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Diffusion involving atom transport from one location to another governs many
important processes and behaviors such as precipitation and phase nuclea-

tion. The inherent chemical complexity in compositionally complex materials
poses challenges for modeling atomic diffusion and the resulting formation of
chemically ordered structures. Here, we introduce a neural network kinetics
(NNK) scheme that predicts and simulates diffusion-induced chemical and
structural evolution in complex concentrated chemical environments. The
framework is grounded on efficient on-lattice structure and chemistry repre-
sentation combined with artificial neural networks, enabling precise predic-
tion of all path-dependent migration barriers and individual atom jumps. To
demonstrate the method, we study the temperature-dependent local chemical
ordering in a refractory NbMoTa alloy and reveal a critical temperature at
which the B2 order reaches a maximum. The atomic jump randomness map
exhibits the highest diffusion heterogeneity (multiplicity) in the vicinity of this
characteristic temperature, which is closely related to chemical ordering and
B2 structure formation. The scalable NNK framework provides a promising
new avenue to exploring diffusion-related properties in the vast compositional
space within which extraordinary properties are hidden.

Diffusion in materials dictates the kinetics of precipitation’, new phase
formation’ and microstructure evolution®, and strongly influences
mechanical and physical properties*. For example, altering nanopre-
cipitate size and dispersion by thermal processing enables substantial
increases in strength and good ductility in multicomponent alloys*®.
Essentially rooted in diffusion kinetics, predicting how fast local
composition and microstructure evolve is a fundamental goal of
material science. In metals and alloys, diffusion processes are con-
nected with vacancies, point defects that mediate atom jumps in the
crystal lattice. Molecular dynamics (MD)’ modeling based on force
fields or density functional theory, which probe the atomic mechan-
isms of diffusion at a nanosecond timescale, are often not able to
access slow diffusion kinetics-induced microstructure change. To cir-
cumvent this time limitation inherent in MD, the kinetic Monte Carlo
method (kMC) is primarily adopted to model diffusion-mediated

structure evolution, for instance, the early stage of precipitation in
dilute alloys®®. In the kMC simulations, the crucial parameter (vacancy
migration energy) is generally parameterized from continuum models
such as cluster expansion' or Ising model”, owing to the high com-
putational cost in transition state search. The rise of compositionally
complex alloys (CCAs), commonly known as high-entropy alloys,
brings many intriguing kinetics behaviors, ranging from chemical
short-range ordering?, precipitation®, segregation”, and radiation
defect annihilation'*, which have yet to be fundamentally understood
and ultimately predicted. The chemical complexity in CCAs, however,
poses a new challenge for modeling diffusion-mediated processes due
to local chemical fluctuations leading to diverse activation barriers
(i.e., a wide spectrum)®.

The emergence of machine learning methods has demonstrated
the potential for addressing computationally complex problems in
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materials science that involve nonlinear interactions and massive
combinatorial space’®. One of the most promising examples is
machine-learned interatomic potentials that map a three-dimensional
(3D) atomic configuration to its conformational energy with a high
accuracy at a substantially reduced computational cost”. The key step
in machine learning in molecular science is converting atomistic
structure into numerical values (descriptive parameters-descriptor'®)
to represent the individual local chemical and structural environ-
ments. Two successful atomic environment descriptors are atom-
centered symmetry function’ and smooth overlap of atomic
position”. The dimension of these local structure descriptors (con-
sideration of all neighboring atoms within a cutoff distance) increases
quadratically with the number of constituent elements®, which esca-
lates the number of parameters and training time for the application of
machine learning to chemically complex CCAs. To address this issue,
active efforts have been taken to compress chemical information and
reduce the size of representation of local atomic environment® %,
Using the structure descriptor, atomic site-related scalar values, such
as segregation energy” and atomic propensity to rearrange®, have
been predicted through machine learning models. Concerning
vacancy diffusion in compositionally complex alloys, a critical para-
meter of interest is diffusion energy barrier AE, i.e., the energy dif-
ference between transition state and the initial energy minimum
(Supplementary Fig. S1). Due to atomic-scale composition fluctuation
and the existence of multiple diffusion directions in CCAs, it necessi-
tates a machine learning model to precisely predict vectoral property,
specifically, diffusion path-dependent barriers. Another complexity,
needing to be addressed in modeling diffusion and new phase for-
mation in CCAs, lies in the extensive compositional space and the
development of local chemical order, both of which profoundly
impact on diffusion barriers and kinetics.

