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Abstract

Essays in Environmental Economics

by

Justin Gallagher

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Enrico Moretti, Chair

The first chapter of the dissertation examines the learning process that economic agents use
to update their expectation of an uncertain and infrequently observed event. The standard
Bayesian updating model is restrictive in that it reflects the strong neo-classical assumption
that economic agents efficiently incorporate new information with all available information
when updating beliefs. I consider the case of flooding and estimate the effect of first-hand
experience on flood insurance take-up. I compile a new nation-wide panel dataset of large
regional floods and flood insurance policies in the US. First, I show that flood insurance
take-up in flooded communities increases by 9% after a flood and then steadily declines,
fully dissipating after 9 years. Floods do not affect take-up in geographically neighboring
non-flooded communities unless these communities are in the same media market. The take-
up rate in non-flooded communities that share a media market with a flooded community
is one-third as large as in flooded communities. I interpret this evidence using the stan-
dard Beta-Bernoulli Bayesian learning model and a Beta-Bernoulli model that includes a
forgetting/first-hand experience parameter. I find that the standard Bayesian model can
not explain both the spike in insurance in the year of a flood and the decay rate of this
effect on insurance take-up in the years after the flood. I conclude that the evidence is
most consistent with a Bayesian model augmented with a forgetting/first-hand experience
parameter.

The second chapter of my dissertation examines the causal link between localized exposure to
hazardous waste pollutants from motor vehicle exhaust and adverse human health outcomes
for newborns. I explore whether an exogenous event–the 1994 Northridge Earthquake–can
be used as a quasi-experiment to test how birth outcomes change from a sudden and unex-
pected increase in pollution. The Northridge Earthquake closed down portions of four busy
highways in Los Angeles, CA for periods of 1-6 months. The highway traffic was diverted
onto secondary roads that previous to the earthquake had a much lower traffic volume. The
paper focuses on two health outcomes for newborns: birth weight and gestation period. In-
fants born preterm or with low birth weight are less likely to survive infancy, more likely
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to suffer from childhood illness, and have lower future earnings. Overall the results of this
study are inconclusive due to the relatively small number of new births included in the sam-
ple design. However, the results do suggest that a mother’s race, age, and level of education
are more important than proximity to a highway. Being a minority race, a teenage mother,
or not having any college education are correlated with lower birth weight. The size of these
correlations are approximately an order of magnitude larger than the point estimates for the
effect of living in close proximity to a road with heavy traffic.

The third chapter of the dissertation uses the housing market to develop estimates of the
local welfare impacts of Superfund sponsored clean-ups of hazardous waste sites. We show
that if consumers value the clean-ups, then the hedonic model predicts that they will lead to
increases in local housing prices and new home construction, as well as the migration of indi-
viduals that place a high value on environmental quality to the areas near the improved sites.
We compare housing market outcomes in the areas surrounding the first 400 hazardous waste
sites chosen for Superfund clean-ups to the areas surrounding the 290 sites that narrowly
missed qualifying for these clean-ups. We find that Superfund clean-ups are associated with
economically small and statistically indistinguishable from zero local changes in residential
property values, property rental rates, housing supply, total population, and the types of
individuals living near the sites. These findings are robust to a series of specification checks,
including the application of a regression discontinuity design based on knowledge of the se-
lection rule. Overall, the preferred estimates suggest that the local benefits of Superfund
clean-ups are small and appear to be substantially lower than the $43 million mean cost of
Superfund clean-ups.
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Chapter 1

Learning about an Infrequent Event:
Evidence from Flood Insurance
Take-up in the US

1.1 Introduction

This paper examines the learning process that economic agents use to update their expec-
tation of an uncertain and infrequently observed event. A common model of individual
learning is Bayesian updating. The standard Bayesian updating model is restrictive in that
it reflects the strong neo-classical assumption that economic agents efficiently incorporate
new information with all available information when updating beliefs. In this paper I test
how well the standard Beta-Bernoulli Bayesian model performs using a new panel dataset
on flooding and the purchase of flood insurance.

Flooding in the US is economically significant. Flood damages averaged $6 billion per
year from 1955-1999 ([94]). Homeowner insurance policies explicitly exempt coverage for
damage due to flooding. Homeowners in the US must decide each year whether to purchase
a separate flood insurance policy. I test homeowner learning of the probability of flooding
in their community using the timing of flood insurance purchase.

The combination of readily available statistical information, but infrequent personal ex-
perience, makes flooding a good context in which to study learning. In the US, historical
flooding information and detailed engineering flood maps are accessible to all citizens. Given
the large amount of available flooding information, one might find it surprising if the inci-
dence of a new flood changes existing beliefs. The contribution of this paper is to test
how well the standard Bayesian learning model fits observational data for an uncertain and
infrequently observed event.

The first goal of this paper is to document whether homeowners update their beliefs
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over the likelihood of future floods after observing a large regional flood.1 In particular, I
am interested in estimating how beliefs change both in the year of a flood and in the years
immediately after a flood. To answer this question I construct a new and unique nationwide
community-level panel dataset on flood insurance policies and the timing of large regional
floods. The dataset includes information on all flood insurance policies in the US for each
calender year and whether a community is hit by a Presidential Disaster Declaration (PDD)
flood that year.

I use the change in the number insurance policies at the community level as a measure
of changing homeowner beliefs. The logic of looking at flood insurance policies is that the
decision to purchase flood insurance reveals changing beliefs over the expectation of future
floods. The federal government sets the rates for flood insurance and insurance is available
for purchase by homeowners before and after each flood at nearly identical rates. A simple
homeowner flood insurance model implies that the demand for flood insurance increases as
the expected probability of a future flood increases.

I use a flexible event study framework that nonparametrically estimates the causal effect
of large regional floods on the local take-up of flood insurance. I find strong evidence of an
immediate rise in the fraction of people covered by flood insurance in a flooded community
in the year of a flood. The effect peaks after one year at 9% (perhaps reflecting delayed
adjustment)–then begins to steadily decline, fully dissipating after 9 years. The event study
covers an 18 year panel and includes community and state by year fixed effects.2 The
identifying assumption is that, conditional on a community’s geography and calender time
trends, whether or not the community is flooded in a particular year is random.

The increase in the take-up of flood insurance is strong evidence that homeowners up-
date their belief of future floods when their community is flooded. I also examine whether
homeowners who live in communities that are close to a flood, but not directly affected,
“learn” about risks from the experience of their neighbors. I consider two different measures
for proximity to a flood: geographic distance and media exposure.

First, I consider homeowners in communities within flooded counties that are not hit
by the flood.3 Flood insurance take-up in these communities is approximately one-third as
large as take-up in flooded communities in the same county. Next, I estimate the effect
on take-up in communities near to, but outside, flooded counties. The effect of a nearby
flood on insurance take-up for these communities is economically small and only marginally
significant. Finally, I run the event study analysis using the media definition of indirect
exposure to a flood. I identify communities in non-flooded counties that share a media
market with flooded communities. Insurance take-up in the year of a flood in these non-
flooded communities is economically and statistically significant. The coefficient estimate

1All property owners (e.g. business owners) can purchase insurance, but for the ease of exposition in this
paper I refer to flood insurance policy holders as homeowners.

2A community is defined as a local political entity (e.g. village, town, city).
3The data for large regional floods used in the paper are Presidential Disaster Declaration floods. These

floods are declared at the US county level.
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is about one-third as large as in flooded counties and persists for 6 years. Controlling for
the geographic distance from a flooded county does not change the statistical or economic
significance of sharing the same media market.

The second goal of the paper is to compare three different models of homeowner learning
and provide evidence as to which model best explains the observed homeowner flood insur-
ance purchasing behavior. I first consider the (standard) Beta-Bernoulli Bayesian learning
model. Homeowners use information on yearly floods to update their expectation of a future
flood in their community. Current and past yearly flood information is weighted equally
when updating beliefs over floods. This model implies that as the stock of information
increases, the effect of a new observation becomes smaller (and eventually zero). In most
communities in the US there are many decades of detailed historical flood records. Thus, in
the context of this model, it is surprising that we observe an economically significant increase
in the purchase of flood insurance after a flood.

The second learning model I consider is a modified Beta-Bernoulli Bayesian model that
includes a forgetting/first-hand experience parameter. This model is motivated by the em-
pirical finding that there is both a spike in the number of flood insurance policies in the year
of a flood, and a relatively fast decay of insurance take-up in the years after a flood. Taken
together, this behavior suggests that homeowners may not be considering all available past
flood information. One way to model this possibility is with a parameter that discounts past
information ([29]; [79]).

The third learning model incorporates the other main empirical finding of the event
study. Homeowners in non-flooded communities take up insurance after a flood, provided
they live in the same media market as a community that is flooded. One explanation is
that homeowners update their belief of a flood in their community based on the flood risk
information content of a nearby flood. The media happens to be how homeowners learn
about floods that don’t directly hit their community. The third learning model includes a
parameter that allows nearby floods to influence the expectation of a future flood.

Next, I test the standard Beta-Bernoulli Bayesian and discounted Beta-Bernoulli learning
models. I take advantage of the fact that the standard Beta-Bernoulli learning model is a
special case of the discounted learning model when the discount parameter equals one. I use
50 years of observed floods to generate a time series of flood beliefs under the assumption
that each model represents the true homeowner learning process. I then select the model that
generates the flood beliefs which minimize the mean square error of a function that assumes
a log-log relationship between insurance take-up and the conditional expectation (belief) of
a future flood.4 A learning model with a discount parameter value of .95 minimizes the
mean square error using non-linear least squares, and provides an acceptable fit to the data
using a Chi Square test. Moreover, I can reject the standard Beta-Bernoulli model at the
1% significance level using a Chi Square test. I conclude that a homeowner learning model

4I have not yet generated probabilities using the 3rd learning model, but plan to incorporate these results
into a later draft of the paper.
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that allows past information to be discounted is most consistent with observed homeowner
insurance take-up.

Overall, this paper provides evidence that the standard Bayesian model may not be a good
model of learning when considering uncertain, but infrequently observed events. The findings
of this paper also suggest two specific policy implications. First, collectively homeowners
have a short memory and don’t appear to equally weigh all past flood information. If a
policy goal is for homeowners to self-insure against floods, then offering multi-year insurance
contracts or opt out contracts could help prevent homeowners from dropping their insurance
after years when there is no flood ([68]). Second, there is clear evidence that the news media
is a channel through which homeowners “learn” about their flood risk even when they are
not directly impacted by a flood. This suggests that an information campaign could be
successful in increasing aggregate flood insurance penetration in regions (markets) where
there is currently a low level of take-up. However, the information campaign would need to
consistently emphasize flood risks since the lasting effects of the “learning” for homeowners
who don’t experience floods is short.

Other studies have used survey evidence to show that beliefs about the likelihood of a fu-
ture natural disaster increase immediately following personal experience with a disaster (e.g.
[74]; [85])5 To my knowledge, this is the first paper to use panel data from an economically
important setting to test how well the standard Bayesian updating model explains learning
about an uncertain and infrequently observed event. The key to testing the model is using
the complete insurance take-up “impulse response function” following a new flood.

There are a number of related literatures. Bayesian updating models have been used in
labor economics, for example, to model employer learning of employee productivity (e.g. [13];
[49]; [15]; [64]). Bayesian updating models have also been applied to study learning about
the natural environment (e.g. [69]; [41]). More flexible models of learning that relax some of
the restrictions of the standard Bayesian models include: [29] and [63].6 Two recent papers
examine the effect of first-hand experience on the interpretation of available information
using panel data sets ([60]; [79].7 Finally, [45] and [83] provide detailed descriptions of flood
insurance in the US including some household level characteristics of policy holders.

The remainder of the paper is structured as follows. Section 1.2 provides institutional
details on flood insurance and flooding in the US, and outlines the data used for analysis.
Section 1.3 presents the event study insurance take-up estimation results. Section 1.4 in-
terprets the insurance take-up results using a homeowner flood insurance purchasing model.
Section 4 also outlines three homeowner learning models. Section 1.5 tests the learning
models and section 1.6 concludes.

5[74] coined the term natural disaster syndrome to describe this response. An environmental engineer in
California involved with flood plain management refers to this as the hydro-illogical cycle.

6[29] also provide a succinct overview of ‘choice reinforcement’ learning models.
7A number of other studies examine the effect of first-hand experience in a laboratory setting (e.g. [99];

[19]; [61]).
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1.2 Flooding and Flood Insurance in the US

The first objective of this paper is to document whether being hit by a large regional flood
leads homeowners to reevaluate their belief about the likelihood of future floods. Homeowner
flood beliefs are unobservable. This paper uses the timing of the purchase of flood insurance
as evidence of changing homeowner beliefs over future floods. The goals of this section are to
summarize the relevant institutional details regarding the purchase of flood insurance, and
to introduce and describe the flooding and flood insurance data used in the paper.

1.2.1 The National Flood Insurance Program

Flood insurance was not available to home or business owners in the US for most of the 20th
Century.8 The federal government created the National Flood Insurance Program (NFIP)
in 1968. The NFIP sets flood insurance premiums at “actuarial” rates based on historical
flood data and detailed community flood maps created by the Army Corps of Engineers.
Engineering data and historical observations are used to determine expected damage. The
expected damage based rates are then increased by 30−40% to cover the expenses of running
the program.9

To simplify the rate setting process the NFIP specifies a limited number of nationally
designated flood zones. The Corps of Engineers flood maps divide each part of each com-
munity as falling into one of approximately 10 flood zones. The zones with the highest flood
risk correspond to the 100 year flood plain. Different premium base rates are offered for each
zone and adjusted within each zone according to a number of factors.10

Homeowners decide whether to purchase flood insurance each calender year.11 Flood
insurance polices are sold by private insurance companies at the rates specified by the NFIP.
Flood insurance and risk information is transmitted to home and business owners in a number
of ways. First, private insurance companies market flood insurance to homeowners. The
companies are compensated by the NFIP for each flood insurance policy transaction. Second,
each community offering NFIP insurance posts detailed publicly accessible copies of the

8The reasons stated for no private flood insurance market include: the lack of accurate flood risk infor-
mation that could prevent averse selection and repeated losses on the same policy-holders, and the view that
many homeowners are unwilling to pay actuarially fair prices ([1]; [16]).

9The exception to this rate setting process are structures built before 1975 (or the introduction of NFIP
in each community). The rates for these structures are lower and approximately equal to expected flood
damage ([10])

10See [11] for more details regarding the rate setting process.
11Flood Insurance can only be purchased in those communities that officially participate in the NFIP.

Community participation in the NFIP is not mandatory and requires that a community commit to following
certain flood plain management principals (e.g. building materials and structural designs). However if a
community does not participate in the NFIP then residents of the community are not able to avail themselves
of some other federal programs (e.g. Department of Veteran Affairs loan guarantees, and grants to rebuild
after a Presidential Disaster Declaration).
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Corps of Engineers flood maps. These maps allow each homeowner to precisely identify the
location of his home and its corresponding flood zone. Third, flood zone documents are
required at the time of purchase or construction of a new home or business if the home or
business is within the 100 year flood plain.12

One important implication of the NFIP rate setting process is that premium rates are
unaffected by whether your home is flooded. The base premium rates (and adjustments) for
the 10 nationally designated flood zones are set for the entire country. The NFIP expects
that some communities will be flooded each year. For the years included in the panel analysis
(1980-2007), the base flood rates for the various zones remain virtually unchanged in real
dollars. This aspect of the year to year rate setting process for flood insurance is markedly
different from many other insurance markets. For example, most car insurance companies
will substantially raise premium rates for a driver the year after an accident.

1.2.2 Flood Insurance Data

All flood insurance policies in the US are sold through the National Flood Insurance Program
(NFIP). Through a Freedom of Information Act Request, I received NFIP data on all flood
insurance policies from 1980-2007.13 Figure 1.1 shows that the number of flood insurance
policies has increased steadily from about 1.5 million in 1978 to 5.5 million in 2007. This
paper focuses on the decision to purchase flood insurance after a large regional flood. The
paper does not attempt to explain the overall trend in flood insurance take-up. The event
study estimation of in section 1.3 flexibly controls for the aggregate time trend of figure 1.1,
so as to estimate the causal impact of regional floods on insurance take-up.

The NFIP data are aggregated at the community level for each calender year. There
are several limitations of using the aggregated flood insurance policy count data. I am not
able to distinguish between new and continuing flood policies. If the total number of flood
insurance policies increases in a community then it is clear that this must include some new
policies, but the exact composition of new and continuing policies is unknown. A second
limitation, is that the NFIP does not currently track which policies are for properties located
in the 100 year flood plain.14

I supplement the NFIP insurance data with information I generate directly from each

12There are often building restrictions on new structures within the 100 year flood plain. In addition, all
new structures that have a bank loan underwritten by the federal government are ostensibly required by law
to have current flood insurance for the duration of the loan. However, this law does not appear to be widely
enforced ([45]; [9]).

13I would like to thank Tim Scoville, NFIP Systems Development Manager, and Andy Neal, NFIP Actuary,
for their assistance in providing and interpreting the data.

14Surprisingly, the NFIP is also unable to distinguish between new and continuing policies or determine
which policies are for structures in the 100 year flood plain. The reason for this is that all of the policy
transactions occur by private insurance companies. Until recently, the NFIP has not acquired and retained
these data from the private insurers. The NFIP is currently revamping its data storage system to keep track
of this information in the future.



CHAPTER 1. LEARNING ABOUT AN INFREQUENT EVENT 7

community’s Corps of Engineers flood zone map. In 2003 the NFIP began a process to digitize
each community’s flood map. I use GIS software to generate three descriptive variables for
each community with a digital flood map: the percent of the community in the (100 year)
flood plain, the percent of the community in the 100-500 year flood plain, and the percent
of the community outside both of these designations.15

Table 1.1 displays summary information for the subset of communities in my primary
sample with non-missing digital flood maps. Panel A lists the percent of a community that
falls within each of the three flood map designations. The mean (median) percent of a
community’s land area that falls with the flood plain is 14 (8) percent. The vast majority
of each community is within the Corps of Engineers estimated 500 year flood plain. The
median amount of each community falling outside the 500 year flood plain is just 4%. Panel
B divides flood insurance take-up in 1980, 1990, 2007 by whether the community contains
more than or less than the median amount of the community land within the (100 year) flood
plain. Not surprisingly, the number of flood insurance policies per person is higher in those
communities with more land in the flood plain. For example, in 2007 the mean number of
policies in communities with more than the median amount (8%) of land zoned in the flood
plain is 35, while those communities with less than the median have a mean of 8 policies.

1.2.3 Presidential Disaster Declaration Floods

One challenge in answering the primary research questions of this study is to find nationally
representative flood information to link to the community level flood insurance panel data.
Presidential Disaster Declaration floods provide this opportunity. In the next two subsec-
tions, I describe the Presidential Disaster Declaration process and the flood data used in this
paper.

The Disaster Relief Act of 1950 established the Presidential Disaster Declaration (PDD)
system. The legislation formalized a process through which state governments can request
federal assistance in responding to natural disasters that occur in their state. The rationale
is for the federal government to provide assistance when natural disasters are of a scale that
local and state governments are unable to effectively manage the disaster on their own. The
first Presidential Disaster Declaration occurred in Georgia in 1953 in response to tornados.
Since 1953, natural disasters that have led to Presidential Disaster Declarations include:
droughts, earthquakes, fires, floods, hurricanes, and severe storms.

