is given as the ratio of execution time over the simulation
time for networks run in CPU mode (blue) and GPU mode (red). In both cases, the V1
CUDA implementation was executed (green), which is part of the total simulation time (in
blue and red). Note the log scale on the ordinate. The GPU simulations did not only run
faster, but simulation speed scaled better with network size. b, Speedup is given as the ratio
of CPU execution time over GPU execution time.

5.3.4 Computational Performance

Comparing the performance between GPU simulation mode and CPU simulation mode with

the full network on the specific processor remains to be demonstrated. In GPU mode all data

structures are allocated on the GPU, whereas in CPU mode the network would be allocated

on the CPU’s memory, and only the generation of motion energy responses (written in

CUDA) would be delegated to the GPU. Hence we evaluated the computational performance

by running the full network in both CPU and GPU mode with input images from 16 × 16

pixels (38, 784 neurons) to 64× 64 pixels (610, 944 neurons).
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The result is shown in Fig. 5.6. The simulation speed is given as the ratio of execution

time over the simulation time (see Fig. 5.6a) for networks run in CPU mode (blue) and

GPU mode (red). Note that in both modes, the V1 CUDA implementation was executed

(green), whose run-time is part of the total simulation time (in blue and red). The GPU

simulations not only ran faster, but also simulation speed scaled better with network size.

Note that the CPU simulation was a single-threaded computation. The full network at

40 × 40 input resolution (239, 040 neurons) ran in real-time on the GPU. At 32 × 32 input

resolution (153, 216 neurons) the simulation was 1.5 times faster than real time. This result

compares favorably with previous releases of our simulator (Nageswaran et al., 2009; Richert

et al., 2011), which is partly due to code-level optimizations, but mostly due to differences

in GPU hardware and the V1 stage of the network being spatiotemporal filters instead of

spiking neurons. Speedup was computed as the ratio of CPU to GPU execution time. As

the network size increased, the GPU simulations showed a significant speedup over the CPU

(see Fig. 5.6b). The largest network we could fit on a single GPU roughly corresponded to

64×64 input resolution (610, 944 neurons), which ran approximately 30 times faster than on

the CPU. Larger networks currently do not fit on a single GPU and as such must be run on

the CPU, which would be more than 70 times slower than real time judging from Fig. 5.6a.

5.4 Discussion

We presented a large-scale spiking model of visual area MT that i) is capable of exhibiting

both component and pattern motion selectivity, ii) generates speed tuning curves that are

in agreement with electrophysiological data, iii) reproduces behavioral responses from a

2AFC task, iv) outperforms a previous rate-based implementation of the motion energy

model (Simoncelli and Heeger, 1998) in terms of computational speed and memory usage,

v) is implemented on a publicly available SNN simulator that allows for real-time execution
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on off-the-shelf GPUs, and vi) is comprised of a neuron model, synapse model, and AER,

which is compatible with recent neuromorphic hardware, such as HRL (Srinivasa and Cruz-

Albrecht, 2012), IBM (Cassidy et al., 2014), NeuroGrid (Boahen, 2006), SpiNNaker (Khan

et al., 2008), and BrainScaleS (Schemmel et al., 2010).

The model is based on two previous models of motion processing in MT (Rust et al., 2006;

Simoncelli and Heeger, 1998), but differs from these models in several ways. First, our model

contains the tuned normalization in the MT stage that was not present in Simoncelli and

Heeger (1998) but introduced by Rust et al. (2006). Second, the implementation by Rust

et al. (2006) was restricted to inputs that are mixtures of 12 sinusoidal gratings of a fixed

spatial and temporal frequency, whereas our model can operate on any spatiotemporal image

intensity. Third, MT PDS cells in our model sum over inputs from MT CDS cells as opposed

to inputs from V1 cells, although the two approaches are conceptually equivalent. Fourth,

instead of using linear summation and a static nonlinear transformation, all neuronal and

synaptic dynamics in our model MT were achieved using Izhikevich spiking neurons and

conductance-based synapses.

One could argue that the inclusion of Izhikevich spiking neurons and conductance-based

synapses is unnecessary, since previous incarnations of the motion energy model did not

feature these mechanisms yet were perfectly capable of reproducing speed tuning and motion

selectivity. However, our approach is to be understood as a first step towards modeling

large-scale networks of visual motion processing in more biological detail, with the ultimate

goal of understanding how the brain solves the aperture problem, among other open issues

in motion perception. Integrating the functionality demonstrated in previous models with

more neurobiologically plausible neuronal and synaptic dynamics is a necessary first step for

analyzing the temporal dynamics of model neurons in MT, which may i) help to explain how

MT PDS cell establish their pattern selectivity not instantly but over a time-course on the

order of 100 ms (Smith et al., 2005), and ii) enable the addition of spike-based learning rules
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such as STDP; both of which might be harder to achieve with previous model incarnations.

Additionally, the introduction of the present neuron model, synapse model, and AER did not

affect performance, yet enabled the integration of the S&H model with recent neuromorphic

hardware (Srinivasa and Cruz-Albrecht, 2012) (see also Section 5.4.3).

On the other hand, it is possible (if not likely) that some response dynamics produced

by the neural circuitry in the retina, the LGN, and V1 may account for certain response

properties of neurons in MT that the current model is not yet able to capture. Thus future

work could be directed towards implementing the entire early visual system in the spiking

domain. However, for the purpose of this study we deem a rate-based preprocessor to be an

adequate abstraction, as the core functionality of directionally selective cells in V1 seem to

be well-characterized by local motion energy filters (Adelson and Bergen, 1985; DeAngelis

et al., 1993; Movshon and Newsome, 1996).

5.4.1 Neurophysiological Evidence and Model Alternatives

There is evidence that MT firing rates represent the velocity of moving objects using the IOC

principle. A psychophysical study showed that the perception of moving plaids depends on

conditions that specifically affect the detection of individual grating velocities (Adelson and

Movshon, 1982). This is consistent with a two-stage model in which component velocities

are first detected and then pooled to compute pattern velocity. Subsequent physiological

studies broadly support such a cascade model (Perrone and Thiele, 2001; Rust et al., 2006;

Smith et al., 2005).

However, other psychophysical results exist where the perceived direction of plaid motion

deviates significantly from the IOC direction (Burke and Wenderoth, 1993; Ferrera and

Wilson, 1990). Alternatives to the IOC principle are, for example, Vector Average (VA) or

feature tracking. VA predicts that the perceived pattern motion is the vector average of the
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component velocity vectors. Blob or feature tracking is the process of locating something

(a “feature”) that does not suffer from the aperture problem, such as a bright spot or a T-

junction, and tracking it over time (Wilson et al., 1992). Ultimately, one needs to consider

the interactions of the motion pathway with form mechanisms (Majaj et al., 2007), and

model the processing of more complex stimuli (e.g., motion transparency, additional self-

motion, multiple moving objects) (Layton et al., 2012; Raudies et al., 2011). Clarifying by

which rule (or combination of rules) the brain integrates motion signals is still a field of

ongoing research. For recent reviews on the topic see Bradley and Goyal (2008); Nishida

(2011).

Although clear evidence for spatiotemporal frequency inseparability in MT neurons has been

found (Perrone and Thiele, 2001), which supports the idea of a motion energy model, later

studies reported it to be a weak effect (Priebe et al., 2003, 2006). The actual proportion of

neurons in the primate visual system that are tuned to spatiotemporal frequency is currently

not known.

5.4.2 Model Limitations

Although our model is able to capture many attributes of motion selectivity (e.g., direction

selectivity, speed tuning, component and pattern motion), it is not yet complete for the

following reasons. First, it does not explicitly specify the exact pattern velocity, but instead

reports an activity distribution over the population of MT neurons, whose firing rates are

indicative of the observed pattern motion. In order to estimate the speed of a target stimulus,

it has been proposed to use a suitable population decoding mechanism that operates on MT

responses (Hohl et al., 2013; Perrone, 2012). Second, our model does not attempt to predict

the temporal dynamics of MT PDS cells, which often respond with broad selectivity when

first activated, sometimes even resembling CDS cells, and only over a time-course on the
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order of 100 ms establish their pattern motion selectivity (Smith et al., 2005). A possible

explanation for these temporal dynamics is given in Chey et al. (1997). Third, it does not

consider the visual form pathway and abstracts early visual details that may be critical

for operation in natural settings. Fourth, the extent to which each stage in the motion

energy model can be mapped onto specific neuronal populations is rather limited. Tiling

the spatiotemporal frequency space according to the motion energy model is biologically

implausible, and the temporal extent of the filters is unrealistically long (especially the

low speed filters). However, a way to combine spatiotemporal filters based on V1 neuron

properties into a pattern motion detector has been proposed in Perrone and Thiele (2002).

Another more fundamental limitation is that the S&H model (or for that matter, any

spatiotemporal-energy based model including the elaborated Reichardt detector) can only

sense so-called first-order motion, which is defined as spatiotemporal variations in image

intensity (first-order image statistics) that give rise to a Fourier spectrum. Second-order

stimuli, such as the motion of a contrast modulation over a texture, are non-Fourier and

thus invisible to the model, yet can be readily perceived by humans (Chubb and Sperling,

1988). In addition, the existence of a third motion channel has been suggested, which is

supposed to operate through selective attention and saliency maps (Lu and Sperling, 1995).

Also, MT has been shown to be involved in color-based motion perception (Thiele et al.,

2001).

There is also a plainly technical limitation to our model, which is manifested in the amount

of available GPU memory. Due to their size, large-scale spiking networks have demanding

memory requirements. The largest network that could fit on a single NVIDIA Tesla M2090

(with 6 GB of memory) was comprised of 610, 944 neurons and approximately 137 million

synapses, which corresponds to processing a 64 × 64 input video. In order to run larger

networks on current-generation GPU cards, a change in model (or software and hardware)

architecture is required. One should note that this is only a temporary limitation and could
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be overcome by the next generation of GPU cards. Another possible solution would be to

employ multi-GPU systems; however, more work is required to efficiently integrate our SNN

simulator with such a system.

5.4.3 Practical Implications

The present network might be of interest to the neuroscientist and computer vision research

communities for the following reasons.

First, our implementation outperforms the S&H C/MATLAB implementation by orders of

magnitude in terms of computational speed and memory usage. Thus our CUDA implemen-

tation can be used to save computation time, as well as be applied to input resolutions that

the C/MATLAB implementation cannot handle due to memory constraints. Additionally,

the CUDA implementation can act as a stand-alone module that could potentially be used

in computer vision as an alternative to computationally expensive operations such as Gabor

filtering for edge detection or dense optic flow computations.

Second, we have demonstrated that our approach is fast, efficient, and scalable; although

current GPU cards limit the size of the simulations due to memory constraints. Neverthe-

less, our model processes a 40 × 40 input video at 20 frames per second in real-time,which

corresponds to a total of 239, 040 neurons in the simulated V1, MT, and LIP areas, at 20

frames per second using a single GPU, which enables the potential use of our software in

real-time applications ranging from robot vision to autonomous driving.

Third, our implementation might be of particular interest to the neuromorphic modeling

community, as the present neuron model, synapse model, and AER are compatible with

recent neuromorphic hardware (Srinivasa and Cruz-Albrecht, 2012). Thus our algorithm

could be used as a neural controller in neuromorphic and neurorobotics applications. Future
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work could be directed toward creating an interface by which networks can be automatically

exported onto neuromorphic hardware.

Fourth, because of the modular code structure, our implementation can be readily extended

to include, for example, higher-order visual areas or biologically plausible synaptic learning

rules such as STDP. Thus our implementation may facilitate the testing of hypotheses and

the study of the temporal dynamics that govern visual motion processes in area MT, which

might prove harder to study using previous (rate-based) model incarnations. Lastly, the

network was constructed using CARLsim (see Chapter 3), with all source code for the simu-

lator, the spiking network, and analysis scripts publicly available. As such it is the next step

towards our goal of making efficient simulations of large-scale spiking networks available to

a wide range of researchers, without the need of a cluster or supercomputer.
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Chapter 6

GPU-Accelerated Cortical Neural

Network Model for Visually Guided

Robot Navigation

6.1 Introduction

Despite a wealth of data regarding the neural circuitry concerned with the perception of

self-motion variables such as the current direction of travel (“heading”) (Britten and New-

some, 1998; Duffy and Wurtz, 1997; Gu et al., 2006) or the perceived position and speed

of objects (Eifuku and Wurtz, 1998; Tanaka et al., 1993), little research has been devoted

to investigating how this neural circuitry may relate to the behavioral dynamics of steering

around obstacles and towards goals (Fajen and Warren, 2003; Wilkie and Wann, 2003).

In the last two chapters, I focused on an efficient implementation of a large-scale SNN model

that could build a cortical representation of visual motion in the spiking domain. In this

chapter, I aim to investigate whether the model can be used to generate appropriate steering
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Figure 6.1: “Le Carl” Android based robot, which was constructed from the chassis of an
R/C car. The task of the robot was to navigate to a visually salient target (bright yellow
foam ball) while avoiding an obstacle (blue recycle bin) along the way. The robot’s position
throughout the task was monitored by an overhead camera that tracked the position of the
green marker.

commands in a visually guided navigation task when embodied on a physical robot exploring

a real-world environment (see Fig. 6.1).

Visually guided navigation has traditionally attracted much attention from the domains of

both vision and control, producing countless computational models with excellent navigation

and localization performance (for a recent survey see Bonin-Font et al. (2008)). However, the

majority of these models have taken a computer science or engineering approach, without

regard to biological or psychophysical fidelity. To date, only a handful of neural network

models have been able to explain the trajectories taken by humans to steer around stationary

objects toward a goal (Browning et al., 2009a; Elder et al., 2009), and none of them have

been tested in real-world environments. The real world is the ultimate test bench for a

model that is trying to link perception to action, because even carefully devised simulated

experiments typically fail to transfer to real-world settings. Real environments are rich,
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multimodal, and noisy; an artificial design of such an environment would be computationally

intensive and difficult to simulate (Krichmar and Edelman, 2006). Yet real-world integration

is often prohibited due to engineering requirements, programming intricacies, and the sheer

computational cost that come with large-scale biological models. Instead, such models often

find application only in constrained or virtual environments, which may severely limit their

explanatory power when it comes to generalizing findings to real-world conditions.

In contrast, developing a robotic platform whose behavior is guided by a biologically detailed

network of spiking neurons might allow us to evaluate both theories and simulations in

real-world environments. Since SNN models are also compatible with recent neuromorphic

architectures (Boahen, 2006; Cassidy et al., 2014; Khan et al., 2008; Schemmel et al., 2010;

Srinivasa and Cruz-Albrecht, 2012) and neuromorphic sensors (Lichtsteiner et al., 2008; Liu

et al., 2010; Wen and Boahen, 2009), developing neurorobotic agents that display cognitive

functions or learn behavioral abilities through autonomous interaction may also represent

an important step toward realizing functional SNN networks on neuromorphic hardware.

6.2 Methods

6.2.1 The Robotic Platform

In order to engineer a system capable of real-time execution and real-world integration of

large-scale biological models, we needed to address several technical challenges as outlined

below.

First, the Android Based Robotics (ABR) framework (Oros and Krichmar, 2012, 2013a,b)

was used as a flexible and inexpensive open-source robotics platform. In specific, we made

use of the “Le Carl” robot, an ABR platform constructed from the chassis of an R/C car
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(see Fig. 6.2). The main controller of the platform was an Android mobile phone (Samsung

Galaxy S3), which mediated communication via Bluetooth to an IOIO electronic board

(SparkFun Electronics1), which in turn sent Pulse-Width Modulation (PWM) commands to

the actuators and speed controllers of the R/C car. Since today’s smartphones are equipped

with a number of sensors and processors, it is possible to execute computationally demanding

software based on real-time sensory data directly on the phone. The first neurorobotics

study to utilize the ABR platform implemented a neural network based on neuromodulated

attentional pathways to perform a reversal learning task by fusing a number of sensory inputs

such as GPS location, a compass reading, and the values of on-board IR sensors (Oros and

Krichmar, 2012). However, the complexity and sheer size of the present model did not

allow for on-board processing, and instead required hosting the computationally expensive

components on a remote machine.