In this study, we introduce a neural network kinetics (NNK)
scheme for predicting atomic diffusion and its resulting micro-
structure evolution in compositionally complex materials. Grounded
on an efficient on-lattice atomic representation that converts indivi-
dual atoms to neurons while preserving the atomic structure, the NNK
precisely describes atomic (interneuron) interactions through a neural
network model and predicts neuron kinetics evolution, embodying
physical atom diffusion and microstructure evolution. With only one-
time conversion of atomic configuration to neuron map, vacancy
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diffusions and chemical evolution are simulated by swapping neurons,
rending high efficiency and scalability. Using refractory NbMoTa as a
model system, we explore chemical ordering and B2 phase formation
mediated by diffusion kinetics and reveal the anomalous diffusion
(diffusion multiplicity) that is inherent in CCAs.

Results

Neural network kinetics scheme

Figure 1a shows the on-lattice structure and chemistry representation,
where the initial atomic configuration with a vacancy is encoded into a
digital matrix, or neuron map. The digits (1, 2, and 3) represent the
corresponding atom types, and O denotes the vacancy (refer to Sup-
plementary Fig. S2 for conversion and visualization of 3D crystals). This
digital matrix capturing structure and composition features offers
several advantages important as a descriptor’®. The map dimension
O(N) scales linearly with the number of atoms N and is invariant to the
number of constituent atom types, which has the lowest dimension
possible as the descriptor. Unlike traditional descriptors, the neuron
map not only reflects the local chemical environment of individual
atoms but also, more significantly, captures the entire system.
Importantly, the determination of the descriptive map is simple and
involves no intensive calculation or painstaking parameter tuning.
Essential for diffusion, the representation can be rotationally covariant
and enables prediction of diffusion path-dependent activation barriers
(vector quantities). These vectorized digits are then passed to the NNK
model and serve as input neurons.

Figure 1b depicts the schematic of the NNK which consists of an
artificial neural network and a neuron kinetics module. The introduced
neural network (with more than two hidden layers) is designed to learn
the nonlinear interactions between input neurons (i.e., atoms and
vacancy), and to output the diffusion energy barriers. Notably, the
network only uses the vacancy and its neighboring neurons as inputs,
resulting in a low and constant computational cost (independent of
system size) without sacrificing accuracy (see Supplementary Note 2
for details). With the available barriers associated with each individual
diffusion path, the neuron kinetics module adopts the kinetic Monte
Carlo method to carry out diffusion kinetics evolution (see “Methods”).
There are two features rendering the NNK a high computational effi-
ciency and scalability with system size. First, the descriptor map is
calculated only once for the initial atomic configuration, because

Neuron kinetics

structure & chemistry Input neurons

o

|

local
neurons

pair
interaction

[ P R )

1 3
2 1
1 1
2 2
3 3
2 2
1 3

1
3
1

Neuron interactions

Barriers
o E;

Vacancy jump
C Updated neuron map
neuron

swapping
—_— "

e - Bﬂ S

W WN = = W

1
3
)
1
3
1
2

—_ N W N = N =

diffusion

: jump rate
barriers

high-order
interactions

Updating neurons

Fig. 1| Schematic illustration of neural network kinetics (NNK) framework.

a The on-lattice structure and chemistry representation of the entire system. A
vacancy and its local atomic environment are encoded into a digital matrix (neuron
map). b NNK framework consists of a neural network that outputs vacancy

migration barriers, and a neuron kinetics module that implements neuron jump
(diffusion jump) based on kinetic Monte Carlo (kMC). See “Methods” for details on
neuron kinetics. Vacancy jumps and chemical evolution are efficiently modeled by
swapping of neurons and neuron map evolution.
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neural network in predicting diffusion barrier spectrum in concentrated,
Nb33Mos3Tass, and dilute, NbggMosTas, solutions. ¢ Diffusion barrier diagram
generated by the neural network. The nonequimolar Nb;sMogsTa,o alloy exhibits
the highest barrier in the Nb-Mo-Ta system.

atomic diffusion and local chemical evolution are operated on the
representing neuron map. Second, since atomic diffusion depends
solely on the local chemical environment, the NNK trained on small
configurations can be directly applied to large systems for diffusion
modeling. Therefore, with only a one-time conversion of atomic con-
figuration to neuron map, vacancy jumps and chemical evolution can
be simulated by swapping two digits of the neural map. In this way,
millions of vacancy jumps can be modeled efficiently, with each jump
iteration involving the action of just two neurons (Fig. 1b).