The declaration process has several steps. The governor of a state must write an official
letter to the President requesting that a Presidential Disaster Declaration be declared for
specific counties in the state. The formal request for a Presidential Disaster Declaration
is sent after local and state officials have had time to assess the damage. In the letter
the governor outlines the scope of the disaster including weather and damage information

15Through a Freedom of Information Act Request I received copies of all digitized community flood maps.
As of May 2009, there were digital maps available for approximately one quarter of the communities.
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collected by local agencies. The letter must specify the list of counties in the state that
would be part of a Presidential Disaster Declaration. Historically three-quarters of flooding
Presidential Disaster Declaration requests have been granted.16

A Presidential Disaster Declaration opens the door to two major types of disaster assis-
tance. The largest component of disaster assistance in Public Assistance. Public Assistance
is available to local and state governments, as well as, non-profit organizations located in a
PDD county. These groups can access grant money to remove debris, repair infrastructure,
and to aid in reconstruction of public buildings. The damage must have been caused by the
natural disaster.17

The second type of disaster assistance is Individual Assistance. Individual Assistance is
available to homeowners and residents in Disaster Declaration counties. Home and Business
owners can access low interest disaster loans to rebuild. Direct cash assistance is also available
for temporary and emergency expenses such as covering the cost of interim housing.18

1.2.4 Flood Data

This paper uses Presidential Disaster Declaration events as a data source of large regional
floods. I downloaded information on all Presidential Disaster Declarations involving flooding
from the Public Risk Institute (PERI) website.19 The data collected include the date of
the Presidential Disaster Declaration, the type of disaster, location information (state and
county), and an estimate of disaster cost. I only consider Disaster Declarations that list
coastal storms, severe storms, hurricane, or floods as the primary type of disaster.

Figure 1.2 displays the number of flooding Presidential Disaster Declarations by county
from 1990-2007. Figure 1.2 is created using the same dataset used to run the event study
analysis in Section 1.3. All communities participating in the National Flood Insurance
Program that have non-missing population data for the 1990-2007 panel are included in the
event study analysis. There are 2704 such counties (or county equivalents). This includes
approximately 90% of all US counties. The vertical axis of figure 1.2 measures the percent
of counties with each number of Presidential Disaster Declarations. Nearly every county in
the sample, 92%, is hit by at least one Presidential Disaster Declaration flood during the 18
years from 1990-2007. The median number of PDD floods for a county is three. There are
twelve counties with ten or more PDD floods. Eleven of these twelve counties are located in
North Dakota near to the Red River.

16In 1986 the Federal Emergency Management Agency established a set of criteria to use when evaluating
whether to grant a declaration request. These criteria included estimated damage costs. Nevertheless, there
is institutional discretion when deciding whether to grant requests ([46]; [98]).

17The Stafford Act of 1988 specifies that the federal government will cover at least 75% of the replacement
value of infrastructure or building repairs. States are required to pay the remaining 25% as a condition of
receiving the federal Public Assistance money.

18In 2007 the threshold for housing assistance was capped at $28,200.
19I would like to thank Richard Sylves for helpful conversations about these data.
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Figure 1.3 shows a county delineated map of the continental US. The map is color coded
based on the number of Presidential Disaster Declarations from 1990-2007. The darker the
shade of red the fewer the number of floods. Bright red corresponds to counties with 9
or more PDD floods, while black counties have zero floods. The white counties are those
excluded from the analysis.

One assumption of this paper is that community-level flood probabilities are constant
from 1958-2007. Overall this is consistent with the view of the NFIP and the CORPS of
Engineers. The flood designations in only about 1% of the community flood maps have been
modified since the maps were first created in the 1960’s and 1970’s. Figure 1.4 provides
support for this assumption using county-level cost data.20 Figure 1.4 plots the mean per
capita county flood cost (2008 $) from 1969-2004. The data are National Weather Service
flood cost information collected by the National Climatic Data Center21 There is a great
deal of year to year variation in mean county flood costs, but overall, there is no national
trend over this period.

Presidential Disaster Declaration floods are determined at the county level. However,
not all communities within a county may be effected by the flood. I construct a variable
to identify which communities in PDD counties are “hit” by each Presidential Disaster
Declaration using information on claims via the Public Assistance program. As described
above, state and local governments–as well as non-profits–are entitled to grant money to
repair infrastructure and rebuild structures damaged by flooding in counties included in
a Presidential Disaster Declaration. Through a Freedom of Information Act Request, I
received a datafile that lists the location of every Public Assistance damage claim paid out
from 1990-2007.22 There are more than 800,000 unique observations. All observations are
linked to the Presidential Disaster Declaration under which it was filed. From these data
I create an indicator variable for whether a community within a PDD county is hit by a
particular flood. I consider a community to be hit if there is at least one Public Assistance
claim with a damage location within the community.

I am able to match between 90-95% of the Public Assistance claims to a NFIP com-
munity.23 I almost certainly fail to code some communities as being hit by a Presidential
Disaster flood due to the non-matched claims data. The effect on the event study regression
estimates will be to bias insurance take-up coefficient estimates after a hit towards zero.24

20Ideally we would want to observe community level flood costs, but these are not available for this time
period.

21The Hazards and Vulnerability Research Institute at The University of South Carolina compiled and
cleaned the National Climatic Data Center data and maintain the data as part of the “Spatial Hazard Events
and Losses Database for the United States” (SHELDUS). I would like to thank Chris Emrich for assistance
in interpreting the SHELDUS cost data. The SHELDUS data are in levels. I adjusted the data using US
Census county population estimates. See data appendix for more details.

22I would like to thank Deni Taveras and Paul Weschler for preparing the data and shepherding the data
request through the FOIA process.

23See Data Appendix for details on matching.
24In the event study regressions I identify the effect on insurance take-up of being hit off of those communi-
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Panel C of Table 1.2 provides summary statistics for the percent of communities in
PDD counties hit by Presidential Disaster Declarations from 1990-2007. Overall, 32% of
communities in counties with a Presidential Disaster Declaration are hit by a PDD county
level flood in the year of a flood. The percent of communities hit by a PDD flood is similar
for those communities with less than the median amount of community land mapped in the
flood plain, as it is for communities with more than the median amount of land considered
within the flood plain. 29% of less than median communities are hit by a PDD flood whereas
35% of more than median communities are hit.

1.3 Econometric Model and Estimation Results

The first goal of this paper is to document whether home and business owners update their
beliefs over future flooding after exposure to a large flood. I use changes in the number of
homeowners with flood insurance policies as a measure of changing beliefs. The economic
model underlying the relationship between floods, flood beliefs, and flood insurance will be
discussed in detail in the next section. The key prediction of the model is that if homeowner
beliefs over future floods increase then more homeowners will purchase flood insurance. This
paper uses the timing of large regional flood events as exogenous events that potentially
lead homeowners to revise upwards their beliefs of future floods. This section discusses the
statistical model and the main estimation results.

1.3.1 Event Study Empirical Specification

I use a flexible event study framework that nonparametrically estimates the causal effect
that large regional floods have on the take-up of flood insurance. Equation (1.1) shows the
main estimating equation.

ln(takeupct) =
T∑

τ=−T

βτWcτ + αc + γt + εct (1.1)

The unit of observation is a community calender year. The dependent variable in equa-
tion (1.1), ln(takeupct), is Log Flood Policies Per Person for community c in year t. The
independent variables of interest are the event time indicator variables, Wcτ . These variables
track the year of a Presidential Disaster Declaration hit and the years immediately preceding
and following a hit. The indicator variable Wc0 equals 1 if community c is hit by a flood in
that calender year. The indicator variable Wcτ equal 1 if a community is hit by a Disaster

ties that are not hit by the flood. Accidently assigning hit communities to the not hit group will bias upwards
the insurance take-up of the non-hit group (assuming that there is a positive correlation between being hit by
a flood and take-up), and bias downwards the coefficient estimate of the take-up of hit communities relative
to the non-hit group.



CHAPTER 1. LEARNING ABOUT AN INFREQUENT EVENT 11

Declaration in −τ years. Many communities are hit by more than one PDD flood during
the event study. For these communities each flood is coded with its own set of indicator
variables.25

In most of the specifications of equation (1.1) I bin the Wcτ by creating a single indicator
variable for the end periods. The bin indicator variables serve a practical purpose. I am most
interested in the years shortly before and after a flood. The event time indicator variables,
Wcτ , near the tails of the event study are identified off of many fewer observations and
therefore have large standard errors. Binned indicator variables pool the effect on take-up
over multiple event years to increase statistical power.26

Equation (1.1) also includes community fixed effects, αc, and calendar year fixed effects
γt. These fixed effects control for unobserved (and unchanging) community characteristics
and yearly factors. Community geography is important in predicting the likelihood of a flood.
The underlying community geography includes surface characteristics, such as the percent of
a community located in the flood plain, and location specific factors such as average rainfall.
Year fixed effects account for year to year changes in NFIP institutional factors and other
yearly trends that may effect take-up.

The preferred specification of equation (1.1) replaces the year fixed effects, γt, with a full
set of state by year fixed effects. The state by year fixed effects nonparametrically control for
state specific time trends. εct is a stochastic error term. Standard errors from the estimation
of equation (1.1) are clustered at the state level. Finally, the causal interpretation of equation
(1.1) comes from the assumption that whether a community is hit by a flood in a particular
year is random conditional on community and year (or state by year) fixed effects.

The event time indicator variable Wc−1 is normalized to zero when I estimate equation
(1.1). In practice this is done by excluding Wc−1 from the regression. Normalizing Wc−1 to
zero provides for a useful interpretation of the remaining event time indicators in equation
(1.1). The estimated coefficients for all other event time variables are interpreted as the
percent change in the take-up of flood insurance in community c relative to the year before
a flood. In other words, the event study answers the question: “How much greater is the
take-up of flood insurance in each year after a flood compared to the year before a flood?”

I estimate equation (1.1) on a panel of communities over two different time periods:
(i) 1980-2007, (ii) 1990-2007. These time periods are selected based on data availabil-
ity. Community-level flood insurance policy data are available beginning in 1978, but the
community-level population data is not as available until 1980. Thus, the 28 year period
from 1980-2007 is the longest panel for which I can estimate flood insurance take-up for a

25For example, Hazlehurst, GA is hit by a Presidential Disaster Declaration in 1991 and 2004. Thus for
Hazlehurst, GA in Year 2000, Wc9 == 1 since it has been 9 years since the 1991 PDD and Wc−4 == 1 since
it is 4 years before the 2004 PDD.

26For example, in the 1990-2007 panel event study Wc,17 = 1 only if there is a Presidential Disaster
Declaration in 1990. In the 1990-2007 panel event study I create Wc,early = 1 if τ ∈ [−17,−11] and
Wc,late = 1 if τ ∈ [17, 11]. Equation (1.1) is then estimated with these 2 bin indicator variables rather than
including the individual variables Wc,11, ...,Wc,17 and Wc,−11, ...,Wc,−17.



CHAPTER 1. LEARNING ABOUT AN INFREQUENT EVENT 12

large sample of communities. In all of these regressions the definition of a flood is whether
a homeowner resides in a community that is in a Presidential Disaster Declaration county.
For the period 1990-2007, I can use a more detailed definition of a flood hit. Beginning in
1990 I confirm whether a PDD flood declared at the county-level damaged infrastructure or
public buildings in each community in the county. I estimate equation (1.1) over this period
using the community-level definition of a flood.

I am also interested in estimating the take-up of flood insurance for communities not
directly hit by a flood.

ln(takeupct) =
T∑

τ=−T

βτWcτ +
T∑

τ=−T

λτNcτ + αc + γt + εct (1.2)

I estimate equation (1.2) when I consider “neighboring” communities that were not di-
rectly hit by a flood. Equation (1.2) is identical to equation (1.1), except that it also includes
event time indicator variables for neighboring communities, Ncτ .

Finally, two flood data coding decisions deserve comment. First, occasionally a commu-
nity is hit by more than one PDD flood in the same calender year.27 I don’t distinguish
between communities hit by one or more than one PDD flood in a particular year when
estimating equation (1.1). The reason for this is that the flood insurance policy count data
are aggregated by year. I am concerned with whether a community is hit by any flood in
a calender year. Second, for the 1990-2007 panel I only consider leads and lags for a Presi-
dential Disaster Declaration if the PDD occurred within the time frame of the event study.
Therefore the Wcτ indicator variables all equal 0 for a community with respect to any event
that occurs outside the event study window. I run a number of robustness checks to test the
sensitivity of this coding decision. For the 1980-2007 panel I can control for the timing of
Presidential Disaster Declarations before 1980.

1.3.2 Estimation Results for Communities Hit by a Flood

Figure 1.5 plots the event time indicator coefficients, βτ , from the estimation of equation
(1.1) with state by year fixed effects on the 1990-2007 panel. Event time is plotted on the
x-axis. Year zero corresponds to a year a community is hit by a PDD flood, while years
−1, ...,−10 and 1, ..., 10 are the years before and after a flood respectively. I bin the tail
ends of the event study, so the leftmost (rightmost) point on the graph is a pooled coefficient
for the years −11 to −17 (11 to 17). The results are normalized to the year before a flood hit.
The plotted event time coefficients can be interpreted as the percent change in the take-up
of flood insurance policies in the community relative to the year before a flood. The bands

27Conditional on a community being in a county with a Presidential Disaster Declaration in a particular
year, 11% of the time there are more than one PDD’s in the same year (for communities in the 1990-2007
panel).
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around each coefficient represent the 95% confidence interval and show whether the point
estimate is statistically different from zero. Standard errors are clustered at the state level.

There is no event year time trend in the years before a flood. The effect of a future
flood is not statistically different from zero for all time periods before the flood. The point
estimates for the pre-flood event years range from −1.4% to 1.5%. In the year of a flood
there is an 7% increase in the take-up of flood insurance relative to the year before a flood.
Take-up peaks at 9% the year after a flood. Flood insurance take-up after the flood remains
positive and statistically significant for 10 years. After 10 years, flood insurance take-up is
not statistically different relative to the year before a flood.

Figure 1.6 plots the event time indicator variables from a specification of equation (1.2)
that includes separate indicator variables for communities hit by a PDD flood, and for
neighboring communities in PDD counties that are not hit. When compared to figure 1.5,
the coefficient point estimates for communities hit by a flood are approximately a percentage
point lower, but the overall interpretation remains the same. Take-up in communities in
PDD counties not hit by a flood is 2-3% for the first 6 years after a flood (years 2 and 3
are significant at 10% level). The take-up response is about one-third as large as that for
communities directly hit by the flood.

Table 1.2 shows the point estimates and standard errors for figure 1.3 (column 2) and
figure 1.4 (column 4), as well as, estimates from specifications with year fixed effects. Overall,
the point estimates and standard errors for specifications of equation (1.1) with year fixed
effects are larger than those with state specific time trends. Comparing column (2) to
column (1) we see that take-up in the year of a flood is two percentage points lower, while
the effect of a flood persists for one additional year. A similar pattern holds when looking
at estimates of equation (1.2) that specifically control for the impulse response function of
non-hit communities in PDD counties. The point estimates of the non-hit communities are
shifted down by 1-2 percentage points, but remain statistically significant for the first 5 years
after a flood.

Figure 1.7 estimates equation (1.1) on the 1990-2007 panel, where each post flood event
time variable is interacted with an indicator variable for whether or not the PDD flood is
above or below the median flood cost. I use the PERI Presidential Disaster Declaration
flood cost variable to distinguish between large and small floods.28 Not surprisingly, flood
insurance take-up in communities hit by above median cost PDD floods is greater than
in those communities hit by below median cost floods. The slope of the take-up impulse
response function is similar following the two types of floods. The entire above median cost
flood insurance take-up impulse response function is shifted upwards relative to that for
below median cost floods. An F-test which tests the null hypothesis of no difference between
the post flood event time coefficients can be rejected at the 5% level for the first three flood
years and the 8th year after a flood.

28The PERI cost variable is not inclusive of all costs, but is a consistent measure of flood costs from
1990-2007.
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Estimation of equation (1.1) on the 1980-2007 panel has the advantage of a longer panel
with more PDD floods. I am also able to specifically control for PDD floods that occurred
before 1980.29 The geographic definition of a flood for the event study regressions using
the 1980-2007 panel is whether a homeowner lives in a community that is part of a county
included in a Presidential Disaster Declaration.30 Using the county as the geographic desig-
nation of a flood averages the effect of a flood on take-up over those communities that were
hit by a flood and those not hit by a flood.

Figures 1.8 plots the event time coefficients from the estimation of equation (1.1) on the
1980-2007 panel. All of the event time coefficient estimates before the year of a PDD flood
are not statistically different from zero and economically small. The point estimates range
from -0.5% to 1.0%. In the year of a flood there is 5.7% increase in the take-up of flood
insurance relative to the year before a flood. Flood insurance take-up peaks the year after a
flood at 7.4%. The effect of a flood on the take-up of insurance persists for 6 years.

Table 1.3 includes event time coefficient estimates of equation (1.2). The estimates in
column (3) are from a specification that controls for all PDD floods from the 1970s. The
point estimates are shifted up 1-2 percentage points relative to the panel that doesn’t control
for floods before the sample. The standard errors are smaller and the effect on take-up is
significant (at the 5% level) for the first 14 years after a flood.

1.3.3 Estimation Results for Neighboring Communities

This subsection returns to the question of whether homeowners update expected flood beliefs
if they are not directly hit by a flood. The last subsection shows that homeowners in
Presidential Disaster Declaration counties who live in communities not directly hit by the
flood respond to a nearby flood by purchasing flood insurance. The take-up of flood insurance
is about one-third as large in the non-hit communities relative to the hit communities.

Next, I use the 1980-2007 panel to estimate the effect on homeowner take-up in com-
munities in counties not included in the Presidential Disaster Declaration, but “near” to
a PDD county. Figures 1.9, 1.10, and 1.11 plot event time coefficients for communities in
PDD counties and neighboring counties from 3 separate regressions of equation (1.2) using
the 1980-2007 panel that controls for PDD floods from the 1970s. Figure ?? considers a
geographic definition of a neighbor. I define a geographically neighboring community as a
community in one of the 5 closest counties as measured by distance between county cen-
troids.31 Figure ?? considers a community to be a neighbor if it belongs to the same media
market. Nielson Media Research classifies each US county as belonging to a primary radio

29Controlling for floods that occurred before 1980 guards against the possibility that the post-flood impulse
response for floods in the years just before the start of the panel (i.e. the 1970s) are confounding the
interpretation of the coefficient estimates.