Second, an Android app (labeled “ABR client” in Fig. 6.2) was developed to allow the col-

lection of sensory data and communication with a remote machine (labeled “ABR server”

in Fig. 6.2) via WiFi and 3G2. The only sensor used in the present study was the Android

phone’s camera, which collected 320×240 pixel images while the robot was behaving. These

images were then sent via User Datagram Protocol (UDP) to the ABR server, at a rate of

roughly 20 frames per second. The neural network processed the stream of incoming images

in real-time and generated motor commands, which were received by the ABR client app

running on the phone via Transmission Control Protocol (TCP). The ABR client commu-

nicated motor commands directly to the corresponding actuators and speed controllers of

the R/C car via the IOIO board. Third, we developed a Qt software interface that allowed

integration of the ABR server with different C/C++ libraries such as CUDA, OpenCV, and

the SNN simulator CARLsim (Beyeler et al., 2015a; Nageswaran et al., 2009; Richert et al.,

2011). In order to adhere to the real-time constraints of the system, all computationally

1The IOIO board can be obtained from http://www.sparkfun.com.
2All ABR source code is available from https://www.github.com/UCI-ABR.
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Figure 6.2: Technical setup. An Android app (ABR client) was used to record 320 × 240
images at 20 fps and send them to a remote machine (ABR server) hosting a cortical model
made of two processing streams: an obstacle component responsible for inferring the relative
position and size of nearby obstacles by means of motion discontinuities, and a goal compo-
nent responsible for inferring the relative position and size of a goal object by means of color
blob detection. These streams were then fused in a model of the Posterior Parietal Cortex
(PPC) to generate steering commands that were sent back to the ABR platform.

intensive parts of the model were accelerated on a GPU (i.e., a single NVIDIA GTX 780

with 3 GB of memory) using the CUDA programming framework.

6.2.2 The Cortical Neural Network Model

The high-level architecture of the cortical neural network model is shown in Fig. 6.2. The

model was based on the cortical model of visual motion processing presented in Chapters 4

and 5. The model used an efficient GPU implementation of the motion energy model (Si-
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moncelli and Heeger, 1998) to generate cortical representations of motion in a model of the

Primary Visual Cortex (V1). Spiking neurons in a model of the Middle Temporal area (MT)

then located nearby obstacles by means of motion discontinuities (labeled “Obstacle compo-

nent” in Fig. 6.2). The MT motion signals projected to a simulated Posterior Parietal Cortex

(PPC), where they interacted with the representation of a goal location (labeled “Goal com-

ponent” in Fig. 6.2) to produce motor commands to steer the robot around obstacles toward

a goal. The following subsections will explain the model in detail.

6.2.2.1 Visual Input

Inputs to the model were provided by the built-in camera of an Android phone (Samsung

Galaxy S3) mounted on the ABR platform. The phone took 320 × 240 pixel snapshots of

the environment at a rate of roughly 20 frames per second. These frames entered the model

in two ways: First, mimicking properties of visual processing in the magnocellular pathway,

a grayscale, down-scaled version of the lower half of the frame (80 × 30 pixels) was sent to

the network processing visual motion (obstacle component). This pathway consisted of a

preprocessing stage as well as a model of V1, MT, and the PPC. Second, mimicking prop-

erties of visual processing in the parvocellular pathway, the originally collected RGB frame

(320× 240 pixels) was sent to a model component concerned with locating a visually salient

target in the scene (goal component). Because a neural implementation of this pathway was

considered out of scope for the present study, the goal object was located using OpenCV-

based segmentation in the Hue, Saturation, Value (HSV) color space. The location of the

goal in the visual field was then communicated to the PPC.
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6.2.2.2 Preprocessing

The first stage of the obstacle component pathway (labeled “pre” in Fig. 6.2) enhanced con-

trast and normalized the input image using OpenCV’s standard implementation of Contrast-

Limited Adaptive Histogram Equalization (CLAHE). The processed frame was then sent to

the V1 stage.

6.2.2.3 Primary Visual Cortex (V1)

The second stage of the obstacle component pathway (labeled “V1” in Fig. 6.2) used the

motion energy model to implement model neurons that responded to a preferred direction

and speed of motion (Simoncelli and Heeger, 1998).

This stage of the model is described in detail in Chapter 4. In short, the motion energy model

used a bank of linear space-time oriented filters to model the receptive field of directionally

selective simple cells in V1. The filter responses were half-rectified, squared, and normalized

within a large spatial Gaussian envelope. The output of this stage was equivalent to rate-

based activity of V1 complex cells, whose responses were computed as local weighted averages

of simple cell responses in a Gaussian neighborhood of σV1c = 1.6 pixels (see Fig. 6.2). The

resulting size of the receptive fields was roughly one degree of the visual field (considering that

the horizontal field of view of a Samsung Galaxy S3 is roughly 60◦), which is in agreement

with electrophysiological evidence from recordings in macaque V1 (Freeman and Simoncelli,

2011). V1 complex cells responded to eight different directions of motion (in 45◦ increments)

at a speed of 1.5 pixels per frame. We interpreted these activity values as neuronal mean

firing rates, which were scaled to match the contrast sensitivity function of V1 complex cells

(see Section 4.2.4). Based on these mean firing rates we then generated Poisson spike trains

(of 50 ms duration), which served as the spiking input to Izhikevich neurons representing

cells in area MT.
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Figure 6.3: Schematic of the spatial receptive fields in the network. V1 neurons pooled retinal
afferents and computed directional responses according to the motion energy model (Simon-
celli and Heeger, 1998). The receptive fields of MT neurons had a circular center preferring
motion in a particular direction, surrounded by a region preferring motion in the anti-
preferred direction, implemented as a difference of Gaussians. PPC neurons computed a net
vector response weighted by the firing rates of MT neurons.

6.2.2.4 Middle temporal (MT) area

The simulated area MT (labeled “MT” in Fig. 6.2) consisted of 40, 000 Izhikevich spiking

neurons and roughly 1, 700, 000 conductance-based synapses, which aimed to extract the

position and perceived size of any nearby obstacles by means of detecting motion disconti-

nuities.

This stage of the model is based on the SNN model of MT described in detail in Chapter 5.

Neurons in model MT received optic flow-like input from V1 cells, thus inheriting their

speed and direction preferences (Born and Bradley, 2005). Their spatial receptive fields had

a circular center preferring motion in a particular direction, surrounded by a region preferring

motion in the anti-preferred direction (Allman et al., 1985; Born, 2000). These receptive fields

were implemented as a difference of Gaussians: Excitatory neurons in MT received input from

Poisson spike generators in V1 in a narrow spatial neighborhood (σMTe = 6.0 pixels) and from
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inhibitory neurons in MT in a significantly larger spatial neighborhood (σMTi = 12.0 pixels;

see Fig. 6.3), which are comparable in size to receptive fields of neurons in layers 4 and

6 of macaque MT (Raiguel et al., 1995). The weights and connection probabilities scaled

with distance according to the Gaussian distribution. The maximum excitatory weight

(at the center of a Gaussian kernel) was 0.01 and the maximum inhibitory weight was

0.0015. As a result of their intricate spatial receptive fields, excitatory neurons in MT were

maximally activated by motion discontinuities in the optic flow field, which is thought to be

of use for detecting object motion (Allman et al., 1985; Bradley and Andersen, 1998). Note

that cortical cells with such a receptive field organization usually exhibit different binocular

disparity preferences in their center and surround regions (Bradley and Andersen, 1998).

However, because the model had access to only a single camera, we were unable to exploit

disparity information (for more information please refer to Section 6.4.2).

All neurons in MT were modeled as Izhikevich spiking neurons (Izhikevich, 2003) (Eqs. 2.4–

2.6; see Section 2.3.2.1). All excitatory neurons were modeled as Regular Spiking (RS)

neurons (class 1 excitable, a = 0.02, b = 0.2, c = 65, d = 8), and all inhibitory neurons were

modeled as Fast Spiking (FS) neurons (class 2 excitable, a = 0.1, b = 0.2, c = 65, d = 2)

(Izhikevich, 2003).

Ionic currents were modeled as dynamic synaptic channels with zero rise time and expo-

nential decay (Eqs. 2.7, 2.8; see Section 2.3.2.3). Synaptic weights were set to 0.01 at the

center of an excitatory Gaussian kernel, and 0.0015 at the center of an inhibitory Gaussian

kernel. Time constants were set to standard values for the different channels; that is, AMPA

(fast decay, τAMPA = 5 ms), NMDA (slow decay and voltage-dependent, τNMDA = 150 ms),

GABAa (fast decay, τGABAa = 6 ms), and GABAb (slow decay, τGABAb = 150 ms). A spike

arriving at a synapse that was postsynaptically connected to an excitatory (inhibitory) neu-

ron increased both gAMPA and gNMDA (gGABAa and gGABAb) with receptor-specific efficacy

ηAMPA = 1.5 and ηNMDA = 0.5 (ηGABAa = 1.0 and ηGABAb = 1.0). Having ηAMPA > ηNMDA
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agrees with experimental findings (Myme et al., 2003) and allowed the network to quickly

react to changing sensory input.

For more information on the exact implementation of the Izhikevich model, please refer to

Chapter 2 and to the CARLsim 2.0 release paper (Richert et al., 2011).

6.2.2.5 Posterior Parietal Cortex (PPC)

The simulated PPC (labeled “PPCl” and “PPCr” in Fig. 6.2) combined visual representa-

tions of goal and obstacle information to produce a steering signal. The resulting dynamics

of the steering signal resembled the Balance Strategy, which is a simple control law that aims

to steer away from large sources of optic flow in the visual scene. For example, honeybees

use this control law to steer collision-free paths through even narrow gaps by balancing the

apparent speeds of motion of the images in their eyes (Srinivasan and Zhang, 1997). Interest-

ingly, there is also some evidence for the Balance Strategy in humans (Kountouriotis et al.,

2013). However, the present model differs in an important way from the traditional Balance

Strategy, in that it tries to balance the flow generated from motion discontinuities in the

visual field, which are thought to correspond to obstacles in the scene, instead of balancing

a conventional optic flow field. For more information see Section 6.4.1.

The steering signal took the form of a turning rate, θ̇:

θ̇ = θ̂ − θ, (6.1)

which was derived from the difference between the robot’s current angular orientation, θ,

and an optimal angular orientation estimated by the cortical network, θ̂. The variable θ

was based on a copy of the current PWM signal sent to the servos of the robot (efference
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copy), whereas the variable θ̂ was derived from the neural activation in PPC, as described

in Eq. 6.2. The resulting turning rate, θ̇, was then directly mapped into a PWM signal sent

to the servos that controlled the steering of the robot. In order not to damage the servos,

we made sure that the computed instantaneous change in turning rate, θ̈, never exceeded a

threshold (set at roughly 10 % of the full range of PWM values). Steering with the second

derivative also contributed to the paths of the robot being smoother.

The cortical estimate of angular orientation was realized by separately summing optic flow

information from the left (FL) and right halves (FR) of the visual scene according to the

Balance Strategy, and combining these flow magnitudes with information about the target

location (TL and TR) weighed with a scaling factor α (set at 0.6):

θ̂ ∝ FL − FR + α(TR − TL)

FL + FR + α(TR + TL)
. (6.2)

Here, the total optic flow in the left (FL) and right (FR) halves was computed as follows:

FL =
∑
θ

R−1∑
y=0

C/2−1∑
x=0

||rθ(x, y)eθ||, (6.3)

FR =
∑
θ

R−1∑
y=0

C−1∑
x=C/2

||rθ(x, y)eθ||, (6.4)

where R is the number of rows in the image, C is the number of columns in the image, and

||.|| denotes the Euclidean 2-norm. Depending on the experiment, rθ(x, y) is the firing rate

of either an MT or a V1 neuron that is selective to direction of motion θ at spatial location

(x, y), and eθ is a unit vector pointing in the direction of θ.

The target location was represented as a two-dimensional blob of activity centered on the

target’s center of mass (xG, yG). If the target was located in the left half of the image, it
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contributed to a term TL:

TL = αAG

R−1∑
y=0

C/2−1∑
x=0

exp

(
− (x− xG)2 + (y − yG)2

2σ2
G

)
, (6.5)

and if it was located in the right half of the image, it contributed to a term TR:

TR = αAG

R−1∑
y=0

C−1∑
x=C/2

exp

(
− (x− xG)2 + (y − yG)2

2σ2
G

)
, (6.6)

where α = 0.6, σG = 0.2C, and AG was the perceived area of the target, which was de-

termined with OpenCV using color blob detection. This allowed the target contribution

to increase with target size, which we assumed to scale inversely with target distance (also

compare Section 6.4.2). Note that if the target was perfectly centered in the visual field,

it contributed equally to TL and TR. Also, note that the contribution of the target com-

ponent from the right half of the image, TR, to θ was positive, whereas the contribution

of the obstacle component FR was negative. This led to the target component exhibiting

an attractor-like quality in the steering dynamics, whereas the goal component exhibited a

repeller-like quality.

6.3 Results

6.3.1 Experimental Setup

In order to investigate whether the motion estimates in the simulated MT were sufficient

for human-like steering performance, the model was tested on a reactive navigation task in

103



Figure 6.4: Camera setup. A, The robot’s initial view of the scene from the onboard Android
phone. B, View of an overhead camera that tracked the green marker attached to the robot.
C, Birds-eye view image of the scene, obtained via perspective transformation from the
image shown in (B). The robot’s location in each frame was inferred from the location of the
marker, which in turn was determined using color blob detection.

the hallway of the University of California, Irvine Social and Behavioral Sciences Gateway,

where our laboratory is located (see Fig. 6.1). This setup provided a relatively narrow yet

highly structured environment with multiple sources of artificial lighting, thus challenging

the cortical model to deal with real-world obstacles as well as to quickly react to changing

illumination conditions.

Analogous to the behavioral paradigm of Fajen and Warren (2003), the robot’s goal was to

steer around an obstacle placed in its way (i.e., a recycle bin) in order to reach a distant

goal (i.e., a yellow foam ball). The obstacle was placed between the location of the target

and the robot’s initial position, at three different angles (off-set by one, four, and eight

degrees to the left of the robot’s initial view) and different distances (2.5, 3, and 3.5 m from

the robot’s initial position). For each of these configurations we ran a total of five trials,

during which we collected both behavioral and simulated neural data. An example setup is

104



shown in Fig. 6.4A. At the beginning of each trial, the robot was placed in the same initial

position, directly facing the target. The robot would then quickly accelerate to a maximum

speed of roughly 1 m s−1. Speed was then held constant until the robot had navigated to

the vicinity of the goal (roughly 0.5 m apart), at which point the trial was ended through

manual intervention.

An over-head camera was used to monitor the robot’s path throughout each trial (see

Fig. 6.4B). The camera was mounted on the wall such that it overlooked the hallway, and

was used to track the position of a large green marker attached to the rear of the robot

(best seen in Fig. 6.1). Using a perspective transformation, a 320× 240 pixel image (taken

every 100 ms) was converted into a birds-eye view of the scene (see Fig. 6.4C). We used

the standard OpenCV implementation of this transformation and fine-tuned the parameters

for the specific internal parameters of the camera. Although three-dimensional objects will

appear distorted (as is evident in Fig. 6.4C), flat objects lying on the ground plane (i.e.,

the hallway floor) will be drawn to scale. This allowed us to detect and track the green

marker on the robot directly in the transformed image (Fig. 6.4C), in which the size of the

marker does not depend on viewing distance (as opposed to Fig. 6.4B). Color blob detection

was applied to find the marker in each frame, and the marker’s location was used to infer

the robot’s location. In order to aid tracking of the marker, we added temporal constraints

between pairs of subsequent frames for outlier rejection. This procedure not only allowed

us to automatically record the robot’s location at any given time, but also allowed direct

comparison of the robot’s behavioral results with human psychophysics data.