Predicting a path-dependent diffusion barrier spectrum in
multidimensional composition space

Diffusion in crystals occurs through elementary atomic jumps between
a vacancy and its neighboring lattice sites (vacancy mechanism*?). In
body-centered cubic (bcc) CCAs, a vacancy is associated with eight
different jump directions, and the variation in the jumping atoms and
surrounding chemical environment can result in eight distinct migra-
tion barriers®*, By utilizing the rotational covariance of lattice
representation, it is possible to predict the jump path-dependent
barriers (a vector quantity) from a single chemical configuration.
Specifically, by aligning each diffusion path to a constant reference
orientation through rotation and/or mirroring operations,

unique neuron map and digital vector, D;, can be generated for each
individual diffusion path i, without breaking the structural symmetry,
as demonstrated in Fig. 2a. The Supplementary Table S1 and Supple-
mentary Fig. S3 summarizes the operations aligning the diffusion
direction of interest with this reference, preserving structural
symmetry.

The neural network takes in D;, which carries local atomic envir-
onment encompassing the vacancy, as input. The data (atomic digits)
then flow through hidden layers to the output layer, which predicts the
associated diffusion activation barrier, E;. The first hidden layer in
neural network characterizes the linear contribution of the input
neurons (atoms and vacancy) to the migration barrier, while the fol-
lowing hidden layers capture the nonlinear and high-order interactions
that impact vacancy jump. With just four hidden layers and 112
neighboring atoms (up to the 8th nearest neighbor shell) of the
vacancy, the neural network achieves a high level of accuracy in pre-
dicting the path-dependent diffusion barrier (Supplementary Note 3
and Supplementary Figs. S12-14 for the testing of different neural
network structures). Figure 2b presents the evaluation of machine
learning model performance for two different concentrations (one
concentrated and one dilute), where the predicted energy barrier
value is compared with the ground truth (see “Methods”). The
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b Development of Mo-Ta order, 6y,_1,, as a function of diffusion jumps from
2x10* to 2x107. The inset shows that the jump number dependence of peak
temperature converges to the critical value -800 K below which the chemical
ordering is suppressed.

predicted and true values exhibit the same spectrum of barriers, and
the mean absolute error (MAE) is less than 1.2% of the average true
migration barrier for the two alloys, concentrated solution
Nbs3Mo33Tass and dilute solution NbgoMosTas (see Supplementary
Fig. S4 for new compositions and different system sizes).

After training on only tens of compositions (Supplementary Note 4
and Supplementary Figs. S15 and 16), the neural network remarkably
harnesses the complete composition space of the ternary Nb-Mo-Ta
system, building the relationship between composition and diffusion
barrier spectrum. Figure 2c shows the diffusion barrier diagram gen-
erated by the neural network, from which the alloy (Nb;sMogsTayo)
having the highest mean barrier is quickly identified. While research
efforts have been primarily focused on equimolar or near-equimolar
compositions, our results indicate an abnormal behavior can originate
from nonequimolar concentrations hidden in the vast composition
space. The neural network, which accurately predicts diffusion barriers
for new and unseen compositions, implies that it fully deciphers the
complex local chemistry variation and links it with diffusion property.

Diffusion kinetics-induced local chemical order

Originating from attractive and repulsive interactions among the
constituent elements of CCAs, atomic diffusion leads to the emer-
gence of local chemical order on a short- to medium-range scale. To
uncover diffusion-mediated chemical ordering and its dependence on
annealing temperature, we employ the NNK model to performe aging
simulations of the equimolar NbMoTa alloy at temperatures ranging
from 100 to 3000 K. With the ability to resolve individual atomic jump
and the low computational cost, 20 million diffusion jumps are carried
out for each temperature.