30I am not able to determine whether a community is “hit” by a PDD flood before 1990.
31I would like to thank Juan Carlos Suarez Serrato for creating and sharing the datafile that lists all US

counties and the 10 closest counties as measured by Euclidean distance between county centroids.
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and television media market. There are 210 unique designated media markets (DMAs).32 33

Flood insurance take-up in a neighboring community, which is not part of the Presidential
Disaster Declaration, is similar under both definitions. Take-up in the year of a nearby PDD
flood is about one-quarter of that in communities that are in the flooded county, and persists
for 9 years. Figure 1.11 estimates equation (1.2) with event time indicators for each type
of neighbor. Interestingly, the effect on take-up of being a geographic neighbor is no longer
statistically significant from zero. The statistical significance of being within the same media
market remains significant for the first 5 years after a flood.34 The effect on communities not
in a PDD county, but in the same media market is unchanged if I estimate a specification
of equation (1.2) that includes geographic and media neighbor event time indicators, as well
as, a complete set of event time indicators for the interaction.35

Table 1.4 shows event time coefficient estimates from a specification of equation (1.2) that
includes state by year fixed effects, but pools the pre-flood event time period to improve
statistical power. Column (1) estimates homeowner take-up for communities in counties
that are geographic neighbors to a PDD county, defined as the 5 closest counties, but not
included in the Presidential Disaster Declaration.36 The coefficients from the geographic
neighbor peaks at 1.8% and are significant at the 5% only in the 2nd year after a flood.
In contrast, flood insurance take-up is 2.3% higher in media neighbor communities (column
2) in the year of nearby PDD flood. The media neighbor event time coefficient estimates
remain between 2.5% and 3.5% and are significant at the 1% level for the first 6 years.

Columns (3) and (4) of Table 1.4 consider both geographic and media neighbors. There is
no effect on take-up of being a geographic neighbor after controlling for whether a community
is in the same media market. The point estimate for insurance take-up for communities in

32I would like to thank James Snyder for sharing the DMA data. Synder and Stromberg (2010) use these
data to estimate how press covered effects citizen knowledge, politicians’ actions, and policy. The data were
first collected and used by [18] and [17].

33The primary media market can change over time for a county. Nielson Media Research released new
county DMA classifications in 1980, 1990, and 2000. For those counties that change media markets over
time, I assume that a county is in a media market until the year the new DMA data are released.

34The first year after a flood is significant at the 10% level. The effect of being in the same media market
remains statistically significant when I consider the closest, 3 closest, and 10 closest centroid counties.

35The effect on media neighbor communities is unchanged if I estimate a specification of equation (1.2)
that includes geographic and media neighbor event time indicators, as well as, a complete set of event time
indicators for the interaction. Identification of the indirect (neighbor) effect of a large regional flood on
take-up in figures ??, ??, and ?? uses cross state variation. An example from 1992, detailed in the data
appendix, shows how cross-state variation assists in the identification of the geographic and media neighbor
flood insurance take-up.

36I also run specifications that consider the geographic neighbor to be all adjacent counties. The point
estimates for the adjacent county specification are similar, but have less statistical power. The adjacent
county file, Contiguous County File, 1991, was created by The Inter-University Consortium for Political and
Social Research (www.icpsr.umich.edu). The Contiguous County File, 1991 includes counties that share a
boarder, are connected by a major road, or are connected due to “significant economic ties”. I only consider
those counties that share a boarder.
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the same media market remains virtually unchanged. Table 1.4 taken together with the
estimates from columns (2) and (4) of Table 1.2 imply that homeowners update their beliefs
over future flooding if they live in a community hit by a flood, or if they are in the same
media market as a community hit by a flood.

1.4 Economic Framework: Insurance Model and Learn-

ing Models

In this section I present a simple flood insurance model and three alternative homeowner
learning models. The goals are twofold. First, provide an economic framework to interpret
the empirical results from the last section. Second, outline three theories of learning and
belief formation, motivated by the empirical results of section 1.3, that have been used in
the broader learning literature. Section 1.5 presents evidence as to which theory of learning
is most consistent with observed flood insurance take-up.

1.4.1 Insurance Model

Each year homeowners purchase the level of flood insurance that maximizes their expected
utility given their belief about the probability of a flood.

maxqictEt[u(qict, wi, li, ri, pict)] = pict ∗u(wi− li− riqict+ qict) +(1−pict)∗u(wi− riqict) (1.3)

qict is the level of flood insurance selected by homeowner i in community c in year t. There
are four parameters. The parameter of interest is pict, the homeowner belief of the yearly
flood probability in time t. wi is homeowner wealth and li is the amount of flood damage
conditional on being hit by a flood. ri ∈ (0, 1) is the dollar rate per $1 of flood insurance.
Each homeowner chooses the level of insurance, q∗ict, that maximizes expected utility at the
end of the calender year after observing whether there is a flood and updating beliefs pict.

f(qict, wi, li, ri, pict) ≡ pict(1−ri)(wi−li−riqict+qict)∗u′−(1−pict)ri∗u′(wi−riqict) = 0 (1.4)

Equation (1.4) defines f() as an implicit function equal to the first order condition for the
homeowner flood insurance problem. q∗ict solves the implicit function. wi, li, ri are all
constant parameters. The insurance rate is set by the federal government and to a close
approximation is fixed in real dollars. An assumption of this paper is that homeowner
beliefs over flood damages are fixed. Homeowner wealth, in contrast to the assumption of
this paper, is certain to vary over time. In particular, in a year of a flood, those homeowners
without flood insurance are likely to have a negative shock to their wealth. Provided flood
insurance is a normal good, then the demand for insurance would decrease and bias me
towards not observing an effect.
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If a homeowner’s belief over future flooding increases, then the utility maximizing level
of flood insurance will increase. The comparative static,

∂q∗ict
∂pict

> 0, by the implicit function

theorem, provided u′ > 0 and u′′ < 0.37 Figure 1.12 plots homeowner insurance demand as
a function of beliefs. q∗ict is plotted on the vertical axis with a horizontal line at q∗ict = 0.
pict ∈ [0, 1] is plotted along the horizontal line. p̄ic is the cutoff value of pict such that q∗ict = 0.
If the belief over future flooding in year t is greater than p̄ic, then homeowner i living in
community c will purchase flood insurance for that calender year. p̄ic varies by homeowner
depending on the parameters wi, li, ri, and each homeowner’s level of risk aversion.

I observe flood insurance count data aggregated at the community level. Figure 1.13
shows the relationship between the number of community level flood insurance policies and
beliefs over future floods. On the vertical axis is the number of flood insurance policies in
the community: Qct =

∑I
i=1 1(q∗ict > 0) =

∑I
i=1 1(pict > p̄ic). The horizontal line again plots

flood probabilities. Similar to figure 1.12, each homeowner’s q∗ict(pict) can be plotted in figure
1.13. I have plotted this function for a sample community of three homeowners.

For ease of exposition, let’s assume that all homeowners in the community are impacted
by a flood in the same way and use the same learning process when adjusting beliefs over
future floods. If this were the case, then pict = pct so that each year, everyone in the
community shares the same flood belief. The dashed vertical line in figure 1.13 represents a
hypothetical (universally shared) flood belief for each homeowner in the community. pct is
greater than the flood insurance cutoff point for homeowners 1 and 2, but not for homeowner
3. Homeowners 1 and 2 will purchase flood insurance. It is important to emphasize that
although each homeowner’s belief of a flood is the same, that the demand function for flood
insurance varies for each homeowner.

Figure 1.13 helps to clarify two points. First, I assume a continuous range of homeowner
insurance cut-off points (p̄ic) in each community. In other words, for a change in pct, there
will be a marginal homeowner just willing to purchase (if dpict > 0) or fail to renew an
insurance policy (if dpict < 0). Second, although other researchers have noted an increase in
the average level of community wide insurance coverage among policy holders after a flood,
this doesn’t necessarily follow from the assumptions of this paper ([83]). There are two effects
of an increase in community flood beliefs (a shift of the dotted line to the right): (i) existing
policy holders will purchase more insurance, and (ii) new “marginal” homeowners will decide
to purchase insurance. The average level of flood insurance in a community (conditional on
having insurance) depends on the composition of these two effects.38

37By the Implicit Function Theorem (IFT) we can write
∂q∗ict
∂pict

= −∂f/∂pict∂f/∂q∗ict
, where f is equation (1.4). Note

that to apply the IFT two conditions on f must hold. First, equation (1.4) must be continuously differentiable
at (q∗ict, pict), given the values of the fixed parameters wi, li, r. Second, ∂f/∂q∗ict 6= 0 at (q∗ict, pict). I assume
that these two conditions hold.

38The interpretation of the community aggregated insurance policy count data is similar if we relax the
strict assumption that all homeowners in the same community perceive each flood the same when updating
beliefs. We could adjust figure 1.13 so that there is a dashed vertical line specific to each homeowner.
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1.4.2 Homeowner Learning Models

One of the conclusions from the event studies of Section 1.3 is that homeowners react to a
new flood by purchasing flood insurance. I model the observed take-up in flood insurance as
the utility maximizing decision from an annual homeowner insurance purchasing problem.
The underlying assumption is that homeowners use the information implicit in a new flood
event to update their expectation over the probability of a future flood hit. In other words,
the changing homeowner beliefs towards future floods is driving the dynamics of insurance
take-up after a flood.

Floods potentially provide new information for homeowners about their underlying flood
risk. Standard (neo-classical) economic models assume fully rational economic agents. In
the context of flooding, this implies that homeowners would use the Beta-Bernoulli Bayesian
learning model to synthesize existing information and update beliefs.39 In this model, large
yearly regional floods, yt, are distributed Bernoulli where the probability of a flood in a
given year for community c is: P (yt = 1) = p. Each community’s yearly flood draw is
assumed to be independently drawn from a stationary flood distribution with parameter p.
The probability of a flood in a given year, p, is assumed to be distributed Beta(α, β)40. The
first two moments of p ∼ Beta(α, β) are E[p] = α

α+β
and V ar[p] = αβ(α + β)2)(1 + α + β).

I assume that homeowners observe whether there is a flood in a given year and update
their expectation of a future flood. The conditional mean and variance are:

E[p|St, t] =
St + α

t+ α + β
(1.5)

V ar[p|St, t] =
(St + α)(t− St + β)

(t+ α + β)2(1 + α + β + t)
(1.6)

t is the number of yearly observations (time periods) St =
∑t

s=1 ys is the number of
observed floods. α and β are fixed parameters from the Beta distribution. The parameters
α and β determine the initial belief over flooding. Homeowners use the conditional flood
expectation equation to update this belief each year.

The event study results from section 1.3 suggest that two features not captured by the
classical Beta-Bernoulli Bayesian model may be important in modeling the underlying home-
owner flood belief learning process. The first feature is the spike in flood insurance policies in
hit communities in the year of a flood, combined with a post-flood impulse response function
where the effect of the flood is statistically zero after approximately 10 years. The classical
Beta-Bernoulli model implies that as the stock of information increases, then the effect of a
new observation will become small (and eventually zero). In most communities in the US
there are many decades of detailed historical flood records. The large spike in flood insur-

39The discussion of the Beta-Bernoulli statistical model closely follows [31].
40The Beta distribution is the conjugate prior for the Bernoulli distribution ([42]) and used in most

Bernoulli Bayesian models for convenience.
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ance coupled with the relatively fast decay of this effect suggest that homeowners may not
be considering all of the past flood information. One way to model this possibility is with a
parameter that discounts past information ([29]; [79]).

The second learning model I consider is a Discounted Beta-Bernoulli Bayesian model. The
Discounted Beta-Bernoulli model introduces one additional parameter, δ, into the conditional
expectation updating equation of the Beta-Bernoulli Bayesian model. This model has the
appealing feature of reducing to the Beta-Bernoulli Bayesian model when δ = 1. The
conditional mean updating equation under the Discounted Beta-Bernoulli model is given by
equation 1.7.

E[p|S ′t, t
′
] =

S
′
t + α

t′ + α + β
(1.7)

t
′

=
∑t

s=1 δ
t−s is the number of yearly observation “equivalents”. S

′
t =

∑t
s=1 ysδ

t−s are
weighted flood observations. δ ∈ [0, 1] is a weighting parameter.

The data I observe and the event study estimation results in section 1.3 are aggregated
at the community level. The conditional flood expectation equations 1.5 and 1.7 both model
individual homeowner learning of the probability of future floods. If all of the homeowners
use equation 1.7, then we can interpret δ as a measure of “forgetting” in the community.
All homeowners discount past flood information, so δ in the community level equation is the
average amount of “forgetting”. On the other hand, if some homeowners update according
to equation 1.7 and other homeowners update using equation 1.5, then when we aggregate
to the community level, δ becomes a weighting parameter between individuals using the
two different updating equations (“forgetful” homeowners and fully rational homeowners).
Following the logic of the reinforcement learning literature, those homeowners who don’t
have first hand experience with floods will discount past flood information ([60]; [61]; [63]).41

Those homeowners with first-hand experience do not discount the past flood information
(i.e. δ = 1).

The second feature of flood insurance take-up is that homeowners react to a flood by
purchasing flood insurance if they are in the same media market. Take-up of insurance is
approximately one-third as large in communities not directly hit, but in the same media
market as a flooded community. Overall, the hit and non-hit media market communities
appear to have similar take-up impulse response function decay rates after a flood. The
geographic distance from the flood doesn’t appear to matter in the decision to purchase
insurance if homeowners are not hit by the flood.

Equation 1.8 is a learning model that incorporates the two main features from the event
study results of section 1.3.

E[p|S ′t, N
′

t , t
′
] =

S
′
t + σN

′
t + α

t′ + α + β
(1.8)

41Survey evidence on the importance of first hand experience in forming beliefs over the likelihood of a
natural disaster include, for floods: [75] and [74], and on earthquakes: [85].
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First, just like the Discounted Beta-Bernoulli model, equation (1.8) includes a discount
parameter δ to account for the possibility of “forgetting”. There are also 2 new terms:
σ ∈ [0, 1] and N

′
t =

∑t
s=1 nsδ

t−s, where ns is an indicator variable equal to 1 if a neighboring
community is hit by a flood and your community is not hit by the flood. Together σ and N

′
t

capture the possibility that homeowners may update their beliefs over a future flood when
there is a large regional flood that doesn’t hit their community.

There are two ways to view the event study result for non-flooded communities and
interpret this model. First, homeowners in non-flooded communities learn about nearby
flood through the media and update their beliefs over future flooding regardless of their
underlying flood risk. Second, and perhaps more realistically, homeowners in non-flooded
communities update flood beliefs using the information content of neighboring floods. A
nearby flood may contain relevant information on the likelihood that a geographically similar
community will be flooded in the future. It follows from this interpretation, that the media
is the channel through which most homeowners not directly hit by the flood learn of a
geographically neighboring flood. Nevertheless, it is the underlying information content of
the flood that leads homeowners in non-flooded communities to take-up flood insurance.42

1.5 Comparing the Learning Models

This section uses the learning models and the complete history of Presidential Disaster
Declaration floods to generate a time series of flood probabilities for each community. I then
compare the simulated homeowner beliefs over future flooding under each learning model
with the observed take-up of flood insurance.

I use the learning equations 1.5 and 1.7 to generate county-level homeowner flood be-
liefs using the complete 50 year time series of Presidential Disaster Declaration floods.43 To
determine the starting values for the county-level α and β parameters I make several assump-
tions. I assume that the realized Presidential Disaster Declarations over the 50 year period
from 1958-2007 approximates the true national distribution of large county-level floods. The
representative homeowner in 1958 knows the national county flood probability distribution,
but doesn’t know where his county is located in this distribution. Therefore, in 1958 the
representative homeowner assumes that he is in the mean county from the national county
flood distribution.44

42I plan to test this interpretation comparing the media effect by different distance intervals from the
flood. This assumes that overall, communities closer to the flood are more similar to flooded communities
than communities farther away. I also plan to use the flood maps to match on community characteristics
to see if non-flooded communities in the same media market respond differently depending on how similar
their underlying geographic characteristics are to the flooded communities.

43Note that I have not yet simulated the probabilities for the 3rd model (equation 1.8).
44[41] uses similar assumptions to determine homeowner initial beliefs over the probability of being diag-

nosed with cancer.
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Under the above assumptions, I derive the starting values by matching the first two
moments of the empirical county flood probability distribution of the 50 year Presidential
Disaster Declaration history to the first two moments of the Beta Distribution. This gives
two equations and two unknowns (the parameters α and β). Matching the first two moments:
α = 2.87 and β = 21.87. I use the same sample of US counties in matching these moments
(N=2704) as are included in the baseline 1980-2007 event study regressions.45 Figure 1.14
shows the empirical distribution of yearly county-level PDD flood probabilities from 1958-
2007.

To generate a county level time series of yearly flood probabilities using the Discounted
Beta-Bernoulli homeowner learning model (equation 1.7) I must also specify a value for δ. I
use a two step process to determine the best fitting δ. First, I use equation (1.6) to generate
26 separate flood probability time series for each county under the initial starting values α
= 2.87 and β = 21.87, PDD flood data from 1958-2007, and δ = 0.80,0.81,...,1.05. Second, I
select the time series of flood probabilities, p(δ)ct, that minimizes the mean square error of
equation 1.9.46

ln(takeupct) = α + βtlnp(δ)ct + αc + γt + εct (1.9)

Equation 1.9 is the same as event study estimating equation, except that here I replace
the event time dummy variables with log flood probability.47 The independent variable of
interest is the Discounted Beta-Bernoulli flood probability, p(δ)ct. The flood probabilities
are specific to a community, but vary only at the county level. A δ = .95 best fits equation
(1.9) using the 1990-2007 panel of communities. This is true regardless of whether equation
(1.9) is specified with year or state by year fixed effects. I focus on the 1990-2007 event study
panel since this allows for 32 years of “burn in” time before the first flood in the panel. The
longer the history of flooding information used to generate flood beliefs, the less relevant are
the values of the initial parameters in determining updated flood beliefs.48

45The empirical moments are the same if I use the slightly larger number of counties included in the
1990-2007 panel.

46This two step process is equivalent to a single estimation procedure using non-linear least squares where
I minimize over both βt and δ simultaneously, except that I only consider 26 values for δ in the range δ =
0.80,0.86,...,1.05. I do not estimate δ to the 3rd decimal place.

47This assumes a Log-Log relationship between flood insurance take-up and the belief of a future flood. I
also consider other specifications of this equation that include lnp(δ)2ct and lnp(δ)3ct. The F Statistic for the
estimation of equation 1.9 is consistently larger without the squared and cubed terms. The t Statistic on
the coefficient for the squared and cubed terms is not statistically significant under most δ specifications.

48I plan to test the sensitivity of the starting values by using other starting value assumptions including:
(i) Matching the moments of regional distributions (rather than the national distribution), and (ii) use each
county’s 50-year empirical mean as the first moment. Approach (i) assumes that homeowners know the county
flood probability distribution for their region (e.g. Southeast US), but not where in this regional distribution
their county is located. Approach (ii) assumes that homeowners know the “true” county flood probability in
1957 as approximated by the 1958-2007 empirical mean (pi1957 = α

α+β ). Changing the numerical values of
α and β, while keeping pi1957 fixed is analogous to changing the degree of certainty that homeowners have
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I compare the homeowner learning models by observing how the simulated Beta-Bernoulli
and Discounted Beta-Bernoulli (δ = .95) evolve after a PDD flood. I observe the event
study time path of simulated probabilities under each model by estimating equation (1.1)
using log simulated probabilities as the dependent variable. Figure 1.12 graphs the Beta-
Bernoulli (δ=1) simulated probability event time coefficients. On the same graph I include
the coefficient estimates for the specification of equation (1.1) with take-up as the dependent
variable (i.e. figure 1.5). There is a 6.2% change in the classical Beta-Bernoulli probability
in the year a community is hit by a PDD flood. Ten years after a flood, there is still a
statistically significant 3.2% increase in the belief of a future flood, relative to the year
before a PDD flood hit. The change in flood beliefs is 2.4% and statistically significant for
the pooled coefficient for 11-17 years after a flood.