6.3.2 Behavioral Results

Fajen and Warren (2003) studied how humans walk around obstacles toward a stationary

goal, and developed a model to explain the steering trajectories of the study’s participants.
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Figure 6.5: Behavior paths of the robot (colored solid lines) around a single obstacle (re-
cycle bin, ‘O’) toward a visually salient goal (yellow foam ball, ‘X’) for five different scene
geometries, compared to “ground truth” (black dashed lines) obtained from the behavioral
model by Fajen and Warren (2003). Results are shown for steering with V1 (blue) as well as
for steering with MT (red). Solid lines are the robot’s mean path averaged over five trials,
and the shaded regions correspond to the standard deviation.

Their work revealed that accurate steering trajectories can be obtained directly from the

scene geometry, namely the distance and angles to the goal and obstacles. Using their

behavioral model, we calculated “ground truth” paths for the scene geometry of our experi-

mental setup, and compared them to steering trajectories generated by the robot’s cortical

neural network model. In order to assess the contribution of motion processing in MT we

conducted two sets of experiments: one where steering commands were based solely on V1

activity, and one where steering commands were based on MT activity, by adjusting rθ(x, y)

in Eq. 6.3 and Eq. 6.4.

Fig. 6.5 illustrates the robot’s path around a single obstacle (recycle bin, ‘O’) toward a

visually salient goal (yellow foam ball, ‘X’) for five different scene geometries, analogous to

Fig. 10 in Fajen and Warren (2003). Results are shown for steering with V1 (blue) as well
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as for steering with MT (red). In the first three setups, the obstacle was placed 3 m away

from the robot’s initial location, off-set by eight (red), four (green), and one (blue) degrees

to the left of the robot’s initial view. Two other setups were tested, in which the obstacle

distance was 3.5 m (yellow) and 2.5 m (magenta) at an angle of 4◦. The robot’s mean path

from five experimental runs is shown as a thick solid line in each panel, and the shaded region

corresponds to the standard deviation. The black dashed lines correspond to the “ground

truth” paths calculated from the behavioral model by Fajen and Warren (2003) using the

corresponding scene geometry and standard parameter values. Each of these five obstacle

courses was run five times for a total of 25 successful trials.

Steering paths were generally more accurate and more robust when steering with MT as

opposed to steering with V1. Paths generated from neural activity in MT not only closely

matched human behavioral data, but they also were surprisingly robust. That is, the robot

successfully completed all 25 trials without hitting an obstacle, the walls of the hallway, or

missing the goal. In fact, the only setup that proved difficult for the robot had the obstacle

placed only 2.5 m away from the robot (rightmost panel in Fig. 6.5). In this scenario, “ground

truth” data indicates that humans start veering to the right within the first second of a trial,

which seemed not enough time for the robot. In contrast, steering from neural activity in

V1 led to a total of 7 crashes, which involved the robot driving either into the obstacle or

the wall, upon which the trial was aborted and all collected data discarded. We repeated the

experiment until the robot successfully completed five trials per condition. When steering

from V1 neural activity, the robot tended to react more strongly to behaviorally irrelevant

stimuli, leading to more variability in the robot’s trajectories.

For all five tested conditions we calculated the path area error (using the trapezoidal rule for

approximating the region under the graph) as well as the maximum distance the robot’s path

deviated from the ground truth at any given time. Mean and standard deviation of these

data (averaged over five trials each) are summarized in Table 6.1. All path errors were on the
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order of 0.1 m, with errors generated from steering with MT consistently smaller than errors

generated from steering with V1. When the robot was steering from signals in MT, trial-by-

trial variations were on the order of 0.01 m, suggesting that under these circumstances the

robot reliably exhibited human-like steering behavior in all tested conditions. The maximum

distance that the robot’s path deviated from the human-like path was on the order of 10 cm,

which is much smaller than the obstacle width (37 cm). In contrast, steering with V1 often

led to much larger deviations in some cases. The best single-trial result was 0.084 m area

error and 5 cm maximum deviation on the −1◦ condition. These results suggest that in

most trials the task could still be performed even when steering with V1, but that motion

processing in MT was critical for reliability and accuracy, both of which are distinct qualities

of human-like steering.

Furthermore, these results are comparable to simulated data obtained with the STARS

model, where the authors reported path area errors and maximum deviations on the same

order of magnitude (see Table 2 in Elder et al. (2009)). Their best result was 0.097 m area

error and 2.52 cm maximum deviation on a single trial of the −2◦ condition. However,

the STARS model did not directly process visual input, nor was it tested in a real-world

environment. The follow-up study to the STARS model (called ViSTARS) did not provide

quantitative data on path errors in the same manner that would allow comparison here.

Thus similar performance to the STARS model is assumed.

A movie showcasing the behavioral trajectories of the robot is available on our website:

www.socsci.uci.edu/jkrichma/ABR/lecarl_obstacle_avoidance.mp4.

6.3.3 Neural Activity

Fig. 6.6 shows the activity of neurons in V1 (Panel A) and MT (Panel B) recorded in a

single trial of the third setup in Fig. 6.5 (blue). For the sake of clarity, only every eighth
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Figure 6.6: Raster plot of neuronal activity for V1 and MT recorded in a single trial where
the obstacle was 3 m away and offset by 8◦ (red colored line in Fig. 6.5). A dot represents
an action potential from a simulated neuron. For the sake of visualization, only every eighth
neuron in the population is shown over the time course of six seconds that included both
the obstacle avoidance and the goal approach. Neurons are organized according to their
direction selectivity, where neurons with ID 0− 299 were most selective to rightward motion
(0◦), IDs 300 − 599 mapped to upward-rightward motion at 45◦, IDs 600 − 899 mapped to
upward motion at 90◦, IDs 900−1199 mapped to 135◦, IDs 1200−1499 mapped to 180◦, IDs
1500−1799 mapped to 225◦, IDs 1800−2099 mapped to 270◦, and IDs 2100−2299 mapped to
315◦. A, V1 spike trains generated from a Poisson distribution with mean firing rate equal to
the linear filter response. Average activity in the population was 18.6 ± 15.44 Hz. B, Spike
trains of Izhikevich neurons in MT. Average activity in the population was 5.74 ± 8.98 Hz.

neuron in the population is shown over a time course of six seconds, which included both

the obstacle avoidance and the goal approach. Neurons are organized according to their

direction selectivity, where neurons with ID 0− 299 were most selective to rightward motion

(0◦), IDs 300 − 599 mapped to upward-rightward motion at 45◦, IDs 600 − 899 mapped to

upward motion at 90◦, IDs 900 − 1199 mapped to 135◦, IDs 1200 − 1499 mapped to 180◦,

IDs 1500 − 1799 mapped to 225◦, IDs 1800 − 2099 mapped to 270◦, and IDs 2100 − 2299

mapped to 315◦. Panel A shows the spike trains generated from the rate-based activity of V1

neurons using a Poisson spike generator. The firing of V1 neurons was broad and imprecise

in response to stimuli. In contrast, spiking responses of neurons in MT (Panel B) were more
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selective, and sharper than V1. As the robot approached the obstacle roughly from 1000 to

2500 ms of the trial shown in Fig. 6.6, neural activity in both V1 and MT steadily increased

in both strength and spatial extent. As activity in MT increased a repeller-like behavioral

response was triggered, which in turn introduced even more apparent motion on the retina

(roughly from 2200 to 3200 ms). As soon as the obstacle moved out of the robot’s view due

to successful avoidance (around 3200 ms), activity in MT rapidly dropped off, causing the

robot’s turning rate to momentarily decrease. With the goal still in view and growing in size,

turning rate was now increased with opposite sign (roughly from 3500 to 4500 ms), leading

to an attractor-like behavioral response that led the robot directly to the goal. As the robot

navigated to the goal (within a 0.5 m distance), the trial was ended manually. Note that

near the end of the trial (roughly from 4000 to 5000 ms), neurons in MT rightly perceived

the goal object also as an obstacle, which is something the Fajen and Warren model does

not take into account. But, because the goal component of the steering command grew more

rapidly with size than the obstacle component, the robot continued to approach the goal,

rather than starting to avoid it.

Overall network activity and corresponding behavioral output is illustrated in Figs. 6.7 and

6.8. Each Panel summarizes the processing of a single visual input frame, which corresponded

to a time interval of 50 ms. The indicated time intervals are aligned with the neuronal traces

presented in Fig. 6.6. A frame received at time t − 50 ms led to a motor response at time

t. This sensorimotor delay was due to the fact that the SNN component of the model

needed to be executed for 50 ms. Neural activity during these 50 ms is illustrated as an optic

flow field, overlaid on visual input, for both Poisson spike generators in V1 and Izhikevich

spiking neurons in MT. Here, every arrow represents the population vector of the activity

of eight neurons (selective to the eight directions of motion) coding for the same spatial

location. Note that, because these neurons were maximally selective to a speed of 1.5 pixels

per frame, vector length does not indicate velocity as is the case in a conventional optic

flow field, but rather confidence in the direction estimate. For the sake of clarity, only every
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Figure 6.7: Overall network activity and corresponding behavioral output during obstacle
avoidance in a single trial. Each Panel summarizes the processing of a single visual input
frame, which corresponded to a time interval of 50 ms. The indicated time intervals are
aligned with the neuronal traces presented in Fig. 6.6. A frame received at time t − 50
ms led to a motor response at time t. Neural activity during these 50 ms is illustrated as
an optic flow field, overlaid on visual input, for both Poisson spike generators in V1 and
Izhikevich spiking neurons in MT (population vector). Vector length indicates “confidence”
of the direction estimate. For the sake of clarity, only every fourth pixel location is visualized.
The resulting turning rate, θ̂, which was mapped to a PWM signal for the robot’s servos,
is illustrated using a sliding bar, where the position of the triangle indicates the sign and
magnitude of the turning rate. The small horizontal line indicates θ̂ = 0.
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Figure 6.8: Overall network activity and corresponding behavioral output during obstacle
avoidance in a single trial. Each Panel summarizes the processing of a single visual input
frame, which corresponded to a time interval of 50 ms. The indicated time intervals are
aligned with the neuronal traces presented in Fig. 6.6. A frame received at time t − 50 ms
led to a motor response at time t. Neural activity during these 50 ms is illustrated as an optic
flow field, overlaid on visual input, for both Poisson spike generators in V1 and Izhikevich
spiking neurons in MT (population vector). Vector length indicates “confidence” of the
direction estimate. For the sake of clarity, only every fourth pixel location is visualized.
The resulting turning rate, θ̂, which was mapped to a PWM signal for the robot’s servos,
is illustrated using a sliding bar, where the position of the triangle indicates the sign and
magnitude of the turning rate. The small horizontal line indicates θ̂ = 0.
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fourth pixel location is visualized. The resulting turning rate, θ̂, which was mapped to a

PWM signal for the robot’s servos, is illustrated using a sliding bar, where the position of

the triangle indicates the sign and magnitude of the turning rate. The small horizontal line

indicates θ̂ = 0. Note that the turning rate depended both on an obstacle term (from optic

flow) and a goal term (from color blob detection) (see Section 6.2.2.5).

Obstacle avoidance is illustrated in Fig. 6.7. At the beginning of the trial (Panel A), the

image of the obstacle on the retina is too small to produce significant optic flow. Instead, V1

responds to arbitrary features of high contrast in the visual scene. Because these responses

were relatively low in magnitude and roughly uniformly distributed across the scene, MT

neurons successfully suppressed them, effectively treating them as noise. As a result, the

turning rate was near zero, informing the robot to steer straight ahead. In the following

second (Panels B–D) the obstacle as well as patterned regions in its vicinity generated an

increasingly uniform pattern of motion, leading to strong responses in MT and a strongly

positive turning rate. In turn, the initiated robot motion introduced even more apparent

motion on the retina, leading to a repeller-like behavioral response and successful obstacle

avoidance. Note that it is sometimes possible for the motion signals to slightly extend from

the object to neighboring contrast-rich regions, which is due to the strong motion pooling in

MT.

Goal-directed steering is illustrated in Fig. 6.8. As soon as the obstacle moved out of the

robot’s view due to successful avoidance (Panel A), activity in MT rapidly dropped off,

causing the robot’s turning rate to momentarily decrease. With the goal still in view and

growing in size (Panels B–D), turning rate was now increased with opposite sign, eventually

overpowering the flow signals that would have instructed the robot to turn away from the

goal (Panel D), and instead leading to an attractor-like behavioral response that drew the

robot directly to the goal. As the robot navigated to the goal (within a 0.5 m distance;

following Panel D), the trial was ended manually.
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Overall these results demonstrate how a spiking model of MT can generate sufficient infor-

mation for the detection of motion boundaries, which can be used to steer a robot around

obstacles in a real-world environment.

6.3.4 Computational Performance

The complete cortical model ran in real-time on a single GPU (NVIDIA GTX 780 with 2304

CUDA cores and 3 GB of GDDR5 memory). In fact, during an average trial, most of the

visual frames were processed faster than real-time. In order for the network to satisfy the

real-time constraint, it must be able to process up to 20 frames per second, which was the

upper bound of the ABR client’s frame rate. In practice, the effective frame rate might

be reduced due to UDP packet loss and network congestion (depending on the quality and

workload of the WiFi connection). In other words, the cortical model must process a single

frame in no more than 50 ms.

The majority of the computation time was spent on neural processing in V1 and MT. Every

50 ms, model V1 computed a total of 201, 600 filter responses (80 × 30 pixel image, 28

spatiotemporal filters at three different scales), taking up roughly 15 ms of execution time.

Model MT then calculated the temporal dynamics of 40, 000 Izhikevich spiking neurons and

roughly 1, 700, 000 conductance-based synapses, which took roughly 25 ms of execution time.

During this time, a different thread performed color blob detection using OpenCV, which

allowed the total execution time to stay under 50 ms. Compared to these calculations, the

time it took to perform CLAHE on the GPU was negligible.
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6.4 Discussion

I presented a neural network modeled after visual motion perception areas in the mammalian

neocortex that is controlling a physical robot performing a visually-guided navigation task

in the real world. The system described here builds upon previous work on visual motion

perception in large-scale spiking neural networks (Beyeler et al., 2014). The prior system

was tested only on synthetic visual stimuli to demonstrate neuronal tuning curves, whereas

the present work demonstrates how perception may relate to action. As this is a first step

toward an embodied neuromorphic system, we wanted to ensure that the model could handle

real sensory input from the real world. Constructing an embodied model also ensured that

the algorithm could handle noisy sensors, imprecise motor responses, as well as sensory

and motor delays. The model generated a cortical representation of dense optic flow using

thousands of interconnected spiking neurons, determined the position of objects based on

motion discontinuities, and combined these signals with the representation of a goal location

in order to calculate motor commands that successfully steered the robot around obstacles

toward to the goal. Therefore, the present study demonstrates how cortical motion signals

in a model of MT might relate to active steering control, and suggests that these signals

might be sufficient to generate human-like trajectories through a cluttered hallway. This

emergent behavior might not only be difficult to achieve in simulation, but also strengthens

the claim that MT contributes to these smooth trajectories in natural settings. This finding

exemplifies the importance of embodiment, as behavior is deeply coupled not only with the

underlying model of brain function, but also with the anatomical constraints of the physical

body.