Figure 3a shows the change of the local chemical order 6; as a
function of temperature. Here the non-proportional order parameter,
6, quantifies the chemical order between a pair of atom types i andj in
the first nearest neighbor shell (see “Methods”). A positive 6,-1- indicates a
higher number of pairs compared to a random solid solution, suggesting
that element i prefers to bond with element j (favored pairing), while a
negative value suggests an unfavored pairing. At a high temperature
(3000 K), the system ultimately approaches the random solid solution,
as reflected by the small value of §;;. As the temperature decreases, the
magnitudes of 6; for Mo-Ta, Ta-Ta, Mo-Mo pairs increase mono-
tonically until they reach a turning point (around 800 K), beyond which
the trend reverses. The chemical order falls rapidly as the temperature is
lowered and, at 400K, it nearly vanishes. It is noted that the system
experienced an identical number of 20 million jumps at all temperatures.

These results suggest the existence of a critical temperature at which the
diffusion-favored ordering reaches a maximum (Regime I in Fig. 3a).
Below the critical temperature (Regime II), diffusion jumps barely
develop and enhance chemical order.

To better understand this critical temperature and how the
number of diffusion jumps affects it, we present the 6y,_r, order
parameter values obtained from a wide range of jumps, from 2 x10* to
2x10’, in Fig. 3b. As the number of jumps increases, the characteristic
temperature T(6,,x) corresponding to the maximum order gradually
shifts to lower values and finally converges to 800 K. The inset of
Fig. 3b illustrates the variation of T(6,,,) with diffusion jumps, again
unveiling this critical temperature below which diffusion-mediated
ordering is substantially limited.

Jump randomness and diffusion multiplicity in CCAs

In monoatomic crystals, the diffusion of vacancy can be described as
purely random, with each possible jump path having an equal prob-
ability of occurrence. However, in CCAs, local variations in chemical
composition give rise to distinct and path-dependent energy barriers,
resulting in a multivariate distribution of jump probabilities. For
example, in bcc CCAs, the jump probability for each of the eight
possible paths associated with a vacancy site can be expressed as
pi=exp(—E;/kg T)/Z;‘=1 exp(E;/kgT), where E; is the energy barrier of
path i, k is Boltzmann constant, and T is temperature. This can lead to
various diffusion modes, as illustrated in Fig. 4a, where the two limiting
jump cases are presented. One is pure random jump (where all jump
paths have the same probability of occurrence), and the other is non-
random, directional lattice jump (where one path predominates). To
quantify the degree of lattice jump randomness, we define an order
parameter R=1 — o(p)/ max(c), where o(p) is the standard deviation
of jump probability, p, and max(o) is the maximum standard deviation
occurring in directional or selective jump. Note the parameter, R,
ranging from O to 1, quantifies the degree of jump randomness, with
R=1and R = 0 representing the limiting cases of random diffusion and
directional diffusion, respectively.

Figure 4b shows spatial and statistical distributions of lattice jump
randomness R at three representative temperatures. The spatial maps
display color-coded lattices based on their respective R values. At a
high temperature of 3000 K, the thermal energy (kT > E;) smears out
the energy barrier difference between paths, leading to a peak R value
of 0.7, indicating highly random jumps. It is tempting to speculate that
random atomic diffusion is insufficient to build and develop B2
ordered phase, which apparently corresponds to the low order
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diffusion approaches simple random and directional modes at ultimate high- and
low temperatures, respectively.

observed at high temperatures (Fig. 3a). At alow temperature of 400 K,
the lattice jumps transform into directional diffusion, as demonstrated
by the R distribution having a peak value of 0. This implies that only
one of the eight diffusion pathways is active at each lattice site. Pre-
sumably, this one-dimensional directional diffusion predominating at
low temperatures (<400 K) limits and suppresses the nucleation and
growth of three-dimensional B2 structure. Intriguingly, at an inter-
mediate temperature (-800 K), the lattice jump randomness R exhibits
a broad distribution, spanning from 0.0 to 0.7, indicating highly het-
erogeneous diffusion modes.