Figure 1.16 plots the event time coefficients from estimation of equation (1.1) with the
Discounted Beta-Bernoulli (δ=.95) probability as the dependent variable. Again, figure 1.5
is plotted on the same graph for comparison. There is a 9.6% jump in the Discounted Beta-
Bernoulli probability in the year of a PDD flood hit. Ten years after a flood the flood belief
point estimate is 2.4% and statistically significant. The point estimate for the pooled 11-17
event year coefficient is 1.0% and not statistically significant.

Figures 1.15 and 1.16 suggest that homeowner learning model that allows for “forget-
ting”/ “first-hand experience” better fits the observed take-up in flood insurance. The flood
insurance model implies that the demand for flood insurance should be positive if dpict > 0.
The simulated probabilities from the classical Beta-Bernoulli (δ=1) learning model are pos-
itive for the entire event study, while flood insurance take-up is statistically zero after 10
years. However, the Discounted Beta-Bernoulli (δ=.95) probabilities are zero by the end of
the event study.

A Beta-Bernoulli learning model with δ=.95 fits the observed take-up of flood insurance
better than a model with δ=1. A Chi Square test rejects the (classical) Beta-Bernoulli
learning model at the 1% significance level and fails to reject the Discounted Learning Model
(δ=.95). I consider each hypothesized learning model to be the true model and the simulated
probabilities from each model as data.

I test the fit of the insurance take-up coefficients with the simulated probabilities from
the Discounted Beta-Bernoulli learning model under each value of δ ∈ [.80, .81, ..., 1.05] using
the 1990-2007 panel. I consider the fit for event time years 1 to 11.49 The χ2 test statistic is:∑11

τ=1
(q̂τ−pτ )2

σ̂2
τ

, where q̂τ is the coefficient estimate for take-up for each year after a flood, pτ
is the simulated event time probability (given δ), and σ̂2

τ is the estimated variance for each

over their initial beliefs. I plan to generate updated flood beliefs using several pairs of values of α and β to
represent different levels of homeowner certainty.

49Event time year 11 is the binned event time indicator for years 11-17. I don’t include the year of a flood
(τ= 0) in the χ2 test results presented in the paper. The reason is that the estimated take-up coefficient in
the year of the flood is likely to be biased downwards due to a mechanical delay in insurance take-up after
a flood. The rejection results of the χ2 test don’t change if I include the coefficient from the year of a flood.
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take-up coefficient.50 The test statistic is (asymptotically) distributed χ2 with 8 degrees of
freedom.51

Figure 1.17 plots the χ2 test statistic for the Beta-Bernoulli Discounted learning model
under each value of δ. A line is drawn through the points to form a U-shaped curve. The
minimum point on curve is when δ=.95. Two horizontal lines are drawn on the graph. The
lower (upper) line is the critical value of the χ2 statistic for rejection of the model at the
10% (1%) significance level. I can reject at the 1% level that the learning model with δ = 1
fits the observed flood insurance take-up. I fail to reject models with δ between .91 and .98.

1.6 Conclusion

In this paper, I examine the learning process that economic agents use to update their
expectation of an uncertain and infrequently observed event. In doing so, I compile a new and
unique nationwide community-level panel dataset on large regional floods and the purchase
of flood insurance policies. The logic of looking at flood insurance policies is that the decision
to purchase flood insurance reveals changing beliefs over the expectation of future floods.

Flooding in the US is economically significant. Flood damages averaged $6 billion per
year from 1955-1999 ([94]). Homeowner insurance policies explicitly exempt coverage for
damage due to flooding. Homeowners in the US must decide each year whether to purchase a
separate flood insurance policy. The combination of readily available statistical information,
but infrequent personal experience, makes flooding a good context in which to study learning.
The contribution of the paper is to test how well the standard Bayesian learning model fits
observational data for an uncertain and infrequently observed event.

I estimate the causal effect that flooding has on the take-up of flood insurance using an
event study framework that controls for the underlying propensity for a community to flood,
and aggregate trends in flood insurance purchase. I find that there is an immediate rise in
the fraction of people covered by flood insurance in a flooded community in the year of a
flood. The effect peaks after one year at 9% (perhaps reflecting delayed adjustment)–then
begins to steadily decline, fully dissipating after 9 years.

There is also strong evidence that homeowners in non-flooded communities react to a
nearby flood by purchasing insurance. Insurance take-up in non-flooded communities is one-
third as large as in flooded communities provided the non-flooded community is in the same
media market as a flooded community. There is no effect on take-up in geographically close
communities not in the same media market.

I interpret these findings using three different models of homeowner learning. The first
learning model I consider is a Beta-Bernoulli Bayesian model. The Beta-Bernoulli Bayesian

50The Chi Square Test Statistic assumes that the covariance between moments of the post-flood impulse
response function are zero.

51There are 11 moments used in estimation and 3 parameters, α, β, δ in equation (9), giving 8 degrees of
freedom.
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model implies that as the stock of information increases, the effect of a new flood becomes
small (and eventually zero). The second learning model, a modified Beta-Bernoulli model,
accounts for the possibility that homeowners discount past information when updating be-
liefs. The third learning model is motivated by the event study results that show that
homeowners update their belief of a future flood using information about floods in other
communities that are flooded.

I test the first two learning models by simulating changes in homeowner beliefs using
the flood data over 50 years. A learning model with a discount parameter equal to .95
best fits take-up as a function of the simulated probabilities via non-linear least squares.
Using a Chi Square test, I can reject that the (standard) Beta-Bernoulli Bayesian model fits
observed take-up at the 1% significance level. I conclude that a homeowner learning model
that allows past information to be discounted is most consistent with observed homeowner
insurance take-up.

The findings of this paper suggest two specific policy implications. First, collectively
homeowners have a short memory and don’t appear to equally weigh all past flood informa-
tion. If a policy goal is for homeowners to self-insure against floods, then offering multi-year
insurance contracts or opt out contracts could help prevent homeowners from dropping their
insurance after years when there is no flood ([68]). Second, there is clear evidence that the
news media is a channel through which homeowners “learn” about their flood risk even when
they are not directly impacted by a flood. This suggests that an information campaign could
be successful in increasing aggregate flood insurance penetration rates. However, the infor-
mation campaign would need to consistently emphasize flood risks since the lasting effects
of the “learning” for homeowners who don’t experience floods is short.

There are at least two immediate extensions to this paper. First, do homeowners forget
at different rates based on personal experience? The flood insurance policy data I use to
test the learning model are aggregated at the community-level. I can’t distinguish between
different policy holders in the community. The next step is to test whether take-up after a
flood is different in communities with different migration rates. This will give an indication
as to whether take-up varies by the proportion of residents who have personal experience
with a previous flood. The hypothesis is that homeowners with first-hand experience are less
likely to forget. The implication of less forgetting is a lower initial take-up response in the
year of a flood and a slower decay of this response in the years following the flood. Ideally,
I would like to access household level data on flood policy holders. I am in conversation
with the National Flood Insurance Program officials to be able to access a recent sub-sample
of policy data that would enable me to distinguish between new and continuing insurance
policies and the length of residence.

The second extension is to further explore the empirical finding that homeowners in non-
flooded communities also take-up insurance after a flood, provided they live in the same media
market as a community that is flooded. I plan to use community level map characteristics,
historical weather data, and the correlation in past floods to examine whether homeowners
in non-flooded communities respond differently to a nearby flood based on how similar the
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flooded communities are to their community.
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Figure 1.1: Increasing Trend Line for Flood Insurance in US
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Table 1.2: Event Time Estimation for Panel 1990-2007, Hit and Not Hit Communities

Year of Flood 0.1038 (0.0164)*** 0.0680 (0.0162)*** 0.0791 (0.0103)*** 0.0683 (0.0090)***

1 Year after Flood 0.1080 (0.0178)*** 0.0769 (0.0125)*** 0.0914 (0.0082)*** 0.0748 (0.0078)***

2 Years after Flood 0.1235 (0.0192)*** 0.0866 (0.0135)*** 0.0837 (0.0101)*** 0.0699 (0.0080)***

3 Years after Flood 0.1006 (0.0206)*** 0.0746 (0.0150)*** 0.0705 (0.0113)*** 0.0565 (0.0102)***

4 Years after Flood 0.0931 (0.0144)*** 0.0576 (0.0147)*** 0.0753 (0.0117)*** 0.0559 (0.0133)***

5 Years after Flood 0.0714 (0.0135)*** 0.0382 (0.0158)** 0.0707 (0.0121)*** 0.0505 (0.0137)***

6 Years after Flood 0.0573 (0.0148)*** 0.0298 (0.0149)** 0.0625 (0.0123)*** 0.0500 (0.0122)***

7 Years after Flood 0.0566 (0.0149)*** 0.0371 (0.0166)** 0.0568 (0.0130)*** 0.0497 (0.0121)***

8 Years after Flood 0.0561 (0.0170)*** 0.0304 (0.0163)* 0.0594 (0.0153)*** 0.0488 (0.0135)***

9 Years after Flood 0.0143 (0.0158) -0.0069 (0.0174) 0.0321 (0.0160)** 0.0224 (0.0146)

10 Years after Flood -0.0088 (0.0177) -0.0239 (0.0178) 0.0227 (0.0163) 0.0106 (0.0165)

11-17 Yrs after Flood -0.0126 (0.0220) -0.0139 (0.0227) 0.0132 (0.0202) 0.0236 (0.0189)

Year of Flood 0.0399 (0.0148)*** 0.0179 (0.0091)**

1 Year after Flood 0.0328 (0.0163)** 0.0267 (0.0106)**

2 Years after Flood 0.0400 (0.0172)** 0.0220 (0.0114)*

3 Years after Flood 0.0273 (0.0177) 0.0223 (0.0119)*

4 Years after Flood 0.0407 (0.0186)** 0.0321 (0.0138)**

5 Years after Flood 0.0383 (0.0187)** 0.0338 (0.0146)**

6 Years after Flood 0.0326 (0.0161)** 0.0212 (0.0149)

7 Years after Flood 0.0237 (0.0137)* 0.0121 (0.0148)

8 Years after Flood 0.0323 (0.0133)** 0.0199 (0.0146)

9 Years after Flood 0.0311 (0.0124)** 0.0202 (0.0154)

10 Years after Flood 0.0249 (0.0120)** 0.0249 (0.0148)*

11-17 Yrs after Flood 0.0237 (0.0137)* 0.0116 (0.0108)

Pre-Flood Indicators

Community FE

Calender Year FE

State by Year FE

Observations

Communities

R-Squared

X

X

X

Note that I first demean all of the data using a community fixed effect transformation.  Each column contains coefficients from 4 separate regressions of equation (1’) on the 

community demeaned data.  Standard errors are corrected for the reduced number of degrees of freedom.  Columns (2) and (4) include yearly event time indicator variables 

for communities in PDD counties not hit by the flood.  The pre-flood indicator variables for hit and non-hit communities are included in the estimating equation, but excluded 

from the table for space considerations.  None of the pre-flood coefficients are significant at the 5% level.  Standard errors clustered at state level.  Significance level: *** 

1%, ** 5%, * 10%

(1) (2)

X

X

X

10,665

X

X

X

X

191,970

(3) (4)

Panel B: Communities in a Presidential Disaster Declaration County and Not Hit by the Flood

Panel A: Community in a Presidential Disaster Declaration County and Hit by the Flood

191,970

10,665

.1737 .2191

X X

191,970

10,665

.1774 .2180

191,970

10,665
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Table 1.3: Event Time Estimation for Panel 1980-2007, Communities in Flooded Counties

2 Years before Flood 0.0113 (0.0217) 0.0009 (0.0162) 0.0146 (0.0149)

3 Years before Flood 0.0248 (0.0213) 0.0060 (0.0167) 0.0185 (0.0151)

4 Years before Flood 0.0291 (0.0212) 0.0100 (0.0190) 0.0226 (0.0174)

5 Years before Flood 0.0162 (0.0209) 0.0066 (0.0197) 0.0191 (0.0183)

6 Years before Flood 0.0125 (0.0193) 0.0084 (0.0185) 0.0204 (0.0167)

7 Years before Flood 0.0061 (0.0167) 0.0092 (0.0184) 0.0212 (0.0163)

8 Years before Flood 0.0130 (0.0176) 0.0090 (0.0174) 0.0212 (0.0150)

9 Years before Flood 0.0020 (0.0145) -0.0009 (0.0155) 0.0102 (0.0129)

10 Years before Flood -0.0101 (0.0137) -0.0054 (0.0158) 0.0057 (0.0132)

11 Years before Flood -0.0015 (0.0140) -0.0031 (0.0161) 0.0084 (0.0136)

12 Years before Flood 0.0036 (0.0142) 0.0035 (0.0161) 0.0147 (0.0137)

13 Years before Flood 0.0055 (0.0133) 0.0058 (0.0143) 0.0172 (0.0133)

14 Years before Flood 0.0082 (0.0183) 0.0050 (0.0160) 0.0160 (0.0151)

15 Years before Flood 0.0040 (0.0116) 0.0150 (0.0119) 0.0253 (0.0110)**

16-27 Yrs before Flood -0.0110 (0.0309) 0.0258 (0.0216) 0.0366 (0.0221)

Year of Flood 0.0903 (0.0260)*** 0.0570 (0.0165)*** 0.0711 (0.0158)***

1 Year after Flood 0.0921 (0.0258)*** 0.0744 (0.0173)*** 0.0871 (0.0170)***

2 Years after Flood 0.1032 (0.0287)*** 0.0702 (0.0188)*** 0.0828 (0.0185)***

3 Years after Flood 0.0838 (0.0274)*** 0.0593 (0.0181)*** 0.0767 (0.0174)***

4 Years after Flood 0.0832 (0.0255)*** 0.0594 (0.0187)*** 0.0765 (0.0177)***

5 Years after Flood 0.0729 (0.0264)** 0.0577 (0.0205)*** 0.0797 (0.0194)***

6 Years after Flood 0.0617 (0.0265)** 0.0444 (0.0215)** 0.0656 (0.0192)***

7 Years after Flood 0.0498 (0.0247)** 0.0342 (0.0205)* 0.0582 (0.0173)***

8 Years after Flood 0.0537 (0.0221)** 0.0334 (0.0172)** 0.0548 (0.0153)***

9 Years after Flood 0.0398 (0.0209)* 0.0269 (0.0199) 0.0478 (0.0165)***

10 Years after Flood 0.0245 (0.0180) 0.0269 (0.0186) 0.0462 (0.0161)***

11 Years after Flood 0.0267 (0.0183) 0.0189 (0.0160) 0.0374 (0.0150)**

12 Years after Flood 0.0088 (0.0183) 0.0032 (0.0175) 0.0287 (0.0144)*

13 Years after Flood -0.0041 (0.0195) 0.0003 (0.0179) 0.0283 (0.0140)**

14 Years after Flood 0.0182 (0.0219) 0.0085 (0.0183) 0.0322 (0.0151)**

15 Years after Flood 0.0112 (0.0160) -0.0059 (0.0184) 0.0242 (0.0141)*

16-27 Yrs after Flood -0.0390 (0.0367) -0.0194 (0.0288) 0.0049 (0.0165)

Controls 1970 Floods

Community FE

Calender Year FE

State by Year FE

Observations

Communities

R-Squared

Panel A: Years Before a Community is Located in a Presidential Disaster Declaration Flooded County

X

X

(1) (2)

X

265,412

9,479

X

X

X

265,412

(3)

Panel B: Years After a Community is Located in a Presidential Disaster Declaration Flooded County

.2038
9,479

265,412

9,479

.1503 .2052

X
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Table 1.4: Event Time Estimation, Panel 1980-2007, Communities in Neighboring Counties

Year of Flood 0.0680 (0.0146)*** 0.0806 (0.0151)*** 0.0822 (0.0156)*** 0.0822 (0.0155)***

Geographic Neighbor

Year of Flood 0.0128 (0.0075)* 0.0016 (0.0077) -0.0065 (0.0135)

1 Year after Flood 0.0147 (0.0077)* 0.0018 (0.0080) 0.0030 (0.0103)

2 Years after Flood 0.0177 (0.0075)** 0.0063 (0.0074) 0.0133 (0.0095)

3 Years after Flood 0.0147 (0.0085)* 0.0016 (0.0080) 0.0188 (0.0110)*

4 Years after Flood 0.0077 (0.0095) -0.0051 (0.0093) 0.0102 (0.0127)

5 Years after Flood 0.0069 (0.0087) -0.0060 (0.0088) -0.0037 (0.0110)

6 Years after Flood 0.0016 (0.0075) -0.0055 (0.0079) -0.0072 (0.0095)

7 Years after Flood 0.0013 (0.0092) -0.0036 (0.0091) -0.0027 (0.0121)

8 Years after Flood 0.0029 (0.0096) -0.0033 (0.0106) 0.0028 (0.0130)

9 Years after Flood 0.0025 (0.0093) -0.0042 (0.0106)* 0.0026 (0.0122)

10 Years after Flood -0.0028 (0.0103) -0.0064 (0.0124) 0.0013 (0.0123)

Media Neighbor

Year of Flood 0.0294 (0.0064)*** 0.0294 (0.0061)*** 0.0278 (0.0064)***

1 Year after Flood 0.0325 (0.0052)*** 0.0324 (0.0051)*** 0.0326 (0.0049)***

2 Years after Flood 0.0311 (0.0060)*** 0.0290 (0.0056)*** 0.0304 (0.0056)***

3 Years after Flood 0.0333 (0.0075)*** 0.0327 (0.0070)*** 0.0358 (0.0070)***

4 Years after Flood 0.0278 (0.0082)*** 0.0296 (0.0078)*** 0.0323 (0.0080)***

5 Years after Flood 0.0263 (0.0093)*** 0.0284 (0.0098)*** 0.0290 (0.0101)***

6 Years after Flood 0.0126 (0.0078) 0.0146 (0.0086)* 0.0145 (0.0087)*

7 Years after Flood 0.0066 (0.0085) 0.0081 (0.0087) 0.0083 (0.0089)

8 Years after Flood 0.0091 (0.0102) 0.0104 (0.0112) 0.0116 (0.0116)

9 Years after Flood 0.0113 (0.0091) 0.0127 (0.0104) 0.0137 (0.0107)

10 Years after Flood 0.0049 (0.0097) 0.0074 (0.0114) 0.0084 (0.0117)

Geographic and Media Neighbor

Year of Flood 0.0099 (0.0113)

1 Year after Flood -0.0019 (0.0097)

2 Years after Flood -0.0095 (0.0085)

3 Years after Flood -0.0238 (0.0105)**

4 Years after Flood -0.0222 (0.0108)**

5 Years after Flood -0.0040 (0.0103)

6 Years after Flood 0.0021 (0.0073)

7 Years after Flood -0.0022 (0.0113)

8 Years after Flood -0.0120 (0.0122)

9 Years after Flood -0.0130 (0.0095)

10 Years after Flood -0.0153 (0.0091)

Controls 1970 Floods

Community FE

State by Year FE

Observations

Communities
R-Squared

(1) (2)