The behavior of the robot was contingent on the quality of a cortical representation of

motion generated in a model of visual area MT. While it is generally assumed that vector-

based representations of retinal flow in both V1 and MT are highly accurate, modeling

work has suggested that the generation of highly accurate flow representations in complex
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environments is challenging due to the aperture problem (Baloch and Grossberg, 1997; Bayerl

and Neumann, 2004; Chey et al., 1997; Simoncelli and Heeger, 1998). As a result, there is

a degree of uncertainty in all retinal flow estimations. Nevertheless, the present model is

able to generate optic flow fields of sufficient quality to steer a physical robot on human-like

trajectories through a cluttered hallway. Paramount to this competence are the receptive

fields of neurons in model MT, which are able to vastly reduce ambiguities in the V1 motion

estimates (see Figs. 6.7 and 6.8) and enhance motion discontinuities through spatial pooling

and directional opponent inhibition. As a result, the robot is able to correctly infer the

relative angle and position of nearby obstacles, implicitly encoded by the spatial arrangement

and overall magnitude of optic flow, and produce steering commands that lead to successful

avoidance.

It is interesting to consider whether there is a benefit in using spiking neurons instead of

rate based neurons. Under the present experimental conditions, the steering network may

have worked just as well with a model based on mean-firing rate neurons. However, there is

evidence that humans adjust their steering in response not only to spatial but also to tem-

poral asymmetries in the optic flow field (Duchon and Warren, 2002; Kountouriotis et al.,

2013). Therefore, having at our disposal a tested, embodied model of brain function that

respects the detailed temporal dynamics of neuronal and synaptic integration is likely to

benefit follow-up studies that aim to quantitatively investigate how such spatiotemporal be-

havior can arise from neural circuitry. In addition, because the main functional components

of this system were event-driven spiking neurons, the model has the potential to run on neu-

romorphic hardware, such as HRL (Srinivasa and Cruz-Albrecht, 2012), IBM (Cassidy et al.,

2014), NeuroGrid (Boahen, 2006), SpiNNaker (Khan et al., 2008), and BrainScaleS (Schem-

mel et al., 2010). Some of these platforms are now capable of emulating neural circuits

that contain more than a million neurons, at rates that are significantly faster than real

time. In addition, because spiking neurons communicate via the AER protocol, the model

could also be interfaced with an event-based, neuromorphic vision sensor as a sensory front-
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end (Lichtsteiner et al., 2008). Thus, developing complex spiking networks that display

cognitive functions or learn behavioral abilities through autonomous interaction may also

represent an important initial step into realizing functional large-scale networks on neuro-

morphic hardware.

Additionally, we have developed software to further extend the functionality of the ABR

platform (Oros and Krichmar, 2013b). A set of tools and interfaces exists that provides a

standard interface for non-experts to bring their models to the platform, ready for exploration

of networked computation principles and applications. The fact that our platform is open

source, extensible, and affordable makes ABR highly attractive for embodiment of brain-

inspired models. For more information and software downloads, see our website: www.

socsci.uci.edu/~jkrichma/ABR.

6.4.1 Neurophysiological Evidence and Model Alternatives

Human behavioral data suggests that visually-guided navigation might be based on several

possible perceptual variables, which can be flexibly selected and weighted depending on the

environmental constraints (Kountouriotis et al., 2013; Morice et al., 2010). In the case of

steering to a stationary goal, evidence suggests that human subjects rely on both optic flow,

such that one aligns the heading specified by optic flow with the visual target (Gibson, 1958;

Warren et al., 2001), and egocentric direction, such that one aligns the locomotor axis with

the egocentric direction of the goal (Rushton et al., 1998). Optic flow tends to dominate

when there is sufficient visual surface structure in the scene (Li and Warren, 2000; Warren

et al., 2001; Wilkie and Wann, 2003), whereas egocentric direction dominates when visual

structure is reduced (Rushton et al., 1998, 2002). Interestingly, optic flow asymmetries are

able to systematically bias the steering of human subjects, even in the presence of explicit

path information (Kountouriotis et al., 2013). This finding may hint at the possibility of a
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cortical analog to the Balance Strategy (Duchon and Warren, 2002; Srinivasan and Zhang,

1997), which suggests that humans adjust their steering in response to both spatial and

temporal asymmetries in the optic flow field. However, the present model differs in an

important way from the traditional Balance Strategy, in that it does not try to balance

a conventional optic flow field. Instead, the model considers only signals generated from

motion discontinuities (due to motion processing in MT) in the balance equation, which

seems to have similar functional implications as the steering potential function from (Huang

et al., 2006), generating a repeller signal that gets stronger the closer the robot gets to the

obstacle.

Visual self-motion is processed in a number of brain areas located in the Intraparietal Sulcus

(IPS) and cingulate sulci, including MST, the VIP region, and the Cingulate Sulcus Visual

Region (CSv) (Wall and Smith, 2008). Lesions to the IPS lead to navigational impairments

when retracting a journey shown from an egocentric viewpoint (Seubert et al., 2008). There

is evidence that object position and velocity might be encoded by a pathway that includes

center-surround cells in MT and cells in MSTv (Berezovskii and Born, 2000; Duffy and

Wurtz, 1991b; Tanaka et al., 1993). This object information might then be combined with

information about self-motion gathered in MST and VIP from cues such as optic flow, eye

rotations, and head movements (Andersen et al., 1985; Bradley et al., 1996; Colby et al.,

1993; Duffy and Wurtz, 1991a). How neural processing in these regions could relate to

steering control has been modeled in detail elsewhere (Browning et al., 2009a; Elder et al.,

2009).

The present study demonstrates that it might not be necessary to explicitly model these

areas in order to explain human psychophysics data about visually-guided steering and ob-

stacle avoidance. In the case of a robot with a single stationary camera, there is no need

to calculate eye or head rotations. As a result of this, there is no need for coordinate

transformation, because retinotopic coordinates are equivalent to craniotopic coordinates.
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These simplified anatomical constraints allow for gross simplification of the underlying neu-

ral network model without restricting behavioral performance, at least under the present

experimental conditions.

6.4.2 Model Limitations

Although the present model is able to generate human-like steering paths for a variety of

experimental setups, it does not attempt to explain how the direction of travel is extracted

from optic flow, how these signals are made independent of eye rotations and head move-

ments, and how these signals can be converted into a craniotopic reference frame. However,

these processes would need to be modeled if one were to consider a robot that could freely

move around its head (or its eye). A suitable future study could investigate how these com-

putations and transformations could be achieved for a robot that could freely move around

its head (or its eye), for example via a pan/tilt unit. The resulting cortical model might

not only reproduce the present behavioral results, but also lead to robust behavior in more

complicated experimental setups.

As mentioned above, the behavioral model by Fajen and Warren (2003) computes a steering

trajectory using third-person information obtained directly from the scene geometry, namely

the distance and angles to the goal and obstacle. In contrast, our model steers from a first-

person view using active local sensing, which cannot directly compute the distance and angle

to the goal and obstacle. Instead, distance is implicitly represented by neural activity, that

is, the overall magnitude of the goal and activity related to obstacles. This is based on the

assumption that perceived object size scales inversely with distance. While this assumption is

generally true, it might not necessarily enable the model to generalize to arbitrarily complex

settings. For example, the model might try to avoid a large but far away obstacle with the

same dynamics as it would be a small but close-by one. In this case, an accurate estimate of
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object distance would be imperative. Also, in the current setup it is sometimes possible that

motion signals caused by the obstacle can extend into contrast-rich neighboring regions, due

to strong motion pooling in MT. A future study could alleviate this issue by giving the robot

a means to establish clearer boundaries between objects and their surroundings, perhaps by

modeling motion-form interactions (Baloch and Grossberg, 1997).

Binocular vision is an important source of depth perception that influences object segmen-

tation in depth (Xiao et al., 1997) as well as the pre-planning and on-line control of move-

ment (Patla and Vickers, 1997). Therefore it is possible that binocular vision might signifi-

cantly benefit the task at hand (Pauwels et al., 2010). A suitable follow-up study would thus

be to quantify the contribution of depth perception to the quality of stimulus responses in

areas MT as well as to the behavioral performance of the robotic agent. It is interesting to

note that most MT cells in the macaque receive balanced input from both eyes (Maunsell and

van Essen, 1983), but it turns out that neurons in (at least) macaque MT are not strongly

tuned to motion in depth; i.e., no units are truly activated for stimuli changing disparity,

which would simulate trajectories with components of motion toward or away from the ani-

mal (Maunsell and van Essen, 1983). Therefore, extending the single camera version of the

model by adding areas important for segmenting a scene and recognizing objects (Baloch and

Grossberg, 1997), would also improve planning trajectories through space. Because vergence

is not a factor for distances on the order of meters, scene contributions from brain areas such

as V4, MST, and parietal cortex are probably important for long-range trajectory planning.

Moreover, these areas strongly interact with area MT.

Also, evidence suggests that humans use a different behavioral strategy when it comes to

intercepting moving targets (Fajen and Warren, 2003). Having an agent steer toward a

moving target according to the present behavioral dynamics is likely to result in pursuit

behavior (as opposed to interception behavior), in which the agent always lags behind the

target. Thus we do not expect the model to generalize to moving targets. However, it might
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be possible to extend the model to account for these scenarios. The Superior Parietal Lobe

(SPL) might be involved in encoding future path information, such as the location of targets

and obstacles, which are indicative of impending changes in heading and using this for the

purpose of accurately timing motor responses (Billington et al., 2013; Field et al., 2007).

Computing and updating of object locations in space, which might be relevant especially for

moving targets, might be done by a network involving the precuneus and dorsal precentral

gyrus (Leichnetz, 2001; Parvizi et al., 2006). However, not much is known about the neuronal

representation of these signals.

6.4.3 Practical Implications

The present work might be of interest to the neuroscientist, neurorobotics, and neuromorphic

engineering communities for the following reasons.

First, we have shown that the present approach is practical for studying the link between

neural circuitry and behavioral performance. The real-world consequences of neural activ-

ity can be observed in real-time through visualization software and analyzed off-line. The

behavioral responses were comparable to psychophysical data and the neuronal responses

were comparable to neurophysiological data. We believe this to be a powerful approach to

studying models of neural circuitry in real-world environments.

Second, we have shown that the present system can handle neural network models of non-

trivial size. By making use of the CUDA programming framework, we were able to accelerate

computationally intensive parts of the model on a GPU. Every 50 ms, model V1 computed a

total of 201, 600 filter responses (80× 30 pixel image, 28 spatiotemporal filters at three dif-

ferent scales), and model MT calculated the temporal dynamics of 40, 000 Izhikevich spiking

neurons and roughly 1, 700, 000 conductance-based synapses. If necessary, the execution of

the model could be sped up further, for example by parallelizing processing in the goal and
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obstacle components of the model.

Third, implementing the entire model using spiking neurons would make the model amenable

to emulation on neuromorphic hardware (Cassidy et al., 2014; Schemmel et al., 2010; Srini-

vasa and Cruz-Albrecht, 2012). This could enable the development of a self-contained, fully

autonomous neurorobotic platform that combines the algorithmic advantages of the present

model with the speed, efficiency, and scalability of neuromorphic hardware. In addition,

since spiking neural networks communicate via the AER protocol, the model could be inter-

faced with an event-based, neuromorphic camera as a sensory front-end (Lichtsteiner et al.,

2008). This would make it possible for the cortical network to react more quickly (at least on

the millisecond scale, but theoretically even on the microsecond scale) to temporal changes

in optic flow. It would also open the door for a complete neuromorphic vision system that

operates with low power and rapid responses.

Fourth, the system presented here is open source, extensible, and affordable. The complete

ABR source code is hosted on GitHub (www.github.com/UCI-ABR), and CARLsim can be

freely obtained from our website (www.socsci.uci.edu/jkrichma/CARLsim). The ABR

framework can be combined with a variety of R/C based vehicles, sensors, actuators, and

C/C++ based software components. For example, it is straightforward to plug additional

software components (such as image transformation with OpenCV) into the client-server

loop, or mount IR sensors on the robot and read out the sensory values directly with the

ABR client software. We also provide online instructions and video tutorials to assemble

the ABR platform, which has an estimated cost of $200 (excluding the phone). Because of

this, we believe ABR to be an attractive platform for students and researchers alike that will

simplify both the development of neurorobotics platforms as well as the study of how neural

machinery can be used to realize cognitive function.
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Chapter 7

3D Visual Response Properties of

MSTd Emerge from an Efficient,

Sparse Population Code

7.1 Introduction

Following information processing in MT, visual signals are sent in parallel to a number of

neighboring regions, including the dorsal subregion of the Medial Superior Temporal area

(MSTd) for self-motion processing, the ventral subregion of the Medial Superior Temporal

area (MSTv) for processing of trajectories of moving objects, and the Floor of the Superior

Temporal visual area (FST) for processing of actions and motions of animate entities (Orban,

2008) (see Section 2.2.4). In this chapter I focus on the processing of visual self-motion cues

in area MSTd.

Neurons in the dorsal subregion of the Medial Superior Temporal area (MSTd) of monkey

extrastriate cortex respond to relatively large and complex patterns of retinal flow, often
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preferring a mixture of translational, rotational, and to a lesser degree deformational flow

components (Duffy and Wurtz, 1991a; Lagae et al., 1994; Mineault et al., 2012; Orban et al.,

1992; Saito et al., 1986; Tanaka and Saito, 1989). This has led researchers to suggest that

MSTd might play a key role in visual motion processing for self-movement perception. In

fact, one of the most commonly documented response properties of MSTd neurons is that

of heading selectivity (Britten and Wezel, 2002; Duffy and Wurtz, 1995; Gu et al., 2006,

2012; Lappe et al., 1996; Logan and Duffy, 2006; Page and Duffy, 2003; Tanaka and Saito,

1989), and computational models can account for this finding (Beintema and van den Berg,

1998, 2000; Lappe et al., 1996; Perrone, 1992; Perrone and Stone, 1994, 1998; Zemel and

Sejnowski, 1998; Zhang et al., 1993). However, a number of recent studies have found that

nearly all visually responsive neurons in macaque MSTd signal the three-dimensional (3D)

direction of self-translation (i.e., “heading”) (Gu et al., 2006, 2012; Logan and Duffy, 2006)

and self-rotation (Takahashi et al., 2007) in response to both simulated and actual motion.

In contrast to earlier studies that concentrated on a small number of MSTd neurons prefer-

ring fore-aft (i.e., forward and backward) motion directions (e.g., Duffy and Wurtz (1995)),

these more recent studies demonstrated that heading preferences in MSTd were distributed

throughout the spherical stimulus space, and that there was a significant predominance of

cells preferring lateral as opposed to fore-aft headings. However, little is known about the

underlying computational principles by which these response properties are derived.

In this chapter I describe a computational model of MSTd based on the hypothesis that

neurons in MSTd efficiently encode the continuum of large-field retinal flow patterns encoun-

tered during self-movement on the basis of inputs received from neurons in MT. Nonnegative

Matrix Factorization (NMF) (Lee and Seung, 1999, 2001; Paatero and Tapper, 1994), a lin-

ear dimensionality reduction technique, is used to find a set of nonnegative basis vectors,

which are interpreted as MSTd-like receptive fields. NMF is similar to Principal Component

Analysis (PCA) and Independent Component Analysis (ICA), but unique among these di-

mensionality reduction techniques in that it can recover representations that are often sparse
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and parts-based, much like the intuitive notion of combining parts to form a whole (Lee and

Seung, 1999). I aim to show that this computational principle can account for a wide range

of MSTd visual response properties, ranging from single-unit selectivity to population statis-

tics (such as 3D translation and rotation selectivity, spiral tuning, and heading selectivity),

and that seemingly contradicting findings in the literature can be resolved by eliminating

differences in neuronal sampling procedures.