To assess the system-level diffusion multiplicity (heterogeneity)
and its temperature dependence, we calculate the variance of diffusion
randomness Var(R) across temperatures ranging from 100 to 3000 K,
as illustrated in Fig. 4c. When close to the high or low-temperature
ends, there is a rapid change in Var(R), implying that diffusion
approaches a random or directional mode. The temperature variation

of Var(R) reveals a peak value of diffusion multiplicity at around 850 K.
Random and directional-type lattice jumps are spatially interspersed
throughout the entire system, as shown in the spatial map of Fig. 4b.
The observation of the highest diffusion multiplicity (Fig. 4c) and
maximum B2 order (Fig. 3a) occurring in the similar intermediate
temperature range suggests a strong correlation between diffusion
heterogeneity and the formation of B2 order.

B2 structure nucleation and growth kinetics

Determining the formation kinetics of chemically ordered structure in
acomplex solid solution has been a challenge due to the local chemical
fluctuations and huge amounts of diffusion barriers. The NNK frame-
work efficiently and precisely predicting diffusion barrier at any che-
mical environment is intended to address this issue. To demonstrate
the efficacy of the model, we perform aging simulations of NbMoTa
consisting of 128,000 atoms. Figure 5a—c shows the spatial-temporal
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Fig. 5 | B2 structure nucleation and growth kinetics during annealing in NbMoTa. a B2 cluster size evolution with the number of diffusion jumps. b-d Spatial
distributions of growing B2 cluster at 1x10°, 5x10°, and 1x 10’ diffusion jumps. Clusters are color-coded by their size.

nucleation and evolution of B2 structure induced by diffusion. With
1x10° diffusion jumps, a considerable amount of B2 clusters emerge
in the system (Fig. 5b), most of which are small clusters (size <8 atoms).
As the number of diffusion jumps further increases (5x10°), large
clusters begin to appear and continue to grow, accompanied by
annihilation and reduction of small ones (Fig. 5a). The decrease in
spatially isolated small clusters are a result of their attachment or
adsorption by nearby growing large ones. Apart from small clusters,
another essential kinetic process underlying growth is large cluster
interaction and coalescence. When two spreading clusters come near
to each other, they merge into a large one mediated by diffusion
(Supplementary Fig. S8). Figure 5d reveals the spatial distribution of
formed B2 clusters colored by their size in the aged material. In con-
trast to the precipitation of ordered nanoparticles in dilute solutions,
the more heterogenous growth of chemically ordered structure sig-
nifies the substantial role of diffusion multiplicity in governing the
complex chemical ordering in concentrated solutions.

Discussion

Diffusion kinetics in the emergent compositionally complex
materials®*° (often called high-entropy alloys and high-entropy oxides)
raise many intriguing rate-controlling phenomena and properties, such
as chemical short-range order”, chemically ordered nanoparticle
formation®, decomposition®, superionic conductivity®, extraordinary
radiation tolerance'***, to new a few. These behaviors are controlled by
the underlying atomic diffusion, which occurs in a chemical environ-
ment with a high degree of local composition fluctuations. Uncovering
the kinetic processes and predicting structure evolution in these mate-
rials requires novel computational techniques that can disentangle their
chemical complexity and connect it with individual atomic jumps. The

NNK scheme introduced here aims to tackle the kinetic behaviors arising
from diffusion processes, with a particular focus on this novel class of
materials. Underpinned by an interpretable chemistry and structure
representation (neuron map), the neural network precisely predicts the
diffusion path-dependent energy barriers governing individual atomic
jumps. The atomic diffusion and structure variations are effectively
modeled on the neuron map through neuron digit exchange (Fig. 1b).
This framework possesses three key advantages that give both high
computational efficiency and accuracy in modeling diffusion and new
phase formation. First, the interpretable on-lattice representation, which
converts chemistry and structure to physically equivalent neuron maps,
yields an ultra-small feature size, critical for machine learning models.
Second, the determination of neuron map (descriptor) is a one-time and
simple process, as it can be updated to fully replicate atomic diffusion
jumps and structure evolution. Importantly, the rotational covariance of
the neuron map enables the prediction of vector values from a single-
neuron map (vacancy configuration). Third, the NNK trained by small
models can be applied directly to investigate the kinetic behavior of
large systems without sacrificing accuracy. This size scalability is
demonstrated, for instance, by accurate barrier predictions (see Sup-
plementary Figs. S4 and S20) and ordered phase growth in large
NbMoTa systems (Fig. 5).