265,412

.2061

X

265,412

(3)

X

X X X

(4)

Panel A: Take-up for Communities in Presidential Disaster Counties

Panel B: Take-up in Communities Neighboring Presidential Disaster Counties

265,412

9,479
.2060

X

.2070

X

265,412

0.2071

X

XX

9,4799,479

X

X

9,479
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Figure 1.2: Histogram of Presidential Disaster Declarations by County 1990-2007

Figure 1.3: US Map with shades of red for county PDD Intensity
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Figure 1.4: Mean Per Capita County Flood Cost 1969-2004 (All US)

Figure 1.5: Community Flood Insurance Take-up After Hit Disaster Declaration Flood 1990-
2007
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Figure 1.6: Insurance Take-up after Floods 1990-2007, Hit and Non-Hit PDD Communities

Figure 1.7: Take-up after Floods 1990-2007 by Above and Below Median Cost
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Figure 1.8: Community Flood Insurance Take-up after Hit by PDD Floods 1980-2007

Figure 1.9: Take-up after Floods 1980-2007, PDD Communities and Geographic Neighbors



CHAPTER 1. LEARNING ABOUT AN INFREQUENT EVENT 35

Figure 1.10: Take-up after Floods 1980-2007, PDD Communities and Media Neighbors

Figure 1.11: Take-up after Floods 1980-2007, PDD Communities, Distance and Media Neigh-
bors
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Figure 1.12: Homeowner Flood Insurance Demanded as a Function of Flood Beliefs

Figure 1.13: Number of Community Flood Insurance Policies Demanded as a Function of
Flood Beliefs
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Figure 1.14: Distribution of US Counties by Likelihood of Flooding Disaster Declaration
from 1958-2007

Figure 1.15: Flood Probabilities and Insurance Take-up after Disaster Declaration Floods
1990-2007
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Figure 1.16: Flood Probabilities and Insurance Take-up after Disaster Declaration Floods
1990-2007

Figure 1.17: Chi Square Test Statistic and Rejection Region with Delta 0.80-1.05
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Chapter 2

Motor Vehicle Air Pollution and
Infant Health

2.1 Introduction

The goal of this paper is to examine the causal link between localized exposure to hazardous
pollutants from motor vehicle exhaust and adverse health outcomes. Motor vehicles release
Carbon Monoxide (CO) and fine (< 2.5µm) and ultrafine (< 0.1µm) particulate matter
which tend not to mix with other compounds. These pollutants are thought to have a very
localized pollution distribution around the emission source.1

Air pollution is a public good. The costs of polluting are often not considered when
consumers are making driving decisions or when firms are making production decisions.
The likely result is too much air pollution. The US Federal Government has restricted
air pollution through a number of measures including technology mandates (e.g. catalytic
converter), fuel restrictions (e.g. unleaded gasoline), and pollution emission standards (e.g.
Federal Tier 1 and Tier 2 legislation).

Historically, concern over vehicle pollution has focused on its contribution to the total
level of emissions and the effect on ambient air quality. Motor vehicle exhaust contributed
an estimated 44% of the total CO emissions in the US in the year 2000 ([6]). More recently
there has been increased concern over the contribution of vehicle pollution to global climate
change.2 Scientific studies have estimated that a significant portion of CO and particulate
pollution from motor vehicles remains within a short distance of the roadway ([62]). Thus

1For example, the Environmental Protection Agency models vehicle pollution from roadways using the
Hybrid Roadway Model (HYROAD). This model uses an impact distance of 500 meters. For documentation:
http : //www.epa.gov/scram001/dispersion alt.htm

2In 2002 the California State Legislature passed AB 1493 “Pavley Global Warming Bill” requiring future
reductions in greenhouse gas emissions from new motor vehicles ([4]). In 2007, the US Supreme Court ruled
that the US Environmental Protection Agency could regulate green house gas emissions from motor vehicles
([8])
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there is the potential for differential exposure to substantial levels of air pollution, even
among residents living in adjacent neighborhoods.

I use an exogenous natural event-the 1994 Northridge Earthquake in Los Angeles County,
CA-to test whether the reassignment of motor vehicle pollution after households have made
their location decision has any impact on infant health outcomes. The Northridge Earth-
quake damaged portions of several major highways and altered vehicle traffic in Los Angeles.
One of the highways damaged, Interstate 10, was the most trafficked roadway in the world at
the time of the earthquake with an estimated 261,000 vehicles a day. Residents living along
the alternative driving routes were exposed to elevated levels of vehicle air pollution during
the 3 months it took to repair Interstate 10. Residents living near to the closed portion of
Interstate 10 were exposed to less vehicle air pollution.

Overall, the results of the study are inconclusive. The empirical estimates of the effect
of changing traffic volumes on infant birth health are imprecise. However, it does appear
that any localized effect of vehicle pollution on infant health in Los Angeles during the early
1990’s is of much less importance than measured correlations between infant health and a
mother’s race, education, or age.

2.2 Brief Review of the Literature

The field of epidemiology has long been interested in the association between air pollution
and human health. For example, [87] finds that hospital emissions for repertory illnesses
increase dramatically when a local steel mill is open and operating. [78] find that residents
living near major point source emissions sources are more than 100% more likely to have an
asthmatic episode.

A more recent sub-literature has focused on the association between ambient air pollution
and infant health (e.g. [103]; [77]; [102]). These studies have linked ambient air pollution
to low birth weight (LBW), preterm birth, and perinatal mortality. Most of these studies
fail to consider the endogenous location decision of households and how this could bias the
health results.

One of the most prominent study examining the link between localized motor vehicle
pollution and human health is [102]. Wilhelm and Ritz create a distance-weighted measure
of exposure to air pollutants due to the proximity between each residence and all major
roadways. The study examines the complete universe of low birth weight (LBW) and preterm
births within Los Angeles County, California from 1994-1996. Wilhelm and Ritz use their
distance-weighted measure of exposure to compare those mothers with LBW or preterm
births to a randomly selected control group from the same zip codes. The primary finding of
the study is that there is an 8% increase in the risk of having a preterm birth if the mother
lived in housing within the highest quintile of vehicle emissions exposure (relative to the
lowest quintile) at the time of giving birth.

However, [102] has several significant shortcomings. First, economic theory predicts that
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individuals will select where to live by which housing location best matches their preferences
over housing attributes and neighborhood amenities. In particular, standard economic mod-
els suggest that individuals living near heavily trafficked roads may be very different than
individuals who live in the same neighborhoods (i.e. zip codes), but much farther away from
these roads (e.g. [93]; [66]). Further, if a study doesn’t control for all individual, housing,
and neighborhood characteristics that affect housing decisions then conventional estimation
techniques that rely on controlling for covariates are likely to give biased estimates. A large
economic literature demonstrates that biased estimation is an important practical consider-
ation in housing location studies (e.g. [26]; [54]).

A growing literature of influential papers in economics has examined the causal link
between air pollution and infant mortality (e.g. [32]; [33]; [39]; [40]). These papers allow for
individuals to select their housing based on the existing level of air pollution. Exogenous
variation in the level of ambient air pollution is then used to identify changes in health
outcomes. These studies all find a causal relationship between ambient air pollution and
human health. This paper follows in the spirit of these economic studies, while focusing on
the local differential impact of motor vehicle emissions on human health.

2.3 Northridge Earthquake as a Quasi-Experimental

Research Design

On January 17, 1994 the Northridge Earthquake measuring 6.8 on the Richter scale hit the
city of Los Angeles. The earthquake injured over 9,000 people and cost an estimated $44
billion in economic damage ([86]). The earthquake also shut down portions of four major
highways that traverse Los Angeles, thereby disrupting traffic flows and shifting hundreds
of thousands of vehicles to alternate driving routes. Seven miles of Interstate 10 (I-10) was
shut down for approximately 3 months. Additionally, portions of I-5, SR-118, and SR-14
were closed for periods ranging from one to six months.

The Northridge Earthquake unexpectedly altered the exposure of a subpopulation of Los
Angeles County residents to much different levels of vehicle air pollution. Figure 2.1 shows
Interstate 10 (I-10) and the post-quake detours ([84]). Prior to the earthquake this section
of I-10 was the most trafficked roadway in the world with an estimated 261,000 vehicles a
day. I-10 was reopened 85 days after the earthquake. During this time, there was an official
eastbound detour on Jefferson Boulevard and a westbound detour on Venice Boulevard.
Both detours used 3 miles of city streets. The Department of Transportation determined
that 42% of the pre-quake traffic on I-10 used the primary detours.

Figure 2.1 also shows the Westbound SR-118 Detours ([84]). Prior to the earthquake,
there were approximately 121,000 vehicles per day on SR-118 (measured just west of the SR-
118 and I-405 interchange). SR-118 was closed for 1-month. During this time approximately
50% of the traffic used one of the three detours. There were three westbound detours.
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Nordhoff St. was used for traffic from the south. Devonshire St. was used by traffic traveling
west on SR-118. Rinaldi St. was used for traffic from the north. All three detours rerouted
traffic back to SR-118 between Tampa Ave and Reseda Blvd.

Figure 2.2 shows the I-5 and SR-14 detours ([84]). This portion of I-5 was closed for 4
months. Pre-earthquake traffic on I-5 north of SR-14 was 133,000 vehicles per day. During
the 2 weeks immediately following the earthquake all of the traffic was diverted onto Lyons
Ave and San Fernando Road. After the initial 2 weeks a detour was established on The Old
Road. This detour ran parallel to I-5 and carried between 88,000 and 97,000 vehicles per
day. After The Old Road detour opened, the traffic flow on San Fernando Road stabilized
at 22,000 vehicles a day (up from 3,900 vehicles a day before the quake). The SR-14 detour
included northbound traffic on Foothill Boulevard.

Ideally there would be pollution monitoring data that could verify that the reallocation
of traffic led to changes in the pollution levels. Unfortunately, no monitoring stations were
located along any of the roadways that received an increase or decrease in traffic flow after
the earthquake.3 A significant weakness of this research design is not having actual air
pollution measurements .4

Another potential concern with this research design is that the earthquake led to substan-
tial housing relocation immediately after the earthquake. This could be the case if homes
were destroyed or if the earthquake changed the demand for particular housing locations.
Surprisingly, relatively few homes were destroyed by the earthquake. Additionally, there are
a large number of fault lines in LA County. Thus, both forced relocation and immediate
demand changes such as relocation away from fault lines appear not to be a significant issue
for this study.

The statistical power to detect birth weight and gestation period changes is the largest
concern. This will become more clear when discussing the estimation results. The low
statistical power comes from the relatively low number of births by mothers in very close
proximity to the effected portion of the highways. This is despite the fact that the most
trafficked highway in the world had traffic diverted through the second largest city in the
US. The speed with which the highways were repaired further reduced the number of births
potentially effected by changes in vehicle pollution exposure.

3There is one monitoring station (Newhall) that is ideally situated, but it didn’t begin collecting data
until 1999.

4I plan to contact the California Department of Transportation in the hope that there may have been
temporary monitoring of vehicle emissions during the period of traffic redirection. An alternative possibility
is to use another event that shutdown traffic on a major highway near to a permanent monitoring station.
I could use this event as a benchmark for how changes in traffic volume would be expected to effect local
(measurable) pollutant levels in Los Angeles.
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2.4 Data

The infant health outcomes of interest are low birth weight (LBW) and preterm birth. These
health outcomes are selected for a number of reasons. First, infants are one of the most
vulnerable segments of the population (World Health Organization 2006). Second, infants
born preterm or with LBW are less likely to survive infancy, more likely to suffer from
childhood illness, and have lower future earnings ([73]; [27]). Third, it is potentially easier
to establish a causal link between adverse health outcomes and pollution for infants because
of the much shorter history of pollution exposure. Finally, these outcomes are recorded on
birth certificates and available for a large segment of the population.

The data used in this paper come from two sources. Most birth certificate information
is from the 1993 and 1994 California Birth Cohort Files.5 These files include birth records
for all births in California. I requested permission to access birth records from zip codes in
Los Angeles County that are in the vicinity of the highways damaged from the Northridge
Earthquake.6 Information available in the Birth Cohort Files and used as data for this
project include: birth date, birth weight, gestation period, mother’s education, mother’s
race, and mother’s age.

The second data source are birth record files from LA County. These records are separate
from the California Birth Cohort Files, and unlike the state files, include the mother’s address
at the time she gave birth. I use unique birth record numbers included in both the state and
county files to link the mother’s address at the time of birth with the more detailed birth
information from the Cohort Files.

GIS software is used to determine the distance from each mother’s home address to each
of the major highways damaged by the Northridge Earthquake. I also calculate the distance
from each address to the detour routes established after the earthquake.7 There are 25,897
births in the selected Los Angeles zip codes in 1993. Of these, 24,408 (94.3%) have address
information for the mother. I am able to geocode 21,424 addresses (82.7% of total births).
For 1994, there are 24,108 births. Address information is non-missing for 22,650 (94.0%) of
the births. I am able to geocode 19,904 addresses (82.3%).

5In order to access these files I had to first receive permission from the California Committee for the
Protection of Human Subjects (CPHS).

6Birth records were requested from the following zip codes: 90005, 90006, 90006, 90007, 90008, 90011,
90014, 90015, 90016, 90018, 90019, 90021, 90025, 90034, 90035, 90037, 90062, 90064, 90066, 90089, 90230,
90232, 90401, 90403, 90404, 91040, 91202, 91206, 91207, 91208, 91303, 91304, 91306, 91307, 91311, 91321,
91324, 91325, 91326, 91330, 91331, 91335, 91340, 91342, 91343, 91344, 91345, 91350, 91351, 91352, 91354,
91355, 91356, 91367, 91381, 91401, 91402, 91403, 91405, 91406, 91411, 91423, 91436, 91501, 91502, 91504,
91505, 91506, 91523, 91601, 91602, 91605, 91606, 91607.

7I would like to thank UC Berkeley’s Geospatial Information Facility (GIF), and in particular, Kevin Koy
and Jeremy Freund for their assistance in calculating these distances.
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2.5 Empirical Specifications

I first discuss the preferred econometric approach to estimating the relationship between
infant birth outcomes and exposure to vehicle pollution. This approach is laid out by the
following equation:

weightijd = 1(quakeijd)δ +X
′
β + γi + ρj + εijd (2.1)

The dependent variable of interest in equation (2.1) is infant birth weight in grams born to
mother i, in birth order j, where the mother’s home address at the time of birth is within
interval d from the highway. I also consider gestation period (in days) and the probability
of having a birth of dangerously low weight (LBW) as other outcome variables. I follow
previous literature and define LBW as a birth weight of less than 2,500 grams. I estimate
the version of equation (2.1) with LBW as the dependent variable using a logit specification.

The independent variable of interest is whether the period of pregnancy coincided with
the Northridge Earthquake. The Northridge Earthquake temporarily shifted vehicle traffic
on several Los Angeles highways. The assumption is that the earthquake also effected the
level of vehicle air pollution. I estimate separately the above equation for mothers who lived
within distance interval d of a road that had less traffic and within distance interval d that
had more traffic. For example, I estimate the equation for mothers living within .25 miles of
the portion of Interstate 10 that was closed down, and for mothers living within .25 miles of
the Interstate 10 detour routes.

The identifying assumption is that the Northridge Earthquake is an exogenous event that
randomly caused damage and closed down portions of highways in Los Angeles. It is possible
that demand for housing is partially determined by knowledge of the earthquake fault lines
in Los Angeles. The preferred econometric specification considers the same mothers living
in the same homes in the year before the earthquake and in the year of the earthquake.
Thus, even if mothers select where to live based on the fault lines, the estimation results
only consider mothers who gave birth during the time period when traffic flow was impacted
by the earthquake, as well as, in the year before the earthquake.

γi controls for mother fixed effects and ρj controls for birth order effects. X
′
is a vector of

controls that include: an intercept, a mother’s education, age, and race, as well as whether
the mother smoked during pregnancy or received prenatal care.

I estimate equation 2.1 for different distance intervals. The hypothesis is that the effect
of increased (decreased) traffic should differentially effect birth outcomes depending on the
distance from the highway. Once distance from the highway reaches some maximum distance,
d̄, there will no longer be an effect on birth outcomes of the increased (decreased) traffic. I
statistically test for the difference between the coefficient estimates for δ for different distance
intervals. In particular, I test between estimates for very close distance intervals and intervals
that would not plausibly be impacted by the increase in traffic. In this way I can control for
other factors that effect birth outcomes that don’t depend on the distance from the highway.
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The equation I actually estimate in this paper differs from the preferred specification in
several significant ways. I do not include mother fixed effects or birth order fixed effects. Nor
do I include controls for whether a mother smoked during pregnancy or received prenatal
care. I exclude these variables to increase the statistical power of the estimation. There are
too few births during the period of highway closure to obtain precise point estimates for the
coefficient of interest using the preferred specification. Importantly, even thought the actual
estimating equation doesn’t include mother fixed effects, the coefficient estimates are still
conditioned on distance intervals from the highway. Although, I am not comparing the same
mothers, I do compare mothers who chose to live the same distance from the same highways.

Equations (2.2) and (2.3) provide the empirical specifications estimated in the paper.

weighti = 1(noquakei)θ0 + 1(quakei)θ1 + 1(noquakei)1(dist < .25)θ2 (2.2)

+1(quakei)1(dist < .25)θ3 +X
′
β + εi

weighti = 1(noquakei)δ0 + 1(quakei)δ1 + 1(noquakei)1(dist < .25)δ2 (2.3)

+1(noquakei)1(dist.25− .5)δ3 + 1(noquakei)1(dist.5− .75)δ4

+1(quakei)1(dist < .25)δ5 + 1(quakei)1(dist < .25− .5)δ6

+1(quakei)1(dist < .5− .75)δ7 +X
′
β + εi

In addition to the differences from equation (2.1) discussed in the previous paragraph,
equations (2.2) and (2.3) interact indicator variables for whether a mother is exposed to
earthquake induced traffic changes with the distance from a mother’s home to the highway.
The same control variables are included in X

′
as in equation (2.1) except that I no longer

include an intercept. I only consider mothers living less than half a mile from the highway
when estimating equation (2.2), and mothers less than one mile from the highway when
estimating equation (2.3). The interpretation of θ3 (θ2) in equation (2.2) is the difference in
birth weight between a mother exposed (not exposed) to earthquake induced traffic while
living less than one quarter mile from the highway relative to a mother living between one
quarter and one half mile from the highway.8

2.6 Estimation Results

Table 2.1 provides preliminary evidence on the importance of proximity to a highway for
infant birth outcomes. Panel A of Table 2.1 presents coefficient results from an OLS regres-
sion of birth weight on distance from the highway and a set of indicator control variables.

8The rationale for including indicator variables for pregnancies during the post-earthquake period and
pregnancies not during the post-earthquake period is that it facilitates tests between the exposure periods,
while controlling for distance from the highway.
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Distance is measured as a continuous variable in miles ranging from 0 to the distance thresh-
old (d̄) specified in each column heading. Columns (1) and (2) consider a threshold of one
half mile, while columns (3) and (4) set the threshold at 1 mile. A birth is included if the
distance from the mother’s residence to at least one of the four major highways impacted by
earthquake is less than the distance threshold.9 Columns (1)-(3) use births from 1993 only,
while column (4) pools births from 1993 and 1994. The advantage of pooling the births is
that there is a larger sample size. However, there is the concern that the distance variable for
births from 1994 is confounded by traffic volume changes due to the Northridge Earthquake.