7.2 Methods

The overall architecture of the model is depicted in Fig. 7.1. Visual input to the system

encompassed a range of idealized two-dimensional (2D) flow fields caused by observer trans-

lations and rotations in a three-dimensional (3D) world. We sampled flow fields that mimic

natural viewing conditions during locomotion over ground planes and towards back planes

located at various depths, with various linear and angular observer velocities, to yield a total

of S flow fields, comprising the input stimuli. Each flow field was processed by an array

of F MT-like motion sensors (MT-like model units), each tuned to a specific direction and

speed of motion. The activity values of the MT-like model units were then arranged into the

columns of an F ×S matrix, V, which served as input for Nonnegative Matrix Factorization

(NMF) (Lee and Seung, 1999, 2001; Paatero and Tapper, 1994). NMF belongs to a class

of dimensionality reduction methods that can be used to linearly decompose a multivariate

data matrix, V, into an inner product of two reduced-rank matrices, W and H, such that

V ≈ WH. The first of these reduced-rank matrices, W, contains as its columns a total of B

nonnegative basis vectors of the decomposition. The second matrix, H, contains as its rows

the contribution of each basis vector in the input vectors (the hidden coefficients). These

two matrices are found by iteratively reducing the residual between V and WH using an

alternating nonnegative least-squares method. In our experiments, the only open parameter
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Figure 7.1: Overall model architecture. A number S of 2D flow fields depicting observer
translations and rotations in a 3D world were processed by an array of F MT-like motion
sensors, each tuned to a specific direction and speed of motion. MT-like activity values were
then arranged into the columns of a data matrix, V, which served as input for Nonnegative
Matrix Factorization (NMF). The output of NMF were two reduced-rank matrices, W (con-
taining B nonnegative basis vectors) and H (containing hidden coefficients). Columns of W
(basis vectors) were then interpreted as weight vectors of MSTd-like model units.

of the NMF algorithm was the number of basis vectors, B. We interpreted the columns of

W as the weight vectors of a total of B MSTd-like model units. Each weight vector had

F elements representing the synaptic weights from the array of MT-like model units onto a

particular MSTd-like model unit. The response of an MSTd-like model unit was given as the

dot product of the F MT-like unit responses to a particular input stimulus and the corre-

sponding nonnegative synaptic weight vector, W . Crucially, once the weight matrix W was

found all parameter values remained fixed across all experiments. The following subsections

explain the model in detail.

7.2.1 Optic Flow Stimuli

Input to the model was a computer-generated 15×15 pixel array of simulated optic flow. We

simulated the apparent motion on the retina that would be caused by an observer undergoing

translations and rotations in a three-dimensional (3D) world using the motion field model

127



(Longuet-Higgins and Prazdny, 1980), where a pinhole camera with focal length, f , is used to

project 3D real-world points, ~P = [X, Y, Z]t, onto a 2D image plane, ~p = [x, y]t = f/Z[X, Y ]t

(i.e., the retina). Local motion at a particular position ~p on the image plane was specified

by a vector, ~̇p = [ẋ, ẏ]t, with local direction and speed of motion given as tan−1 (ẏ/ẋ) and

||~̇x||, respectively. The vector ~̇p was expressed by the sum of a translational flow component,

~̇xT = [ẋT, ẏT]t, and a rotational flow component, ~̇xR = [ẋR, ẏR]t:ẋ
ẏ

 =

ẋT

ẏT

+

ẋR

ẏR

 (7.1)

where the translational component depended on the camera’s linear velocity, ~v = [vx, vy, vz]
t,

and the rotational component depended on the camera’s angular velocity, ~ω = [ωx, ωy, ωz]
t:

ẋT

ẏT

 =
1

Z

−f 0 x

0 −f y



vx

vy

vz

 (7.2)

ẋR

ẏR

 =
1

f

 xy −(f 2 + x2) fy

f 2 + y2 −xy −fx



ωx

ωy

ωz

 (7.3)

In our simulations, we set f = 0.01 m and x, y ∈ [−0.01 m, 0.01 m] (Raudies and Neumann,

2012). The 15× 15 optic flow array thus subtended 90◦ × 90◦ of visual angle.

We sampled flow fields that mimic natural viewing conditions during locomotion over a

ground plane (tilted α = −30◦ down from the horizontal) and toward a back plane (Fig. 7.2).

Linear velocities corresponded to comfortable walking speeds ||~v|| = {0.5, 1, 1.5} meters

per second, and angular velocities corresponded to common eye rotation velocities for gaze

stabilization ||~ω|| = 0,±5,±10 degrees per second (Perrone and Stone, 1994). Movement

directions were uniformly sampled from all possible 3D directions (i.e., including backward

translations). Back and ground planes were located at distances d = 2, 4, 8, 16, 32 meters
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from the observer. This interval of depths was exponentially sampled due to the reciprocal

dependency between depth and the length of vectors of the translational visual motion field

(Eq. 7.2) (Perrone and Stone, 1994). Note that ~̇xT depends on the distance to the point of

interest (Z) (Eq. 7.2), but ~̇xR does not (Eq. 7.3). The point at which ~̇xT = 0 is referred to

as the epipole or Center of Motion (COM). If the optic flow stimulus is radially expanding,

as is the case for translational forward motion, the COM is called the Focus of Expansion

(FOE). In the absence of rotational flow, the FOE coincides with the direction of travel, or

“heading” (Fig. 7.2A). However, in the presence of rotational flow, the FOE appears shifted

with respect to the true direction of travel (Fig. 7.2B).

7.2.2 MT Stage

Each virtual flow field was processed by an array of idealized MT-like model units, each

selective to a particular direction of motion, θpref, and a particular speed of motion, ρpref, at

a particular spatial location, (x, y). The activity of each unit, rMT, was given as:

rMT(x, y; θpref, ρpref) = dMT(x, y; θpref)sMT(x, y; ρpref), (7.4)

where dMT was the unit’s direction response and sMT was the unit’s speed response.

A unit’s direction tuning was given as a von Mises function based on the difference between

the local direction of motion at a particular spatial location, θ(x, y), and the unit’s preferred

direction of motion, θpref (Jazayeri and Movshon, 2006; Mardia, 1972; Swindale, 1998):

dMT(x, y; θpref) = exp

(
σθ

(
cos
(
θ(x, y)− θpref

)
− 1
))

(7.5)

where the bandwidth parameter was σθ = 3, so that the resulting tuning width (full width

at half-maximum) was roughly 90◦, consistent with reported values in the literature (Britten

and Newsome, 1998).
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Figure 7.2: Example flow fields generated with the motion field model (Longuet-Higgins
and Prazdny, 1980) (modified from Raudies (2013)). We sampled flow fields that mimic
natural viewing conditions during upright locomotion toward a back plane (A) and over a
ground plane (B). Gray arrows indicate the axes of the 3D coordinate system, and bold
black arrows indicate self-movement (translation, straight arrows; rotation, curved arrows).
Crosses indicate the direction of self-movement (i.e., heading), and squares indicate the
Center of Motion (COM). In the absence of rotation, the COM indicates heading (B).
A, Example of forward/sideward translation (vx = 0.45 m s−1, vz = 0.89 m s−1) toward a
back plane located at a distance Z(x, y) = 10 m. B, Example of curvilinear motion (vx =
vz = 0.71 m s−1, and yaw rotation ωy = 3 ◦ s−1) over a ground plane located at distance
Z(y) = df/(y cos(α) + f sin(α)), where d = −10 m and α = −30◦.

A unit’s speed tuning was given as a log-Gaussian function of the local speed of motion,

ρ(x, y), relative to the unit’s preferred speed of motion, ρpref (Nover et al., 2005):

sMT(x, y; ρpref) = exp

(
−

log2
(
ρ(x,y)+s0
ρpref+s0

)
2σ2

ρ

)
, (7.6)

where the bandwidth parameter was σρ = 1.16 and the speed offset parameter was s0 = 0.33,

both of which corresponded to the medians of physiological recordings (Nover et al., 2005).

Note that the offset parameter, s0, was necessary to keep the logarithm from becoming
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undefined as stimulus speed approached zero.

As a result, the population prediction of speed discrimination thresholds obeyed Weber’s

law for speeds larger than ∼ 5 ◦ s−1 (Nover et al., 2005). We chose 5 octave-spaced bins

and a uniform distribution between 0.5 ◦ s−1 and 32 ◦ s−1 (Nover et al., 2005); that is, ρpref =

{2, 4, 8, 16, 32} degrees per second.

At each spatial location there were a total of 40 MT-like model units (selective for eight

directions times five speeds of motion), yielding a total of F = 15× 15× 8× 5 = 9000 units.

The activity pattern of these 40 units per pixel thus acted as a population code for the local

direction and speed of motion. We assumed that the receptive fields of all MT-like model

units had a single pixel radius (subtending ∼ 3◦ of visual angle), which is comparable to

receptive field sizes near the fovea as found in macaque MT (Raiguel et al., 1995).

7.2.3 Nonnegative Matrix Factorization (NMF)

We hypothesized that appropriate synaptic weights of the feed-forward projections from MT

to MSTd could be learned with NMF (Lee and Seung, 1999, 2001; Paatero and Tapper,

1994). NMF belongs to a class of methods that can be used to decompose multivariate data

into an inner product of two reduced-rank matrices, where one matrix contains nonnegative

basis vectors and the other contains nonnegative activation vectors (hidden coefficients). The

nonnegativity constraints of NMF enforce the combination of different basis vectors to be

additive, leading to representations that are often parts-based and sparse (Lee and Seung,

1999). When applied to neural networks, these nonnegativity constraints correspond to the

notion that neuronal firing rates are never negative and that synaptic weights are either

excitatory or inhibitory, but they do not change sign (Lee and Seung, 1999).

Assume that we observe data in the form of a large number of i.i.d. random vectors, ~v(i),
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such as the neuronal activity of a population of MT neurons in response to a visual stimulus,

where i is the sample index. When these vectors are arranged into the columns of a matrix

V, linear decompositions describe these data as V ≈ WH, where W is a matrix that

contains as its columns the basis vectors of the decomposition. The rows of H contain the

corresponding hidden coefficients that give the contribution of each basis vector in the input

vectors. Like Principal Component Analysis (PCA), the goal of NMF is then to find a linear

decomposition of the data matrix V, with the additional constraint that all elements of the

matrices W and H be nonnegative. In contrast to Independent Component Analysis (ICA),

NMF does not make any assumptions about the statistical dependencies of W and H. The

resulting decomposition is not exact; WH is a lower-rank approximation to V, and the

difference between WH and V is termed the reconstruction error. Perfect accuracy is only

possible when the number of basis vectors approaches infinity, but good approximations can

usually be obtained with a reasonably small number of basis vectors (Pouget and Sejnowski,

1997).

We used the standard nnmf function provided by MATLAB R2014a (MathWorks, Inc.),

which using an alternating least-squares algorithm, aims to iteratively minimize the root-

mean-squared residual D between V and WH:

D =
||V −WH||√

FS
(7.7)

where F is the number of rows in W and S is the number of columns in H (see Fig. 7.1). W

and H were normalized so that the rows of H had unit length. The output of NMF is not

unique because of random initial conditions (i.e., random weight initialization). The only

open parameter was the number of basis vectors, B, whose value had to be determined em-

pirically. In our simulations we examined a range of values (B = 2i, where i = {4, 5, 6, 7, 8},

see Section 7.3.2), but found that B = 64 led to basis vectors that most resembled recep-

tive fields found in macaque MSTd. In order to facilitate statistical comparisons between

model responses and biological data, NMF with B = 64 was repeated 14 times with different
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random initial conditions to generate a total of N = 896 MSTd-like model units.

7.2.4 MSTd Stage

We interpreted the resulting columns of W as the weight vectors from the population of F

MT-like model units onto a population of B MSTd-like model units. The activity of the

b-th MSTd-like unit, rbMSTd, was given as the dot product of all F MT-like responses to a

particular input stimulus, i, and the unit’s corresponding nonnegative weight vector:

rbMSTd(i) = ~v(i) ~w(b), (7.8)

where ~v(i) was the i-th column of V and ~w(b) was the b-th column of W. This is in agreement

with the finding that MSTd responses are approximately linear in terms of their feed-forward

input from area MT (Duffy and Wurtz, 1991b; Tanaka et al., 1989), which provides one of

the strongest projections to MST in the macaque (Boussaoud et al., 1990). In contrast to

other models (Grossberg et al., 1999; Lappe et al., 1996; Mineault et al., 2012; Zemel and

Sejnowski, 1998), no additional nonlinearities were required to fit the data presented in this

work.

7.2.5 3D Translation/Rotation Protocol

In order to determine 3D translation and rotation tuning profiles, MSTd-like model units

were probed with two sets of virtual optic flow stimuli as described by Takahashi et al.

(2007).

The “translation protocol” consisted of straight translational movements along 26 directions

in 3D space, corresponding to all combinations of azimuth and elevation angles in increments

of 45◦ (Fig. 7.3A). This included all combinations of movement vectors having eight different
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Figure 7.3: Schematic of the 26 translational and rotational directions used to test MSTd-like
model units (modified from Takahashi et al. (2007)). A, Illustration of the 26 movement vec-
tors, spaced 45◦ apart on the sphere, in both azimuth and elevation. B, Top view: Definition
of azimuth angles. C, Side view: Definition of elevation angles. Straight arrows illustrate
the direction of movement in the translation protocol, whereas curved arrows indicate the
direction of rotation (according to the right-hand rule) about each of the movement vectors.

azimuth angles (0, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦; Fig. 7.3B), each of which was

presented at three different elevation angles (Fig. 7.3): 0 (the horizontal plane) and ±45◦

(for a sum of 8 × 3 = 24 directions). Two additional directions were specified by elevation

angles of −90◦ and 90◦, which corresponded to upward and downward movement directions,

respectively.

The “rotation protocol” consisted of rotations about the same 26 directions, which now

represented the corresponding axes of rotation according to the right-hand rule (Fig. 7.3B,

C). For example, azimuths of 0 and 180◦ (elevation, 0) corresponded to pitch-up and pitch-

down rotations, respectively. Azimuths of 90◦ and 270◦ (elevation, 0) corresponded to roll

rotations (right-ear down and left-ear down, respectively). Finally, elevation angles of −90◦

and 90◦ corresponded to leftward or rightward yaw rotation, respectively.
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7.2.6 Heading Tuning Index

To quantify the strength of heading tuning of a model unit, we followed a procedure described

by Gu et al. (2006) to compute a Heading Tuning Index (HTI). In each trial, the activity

of a model unit was considered to represent the magnitude of a 3D vector whose direction

was defined by the azimuth and elevation angles of the respective movement trajectory (Gu

et al., 2006). A Heading Tuning Index (HTI) was then computed for each model unit using

the following equation:

HTIb =
|
∑n

i=1 r
b
MSTd(i)~ei|∑n

i=1 |rbMSTd(i)~ei|
(7.9)

where rbMSTd(i) was the activity of the b-th model unit for the i-th stimulus, ~ei was a unit

vector indicating the 3D Cartesian heading direction of the i-th stimulus, | · | denoted vector

magnitude, and n = 26 corresponded to the number of different heading directions tested (see

Section 7.2.5). The HTI ranged from 0 to 1, where 0 indicated weak and 1 indicated strong

direction tuning. The preferred heading direction for each stimulus was then computed

from the azimuth and elevation of the vector sum of the individual responses (numerator in

Eq. 7.9).