Cluster expansion (CE)'* method has long been used to study
thermodynamic properties of multicomponent systems, such as
vacancy formation energy*. For diffusion kinetics, the pivotal factor is
determining the diffusion barriers, requiring calculation of transition
states (saddle points). While the CE has been commonly employed to
predict the energies of local minimum states®’, presenting the transi-
tion state using CE and predicting the associated energy barrier
remains a challenging task® (Supplementary Note 5). Particularly, the
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increase in chemical complexity makes the design of clusters for even
local minimum configurations a time-consuming process. To tackle
this challenge, an approach involving parametrizing the reaction
coordinate and minimum energy path has been proposed®, however,
leading to a low prediction accuracy. Another machine learning model
promising to atomistic modeling is graph neural network (GNN), which
has shown great success in developing universal machine learning
interatomic potentials**°, Regarding vacancy diffusion in CCAs, GNN
theoretically has the potential to predict vector properties using
rotation-covariance features. However, modeling vacancy jump and
chemical evolution using graph network entails node swapping and
updating edge properties. Each node swap (representing vacancy
jump) can potentially affect neighboring nodes and their connected
edge features, necessitating their updates. This requires altering a
significant portion of the network, encompassing the 8th nearest
neighbors of vacancy node, after each vacancy jump. In contrast, the
introduced NNK scheme, with neural map representation, simplifies
the process by only requiring the update of two neurons for each
diffusion jump. This simplicity allows the mirroring of vacancy jumps
through the swapping of neurons (digits). With just one-time conver-
sion of the atomic configuration to a neuron map, vacancy diffusion
and chemical evolution are efficiently simulated by swapping digits
(the vacancy neuron and one of its nearest-neighboring neurons)
according to precise diffusion barriers and system temperature. In this
way, tens of millions of vacancy jumps are modeled efficiently, with
each jump iteration involving the action of just two neurons.

Stemming from attractive/repulsive interactions between solutes,
atomic diffusion inevitably leads to nucleation of chemically ordered
structure in CCAs during annealing. Using the NNK and bcc NbMoTa as
model system, we uncover the existence of a critical temperature, at
which the B2 order reaches its maximum value. This temperature
dependence of chemical order is closely related to the underlying
lattice jump randomness, as shown by the randomness maps (Fig. 4).
At high temperatures close to the melting point, diffusion jumps ulti-
mately approach a purely random process, corresponding to a low
propensity for order formation. At low temperatures, lattice diffusion
becomes dominated by the lowest barrier path, manifesting as direc-
tional jumping and restricting the nucleation of chemically ordered
structure. At the critical temperature in the intermediate range,
random-like and directional-type lattice jumps spread the entire sys-
tem, exhibiting the highest diffusion heterogeneity (multiplicity,
Fig. 4¢). By tracking individual B2 clusters during annealing, it is found
that their nucleation and growth are intermittent and non-uniform,
accompanied by the reduction and annihilation of small clusters (Fig. 5
and Supplementary Video 1). This salient feature in the kinetics growth
of B2 structure is not captured by fictitious thermodynamics-based
modeling using random atom type swap (see “Methods” and Supple-
mentary Fig. S9), which shows a more uniform growth (Supplementary
Fig. S10). These results highlight the complex and multitudinous
kinetic pathways in CCAs toward stable states, where many processes
like ordered structure nucleation, annihilation, growth, and rearran-
gement are interplayed and coordinated.

The neural network trained on dozens of compositions demon-
strates high performance for unseen compositions, unveiling the
entire ternary space of Nb-Mo-Ta (Fig. 2¢). With the design space for
composition being practically limitless, the compositionally complex
material formed by mixing multiple elements opens a new frontier
waiting to be explored. Traditional structure-property calculations
relying on density functional theory and molecular dynamics work well
for small datasets but fall short in harnessing the vast composition
space. Recent advances in the rapidly growing field of machine learn-
ing creates a fertile ground for computational material science**?,
having led to the discovery of alloys with optimal properties. By
directly connecting the multidimensional composition with diffusion
barrier spectra, the NNK illuminates a bright path to explore the vast

compositional space of CCAs, where hidden extraordinary kinetic
properties lie.