The coefficient point estimate for distance to a highway is remarkably consistent across
the four specifications in Panel A. The point estimate is negative and imprecisely measured
in all specifications. Distance from a highway has very little explanatory power. In column
(1), the R-squared for the fit of the specification is zero to 4 decimal places.

The covariates included in columns (2)-(4) are indicator variables for: whether the mother
is African American, Asian, or of another racial identity, whether the mother is a teenager,
and whether the mother has any college education. The reference category is a white mother
with at least one year of college education who was not a teenager at the time she gave birth.
The point estimates are negative and significant at the 1% level for all three race indicator
variables. For example, the point estimate for African American in column (2) suggests that
a child born to an African American mother weighs 189 grams less than a child born to a
white mother. Overall, the point estimates for the race indicator variables are an order of
magnitude larger than the point estimates for distance to a highway. The point estimates
for being a teenage mother and for mothers without any college education are also negative
and significant at least the 5% level.

In panel B I estimate a model where I transform the weight and distance variables by
taking the natural log. The estimation results reinforce the interpretation of panel A. (Log)
distance from a highway has very little explanatory power in explaining (log) birth weight.
The point estimates for the covariates are again negative and an order of magnitude larger.
In column (2) the estimation results suggest that infants born to African American mothers
weigh 7% less than infants born to white mothers.

In panel C I estimate a logit model where the dependent variable is whether an infant is
born weighing less than 2,500 grams.10 The rationale for this model is that pollution may
increase the likelihood of dangerously low weight births, while at the same time not having
a large impact on mean birth weight. There is no evidence that distance to a highway
is correlated with births weighing less than 2,500 grams. Similar to Panels A and B, an
indicator variable for African American mothers has the largest statistical effect. In column
(2), the estimate suggests that African American mothers are 9% more likely to have a child
with low birth weight.

9Note that only births from the specified zip codes are considered (please refer to the Data Section). In
principle it is possible for the mother’s residence to be less than the threshold distance to more than one of
the four highways. However, there are very few births where this is the case.

10Note that panel C displays average partial effects calculated from the odds ratio logit estimation results.
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Table 2.2 tests the unconditional means for the three birth outcomes: low birth weight,
weight, and gestation period. The goal is to examine whether there is evidence for a vehicle
pollution infant health damage gradient based on distance from one of the 4 highways in Los
Angeles. Each panel in table 2.2 compares the means for births that occur within a quarter
of a mile to those between a quarter of a mile and half a mile, and for births within half a
mile to those between one and one and a half miles. Panel A pools births within a specified
distance from Interstate 5, Interstate 10, Interstate 405, and Highway SR-118. Panels B, C,
and D consider births in close proximity to Interstate 10, Interstate 5, and Highway SR-118
respectively.

Overall there is little evidence in support of an infant health damage gradient. Infant
birth outcomes don’t appear to be worse for those infants born to mothers living close to the
highways. Only 5 of the 24 mean birth outcome comparisons in table 2.2 are statistically
significant. Three of the statistically significant comparisons are for gestation period. All
three statistically significant gestation period results suggest that mothers exposed to greater
traffic have longer pregnancies (i.e. more healthy). However, the difference in length for these
estimates is less than one day. The strongest results in favor of a hypothesis that proximity to
busy highways is harmful for infant birth health are in Panel A. Both birth weight variables
are significantly different when comparing births to mothers living less than half a mile to a
highway with births to mothers living between a mile and a mile and a half from a highway.
However, this specification should be interpreted with caution. Mothers living over a mile
away from a highway are likely to be different than mothers living in close proximity. Table
2.1 shows that observable covariates such as mother’s race and education are importantly
correlated with birth outcomes. These variables are not controlled for in any of the mean
comparisons in Table 2.2.

Panels A and B of Table 2.3 present estimation results from equations (2.2) and (2.3)
on a the sample of births in close proximity to the Interstate 10 detour routes. The sample
includes those mothers who were exposed to the potential pollution from a shift in traffic
for the entire time period of Interstate 10’s closure, or who were pregnant during the same
calender days in the previous year.11 Table 2.3 explores whether exposing mothers to more
traffic leads to worse infant health outcomes at birth. In principle I could also examine
whether there are improved health outcomes for mothers living in close proximity to the
portion of Interstate 10 that had an unexpected reduction in traffic due to road closure.
Unfortunately, geocoding of the mother home addresses for the sample of zip codes with
birth information from LA County birth records revealed that there were surprisingly few
births along the section of Interstate 10 that was closed after the Northridge Earthquake.
This is true for both 1993 and 1994. I do not provide estimation results of equations (2.2) and
(2.3) for the other LA County highways impacted by the earthquake. The other highways
were either closed for too short of a time period, did not displace enough traffic, or had

11Births that occurred between April 11, 1993 and October 8, 1993 or April 11, 1994 and October 8, 1994
are included in the sample.
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detour routes too close to the initial highway.
Columns (2) and (3) of Panel A provide estimation results of equation (2.2). Again,

like in Table 2.2, there is little evidence of a infant health damage gradient with respect to
distance from the highway. The earthquake coefficient provides the mean weight in grams
(column 2) or mean gestation period (column 3) for an infant born to a mother living
between one quarter and one half miles from the detour roadways during the period while
traffic was rerouted. None of the four < .25mile coefficients are significantly different from
zero, implying that there is no difference in birth outcomes for mothers living closer or
farther away from the vehicle traffic. We may not expect < .25miles & noearthquake to
be different from zero since before the earthquake the detour route was not a major traffic
artery. We would expect < .25miles & earthquake to be negative and significantly different
from zero. We may not expect < .25miles & noearthquake to be different from zero since
before the earthquake the detour route was not a major traffic artery. Column (1) provides
estimates for a logit estimation of equation (2.2) with an indicator for low birth weight as
the dependent variable. Neither of the coefficient estimates for the < .25mile variables are
significantly different from zero. For each of the three dependent variables (columns) I test
the hypothesis that the two < .25mile coefficients are equivalent. The p-values for this test
are displayed in the last row of panel A. I fail to reject the hypothesis for each specification.

Panel B of table 2.3 provide estimation results of equation (2.3). The main difference
from the top panel, is that unlike Panel A, panel B considers four distance intervals up to
one mile from the Interstate 10 detour route. Nevertheless, the conclusions are the same
as from Panel A. There is no evidence that birth health outcomes are worse for births to
mothers closer to the detour route. This is true both before and after the earthquake. I am
unable to reject the null hypothesis of equality between the two < .25mile coefficients in
each equation.12

2.7 Conclusion

The goal of this paper is to examine the causal link between localized exposure to hazardous
pollutants from motor vehicle exhaust and adverse health outcomes. One of the primary
challenges in estimating the relationship between vehicle pollution and health is that indi-
viduals can usually select the level of pollution to which they are exposed. The concern is
that unless we control for all characteristics that effect the selection of pollution then empir-
ical estimates will likely be biased due to omitted variables and accurate comparisons can
not be made.

This paper focuses on two health outcomes for newborns: birth weight and gestation
period. I explore whether an exogenous event–the 1994 Northridge Earthquake–can be used

12The R-squared statistic for the fit of the regression model for columns (2) and (3) is very large. This is
due largely to the fact that I don’t include an intercept in these models. The R-squared from similar models
with an intercept is between 0.0000 and 0.0300 (and similar to that for the regressions in Table 2.1)
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as a quasi-experiment to test how birth outcomes change from a sudden and unexpected in-
crease in pollution. The assumption is that mothers do not move homes after the earthquake
to avoid increases in pollution due to rerouted traffic.

Overall the results of this study are inconclusive due to the relatively small number of
new births included in the sample design. However, the results do suggest that a mother’s
race, age, and level of education are more important than proximity to a highway. Being a
minority race (e.g. African American), a teenage mother, or not having any college education
are correlated with lower birth weight. The size of these correlations are approximately an
order of magnitude larger than the point estimates for the effect of living in close proximity
to a road with heavy traffic.
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Figure 2.1: Interstate 10 and SR118 Highway Closures and Traffic Detours
Interstate 10 Road Closure and Detour 

 

 
 

 

 

Westbound SR-118 Detours 
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Figure 2.2: Interstate 5 Highway Closure and Traffic Detours
Interstate 5 and SR-14 Detours  
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Table 2.1: Correlation between the Distance from LA Highways and Infant Birth Outcomes

distance -23 (57) -22  (56) -22  (21) -23  (15)

african american -189  (23)*** -177  (18)*** -188  (13)***

asian -85  (37)** -100  (29)*** -103  (20)***

other/unknown race -185  (40)*** -158  (31)*** -168  (22)***

teen mother -82  (25)*** -86  (19)*** -90  (13)***

no college -44  (17)** -35  (13)** -22  (9)**

constant 3,355  (16)*** 3,428  (21)*** 3,419  (15)*** 3,405  (11)***

R-squared

observations

log distance -0.003  (0.004) -0.003  (0.004) -0.003  (0.003) -0.004  (0.002)**

african american -0.070  (0.008)*** -0.065  (0.007)*** -0.069  (0.005)***

asian -0.020  (0.014) -0.026  (0.010)** -0.030  (0.007)***

other/unknown race -0.057  (0.015)*** -0.047  (0.011)*** -0.055  (0.008)***

teen mother -0.018  (0.009)** -0.022  (0.007)*** -0.026  (0.005)***

no college -0.017  (0.006)*** -0.012  (0.005)** -0.008  (0.003)**

constant 8.093  (0.007)*** 8.118  (0.008)*** 8.114  (0.005)*** 8.110  (0.004)***

R-squared

observations

distance 0.016  (0.038) 0.008  (0.029) -0.001  (0.008) -0.001  (0.006)

african american 0.093  (0.041)** 0.070  (0.013)*** 0.069  (0.010)***

asian -0.029  (0.020) -0.008  (0.012) 0.005  (0.009)

other/unknown race 0.040  (0.030) 0.039  (0.017)** 0.043  (0.013)***

teen mother -0.010  (0.011) 0.004  (0.007) 0.010  (0.006)*

no college 0.014  (0.011) 0.010  (0.006)* 0.004  (0.004)

R-squared

observations

selection of LA county zip codes.  Statistical significance: *** for 1% level, ** for 5% level, * for 10% level.

Notes: Panels A. and B. display the estimated coefficients and standard errors from 4 separate regressions.  Panel C. displays the marginal effects for

0.0001 0.0244 0.0180 0.0162

each coefficient from 4 separate logit estimations.  A constant is included in each logit estimation (but not in the table).  The sample for columns (1)

and (2) are those births in 1993 within.5 miles of interstate 5, interstate 10, interstate 405, or highway SR118 and also in a zip code within 405, or

5,736 5,736 9,816 18,840

highway SR118 and also in a zip code within "close" proximity to the portions of these roads that were closed in 1994.  Columns (3) and (4) restrict

the sample to births within 1 mile.  Column (4) includes births from both 1993 and 1994.  See the data appendix for more details regarding the

5736 5,736 9,816 18,840

0.0000 0.0158 0.0143 0.0167

0.0001 0.0150

(3) (4)

B. Dependent Variable: Log Birth Weight (grams) 

A. Dependent Variable: Birth Weight (grams)

(1) (2)

< .5 miles & 1993

C. Dependent Variable: Indicator Low Birth Weight (<2,500 grams)

5,736 5,736 9,816 18,840

< .5 miles & 1993 < 1 mile & 1993 < 1 mile & 1993-94

0.0128 0.0156
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Table 2.3: Quasi-Experimental Regressions

Dependent Variable:

no earthquake -- -- 3409  (46)*** 275.3  (1.5)***

< .25 miles & no earthquake 0.006  (0.016) -5  (45) 0.8  (1.5)

earthquake -- -- 3459  (46)*** 278.4  (1.5)***

< .25 miles & earthquake 0.024  (0.022) -66  (46) -0.2  (1.5)

black 0.081  (0.022)*** -168  (23)*** -4.9  (1.2)***

asian 0.022  (0.053) -69  (108) 0.2  (3.5)

other minority 0.047  (0.057) -221  (105)** -4.0  (3.4)

teen mother 0.008  (0.019) -114  (53)** -1.2  (1.7)

no college 0.012  (0.013) -65  (38)* 0.0  (1.2)

R-squared

observations

no earthquake -- -- 3374  (41)*** 275.8  (1.4)***

< .25 miles & no earthquake 0.093  (0.251) 9  (40) 0.1  (1.3)

> .25 miles & < .5 miles & no earthquake -0.129  (0.254) 32  (39) -0.2  (1.3)

> .5 miles & < .75 miles & no earthquake 0.150  (0.240) -20  (38) 0.4  (1.3)

earthquake -- -- 3333  (41)*** 276.5  (1.4)***

< .25 miles & earthquake -0.019  (0.276) 3  (42) 1.1  (1.4)

> .25 miles & < .5 miles & earthquake -0.552  (0.301)* 65  (41) 1.5  (1.4)

> .5 miles & < .75 miles & earthquake -0.707  (0.287)** 102  (39)*** 1.0  (1.3)

black 1.092  (0.177)*** -152  (29)*** -4.7  (1.0)***

asian 0.262  (0.543) -38  (74) 0.5  (2.5)

other minority 0.295  (0.541) -168  (74)** -1.7  (2.5)

teen mother 0.326  (0.247) -80  (43)* 0.4  (1.4)

no college 0.346  (0.193)* -54  (29)* -0.3  (1.0)

R-squared

observations

Northridge Earthquake between between April 11, 1993 and October 8, 1993 or April 11, 1994 and October 8, 1994.  Panel A estimates

versions of equation (2), while panel B estimates versions of equation (3) (see text for details). 

p-value for test of equality for <.25 mile 

coefficients
0.9312 0.9721 0.7189

1,308 1,308 1,308

2,040 2,040 2,040

Gestation (days)

-- 0.9706 0.9952

(3)

B. < 1 Mile from Interstate 10 Detour 

A. < .5 Miles from Interstate 10 Detour

(1) (2)

Notes: The sample for Panel A contains births to mothers living within .5 miles of one of the Interstate 10 detours established after the 

Indicator LBW

p-value for test of equality for <.25 mile 

coefficients

-- 0.9703 0.9953

0.4226 0.3501 0.8553

Weight (grams)
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Chapter 3

Does Hazardous Waste Matter?
Evidence from the Housing Market
and the Superfund Program

[Coauthored with Michael Greenstone]

3.1 Introduction

The estimation of individuals’ valuations of environmental amenities with revealed preference
methods has been an active area of research for more than three decades. There are now
theoretical models outlining revealed preference methods to recover economically well de-
fined measures of willingness in a variety of settings, including housing markets, recreational
choices, health outcomes, and the consumption of goods designed to protect individuals
against adverse environmentally-induced outcomes ([67]; [5] contain reviews). The applica-
tion of these approaches, however, is often accompanied by seemingly valid concerns about
misspecification that undermine the credibility of any findings. Consequently, many are
skeptical that markets can be used to determine individuals’ valuations of environmental
amenities.1

1Further, the increasing reliance on stated preference techniques to value environmental amenities is
surely related to dissatisfaction with the performance of revealed preference techniques. See [58] and [44] for
discussions of stated preference techniques
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Hazardous waste sites are an example of an environmental disamenity that provokes
great public concern. The 1980 Comprehensive Environmental Response, Compensation,
and Liability Act, which became known as Superfund, gave the EPA the right to place sites
that pose an imminent and substantial danger to public welfare and the environment on the
National Priorities List (NPL) and to initiate remedial clean-ups at those sites. Through
2005, approximately $35 billion (2005$) in federal monies and an unknown amount of private
funding has been spent on Superfund clean-ups, and yet remediations are incomplete at
roughly half of the nearly 1,600 sites.2 The combination of these high costs and the absence
of convincing evidence of its benefits makes Superfund a controversial program ([7]).

This paper uses the housing market to estimate the welfare consequences of Superfund
sponsored clean-ups of hazardous waste sites. The empirical challenge is that the evolution
of housing market outcomes (e.g., prices) proximate to the Superfund sites in the absence of
the clean-ups is unknown. The development of a valid counterfactual is likely to be especially
challenging, because the sites assigned to the NPL are the most polluted ones in the US. For
example, what would have happened to housing prices in Love Canal, NY, in the absence of
the famous Superfund clean-up there?

As a solution, we implement a quasi-experiment based on knowledge of the selection rule
that the EPA used to develop the first NPL in 1983. The EPA was only allocated enough
money to conduct 400 clean-ups. After cutting the list of candidate sites from 15,000 to 690,
the EPA invented and implemented the Hazardous Ranking System (HRS) that assigned each
site a score from 0 to 100 based on the risk it posed, with 100 being the most dangerous. The
400 sites with the highest HRS scores (i.e., exceeding 28.5) were placed on the initial NPL
in 1983, making them eligible for Superfund remedial clean-ups. We compare the evolution
of housing market outcomes between 1980 and 2000 in areas near sites that had initial HRS
scores above and below the 28.5 threshold. We also implement a regression discontinuity
design ([36]) to focus the comparisons among sites with scores near the threshold.

To structure the analysis, we model the consequences of a quasi-experiment that leads
to an exogenous change in a local amenity in the context of the hedonic method ([66]; [93]).
We show that if consumers value the clean-ups, then there are two empirical predictions.
First, the improvement at the site should lead to increases in the demand and supply of
local housing and, in turn, increases in the prices and quantities of houses. Second, the
improvement should lead to sorting such that the share of the population living near the
improved sites that places a high value on environmental quality increases. The implication
is that an exclusive focus on housing prices as in previous quasi-experimental hedonic studies
([34]; [76]) may obscure part of the welfare gain.

The results suggest that individuals place a small value on a hazardous waste site’s
inclusion on the NPL and subsequent clean-up. Specifically, we find that a site’s placement
on the NPL is associated with economically small and statistically indistinguishable from
zero local changes in residential property values, property rental rates, housing supply, total

2Throughout the paper, monetary figures are reported in 2000 $’s, unless otherwise noted
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population, and the types of individuals living near the site. These findings are robust to a
wide variety of specification checks, and they hold whether they are measured 7 (in 1990)
or 17 (in 2000) years after placement on the NPL. Overall, these findings suggest that the
mean local benefits of a Superfund clean-up as measured through the housing market are
substantially lower than our estimated average cost of $43 million per Superfund clean-up.

The conventional hedonic approach compares areas surrounding NPL sites with the re-
mainder of the US. In contrast to the HRS research design, the conventional approach pro-
duces estimates that suggest that gains in property values exceed the mean costs of clean-up.
However, these regressions also produce a number of puzzling results that undermine confi-
dence in the approach’s validity. Further, there is evidence that the conventional approach
is likely to confound the effect of the presence of a NPL site with other determinants of
housing market outcomes. Notably, the HRS research design appears to greatly reduce the
confounding.