7.2.7 Uniformity Test

To determine whether a measured distribution was significantly different from uniform, we

performed a resampling analysis as described by Takahashi et al. (2007). First, we calculated

the sum-squared error (across bins) between the measured distribution and an ideal uniform

distribution containing the same number of observations. This calculation was repeated

for 1000 different random distribution generated using the unifrnd function provided by

MATLAB R2014a (MathWorks, Inc.) in order to produce a distribution of sum-squared

error values that represent random deviations from an ideal uniform distribution. If the
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sum-squared error for the experimentally measured distribution lay outside the 95 % confi-

dence interval of values from the randomized distributions, the measured distribution was

considered to be significantly different from uniform (p < 0.05) (Takahashi et al., 2007).

7.2.8 Decoding Population Activity

We tested whether perceptual variables such as heading or angular velocity could be decoded

from the population activity of MSTd-like model units using simple linear regression. We

assembled a data set consisting of 104 flow fields with randomly selected headings, which de-

picted linear observer movement (velocities sampled uniformly between 0.5 m s−1 and 2 m s−1;

no eye rotations) towards a back plane located at various distances d = {2, 4, 8, 16, 32} me-

ters away. As part of a ten-fold cross-validation procedure, stimuli were split repeatedly into

a training set containing 9000 stimuli and a test set containing 1000 stimuli. Using linear

regression, we then obtained a set of N × 2 linear weights used to decode MSTd population

activity in response to samples from the training set, and monitored performance on the test

set (Picard and Cook, 1984).

For forward headings and in the absence of eye rotations, heading coincides with the location

of the FOE on the retina (see Section 7.2.1). Conceptually, the 2D Cartesian coordinates of

the FOE can be found by setting ~̇xT = 0 in Eq. 7.2, and solving for (x, y). However, because

these coordinates could approach infinity for lateral headings, we only considered cases of

headings (in spherical coordinates) with azimuth angles between 45◦ and 135◦, as well as

elevation angles between −45◦ and 45◦.

Similarly, we obtained a set of N×2 linear weights to predict the 2D Cartesian components of

angular velocity, ~̇xR. In this case, the data set contained stimuli consisting only of rotational

flow components (i.e., ~xT = 0 in Eq. 7.1). In order to compare model performance to

neurophysiological studies (Hamed et al., 2003), we randomly selected N = 144 model units
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from the population and limited rotations to the X–Z plane (i.e., ωy = 0 in Eq. 7.3).

7.2.9 Sparseness

We computed a sparseness metric for the modeled MSTd population activity according to

the definition of sparseness by Vinje and Gallant (2000):

s =

(
1− 1

N

(
∑

i ri)
2∑

i r
2
i

)/(
1− 1

N

)
(7.10)

Here, s ∈ [0, 1] is a measure of sparseness for a signal r with N sample points, where s = 1

denotes maximum sparseness and is indicative of a local code, and s = 0 is indicative of a

dense code. In order to measure how many MSTd-like model units were activated by any

given stimulus (population sparseness), ri was the response of the i-th neuron to a particular

stimulus and N was the number of model units. In order to determine how many stimuli

any given model unit responded to (lifetime sparseness), ri was the response of a unit to the

i-th stimulus and N was the number of stimuli. Population sparseness was averaged across

stimuli and lifetime sparseness was averaged across units.

7.2.10 Fisher Information Analysis

To investigate whether simulated MSTd population activity could account for the depen-

dence of psychophysical thresholds on reference heading, we followed a procedure described

by Gu et al. (2010) to compute Fisher information, IF, which provides an upper limit on the

precision with which an unbiased estimator can discriminate small variations in a variable

(x) around a reference value (xref):

IF =
N∑
i=1

R′i(x
2
ref)

σi(x2
ref)

, (7.11)
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where N denotes the number of neurons in the population, R′i(xref) denotes the derivative

of the tuning curve for the i-th neuron at xref , and σi(xref) is the variance of the response of

the i-th neuron at xref . Neurons with steeply sloped tuning curves and small variance will

contribute most to Fisher information. In contrast, neurons having the peak of their tuning

curve at xref will contribute little.

In order to calculate tuning curve slope, R′i(xref), we used a spline function (0.01◦ resolution)

to interpolate among coarsely sampled data points (30◦ spacing). In order to calculate

variance, σi(xref), Gu et al. (2010) assumed that neurons have independent noise and Poisson

spiking statistics. Because the model units described in this paper are deterministic, we

instead calculated signal variance directly from the response variability of the network when

presented with random dot clouds generated from a particular 3D heading (150 repetitions).

7.3 Results

7.3.1 3D Translation and Rotation Selectivity

We tested whether individual units in our model of MSTd could signal the 3D direction

of self-translation and self-rotation when presented with large-field optic flow stimuli, and

compared our results to neurophysiological data from Gu et al. (2006) and Takahashi et al.

(2007). Visual stimuli depicted translations and rotations of the observer through a 3D

cloud of dots that occupied a space 40 cm deep and subtended 90◦× 90◦ of visual angle (see

Section 7.2.5). In the translation protocol, movement trajectories were along 26 directions or

“headings” (Fig. 7.3A), corresponding to all combinations of azimuth and elevation angles in

increments of 45◦ (Fig. 7.3B, C; straight arrows). In the rotation protocol, these 26 directions

served as rotation axes instead (Fig. 7.3B, C; curved arrows). Linear velocity was 1 m s−1,

and angular velocity was 20 ◦ s−1 (Takahashi et al., 2007).
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Fig. 7.4 shows the 3D translation and rotation tuning of a particular neuron in macaque

MSTd (Fig. 7.4A, C) (Takahashi et al., 2007) and of an MSTd-like model unit with similar

tuning (Fig. 7.4B, D). The 3D directional tuning profile is shown as a contour map in which

activity (mean firing rate for neuron in macaque MSTd; unit activation for MSTd-like model

unit, see Eq. 7.1), here represented by color, is plotted as a function of azimuth (abscissa) and

elevation (ordinate). Each contour map shows the Lambert cylindrical equal-area projection

of the original spherical data, where the abscissa corresponds to the azimuth angle and

the ordinate is a sinusoidally transformed version of elevation angle (Snyder, 1987). The

peak response of this particular MSTd neuron occurred at 291◦ azimuth and −18◦ elevation

in the case of rotation (corresponding approximately to a left ear-down roll rotation, with

small components of pitch and yaw rotation), and at 190◦ azimuth and −50◦ elevation in

the case of translation (corresponding to backwards motion) (Takahashi et al., 2007). The

peak response of the MSTd-like model unit occurred at 268◦ azimuth, −21◦ elevation and

176◦ azimuth, −41◦ elevation for rotation and translation, respectively. Typical for MSTd

neurons whose visual translation and rotation preferences are linked by the two-dimensional

(2D) visual motion selectivity of the cell, peak responses occur at stimulus directions roughly

90◦ apart on the sphere (Takahashi et al., 2007). Model MSTd appropriately captured this

effect.

Fig. 7.5 shows the distribution of direction preferences of MSTd cells (Fig. 7.5A, C) (Gu et al.,

2006; Takahashi et al., 2007) and MSTd-like model units (Fig. 7.5B, D) for visual translation

and rotation. Each data point in these scatter plots specifies the preferred 3D direction

of a single neuron or model unit. Histograms along the boundaries show the marginal

distributions of azimuth and elevation preferences. The direction preference (for rotation and

translation, separately) was defined by the azimuth and elevation of the vector average of the

neural responses (see Section 7.2.5). The distributions of azimuth and elevation preference

were significantly nonuniform for both rotation and translation conditions (p < 0.05, see

Section 7.2.7), tightly clustered around 0 and 180◦ azimuth as well as −90◦ and 90◦ elevation.
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MST SPARSE DECOMPOSITION

MODEL(Takahashi et al., 2007)
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Figure 7.4: Example of 3D direction tuning for an MSTd neuron (rotation, A; translation,
C), reprinted from Takahashi et al. (2007) (their Fig. 4), and a similarly tuned MSTd-
like model unit (rotation, B; translation, D). Color contour maps show the mean firing
rate or model activation as a function of azimuth and elevation angles. Each contour map
shows the Lambert cylindrical equal-area projection of the original data, where the abscissa
corresponds to the azimuth angle and the ordinate is a sinusoidally transformed version of
elevation angle (Snyder, 1987).

In agreement with macaque MSTd, the majority of all 896 MSTd-like model units had

rotation preferences within 30◦ of the yaw or pitch axes, and only few model unit had their

rotation preference within 30◦ of the roll axis (Table 7.1). For translation, the majority of

direction preferences were within 30◦ of the lateral or vertical axes, with only a handful of

fore-aft direction preferences (Table 7.2).

Table 7.1: Percentage of neurons and model units with preferred rotation directions within
±30◦ of each of the cardinal axes.

Visual rotation Yaw Pitch Roll
Takahashi et al. (2007) 36/127 (28 %) 27/127 (21 %) 1/127 (1 %)
This work 216/896 (24 %) 330/896 (37 %) 4/896 (1 %)
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Figure 7.5: Distribution of 3D direction preferences of MSTd neurons (rotation, A; trans-
lation, C), reprinted from Takahashi et al. (2007) (their Fig. 6), and the population of
MSTd-like model units (rotation, B; translation, D). Each data point in the scatter plot
corresponds to the preferred azimuth (abscissa) and elevation (ordinate) of a single neu-
ron or model unit. Histograms along the top and right sides of each scatter plot show the
marginal distributions. Also shown are 2D projections (front view, side view, and top view)
of unit-length 3D preferred direction vectors (each radial line represents one neuron or model
unit). The neuron in Fig. 7.4 is represented as open circles in each panel.

We also quantified the strength of heading tuning in model MSTd using a Heading Tuning

Index (HTI) (Gu et al., 2006), which ranged from 0 to 1 indicating poor and strong tuning,

respectively (see Section 7.2.6). For reference, a model unit with idealized cosine tuning

would have an HTI value of 0.31, whereas an HTI value of 1 would be reached when firing

rate is zero for all but a single stimulus direction. In the translation condition, Gu et al.

(2006) reported HTI values averaging 0.48 ± 0.16 SD for their sample of 251 MSTd cells.

Model MSTd achieved very similar HTI values averaging 0.43± 0.11 SD and 0.47± 0.11 SD

in the translation and rotation conditions, respectively.
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Table 7.2: Percentage of neurons and model units with preferred translation directions within
±30◦ of each of the cardinal axes.

Visual rotation Lateral Fore-aft Vertical
Takahashi et al. (2007) 57/307 (19 %) 20/307 (7 %) 76/307 (25 %)
This work 245/896 (27 %) 5/896 (1 %) 192/896 (21 %)

In addition, Takahashi et al. (2007) tested a subset of MSTd cells with both the rotation

and translation protocols in order to directly compare the difference in 3D direction prefer-

ence (|∆ preferred direction|) between rotation and translation (Fig. 7.6A). The distribution

was strongly nonuniform with a mode near 90◦. The simulated MSTd units appropriately

captured this distribution (Fig. 7.6B). However, because |∆ preferred direction| is computed

as the smallest angle between a pair of preferred direction vectors in three dimensions, it

is only defined between 0 and 180◦. Therefore, the observed peak near 90◦ in Fig. 7.6A, B

could be derived from a single mode at 90◦ or from two modes at ±90◦. Only the former

but not the latter would indicate that the visual preferences for translation and rotation are

linked via the 2D visual motion selectivity of the cell or model unit (Takahashi et al., 2007).

Therefore, we also illustrate the differences in 2D direction preferences by projecting each

3D preference vector onto the three cardinal planes: X–Y (front view), Y–Z (side view), and

X–Z (top view) for both MSTd (Fig. 7.6C) and model MSTd (Fig. 7.6D). Since some planar

projections might be small in amplitude, we also calculated the ratio of the lengths of each

difference vector in 2D and 3D and plotted them against the 2D preferred direction differ-

ence (Fig. 7.6E, F). Consistent with macaque MSTd, the projections of the visual difference

vector onto the X–Z and Y–Z planes were relatively small (Fig. 7.6E, F; green and blue data

points). In contrast, projections onto the X–Y plane were notably larger (Fig. 7.6E, F; red

data points) and tightly centered at −90◦ (Fig. 7.6C, D), with no cells or model units having

direction differences of 90◦ between visual translation and rotation. Thus, these simulated

data are consistent with the idea that preferred directions for translation and rotation are

related through the 2D visual motion selectivity of neurons in MSTd.
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7.3.2 Efficient Encoding of Multiple Perceptual Variables

MSTd activity plays a causal role in the perception of heading from optic flow (Gu et al., 2010,

2012). During forward movement, retinal flow radiates out symmetrically from a single point,

the FOE, from which heading can be inferred (Gibson, 1950). Page and Duffy (1999) found

that the location of the FOE could be decoded to a very high degree of precision (i.e., within

±10◦) from the trial-averaged population response of neurons in MSTd. Hamed et al. (2003)

then went on to show that the FOE in both eye-centered and head-centered coordinates

could be decoded from MSTd population activity with an optimal linear estimator even

on a single-trial basis, with an error of 0.5 − 1.5◦ and SD of 2.4 − 3◦. Interestingly, they

found that other perceptual variables such as eye position and the direction of ocular pursuit

could be decoded with similar error rates, and that most MSTd neurons were involved in

the simultaneous encoding of more than one of these variables (Hamed et al., 2003).

We therefore wondered whether the 2D coordinates (xFOE, yFOE) of the FOE of arbitrary

expansive flow fields could be decoded from a population of N MSTd-like model units with

similar precision. To answer this question, we assembled a data set of 104 flow fields with

randomly selected headings (azimuth between 45◦ and 135◦, elevation between −45◦ and

45◦), depicting linear observer movements towards a back plane located at various distances,

d = {1, 2, 4, 8}, in front of the observer. Using simple linear regression in a cross-validation

procedure (see Section 7.2.8), we obtained a set of N × 2 linear weights used to decode

MSTd population activity in response to samples from the training set. We then tried to

predict heading in flow samples from the test set (i.e., headings the network had not seen

before) using the learned weights, and assessed prediction error rates. The same procedure

was repeated for a set of rotational flow fields designed to mimic visual consequences of slow,

pursuit-like eye movements (i.e., restricted to the frontoparallel plane, ωy = 0). Here, the

goal of the network was to predict the 2D Cartesian components of angular velocity (ωx, ωz).
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Table 7.3: Sparse population code for perceptual variables (N = 144).

FOE (x, y) Eye velocity (ωx, ωy)
Hamed et al. (2003) (3.62◦ ± 6.78◦, 3.87◦ ± 4.96◦) (1.39◦ ± 1.38◦ ± 3.02◦)
This work (5.75◦ ± 5.62◦, 6.02◦ ± 5.51◦) (0.82◦ ± 0.89◦, 0.92◦ ± 0.99◦)

The results are summarized in Table 7.3. Both heading and eye velocity could be inferred

from the population activity of model MSTd (N = 144) with error rates on the order of

0.1◦ − 1◦, consistent with neurophysiological data (Hamed et al., 2003; Page and Duffy,

2003). Note that these numbers were achieved on the test set; that is, on flow fields the

model had never seen before. Heading prediction error on the test set thus corresponded

to the model’s ability to generalize; that is, to deduce the appropriate response to a novel

stimulus using what it had learned from other previously encountered stimuli (Hastie et al.,

2009; Spanne and Jorntell, 2015).