Methods

Material system and diffusion barrier calculation

We focus on the emergent refractory CCA, Nb-Mo-Ta, as the study
system to demonstrate the neural network kinetics (NNK) scheme.
When generating diffusion datasets for training the neural networks,
we use atomic models consisting of 2000 atoms. To compute the
vacancy diffusion energy barriers for the Nb-Mo-Ta system, we utilize
the climbing image nudged elastic band (CI-NEB)** method and a
machine learning potential®. In a bcc structure, vacancy jump has
eight pathways and final configurations, which can be created by
exchanging the vacancy with its nearest neighbor atoms. By labeling
each jump path, the path-dependent energy barriers are calculated
and stored for machine learning model training and validation. In
the CI-NEB calculations, we set the inter-replica spring constant to
5.0 eV/A2 The energy and force tolerances are chosen as 0.0 eV and
0.01eV/A, respectively. These parameters are selected to optimize the
convergence of the calculations®.

Structure representation and neural networks

The on-lattice representation coverts the atomic structure into a digit
matrix, which will be deciphered by neural networks. The conversion is
done through a voxel grid that separates the 3D material model into
uniform cubes. Each grid acquires a digit value (voxel) according to its
enclosed atom type or vacancy. For bcc structure, the largest grid we
can use, which can fully distinct all lattices and yield the smallest voxel
grid dimensionality, is a/2, where a is the lattice constant of the crystal
(see Supplementary Note 1).

The neural network, taking the representative structure and
chemistry digits (neurons) as input, process them through the hidden
layers, outputting the energy barriers. The connections between neu-
rons in the hidden layers imitate the physical interactions between
atoms and atom-vacancy. Representing the interaction strength
(contribution to the migration barrier), the weights associated with the
connections are adjusted during training. To understand the influence
of network architecture on prediction performance, we train a series of
neural networks with varying number of layers and number of neurons
in each layer (Supplementary Note 3). As the number of neurons in
each hidden layer increases from 16, 32, 64, to 256, the testing MAE
rapidly decreases, followed by convergence at 128 that is enough to
explicitly describe all the local neighbors of a vacancy (Supplementary
Fig. S14). By testing the different number of layers, the final network
structure with 4 hidden layers and 128 neurons in each layer was
selected for simulating the diffusion in the equimolar NbMoTa alloy,
owing to its robustness in concentrated solid solutions. In addition, we
separately train a convolutional neural network (CNN) to compare with
the simple neural network. The CNN comprises four convolutional
layers that compress the 3D neuroma map to 1x128 dimension for
barrier prediction. The architecture of CNN is depicted in Supple-
mentary Fig. S17 and described in Supplementary Note 3. Likely
resulting from adaptive learning spatial hierarchies of features from
input 3D atomic structure, CNN exhibits slightly enhanced predictive
performance (Supplementary Fig. S20).

The training data are generated from 46 different compositions,
which uniformly sample the Nb-Mo-Ta diagram (Supplementary
Fig. S18 and Supplementary Table S3). In Supplementary Note 4, we
carefully study and discuss the number of compositions required to
train a highly accurate network for predicting the complete ternary
space. Each composition model contains 2000 atoms, giving rise to
16,000 diffusion barriers. The total 736,000 data points are split into
training dataset (95% of total data) and validation dataset (5%). All the
compositions and their data points are summarized in Supplementary
Table S3. After validation, the neural network is tested for barrier
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prediction in unseen compositions (which are not used for training or
validation) and in atomic configuration with different sizes. For
example, Supplementary Fig. S4 shows the testing results for the new
Compositions, NbloMoloTago, szoMOGQTaZQ, Nb40M030T330, and the
average MAE is around 0.018 eV. Notably, the neural network pre-
serves the consistently high accuracy for different-sized systems con-
taining 512, 2000, and 6750 atoms, indicating scalability.