The study is conducted with the most comprehensive data file ever compiled by the EPA
or other researchers on the Superfund program and its effects. The resulting database has
information on all 1,400 Superfund hazardous waste sites as of 2000, the sites that narrowly
missed placement on the initial NPL, and census-tract level housing market outcomes for
1980 (before the release of the first NPL), 1990, and 2000. Consequently, this study is a
substantial departure from the previous Superfund/hazardous waste site hedonic literature,
which is entirely comprised of examinations of one or a handful of sites and collectively covers
just 30 different sites ([95]; [82]; [72]; [70]; [51]; [52]; [71]; [80]; [65]; [81]; [50]).3

The paper proceeds as follows. Section I provides background on the Superfund program
and how the HRS research design may allow for credible estimation of the effects of Superfund
clean-ups on housing market outcomes. Section II discusses how to use hedonic theory to
provide an economic interpretation for the results from the HRS research design. Section III
details the data sources and provides some summary statistics. Sections IV and V report
on the econometric methods and empirical findings, respectively. Section VI interprets the
results, while VII concludes.

3Using EPA estimates of the probability of cancer cases and the costs of Superfund clean-ups, [100]
find that at the median site expenditure the average cost per cancer case averted by the clean-up exceeds
$6 billion. This health effects approach requires knowledge of the toxins present and the pathways they
travel, the health risk associated with a toxic by pathway pair, the size of the affected population, the
pathway-specific exposure, and the willingness to pay to avoid mortality/morbidity. Due to the state of
scientific uncertainty associated with each step, we think this approach is unlikely to produce credible benefit
estimates.
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3.2 The Superfund Program and a New Research De-

sign

3.2.1 History and Broad Program Goals

Before the regulation of the disposal of hazardous wastes by the Toxic Substances Control
and Resource Conservation and Recovery Acts of 1976, industrial firms frequently disposed
of wastes by burying them in the ground. Love Canal, New York offers perhaps the most
infamous example of these disposal practices. Throughout the 1940s and 1950s, this area
served as a landfill for industrial waste, receiving more than 21,000 tons of chemical wastes.
After New York state investigators found high concentrations of dangerous chemicals in the
air and soil at Love Canal, concerns about the safety of this area prompted President Carter
to declare a state of emergency in 1978, an action that led to the relocation of the area’s 900
residents. The Love Canal incident helped to galvanize support for addressing the legacy of
industrial waste, a movement that culminated in the creation of the Superfund program in
1980.

The centerpiece of the Superfund program, and this paper’s focus, is the long-run re-
mediation of hazardous waste sites.4 These multi-year remediation efforts aim to reduce
permanently the serious, but not imminently life-threatening, dangers caused by hazardous
substances. By the end of 2005, the EPA has placed 1,552 sites, thereby chosen for these
long-run clean-ups. The next subsection describes the selection process, which forms the
basis of our research design.

3.2.2 Site Assessment and Superfund Clean-Ups Processes

As of 1996, environmental activities, neighborhood groups, and other interested parties had
referred more than 40,000 hazardous waste sites to the EPA for possible inclusion on the
NPL. Since there are limited resources available for these clean-ups, the EPA follows a
multi-step process to identify the most dangerous sites.

The final step of the assessment process involves the application of a Hazardous Ranking
System (HRS), a rating system reserved for the most dangerous sites. The EPA developed
the HRS in 1982 as a standardized approach to identify the sites that pose the greatest
threat to humans and the environment. The original HRS evaluated the risk for exposure
to chemical pollutants along three migration ‘pathways’: groundwater, surface water, and
air. The major determinants of risk along each pathway for a site are the toxicity and
concentration of chemicals present, the likelihood of exposure and proximity to humans,
and the size of the potentially affected population. EPA officials also consider non-human

4The Superfund program also finds immediate removals, which are short-term responses to environmental
emergencies aimed at diminishing an immediate threat. These actions are not intended to remediate the
underlying environmental problem and are not exclusive to hazardous waste sites on the NPL.
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impacts, but they play a relatively minor role in determining the HRS score.
The HRS produces a score that ranges from 0 to 100, with 100 being the highest level of

risk. From 1982-1995, the EPA assigned all hazardous waste sites with a HRS score of 28.5
or greater to the NPL. These sites are the only ones that are eligible for Superfund remedial
clean-up. The Data Appendix provides further details on the determination of HRS test
scores and their role in assignment to the NPL.

Once a site moves onto on the NPL, it generally takes many years until the clean-up
is complete. The first step is a further study of the extent of the environmental problem
and how best to remedy it, an assessment that is summarized in the Record of Decision
(ROD), which also outlines recommended clean-up actions for the site. After workers finish
physical construction of all clean-up remedies, removing immediate threats to health, and
putting long-run threats “under control,” the EPA gives a site a “construction complete”
designation. The final step is the agency’s deletion of the site from the NPL.

3.2.3 1982 HRS Scores as the Basis of a New Research Design

This paper’s goal is to obtain reliable estimates of the effect of Superfund sponsored clean-
ups of hazardous waste sites on housing market outcomes in areas surrounding the sites. The
empirical challenge is that NPL sites are the most polluted in the US, so it is likely that there
are unobserved factors that covary with both proximity to hazardous waste sites and housing
prices. Although this possibility cannot be tested directly, it is notable that proximity to a
hazardous waste site is associated with lower population densities, lower household incomes,
higher percentages of high school dropouts, and a higher fraction of mobile homes among
the housing stock.

Consequently, cross-sectional estimates of the association between housing prices and
proximity to a hazardous waste site may be severely biased due to omitted variables.5 In fact,
the possibility of confounding due to unobserved variables has been recognized as a threat to
the use of the hedonic method to develop reliable estimates of individuals’ willingness to pay
for environmental amenities since its invention ([97]). This paper’s challenge is to develop a
valid counterfactual for the housing market outcomes near Superfund sites in the absence of
their placement on the NPL and clean-up.

A feature of the initial NPL assignment process that has not been noted previously by
researchers may provide a credible solution to the likely omitted variables problem. In the
first year after the legislation’s passage, groups and individuals referred 14,697 sites to the
EPA, which then investigated them as potential candidates for remedial action. Through
an initial assessment process, the EPA winnowed this list to the 690 most dangerous sites.

5Cross-sectional models for housing prices have exhibited signs of misspecification in a number of other set-
tings, including the relationships between land prices and school quality, air pollution, and climate variables
([26]; [34]; [43]). Incorrect choice of functional form is an alternative source of misspecification ([57]; [37]).
Other potential sources of biases of published hedonic estimates include measurement error and publication
bias ([25]; [20])
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Although the Superfund legislation directed the EPA to develop a NPL of “at least” 400
sites (Section 105(8)(B) of CERCLA), budgetary considerations caused the EPA to set a
goal of placing exactly 400 sites on the NPL.

The EPA developed the HRS to provide a scientific basis for determining the 400 out of
the 690 sites that posed the greatest risk. Pressured to initiate the clean-ups quickly, the
EPA developed the HRS in about a year, applied the test to the 690 worst sites, and ranked
their scores from highest to lowest. A score of 28.5 divided numbers 400 and 401, so the
initial NPL published in September 1983 was limited to sites with HRS scores exceeding
28.5. See the Data Appendix for further details.

The central role of the HRS score provides a compelling basis for a research design that
compares housing market outcomes near sites with initial scores above and below the 28.5
cut-off for at least three reasons. First, it is unlikely that sites’ HRS scores were manipulated
to affect their placement on the NPL, because the 28.5 threshold was established after
the testing of the 690 sites was completed. The HRS scores therefore reflected the EPA’s
assessment of the risks posed by each site, rather than the expected costs or benefits of
clean-up.

Second, the HRS scores are noisy measures of risk, so it is possible that true risks are
similar above and below the threshold. This noisiness results from the scientific uncertainty
about the health consequences of exposure to the tens of thousands of chemicals present at
these sites.6 Further, there was no evidence that sites with HRS scores below 28.5 posed
little risk to health. The Federal Register specifically reported that the “EPA has not made
a determination that sites scoring less than 28.50 do not present a significant risk to human
health, welfare, or the environment” and that a more informative test would require “greater
time and funds” (Federal Register, September 21, 1984).7

Third, the selection rule that determined placement on the NPL is a highly nonlinear
function of the HRS score. This allows for a quasi-experimental regression discontinuity
design that compares outcomes at sites “near” the 28.5 cut-off. If the unobservables are
similar or change smoothly around the regulatory threshold, then the regression discontinuity
approach will produce causal estimates of the impact of Superfund clean-ups on housing
market outcomes.8

6A recent history of Superfund’s makes this point. ”At the inception of EPA’s Superfund program, there
was much to be learned about industrial wastes and their potential for causing public health problems.
Before this problem could be addressed on the program level, the types of wastes most often found at sites
needed to be determined, and their health effects studied. Identifying and quantifying risks to health and the
environment for the extremely broad range of conditions, chemicals, and threats at uncontrolled hazardous
wastes sites posed formidable problems. Many of these problems stemmed from the lack of information
concerning the toxicities of the over 65,000 different industrial chemicals listed as having been in commercial
production since 1945” ([3], p. 3-2).

7One way to measure the crude nature of the initial HRS test is by the detail of the guidelines used for
determining the HRS score. The guidelines used to develop the initial HRS sites were collected in a 30 page
manual. Today, the analogous manual is more than 500 pages.

8The research design of comparing sites with HRS scores “near” the 28.5 is unlikely to be valid for sites
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An additional feature of the analysis is that an initial score above 28.5 is highly correlated
with eventual NPL status but is not a perfect predictor of it. This is because some sites
were rescored, with the later scores determining whether they ended up on the NPL.9 The
subsequent analysis uses an indicator variable for whether a site’s initial (i.e., 1982) HRS
score was above 28.5 as an instrumental variable for whether a site was on the NPL in order
to purge the potentially endogenous variation in NPL status.

3.3 Using Hedonics to Value Changes in Local Envi-

ronmental Quality Due to Superfund Clean-ups

An explicit market for a clean local environment does not exist. The hedonic price method
is commonly used to infer the economic value of non-market amenities like environmental
quality to individuals. To date, its empirical implementation has generally been in cross-
sectional settings where it is reasonable to assume that consumers and producers have already
made their optimizing decisions. This section briefly reviews the cross-sectional equilibrium.
It then discusses how an improvement in local environmental quality due to a Superfund
clean-up leads agents to alter their utility and profit-maximizing decisions and the resulting
new equilibrium. The purpose of this discussion is to devise an empirical strategy to infer
the welfare consequences of Superfund clean-ups using decennial Census data.

3.3.1 A Brief Review of Equilibrium in the Hedonic Model

Economists have estimated the association between housing prices and environmental ameni-
ties at least since [89] and [90]. However, [93] and [66] were the first to give this correlation
an economic interpretation. In the Rosen formulation, a differentiated good is described
by a vector of its characteristics, C = (c1, c2, ..., cn). In the case of a house, these charac-
teristics may include structural attributes (e.g., number of bedrooms), neighborhood public
services (e.g., local school quality), and local environmental amenities (e.g., distance from a
hazardous waste site). Thus, the market price of the ith house can be written as:

Pi = P (ci1, ci2, ..., cin) (3.1)

that received an initial HRS score after 1982. This is because once the 28.5 cut-off was set, the HRS testers
were encouraged to minimize testing costs and simply determine whether a site exceeded the threshold.
Consequently, testers generally stop scoring pathways once enough pathways are scored to produce a score
above the threshold.

9As an example, 144 sites with initial scores above 28.5 were rescored and this led to 7 sites receiving
revised scores below the cut-off. Further, complaints by citizens and others led to rescoring at a number of
sites below the cut-off. Although there has been substantial research on the question of which sites on the
NPL are cleaned-up first (see, e.g., [96]), we are unaware of any research on the determinants of a site being
rescored.
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The partial derivative of P() with respect to the jth characteristic, ∂P/∂ci, is referred to as
the marginal implicit price. It is the marginal price of the jth characteristic implicit in the
overall price of the house, holding constant all other characteristics.

In the hedonic model, the locus between housing prices and a characteristic, or the
hedonic price schedule (HPS), is generated by the equilibrium interactions of consumers and
producers. It is assumed that markets are competitive, all consumers rent one house at the
market price, and utility depends on consumption of the numeraire, X (with price equal to
1), and the vector of house characteristics:

u = u(X,C) (3.2)

The budget constraint is expressed as I − P −X = 0, where I is income.
Maximization of (2.2) with respect to the budget constraint reveals that individuals

choose levels of each of the characteristics to satisfy
∂U/∂cj
∂U/∂x

= ∂P/∂cj. Thus, the marginal

willingness to pay for cj (e.g., local environmental quality) must equal the marginal cost of
an extra unit of cj in the market.

It is convenient to substitute the budget constraint into (2.2), which gives u = u(I −
P, c1, c2, ..., cn). By inverting this equation and holding all characteristics of the house but j
constant, an expression for willingness to pay for cj is obtained:

Bj = Bj(I − P, cj, C∗−j, u∗) (3.3)

Here, u∗ is the highest level of utility attainable given the budget constraint and C∗−j is the
optimal quantities of other characteristics. This is referred to as a bid (or indifference) curve,
because it reveals the maximum amount that an individual would pay for different values of
cj, holding utility constant.

Heterogeneity in individuals’ bid functions due to differences in preferences and/or in-
comes leads to differences in the chosen quantities of a characteristic. This is depicted in
Figure 1a, which plots the HPS and bid curves for cj of three consumer types. The con-
sumers are denoted as types #1, #2, and #3, and potentially there are an unlimited number
of each type. Each bid function reveals the standard declining marginal rate of substitution
between cj and X (because X = I − P ). The three types choose houses in locations where
their marginal willingness to pay for cj is equal to the market determined marginal implicit
price, which occur at cj1, cj2, and cj3, respectively. Given market prices, these consumers’
utilities would be lower at sites with higher or lower levels of local environmental quality.

The other side of the market is comprised of suppliers of housing services. We assume
that suppliers are heterogeneous due to differences in their cost functions. This heterogeneity
may result from differences in the land they own. For example, it may be very expensive
to provide a high level of local environmental quality on a plot of land located near a
steel factory. By inverting a supplier’s profit function, we can derive its offer curve for the
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characteristic cj:
Oj = Oj(cj,C

∗
−j,Π

∗) (3.4)

where Π∗ is the maximum available profit given its cost function and the HPS. Figure 1a
depicts offer curves for three types of suppliers. With this set-up, individuals that live in a
house that they own would be both consumers and suppliers and their supplier self would
rent to their consumer self.

The HPS is formed by tangencies between consumers’ bid and suppliers’ offer functions.
At each point on the HPS, the marginal price of a housing characteristic is equal to an
individual’s marginal willingness to pay for that characteristic and an individual supplier’s
marginal cost of producing it. From the consumer’s perspective, the gradient of the HPS with
respect to local environmental quality gives the equilibrium differential that compensates
consumers for accepting the increased health risk and aesthetic disamenities associated with
lower local environmental quality. Put another way, areas with poor environmental quality
must have lower housing prices to attract potential homeowners, and the HPS reveals the
price that allocates consumers across locations. Thus, the HPS can be used to infer the
welfare effects of a marginal change in a characteristic. From the suppliers’ perspective, the
gradient of the HPS reveals the costs of supplying a cleaner local environment.

3.3.2 What are the Consequences of a Large Change in Environ-
mental Quality in the Hedonic Model?

This study assesses the impacts of Superfund remediations of hazardous waste sites, which
intend to cause non-marginal improvements in environmental quality near the site. This
subsection extends and fleshes out the hedonic model to describe the theoretical impacts
of these clean-ups on consumers, suppliers, and social welfare. Any impacts on the labor
market are ignored, because wage changes don’t affect welfare since any gains (losses) for
workers are offset by losses (gains) for firms ([91]).

We focus on the case where the overall HPS does not shift in response to the increased
supply of “clean” sites so there are not changes in relative prices.10 The assumption of a
constant HPS may be valid because to date only 670 Superfund sites have been completely
remediated. They are located in just 624 of the 65,443 US census tracts, which constitute a
small part of the US housing market.

Now, consider the clean-up of a hazardous waste site that increases local environmental
quality in the neighborhood surrounding the site from cj1 to cj3 as in Figure 1a. It is evident
from the HPS that the rental price of housing near the improved site will rise to p3. For type
#1 consumers, the increase in the rental rate exceeds their willingness to pay for the clean-
up. Consequently, their neighborhood has become too expensive, given their preferences and
income, and the clean-up reduces their utility.

10See [23] and [67] for more general discussions of the welfare impacts of non-marginal amenity improve-
ments (including price changes). [54] also present a brief discussion of these issues.
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The result is that consumers will migrate between communities to restore the equilibrium.
The type #1 consumers that had chosen the improved site based on its previous rental price
and environmental quality will move to a house with their originally chosen and optimal
values of p and cj (i.e., p1 and cj1). Additionally, some type #3 consumers will move near
the newly cleaned-up site, where they will consume cj3 at a price of p3. So assuming zero
moving costs, the key result is that some consumers will change locations, but their utility
is unchanged because they choose locations with their original cj and p.11

One consequence of this taste-based sorting is that the residents of the improved neighbor-
hood will have greater unobserved taste for environmental quality and/or higher incomes.12

Thus, the marginal resident will be less tolerant of exposure to hazardous waste. We test
for this taste-based sorting below.

In this set-up, land owners near the site are the only agents whose welfare is affected by
the clean-up. If residential and commercial land markets are perfectly integrated, then the
higher rental rates are a pure benefit for all landowners because the change in environmental
quality is costless for them. In this case, the supply of residential land is effectively fixed so
all adjustments occur through prices.

It is possible that the residential and non-residential land markets are not perfectly
integrated, perhaps due to zoning laws, which are costly to change ([53]). In this case, the
increase in rental prices is still a pure benefit for owners of residential land near the site.
The higher rents for residential land will cause some owners of non-residential land to find
it profitable to convert their land to residential usage. Presumably, the pre-clean-up rental
rate of the converted land had been higher when in the non-residential sector and/or there
may be costs associated with conversion (e.g., legal fees associated with rezoning), so the
benefits for owners of converted land are smaller than for owners of land that was already
used for residential housing. Ultimately, the benefits of conversion determine the shape of
the supply curve of residential land near the site and the welfare gain for these land owners.
The empirical analysis tests for supply responses.

To summarize, there are four predicted impacts of an amenity improvement. First, the
price of land (and housing) near the improved site will increase (except in the unlikely case
where the supply of residential land is perfectly elastic). Second, consumers will respond
with taste-based sorting. Third, the supply of residential land (and housing) near the site is
likely to increase. Fourth, the entire welfare gain accrues to land owners. We next discuss
how to test these predictions with decennial Census data.

11For simplicity, we assume zero moving costs although this surely isn’t correct. In the presence of moving
costs, renters are made worse off by the amount of the moving costs. See [24] on the impacts of moving costs
on the valuation of air pollution.

12See [21] and [30] for evidence of migration induced by environmental changes. In principle, the new
residents’ incomes could have a direct effect on individuals’ valuations of living in the community. We ignore
this possibility here because this will not create any social benefits as long as the benefits from living near
high income individuals are sufficiently linear.
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3.3.3 Can We Learn about the Welfare Effects of Superfund Clean-
ups from Decennial Census Data?