What might be the nature of the population code in MSTd that underlies the encoding of

heading and eye velocity? One possibility would be that MSTd contains a set of distinct

subpopulations, each specialized to encode a particular perceptual variable. Instead, Hamed

et al. (2003) found that neurons in MSTd acted more like basis functions, where a majority of

cells was involved in the simultaneous encoding of multiple perceptual variables. A similar

picture emerged when we investigated the involvement of MSTd-like model units in the

encoding of both heading and simulated eye rotation velocity (Fig. 7.7A). A model unit was

said to contribute to the encoding of a perceptual variable if both of its linear decoding

weights exceeded a certain threshold, set at 1 % of the maximum weight magnitude across

all N × 2 weight values. If this was true for both heading (i.e., FOE) and eye velocity (i.e,

pursuit, P), the unit was said to code for both (labeled “FOE&P” in Fig. 7.7A), which was

the case for 57 % of all units. Analogously, if the weights exceeded the threshold for only

variable or the other, the unit was labeled either “FOE” or “P”. Only a few units did not

contribute at all (labeled “none”.
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Figure 7.7: Population code underlying the encoding of perceptual variables such as heading
(focus of expansion, FOE) and eye velocity (pursuit, P). A, Distribution of FOE and pursuit
selectivities in MSTd (dark gray), adapted from Hamed et al. (2003) (their Fig. 3), and
in the population of MSTd-like model units (light gray). Neurons or model units were
involved in encoding either heading (“FOE”), eye velocity (“P”), both (“EYE & P”), or
neither (“none”). B, Heading prediction (generalization) error as a function of the number
of basis vectors using ten-fold cross-validation. Vertical bars are the SD. C, Population
and lifetime sparseness as a function of the number of basis vectors. Operating the sparse
decomposition model with B = 64 basis vectors co-optimizes for both accuracy and efficiency
of the encoding, and leads to basis vectors that resemble MSTd receptive fields.

Finally, we asked how the accuracy and efficiency of the encoding would change with the

number of basis vectors (i.e., the only open parameter of NMF, see Section 7.2.3). In order

to determine accuracy, we repeated the heading decoding experiment for a number of basis

vectors B = 2i, where i ∈ {4, 5, . . . , 8}, an d measured the Euclidean distance between the

predicted and actual 2D FOE coordinates. The result is shown in Fig. 7.7B. Each data point

shows the model’s heading prediction error on the test set for a particular number of basis

vectors, averaged over ten trials (i.e., the ten folds of the cross-validation procedure). The

vertical bars are the SD. The lowest prediction error was achieved with B = 64 (Kolmogorov-

Smirnov test, p ≈ 10−12). In order to determine the sparseness of the population code, we

investigated how many MSTd-like model units were activated by any given stimulus in

the data set (population sparseness) as well as how many stimuli any given model unit
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responded to (lifetime sparseness) (Fig. 7.7C). Sparseness metrics were computed according

to the definition by Vinje and Gallant (2000), which can be understood as a measure of both

the nonuniformity (“peakiness”) and strength of the population response (see Section 7.2.9).

A sparseness value of zero would be indicative of a dense code (where every stimulus would

activate every neuron), whereas a sparseness value of one would be indicative of a local code

(where every stimulus would activate only one neuron) (Spanne and Jorntell, 2015). As

expected, the analysis revealed that both population and lifetime sparseness monotonously

increased with an increasing number of basis vectors. Sparseness values ranging from roughly

0.41 for B = 16 to 0.65 for B = 256 suggested that the population code was sparse in all

cases, as it did not get close to the extreme case of either a local or a dense code.

Overall these results suggest that our model is compatible with a series of findings demon-

strating that macaque MSTd might encode a number of self-motion related variables using

a distributed, versatile population code that is not restricted to a specific subpopulation of

neurons within MSTd (Bremmer et al., 1998; Gu et al., 2010; Hamed et al., 2003; Xu et al.,

2014). Interestingly, we found that the sparseness regime in which model MSTd achieved

the lowest heading prediction error (Fig. 7.7C) was also the regime in which MSTd-like

model units reproduced a variety of known MSTd visual response properties (Figs. 7.4–7.6,

7.9–7.12).

7.3.3 Heading Perception During Eye Movements

We also studied how the accuracy of the population code for heading in model MSTd is

affected by eye movements. Eye movements distort the pattern of full-field motion on the

retina, causing the FOE of an expanding flow field to no longer indicate heading (see Sec-

tion 7.2.1). Under these circumstances, the brain must find a way to discount the motion

components caused by eye rotations. The classical viewpoint is that this is achieved with
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the help of extraretinal signals (Wallach, 1987) (but see Kim et al. (2015)). Indeed, macaque

MSTd might be well-equipped to account for eye movement-related signals (Bradley et al.,

1996; Komatsu and Wurtz, 1988; Morris et al., 2012; Newsome et al., 1988; Page and Duffy,

1999).

In order to investigate the effect of eye movements on heading perception, we asked if model

MSTd could predict heading for a number of simulated scene layouts using the linear decod-

ing weights described in the previous section, and compared the results to the psychophysical

study of Royden et al. (1994). In these experiments, observers viewed displays of randomly-

placed dots whose motions simulated translation in the absence and presence of rotations

toward a back plane (Fig. 7.8A), a ground plane (Fig. 7.8D), and a 3D dot cloud (Fig. 7.8G).

Observers were instructed to fixate a cross that either remained stationary in the center of the

display (simulated eye movement condition) or moved horizontally across the display on the

horizontal midline (real eye movement condition) with speeds of 0, ±1 ◦ s−1, ±2.5 ◦ s−1, and

±5 ◦ s−1. At the end of the motion sequence, seven equally-spaced lines appeared 4◦ apart,

and the observers indicated the line closest to their perceived headings (seven-alternative,

forced-choice paradigm (7AFC)). Behavioral results are shown in Fig. 7.8B, E, and H for the

simulated eye movement condition (closed symbols) and real eye movement condition (open

symbols), averaged over 20 trials.

We applied the same experimental protocol to model MSTd. Visual stimuli were generated

according to the motion parameters provided by Royden et al. (1994), and subtended 90◦×

90◦ of visual angle. Heading predictions were generated by applying the linear decoding

weights described in the previous section to MSTd population activity. These predictions

were then rounded to the nearest available heading in the 7AFC task (4◦ apart, therefore

spanning ±12◦ around straight ahead). Fig. 7.8C, F, and I summarize heading predictions

of model MSTd averaged over 20 trials for reference headings of −4◦ (blue circles), 0 (green

squares), and 4◦ (red triangles) relative to straight ahead. Consistent with the simulated eye
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Figure 7.8: Heading perception during observer translation in the presence of eye movements.
Shown are three different scene geometries (back plane, A–C; ground plane, D–F; dot cloud,
G–I), reprinted from Royden et al. (1994) (their Figs. 6, 8-9, 12-13). Observer translation
was parallel to the ground and was in one of three directions (open circles), coinciding
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Behavioral performance of model MSTd for simulated eye movements. Horizontal dotted
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movement condition, model MSTd made systematic prediction errors, which were largest for

observer movement over a ground plane (Fig. 7.8F).

7.3.4 Population Code Underlying Heading Discrimination

Another interesting behavioral effect that might be due to MSTd population coding is the

fact that heading discrimination is most precise when subjects have to discriminate small

variations around straight-ahead headings (Crowell and Banks, 1993; Gu et al., 2010). It

was long believed that this behavioral effect could be explained by an abundance of MSTd

neurons preferring straight-ahead headings with sharp tuning curves (e.g., Duffy and Wurtz

(1995)). However, Gu et al. (2010) were able to demonstrate that this behavior might instead

be due to an abundance of MSTd neurons preferring lateral headings with broad, cosine-

like tuning curves (Gu et al., 2006; Lappe et al., 1996), causing their peak discriminability

(steepest tuning-curve slopes) to lie near straight-ahead headings.

We tested whether simulated population activity in model MSTd could account for these

behavioral effects by computing peak discriminability and Fisher information from heading

tuning curves, following the experimental protocol of Gu et al. (2010). Peak discriminability

occurs for motion directions where the slope of a neuronal tuning curve is steepest (Jazayeri

and Movshon, 2006; Purushothaman and Bradley, 2005; Seung and Sompolinsky, 1993), and

Fisher information puts an upper bound on the precision with which population activity can

be decoded with an unbiased estimator (Pouget et al., 1998; Seung and Sompolinsky, 1993).

The heading tuning curve of every model unit was measured by presenting 24 directions

of self-translation in the horizontal plane (0, ±15◦,±30◦, . . . , ±165◦ and 180◦ relative to

straight ahead, while elevation was fixed at 0) through a 3D cloud of dots that occupied a

space that was 0.75 m deep, subtended 90◦×90◦ of visual angle, and drifted at 0.3 m s−1 (see

Section 7.2.5). Here we adapted the coordinate system to coincide with the one used by Gu
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et al. (2010), so that azimuth angles were expressed relative to straight ahead. The slope

of the tuning curve was computed by interpolating the coarsely sampled data using a spline

function (resolution: 0.01◦) and then taking the spatial derivative of the fitted curve at each

possible reference heading. Peak discriminability was achieved where the slope of the tuning

curve was steepest.

Fig. 7.9 shows the distribution of reference headings at which neurons in MSTd exhibit their

minimum neuronal threshold (Fig. 7.9A) (Gu et al., 2010), compared to peak discriminability

computed from simulated activity of MSTd-like model units (Fig. 7.9B). Both neurophysio-

logically measured and simulated distributions had clear peaks around forward (0) and back-

ward (180◦) headings. To further illustrate the relationship between peak discriminability

and peak firing rate, the tuning width at half maximum is plotted versus heading preference

(location of peak firing rate) for neurons in macaque MSTd (Fig. 7.9C) and MSTd-like model

units (Fig. 7.9D). Consistent with neurons in macaque MSTd, the distribution of preferred

headings in model MSTd was significantly nonuniform (p < 0.05, see Section 7.2.7) with

peaks at ±90◦ azimuth relative to straight ahead (i.e., lateral headings), and most model

units had broad tuning widths ranging between 90◦ and 180◦. Surprisingly, our model was

also able to recover what appears to be a distinct subpopulation of narrowly-tuned units

that prefer forward headings (open circles in Fig. 7.9C, D).

Fig. 7.10 shows population Fisher information derived from interpolated tuning curves for

882 neurons in macaque MSTd (Fig. 7.10A, red) and 896 MSTd-like model units (Fig. 7.10B).

According to Eq. 7.1, the contribution of each neuron (model unit) to Fisher information

is the square of its tuning curve slope at a particular reference heading divided by the

corresponding mean firing rate (unit activation). Note that even though MSTd-like model

units are deterministic, they exhibit response variability when repeatedly presented with 3D

clouds made from dots with random depth (150 repetitions, see Section 7.2.10). Consistent

with data from macaque MSTd, there is a clear dependence of Fisher information on reference
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Figure 7.10: Population Fisher information of macaque MSTd (A), reprinted from Gu et al.
(2010) Fig. 5), and of model MSTd (B). Error bands in A represent 95 % confidence intervals
derived from a bootstrap procedure.

heading for our population of MSTd-like model units, with a maximum occurring for headings

near 0 (i.e., straight ahead) and a minimum occurring for headings near ±90◦ (i.e., lateral

headings).

Overall these results are in good agreement with population statistics reported by Gu et al.

(2010), and provide further computational support that behavioral dependence on reference

heading can be largely explained by the precision of an MSTd-like population code.

7.3.5 Gaussian Tuning in Spiral Space

The finding that lateral headings are overrepresented in MSTd (Gu et al., 2006, 2010; Taka-

hashi et al., 2007) then raise the question as to how these recent data might be reconciled

with earlier studies reporting an abundance of MSTd cells preferring forward motions (i.e.,

153



expanding flow stimuli) (e.g., Duffy and Wurtz (1995)). A possible explanation was offered

by (Gu et al., 2010)1, who hypothesized that observed differences in population statistics

might be (at least partially) due to a selection bias: In order to locate visually responsive

cells in MSTd, the authors of earlier studies tended to screen for cells that discharge in

response to expansion stimuli (Duffy and Wurtz, 1991a, 1995; Graziano et al., 1994). In

contrast, later studies recorded from any MSTd neuron that was spontaneously active or

responded to a large-field flickering random-dot stimulus (Gu et al., 2006, 2010; Takahashi

et al., 2007).

To test their hypothesis, we applied the same selection bias to our sample of MSTd-like

model units, and restricted further analysis to the selected subpopulation. The selection

process was mimicked simply by making it more likely for a model unit to be selected the

stronger it responded to an expansion stimulus. Out of a total of 896 MSTd-like model units,

188 were selected for further processing.

We then proceeded with the experimental protocol described by Graziano et al. (1994) es-

tablish a visual tuning profile for the remaining 188 model units. Model units were presented

with eight optic flow stimuli that spanned what they termed “spiral space”: expansion, con-

traction, clockwise rotation (CW), counterclockwise rotation (CCW), and four intermediate

spiral patterns. These stimuli differed from previously described optic flow stimuli in that

they did not accurately depict observer motion in 3D. Instead, stimulus diameter was limited

to 30◦, and angular velocity simply increased with distance to the center of the stimulus,

with a maximum speed of 17.2 ◦ s−1. As in the study of Graziano et al. (1994), we fit the

resulting tuning curves with a Gaussian function to find the peak (the mean of the Gaus-

sian) that corresponded to the preferred direction in spiral space, and to provide a measure

of bandwidth (σ, the SD of the Gaussian) and goodness-of-fit (r, the correlation coefficient).

The results are shown in Fig. 7.11. When looking at the preferred motion direction of

MSTd cells (Fig. 7.11A), Graziano et al. (1994) observed Gaussian tuning across the full
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range of rotational flow fields. Here, 0 corresponded to clockwise rotation, 90◦ to expansion,

180◦ to counterclockwise rotation, 270◦ to contraction, and the oblique directions (45◦, 135◦,

225◦, and 315◦) corresponded to four intermediate spiral stimuli. Each arrow indicated the

preferred direction or peak response (the mean of the Gaussian) of each neuron (N = 57)

in spiral space. Consistent with these data from macaque MSTd, the majority of preferred

spiral directions in our subpopulation of MSTd-like model units (N = 188) clustered near

expansion, with only few units preferring contraction, and roughly 51 % of units were spiral-

tuned (vs. 35 % in their sample) (Fig. 7.11B, E). Similar to 86 % of isolated MSTd cells

having smooth tuning curves and good Gaussian fits (i.e., a correlation coefficient of r ≥ 0.9,

with an average r of 0.97), 112 of 188 MSTd-like model units (60 %) had r ≥ 0.9, with

an average r of 0.924. Compared to real MSTd neurons, the model units had comparable,

although slightly broader Gaussian widths (an average σ of 111◦ and SE of 24◦ in our case

versus an average σ of 61◦ and SE of 5.9◦ in their case).

If the predominance of expansion cells in Fig. 7.11D is truly due to a pre-selection procedure,

then any bias in the data should be removed when the above experimental procedure is

applied to all cells in MSTd. Indeed, extending the analysis to the entire population of

MSTd-like model units revealed a more uniform sampling of direction selectivity across

spiral space (Fig. 7.11C), which flattened the distribution of preferred motion directions

(Fig. 7.11F). 677 of 896 MSTd-like model units (76 %) had r ≥ 0.9, with an average r of

0.929, an average σ of 108◦, and SE of 9.1◦.

7.3.6 Continuum of 2D Response Selectivity

Interestingly, the same narrative can be applied to other early studies of MSTd in which

cells were supposedly selected depending on how well they responded to radial motion. For

example, using a “canonical” set of twelve flow stimuli (eight directions of planar motion; ex-
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Figure 7.11: Gaussian tuning in spiral space. A, Gaussian tuning of a sample of 57 neurons
across the full range of rotational flow fields, reprinted from Graziano et al. (1994) (their Fig.
9). Each arrow indicates the peak response (the mean of the Gaussian fit) of each neuron in
spiral space. B, The distribution of preferred spiral directions of a sample of 112 MSTd-like
model units whose tuning curves were well-fit with a Gaussian. Model units were more likely
to be included in the sample the stronger they responded to an expansion stimulus. C, The
distribution of preferred spiral directions applied to the entire population of 896 MSTd-like
model units, of which 677 had smooth Gaussian fits. D, Bar plot of the data in A, for better
comparison, adapted from Clifford et al. (1999). E, Bar plot of the data in B. F, Bar plot
of the data in C.

pansion and contraction; clockwise and counterclockwise rotation), Duffy and Wurtz (1995)

showed that most neurons in MSTd were sensitive to multiple flow components, with only

few neurons responding exclusively to either planar, circular, or radial motion. In a sample of

268 MSTd cells, Duffy and Wurtz (1995) found that 18 % of cells primarily responded to one

component of motion (planar, circular, or radial), that 29 % responded to two components

(planocircular or planoradial, but rarely circuloradial), and that 39 % responded to all three

components (Fig. 7.12A).