Neuron kinetics
The neuron map enables efficient modeling of vacancy kinetics through
the exchange of neurons, referred to as neuron kinetics. By converting
the atomic configuration into a neuron map just once, the neural net-
work simulates vacancy jumps simply by swapping two neurons within
the map (vacancy and one of its nearest-neighboring neurons). This
streamlined process allows to efficiently model tens of millions of
vacancy jumps. Importantly, it is worth noting that each jump iteration
involves the exchange of only two neurons, as depicted in Fig. 1b.
Vacancy jump is carried on the neuron map based on the kinetic
Monte Carlo (kMC) algorithm. Diffusion occurs through vacancy
(vacancy neuron) jump to its nearest-neighboring sites, and each site
has a jump rate defined by k; = k, exp(—E;/kgT), where E; is the energy
barrier along jump path i, k; is Boltzmann constant, T is temperature,
and k is an attempt frequency. The vacancy diffusion barriers asso-
ciated with the eight jump paths are obtained from the neural network.
The total jump rate for the current vacancy configurationis R=>"% k;,
i.e.,, the sum of all individual elementary rate. To simulate kinetic
evolution, we first draw a uniform random number u € (0,1] and select
a diffusion path, p, which satisfies the condition®,
P lki/R<u<Y?_ k;/R. The vacancy jump along path p is then exe-
cuted by exchanging the vacancy with the selected neighboring neu-
ron (neuron digit swapping), resulting in an updated neuron map for
the next iteration.

Static Monte Carlo and molecular dynamics simulation

We perform static Monte Carlo (MC) simulations coupled with mole-
cular dynamics to reveal the chemical order determined by enthalpy
(mainly thermodynamics). In each MC trial, a pair of atoms is randomly
selected for type swap. The acceptance probability is according to the
exp(—A4H/kgT) in Metropolis algorithm*’. The term AH is the enthalpy
change after swap, therefore, the chemical evolution and ordering is
predominately contorted by enthalpy. The MC swaps are followed by
MD equilibration. For the systems consisting 1024 atoms, we perform
18,000 swap attempts (each atom on average subjected to 18 swaps)
and 600 ps MD equilibrium. Supplementary Fig. S9 shows the local
order as a function of MC step for temperatures from 100 to 3000 K.
To study B2 cluster growth, we perform the MC and MD simulation in a
large model (128,000 atoms). There are totally 135,000 swaps coupled
with 150 ps MD equilibrium. Unlike diffusion-mediated B2 cluster
growth, the clusters grow in a uniform and homogeneous manner
(Supplementary Fig. S10).

Local chemical order parameter

To quantify the degree of chemical order, we use the non-proportional
parameter*® §;=N; — N ;, where N; denotes the actual number of
pairs between atoms i and j in the first nearest-neighboring shell, and
Ny ; represents the average number of pairs in random solutions. A
positive §; means a favored and increased number of i-j pairs, indi-
cating element i tends to bond with element . A negative §;; indicates
unfavored pair, meaning i and j repel each other. Random solid solu-
tion has 6;=0.

B2 cluster analysis

Mo and Ta tend to attract each other and form the B2 structure. The B2
unit cell has a simple bcc structure and comprises two species, Ta and
Mo, orderly located in the cube corners or center. The unit cell can have

either Ta or Mo-centered pattern. Because of the high concentration of
Nb in the equimolar NbMoTa alloy, we characterize a unit as B2 when 3/
4 of the Ta nearest neighbors are Mo, or 3/4 of the Mo nearest neighbors
are Ta. To analyze the B2 cluster, the identified individual B2 units are
gathered into individual group according to distance criterion. Two B2
units can have volume-, face-, edge-, and point-sharing at distance
V3a/2, a, V2a, v/3a (i.e., 5th shell), respectively, where a is lattice
constant (illustrated in Supplementary Fig. S7). Choosing the cutoff
distance as half of the 5th shell and 6th shell, the spatial distribution and
size of all B2 clusters can be successfully characterized. During the
kinetic annealing, clusters can be reduced or annihilated, which causes
clusters appearance or disappearance from time to time. The fluctua-
tion hinders visualization and analysis of stable B2 cluster evolution. To
address this issue, we search and identify the persist clusters that exist
all the time during annealing. Focusing on the persistent cluster pro-
vides a clear evolution of cluster growth (Fig. 5).

Data availability
The diffusion data in this study have been deposited in the Zenodo
under accession code https://doi.org/10.5281/zenodo.7714650.

Code availability
All source codes of NNK are available at the GitHub repository https://
github.com/UCICaoLab/NKK*.
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