We simulated their experiments by presenting the same twelve stimuli to the subpopulation
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Figure 7.12: Continuum of response selectivity. A, Response classification of a sample of
268 MSTd neurons, reprinted from Duffy and Wurtz (1995) (their Fig. 3). B, Response
classification of a sample of 188 MSTd-like model units. Model units were more likely to be
included in the sample the stronger they responded to an expansion stimulus. C, Response
classification of the entire population of 896 MSTd-like model units. Triple-component cells
were: planocirculoradial (PCR), nonselective excitatory (NSE), and nonselective inhibitory
(NSI). Double-component cells were: planoradial (PR), planocircular (PC), and circuloradial
(CR). Single-component cells were: planar (P), radial (R), and circular (C). 81 % of neurons
in A, 88 % of model units in B, and 77 % of model units in C responded to more than one
type of motion.

of 188 MSTd-like model units described above, and classified their responses. Duffy and

Wurtz (1995) classified neurons according to the statistical significance of their responses,

which was difficult to simulate since MSTd-like model units did not have a defined noise level

or baseline output. Instead we mimicked their selection criterion by following a procedure

from Perrone and Stone (1998), where the response of a model unit was deemed “significant”

if it exceeded 12 % of the largest response that was observed for any model unit in response

to any of the tested stimuli.

Without further adjustments, our model recovered a distribution of response selectivities

very similar to those reported by Duffy and Wurtz (1995) (Fig. 7.12B): The largest group

was formed by triple-component or planocirculoradial (PCR) MSTd-like model units with
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selective responses to planar, circular, and radial stimuli (white). Double-component units

were mainly planoradial (PR) with responses to a planar or radial stimulus (magenta), with

few planocircular (PC) units (yellow) and only a handful of circuloradial (CR) units (cyan).

Single-component cells were mainly planar (P) units (red), with only few radial (R) units and

circular (C) units (blue). We did not find any nonselective excitatory (NSE) or nonselective

inhibitory (NSI) units (because our model did not include inhibitory units).

Only 1 % of the cells observed by Duffy and Wurtz (1995) were circuloradial (CR) cells,

which they suggested were equivalent to the spiral-selective neurons reported by Graziano

et al. (1994). Thus they concluded that spiral tuning was rare in MSTd. Interestingly,

our model recovers distributions that are comparable to both empirical studies; that is, an

abundance of spiral-tuned cells in Fig. 7.11, and an abundance of PCR cells in Fig. 7.12.

Our results thus offer an alternative explanation to these seemingly contradictive findings,

by considering that most spiral-tuned cells, as identified by Graziano et al. (1994), might

significantly respond to planar stimuli when analyzed under the experimental protocol of

Duffy and Wurtz (1995), effectively making most spiral-tuned cells part of the PCR class of

cells, as opposed to the CR class of cells.

What might these data look like in the absence of any pre-selection procedure? To answer

this question, we extended the response classification to the entire population of 896 MSTd-

like model units. As is evident in Fig. 7.12C, this analysis revealed a large fraction of P

units that had not previously been included. In addition, the relative frequency of units

responding to radial motion (i.e., R, PR, and PCR units) decreased noticeably.

Overall, these results suggest that our model is in agreement with a wide variety of MSTd

data collected under different experimental protocols, and offers an explanation of how these

data might be brought into agreement when differences in the sampling procedure are ac-

counted for.
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7.4 Discussion

We found that applying NMF (Lee and Seung, 1999, 2001; Paatero and Tapper, 1994) to MT-

like patterns of activity can account for several essential response properties of MSTd neu-

rons, such as 3D translation and rotation selectivity (Gu et al., 2006; Takahashi et al., 2007),

tuning to radial, circular, and spiral motion patterns (Duffy and Wurtz, 1995; Graziano et al.,

1994; Lagae et al., 1994), as well as heading selectivity (Hamed et al., 2003; Page and Duffy,

1999, 2003). This finding suggests that these properties might emerge from MSTd neurons

performing a biological equivalent of dimensionality reduction on their inputs. Furthermore,

the model accurately captures prevalent statistical properties of visual responses in macaque

MSTd, such as an overrepresentation of lateral headings (Gu et al., 2006, 2010; Lappe et al.,

1996; Takahashi et al., 2007) that can predict behavioral thresholds of heading discrimination

(Gu et al., 2010) and heading perception during eye movements (Royden et al., 1994). At

the population level, model MSTd efficiently and accurately predicts a number of perceptual

variables (such as heading and eye rotation velocity) using a sparse distributed code (Hamed

et al., 2003; Olshausen and Field, 1996, 1997), consistent with ideas from the efficient-coding

and free-energy principles (Attneave, 1954; Barlow, 1961; Friston, 2010; Friston et al., 2006;

Linsker, 1990; Simoncelli and Olshausen, 2001).

7.4.1 Sparse Decomposition Model of MSTd

It is well-known that MSTd neurons do not decompose optic flow into its first-order dif-

ferential invariants (i.e., into components of divergence, curl, and deformation (Koenderink

and van Doorn, 1975)). Instead, neurons in MSTd act as “templates” (Perrone, 1992) that

perform a dot product-type operation to signal how well the apparent motion on the retina

matches their preferred flow component or mixture of components (Orban et al., 1992; Saito

et al., 1986; Tanaka et al., 1989). This “template matching” was later demonstrated to be
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a powerful approach to self-motion analysis possibly at work at least in mammals (Lappe

and Rauschecker, 1994; Perrone and Stone, 1994, 1998) and insects (Krapp, 2000; Krapp and

Hengstenberg, 1996; Srinivasan et al., 1996); all without the need to perform a mathematical

decomposition of optic flow.

Alternatively, we provide computational evidence that MSTd neurons might decompose

optic flow in the sense of matrix factorization, in order to reduce the number of “templates”

used to represent the spectrum of retinal flow fields encountered during self-movement in an

efficient and parsimonious fashion. Such a representation would be in agreement with the

efficient-coding or infomax principle (Attneave, 1954; Barlow, 1961; Linsker, 1990; Simoncelli

and Olshausen, 2001), which posits that sensory systems should employ knowledge about

statistical regularities of their input in order to maximize information transfer. If information

maximization is interpreted as optimizing for both accuracy (prediction error) and efficiency

(model complexity), then the efficient-coding principle can be understood as a special case

of the free-energy principle (Friston, 2010; Friston et al., 2006).

A sparse, parts-based decomposition model of MSTd implements these principles in that

it can co-optimize accuracy and efficiency by representing high-dimensional data with a

relatively small set of highly informative variables. As such the model is intimately related

to the framework of nonnegative sparse coding (Eggert and Korner, 2004; Hoyer, 2002).

Efficiency is achieved through sparseness, which is a direct result of NMF’s nonnegativity

constraints (Lee and Seung, 1999). Accuracy trades off with efficiency, and can be achieved

by both minimizing reconstruction error and controlling for model complexity (i.e., by tuning

the number of basis vectors) (see Fig. 7.9). Statistical knowledge enters the model via relative

frequencies of observations in the input data, which are controlled by both natural viewing

conditions and natural scene statistics. NMF explicitly discourages statistically inefficient

representations, because strongly accounting for a rare observation at the expense of ignoring

a more common stimulus component would result in an increased reconstruction error.
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Interestingly, we found that the sparseness regime in which model MSTd achieved the lowest

heading prediction error and thus showed the greatest potential for generalization (Fig. 7.7B,

C) was also the regime in which MSTd-like model units reproduced a variety of known

MSTd visual response properties (Figs. 7.4–7.6, 7.9–7.12). In contrast to findings about

early sensory areas (Olshausen and Field, 1996, 1997; Vinje and Gallant, 2000), this regime

does not utilize an overcomplete dictionary, yet can still be considered a sparse coding

regime (Spanne and Jorntell, 2015). Sparse codes are a trade-off between dense codes (where

every neuron is involved in every context, leading to great memory capacity but suffering

from cross-talk among neurons) and local codes (where there is no interference but also no

capacity for generalization) (Spanne and Jorntell, 2015). We speculate that sparse codes

with a relatively small dictionary akin to the one described in this paper might be better

suited (as opposed to overcomplete basis sets) for areas such as MSTd, because the increased

memory capacity of such a code might lead to compact and multi-faceted encodings of various

perceptual variables (Bremmer et al., 1998; Brostek et al., 2014; Hamed et al., 2003).

7.4.2 Model Limitations

Despite its simplicity the present model is able to explain a variety of MSTd visual response

properties. However, a number of issues remain to be addressed in the future, such as

the fact that neurons in MSTd are also driven by vestibular (Gu et al., 2006; Page and

Duffy, 2003; Takahashi et al., 2007) and eye movement-related signals (Bradley et al., 1996;

Komatsu and Wurtz, 1988; Morris et al., 2012; Newsome et al., 1988; Page and Duffy, 1999).

In addition, some neurons are selective not just for heading, but also for path and place

(Froehler and Duffy, 2002; Page et al., 2015). Also, we have not yet attempted to model

the complex, nonlinear interactions found among different subregions of the receptive field

(Duffy and Wurtz, 1991b; Lagae et al., 1994; Mineault et al., 2012), but speculate that

they might be similar to the ones reported in MT (Majaj et al., 2007; Richert et al., 2013).
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At a population level, MSTd exhibits a range of tuning behaviors from pure retinal to

head-centered stimulus velocity coding (Brostek et al., 2014; Hamed et al., 2003; Yu et al.,

2010) that include intermediate reference frames (Fetsch et al., 2007). From a theoretical

standpoint, the sparse decomposition model seems a good candidate to find an efficient,

reference frame-agnostic representation of various perceptual variables (Hamed et al., 2003;

Pouget and Sejnowski, 1997; Pouget and Snyder, 2000), but future iterations of the model

will have to address these issues step-by-step.

7.4.3 Model Alternatives

Several computational models have tried to account for heading-selective cells in area MSTd.

In the heading-template model (Perrone and Stone, 1994, 1998), MSTd forms a “heading

map”, with each MSTd-like unit receiving input from a mosaic of MT-like motion sensors that

correspond to the flow that would arise from a particular heading. Heading is then inferred

by the preferred FOE of the most active heading template. A complication of this type of

model is that it requires an extremely large number of templates to cover the combinatorial

explosion of heading parameters, eye rotations, and scene layouts (Perrone and Stone, 1994),

even when the input stimulus space is restricted to gaze-stabilized flow fields (Perrone and

Stone, 1998). The velocity gain field model (Beintema and van den Berg, 1998, 2000) tries to

reduce the number of combinations by using templates that uniquely pick up the rotational

component of flow, but recent evidence argues against this type of model (Berezovskii and

Born, 2000; Duijnhouwer et al., 2013). In a related approach to the one presented in this

paper, Zemel and Sejnowski (1998) proposed that neurons in MST encode hidden causes of

optic flow, by using a sparse distributed representation that facilitates image segmentation

and object- or self-motion estimation by downstream read-out neurons. Unfortunately, they

did not quantitatively assess many of the response properties described in this paper. In

addition, their model showed an overrepresentation of expanding flow stimuli, which is hard
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to reconcile with recent findings (Gu et al., 2006).

In contrast, our model offers a biologically plausible account of a wide range of visual response

properties in MSTd, ranging from single-unit activity to population statistics. Adoption of

the sparse decomposition model supports the view that single-unit preferences emerge from

the pressure to find an efficient representation of large-field motion stimuli (as opposed to

encoding a single variable such as heading), and that these units act in concert to represent

perceptual variables both accurately (Gu et al., 2010) and efficiently (Hamed et al., 2003).
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Chapter 8

Summary and Conclusion

Simulating large-scale models of biological motion perception is challenging, due to the re-

quired memory to store the network structure and the computational power needed to quickly

solve the neuronal dynamics. In Chapters 3 and 4 I introduced software that enabled the

practical feasibility of most of the research presented in this thesis. CARLsim allowed us

to simulate meso-scale neural networks (on the order of 105 neurons and 107 synapses) that

require a high degree of biological detail without sacrificing performance. Analogously, devel-

opment of an efficient and scalable implementation of the Motion Energy model (Simoncelli

and Heeger, 1998) was necessary in order to handle video streams (∼ 360× 480 pixels) of up

to 30 frames per second in (quasi) real time. These software efforts allowed us to embody

the computational models presented in this thesis on a neurorobotics platform so that we

could investigate the link between simulated neural circuitry and real-world robot behavior.

All software was released under open-source licenses, making it freely and openly available

for other researchers to use the software, adapt it for their purposes, and expand for future

studies.

In Chapter 5, I presented a large-scale spiking model of visual area MT that 1) was capable
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of exhibiting both component and pattern motion selectivity, 2) generated speed tuning

curves that were in agreement with electrophysiological data, and 3) emulated human choice

accuracy and the effect of motion strength on reaction time in a motion discrimination task.

Although the model was able to demonstrate how the aperture problem could be solved

with solely biologically plausible mechanisms and network dynamics, future studies could

investigate how the model might generalize to more perceptually challenging stimuli that

include transparent motion, second-order motion, or binocular cues.

In Chapter 6, I described the deployment of the model outlined in Chapter 5 on a robotics

platform, used to steer the robot around obstacles toward a visually salient target. The

study demonstrated how a model of MT might build a cortical representation of optic flow

in the spiking domain, and showed that these simulated motion signals were sufficient to

steer the robot on human-like smooth paths around obstacles in the real world. In the

future, it would be interesting to see the model being extended to cortical areas beyond MT,

in order to investigate the functional real-world implications of visual motion processing in

higher-order areas of the motion pathway.

Finally, Chapter 7 introduced a novel computational model of optic flow processing in MSTd

based on ideas from the efficient-coding and free-energy principles. I demonstrated that

a variety of visual response properties of MSTd neurons could be derived from MT-like

input features using NMF, suggesting that response properties such as 3D translation and

rotation selectivity, complex motion perception, and heading selectivity might simply be a by-

product of MSTd performing dimensionality reduction on their inputs. Despite its simplicity,

the model was able to explain a variety of MSTd visual response properties, ranging from

single-unit activity to population statistics. These findings provide a further step towards

a scientific understanding of the often nonintuitive response properties of MSTd neurons.

In the future, this work might lead to new intellectual property (patent pending) and find

embodiment in brain-inspired robots and drones. The model itself might be extended to
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account for nonvisual response properties of MSTd neurons, which include the involvement

of vestibular and eye movement-related signals.

Overall, the contributions of this thesis span multiple disciplines including computational

neuroscience, computer science/engineering, and robotics. The present work might be of

interest to the neuroscience community, as it 1) provides a mechanistic description of visual

motion processing in the brain and 2) makes specific predictions that can be empirically

verified. The present work might also be of interest to the computer science and engineer-

ing communities, as it 1) sheds light on the computational principles that might be at play

in the visual brain, 2) makes significant contributions to the open-source movement, and

3) describes algorithms that are compatible with recent neuromorphic hardware. Finally,

the present work might be of interest to the robotics community, as it 1) investigates the

functional link between models of brain function and an agent’s real-world behavior, and

2) constitutes a first step into building fully functional and autonomous neurorobotics plat-

forms.

It is my hope that these studies will not only further our understanding of how the brain

works, but also lead to novel algorithms and brain-inspired robots capable of outperforming

current artificial systems.
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