Three decades after the publication of the original Rosen article, the hedonic approach to
estimating the value of non-marginal amenity changes has not met with great empirical
success for at least three reasons. First, the consistent estimation of the HPS, which is the
foundation of all welfare calculations, has proven to be extremely challenging due to omitted
variables ([34]; [43]). Second, the estimation of even a single individual’s/taste type’s bid
function is also made quite difficult, because it is impossible to observe the same individual
facing two sets of prices in a cross-section.13 The difficulty of this task was underscored by
[48] and [22] who showed that taste-based sorting undermines efforts to infer consumers’ bid
functions from the HPS.14 Third, the implementation of the full blown approach requires
estimates of bid functions for all consumers and cost functions for all suppliers in the economy.
This is a tremendous amount of information, and there is a consensus that existing data
sources are not up to the task.

In light of these challenges to implementing the hedonic approach, this subsection con-
siders how decennial census data on housing and demographic variables can be used to learn
about the welfare effects of Superfund clean-ups. There are at least two features of these
data that merit noting because they affect the form and interpretation of the subsequent
empirical analysis.

The first feature is that census tracts are the smallest unit of observation that can be
matched across the 1980, 1990, and 2000 censuses. This means that it is infeasible to observe
individuals over time and therefore to obtain estimates of their bid and cost functions.
Consequently, we consider the impacts of a clean-up in the context of census tract-level
demand and supply functions for residential land, which are determined by the bid and cost
functions of local consumers and suppliers.

We begin with the case where the supply curve for residential land near a hazardous
waste site is perfectly inelastic, which is likely to be the case in the short-run, and demand
is downward sloping. This is depicted in Figure 1b with S1 and D1 and equilibrium outcome
(P1, Q1). Now, consider an exogenous increase in environmental quality due to a clean-up.
The improvement raises current residents’ valuation of living near the formerly dirty site
and, as sketched out in the previous subsection, with free migration individuals with even
higher valuations of environmental quality will move in. The net result is that the demand
curve for residential housing near the improved site shifts out. This is depicted as D2 and
causes prices to increase to P2 but leaves quantities unchanged.

With a parallel shift in the demand curve and no change in the HPS, the welfare gain is
the sum of the shaded areas A1 and A2 in Figure 1b. This equals the mean change in price

13[93] proposed a 2-step approach for estimating bid functions (and offer curves). He later wrote, ”It is
clear that nothing can be learned about the structure of preferences in a single cross-section” ([92], p. 658).

14In a recent paper, [47] outline the assumptions necessary to identify the demand (and supply) functions
in an additive version of the hedonic model with data from a single market.



CHAPTER 3. DOES HAZARDOUS WASTE MATTER? 66

times the number of residential plots of land and entirely accrues to suppliers or landowners.
From a practical perspective, the challenge is to accurately measure the change in house or
residential land prices near the improved site.

In the longer run, supply is likely to be more elastic due to the conversion of non-
residential land, and the remediation will lead to changes in prices and quantities. Figure
1b depicts the unrealistic polar case where supply is perfectly elastic as S2. With this
supply curve, the new equilibrium combination is (P1, Q2), which reflects a substantial
gain in quantities but no change in prices. The gain in welfare is entirely an increase in
consumer surplus and is the sum of the shaded areas B1, B2, and A2. Previous applications
of the hedonic method have generally examined prices only, so they may have understated
(potentially dramatically) the welfare gain associated with amenity improvements.

It is evident that with census-tract data the development of a full welfare measure requires
knowledge of the shapes of the supply and demand curves. We are unaware of a credible
strategy for separately identifying supply and demand over the 10 year periods between
censuses. In this situation, precise welfare calculations require ad hoc assumptions about
the elasticities of supply and demand, except for the case where neither prices nor quantities
change. In fact, the subsequent analysis finds small changes in prices and quantities, so
our primary conclusion is that Superfund remediations did not substantially increase social
welfare.

The census tract-level demographic data can also be used to test the theoretical prediction
of taste-based sorting in response to remediations. An increase in the number of high income
individuals or people that are likely to place a high value on environmental quality in areas
near the remediated sites would provide complementary evidence that the clean-ups are
valued. In contrast, a failure to find these population shifts near the sites would suggest that
the clean-ups did not lead to substantial welfare gains.

The second feature of the data that merits highlighting is that they are only available
in 1980, 1990, and 2000. Ideally, we would like to measure the impact of a site’s placement
on the NPL immediately after the announcement because all benefits are in the future and
homeowners will naturally discount them by the rate of time preference. Furthermore, the
clean-up itself may reduce the consumption value of living near a site in the short-run (e.g.,
due to increased presence of trucks).

An immediate measurement of the impact on prices would ensure that we have captured
the impact of the clean-up on the value of housing services in all years. However, the first
NPL was released in 1983, and housing prices cannot be observed again until 1990 or 2000.
By then, some of the clean-ups will have been completed, and the time to completion for the
others (relative to 1983) will have been greatly reduced. For this reason, the measurement
of the impacts of the NPL designation with 1990 or 2000 Census data will overstate the
properly measured benefits.
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3.4 Data Sources and Summary Statistics

3.4.1 Data Sources

We constructed the most comprehensive data file ever compiled on the Superfund program.
It contains detailed information on all hazardous waste sites placed on the NPL by 2000,
as well as the hazardous waste sites with 1982 HRS scores below 28.5. It also includes
housing price, housing characteristic, and neighborhood demographic information for areas
surrounding the sites. This subsection briefly describes the data sources. The Data Appendix
and [54] provide additional details.

The housing, demographic and economic data come from Geolytics’s Neighborhood Change
Database, which includes information from the 1970, 1980, 1990, and 2000 Censuses. Im-
portantly, the 1980 data predate the publication of the first NPL in 1983. We collected the
longitude and latitude for each of the hazardous waste sites and used this information to
place all sites in a unique census tract.

The Geolytics data is used to form a panel of census tracts based on 2000 census tract
boundaries, which are drawn so that they include approximately 4,000 people in 2000. Census
tracts are the smallest geographic unit that can be matched across the 1970-2000 Censuses.
The Census Bureau placed the entire country in tracts in 2000. Geolytics fit 1970, 1980,
and 1990 census tract data to the year 2000 census tract boundaries to form a panel. The
primary limitation of this approach is that in 1970 and 1980, the US Census Bureau only
tracted areas that were considered ‘urban’ or belonged to a metropolitan area. The result
is that the remaining areas of the country cannot be matched to a 2000 census tract, so the
1970 and 1980 values of the Census variables are missing for 2000 tracts that include these
areas.

The analysis is restricted to the 48,147 out of the 65,443 2000 census tracts that have
non-missing housing price data in 1980, 1990, and 2000. This sample includes 985 of the
1,398 sites listed on the NPL before January 1, 2000 and 487 of the 690 sites which were
tested for inclusion on the initial NPL. The addition of the sample restriction that 1970
housing prices be nonmissing would have further reduced the sample to include just 37,519
census tracts, 708 of the NPL sites, and 353 of the 1982 HRS sites.

The subsequent analysis uses three different groupings of census tracts. The first conducts
the analysis at the census tract level. The second implements an analysis among census tracts
that share a border with the tracts that contain the hazardous waste sites (but excludes the
tracts that contain the sites). In this case, each observation is comprised of the weighted
average of all variables across these neighboring tracts, where the weights are the 1980
populations of the tracts.

The unit of observation in the third grouping is the land area within circles of varying
radii that are centered at the sites. For these observations, the census variables are calculated
as the weighted means across the portion of tracts that fall within the relevant circle. The
weights are the fraction of each tract’s land area within the relevant circle multiplied by its
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1980 population.15 In choosing the optimal radius, we attempted to balance the conflicting
goals of requiring houses to be near enough to the sites so that it is plausible that residents
would value a clean-up and making the area large enough so that implausibly large increases
in housing prices aren’t required for clean-ups to pass a cost-benefit test. In the subsequent
tables, we focus on circles with radii of 2-miles and 3-miles.16 The mean 1980 values of the
housing stocks in these circles are $311 and $736 million and the mean (median) number
of census tracts that are at least partially inside these circles are 9.9 (8) and 18.2 (12),
respectively.

We also collected a number of variables about the hazardous waste sites. All HRS com-
posite scores, as well as separate groundwater, surface water, and air pathway scores, were
obtained from various issues of the Federal Register. The same source was used to determine
the dates of NPL listing. The EPA provided a data file that reported the dates of the release
of the ROD, initiation of clean-up, completion of remediation (i.e., construction complete),
and deletion from the NPL for sites that achieved these milestones. Information on each
NPL site’s size in acres comes from the RODs. Finally, we collected data on the expected
costs of clean-up before remediation was initiated and estimated actual costs for sites that
reached the construction complete stage. Greenstone and Gallagher’s (2005) Data Appendix
provides more information on the costs of clean-ups (also see [88]).

3.4.2 Summary Statistics

The analysis is conducted with two samples of hazardous waste sites. The first is called the
“All NPL Sample” and includes the 1,398 hazardous waste sites in the 50 US states and the
District of Columbia that were placed on the NPL by January 1, 2000. The second is the
“1982 HRS Sample” and is comprised of the 690 hazardous waste sites tested for inclusion
on the initial NPL.

Table 1 presents summary statistics on the hazardous waste sites in these samples. The
entries in column (1) are from the All NPL Sample and are limited to sites in a census tract
for which there is non-missing housing price data in 1980, 1990, and 2000. After these sample
restrictions, there are 985 sites, which is more than 70% of the sites placed on the NPL by
2000. Columns (2) and (3) report data from the 1982 HRS Sample. The column (2) entries
are based on the 487 sites located in a census tract with complete housing price data. Column

15A limitation of the GIS determined circle approach is that street address level data on housing prices
and the covariates is unavailable. We assign a census tract’s average to the portion of the tract that falls
within the circle, which is equivalent to assuming that there is no heterogeneity in housing prices or other
variables within a tract.

16The use of a 3-mile radius is consistent with the EPA’s and scientific community’s positions on the
distance from a Superfund site that the contaminants could be expected to impact human health. The 1982
Federal Register reports, ”The three-mile radius used in the HRS is based on EPA’s experience that, in most
cases currently under investigation, contaminants can migrant to at least this distance. It should be noted
that no commentators disagreed with the selection of three miles for technical or scientific reasons” (Federal
Register July 16, 1982).
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(3) reports on the remaining 189 sites located in census tracts with incomplete housing price
data (generally due to missing 1980 data). 14 sites are outside of the continental United
States and were dropped from the sample.

Panel A reports on the timing of the sites’ placement on the NPL. Column (1) reveals
that about 75% of all NPL sites received this designation in the 1980s. Together, columns
(2) and (3) demonstrate that 443 of the 676 sites in the 1982 HRS Sample eventually were
placed on the NPL. This number exceeds the 400 sites that Congress set as an explicit goal,
because, as discussed above, some sites with initial scores below 28.5 were rescored and then
received scores above the threshold qualifying them for the NPL. Panel B demonstrates that
mean HRS scores are similar across the columns.

Panel C reports on the size of the hazardous waste sites measured in acres, which is
available for NPL sites only. The median site size ranges between 25 and 35 acres across the
samples. The means are substantially larger due to a few very large sites. The modest size
of most sites suggests that any expected effects on property values are likely to be confined
to relatively small geographic areas around the sites.

Panel D reveals that the clean-up process is slow. The median time until the different
milestones are achieved is reported, rather than the mean, because many sites have not
reached all of them yet. 198 (16) of the NPL sites in column (2) received either the construc-
tion complete or deleted designation by 2000 (1990). For this reason, we focus on changes
in housing prices and quantities between 1980 and 2000. We also assess how rental rates
change as sites progress through the clean-up process.

Panel E reports the expected costs of clean-up for NPL sites, and F details expected
and actual costs among sites that are construction complete or deleted. The expected costs
are measured before any remediation activities have begun, while actual costs are our best
estimates of total remediation related expenditures assessed after the site is construction
complete. We believe this is the first time these variables have been reported for the same
sites. In the 1982 HRS Sample that we focus on (i.e., column (2)), the mean and median
expected costs are $27.5 million and $15.0 million.

Among the construction complete sites in the 1982 HRS Sample, the mean actual costs
exceed the expected costs by about 55%. We multiply the overall mean expected cost of
$27.5 million by 1.55 to obtain an estimate of the mean actual costs of clean-up in the 1982
HRS Sample of $43 million. This estimate of costs understates the true costs, because it
does not include the legal costs or deadweight loss associated with the collection of funds
from private parties or taxes, nor does it include each site’s share of the EPA’s costs of
administering the Superfund program. Nevertheless, it is the best available estimate and is
contrasted with the estimated benefits of Superfund clean-ups in the remainder of the paper.

A comparison of columns (2) and (3) across the panels reveals that the sites with and
without complete housing price data are similar on a number of dimensions. For example,
the mean HRS scores conditional on scoring above and below 28.5 are remarkably similar.
Further, the median size and various cost variables are comparable in the two columns.
Consequently, it seems reasonable to conclude that the sites without complete housing price
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data are similar to the column (2) sites, suggesting the subsequent results may be externally
valid to the 189 sites with missing price data.

Moreover, the sites in column (1) are similar to the sites in column (2) and (3) in size and
the two cost variables. The mean HRS scores are a few points lower, but this comparison
is not meaningful due to the changes in the test over time and changes in the how the
scoring was conducted. Overall, the similarity of the column (1) sites with the other sites
suggests that the results from the application of the HRS research design to the 1982 HRS
Sample may be informative about the effects of the Superfund clean-ups of sites that were
not considered for inclusion on the initial NPL.

We now graphically summarize some features of the 1982 HRS Sample. Figures 2A and
2B present the geographic distribution of the sites with 1982 HRS scores above and below
28.5, respectively. The sites in both categories are spread throughout the United States, but
the below 28.5 sites are in fewer states. For example, there are not any below 28.5 sites in
Minnesota, Florida, and Delaware. The unequal distributions of sites across the country pose
a problem for identification in the presence of localized housing market shocks. To mitigate
the influence of these shocks, we emphasize econometric models for changes in housing prices
that include state fixed effects.

Figure 3 presents a histogram of the initial HRS scores where the bins are 4 HRS points
wide, among the 487 sites in the 1982 HRS Sample. Notably, the EPA considered HRS
scores within 4 points to be statistically indistinguishable and reflect comparable risks to
human health (EPA 1991). The distribution looks approximately normal, with the modal
bin covering the 36.5-40.5 range. Further, there isn’t obvious bunching just above or below
the threshold, which supports the scientific validity of the HRS scores and suggests that they
weren’t manipulated. Importantly, 227 sites have HRS scores between 16.5 and 40.5. This
set is centered on the regulatory threshold of 28.5 that determines placement on the NPL
and the sites constitute the regression discontinuity sample that is utilized in the subsequent
analysis.

3.5 Econometric Methods

3.5.1 A Conventional Approach to Estimating the Benefits of Su-
perfund Clean-Ups

Here, we discuss a “conventional” econometric approach to estimating the relationship be-
tween housing prices and NPL listing. This approach is laid out in the following system of
equations:

yc2000 = 1(NPLc2000)θ +X
′

c1980β + εc2000, (3.5)

1(NPLc2000) = X
′

c1980Π + ηc2000 (3.6)
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where yc2000 is the log of the median property value in census tract c in 2000. (In practice, we
examine several outcome variables, including rental rates, housing supply, and characteristics
of the local population, but for clarity the remainder of this section only refer to house prices.)
The indicator variable 1(NPLc2000) equals 1 only for observations from census tracts that
contain (or areas near) a hazardous waste site that has been placed on the NPL by 2000.
Thus, this variable takes on a value of 1 for any of the Superfund sites in column (1) of Table
1, not just those that were on the initial NPL. The vector Xc1980 includes determinants of
housing prices measured in 1980, which may also determine NPL status. εc2000 and ηc2000
are the unobservable components of housing prices and NPL status, respectively.

A few features of the X vector are noteworthy. First, this vector is restricted to 1980
values of the variables to avoid confounding the effect of NPL status with “post-treatment”
changes in these variables that may be due to NPL status. Second, the 1980 value of the
dependent variable, yc1980, is included in Xc1980 to adjust for permanent differences in housing
prices across tracts and the possibility of mean reversion in housing prices. Third, to account
for local housing market shocks, we emphasize results from specifications that include a full
set of state fixed effects.

Fourth, in many applied hedonic papers, the vector of controls is limited to housing
and neighborhood characteristics (e.g., number of bedrooms, school quality, and air qual-
ity). Mean household income and similar variables are generally excluded, because they
are considered “demand shifters” and are needed to identify the bid function. This exclu-
sion restriction is invalid if, for example, individuals treat wealthy neighbors as an amenity,
which seems likely. The subsequent analysis is agnostic about which variables belong in the
X vector and reports estimates that are adjusted for different combinations of the variables
available in the Census data. See the Data Appendix for the full set of covariates.

The coefficient θ measures the effect of NPL status on 2000 property values, after control-
ling for 1980 mean property values and the other covariates. In this conventional approach,
we utilize data from the entire country, so θ tests for differential housing price appreciation
between census tracts with NPL sites and the rest of the country. Consistent estimation
of θ requires E[εc2000ηc2000] = 0 or that unobserved determinants of housing prices do not
covary with NPL status (after adjustment for Xc1980). This conventional approach rests on
the assumption that linear adjustment for the limited set of variables available in the Census
removes all sources of confounding.

3.5.2 A Quasi-Experimental Approach based on 1982 HRS Scores

This subsection discusses the paper’s quasi-experimental identification strategy that differs
from the conventional one in three important aspects. First, we restrict the sample to the
census tracts containing the 487 sites in the 1982 HRS Sample with complete housing price
data. Thus, all observations are from tracts with sites that the EPA judged to be among
the nation’s most dangerous in 1982. If, for example, the β′s differ across tracts with and
without hazardous waste sites or there are differential trends in housing prices in tracts with
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and without these sites, then this approach is more likely to produce consistent estimates.
Second, we use an instrumental variables (IV) strategy to account for the possibility of

the endogenous rescoring of sites. More formally, we replace equation (6) with:

1(NPLc2000) = X
′

c1980Π + 1(HRSc82 > 28.5)δ + ηc2000 (3.7)

where 1(HRSc82 > 28.5) serves as an instrumental variable. This indicator function equals
1 for census tracts with a site that has a 1982 HRS score exceeding the 28.5 threshold. We
then substitute the predicted value of 1(NPLc2000) from the estimation of equation (7) in
the fitting of (5) to obtain an estimate of θIV . In this IV framework, θIV is identified from
the variation in NPL status that is due to a site having a 1982 HRS score exceeding 28.5.

For θIV to provide a consistent estimate of the HPS gradient, the instrumental variable
must affect the probability of NPL listing without having a direct effect on housing prices.
The next section will demonstrate that the first condition clearly holds. The second condition
requires that the unobserved determinants of 2000 housing prices are orthogonal to the
portion of the nonlinear function of the 1982 HRS score that is not explained by Xc1980. In
the simplest case, the IV estimator is consistent if E[1(HRSc82 > 28.5)εc2000] = 0.

The third feature of the quasi-experiment is the availability of a regression discontinuity
(RD) design that is implicit in the 1(�) function that determines NPL eligibility. The RD
design can produce consistent estimates of θIV even if E[1(HRSc82 > 28.5)εc2000] 6= 0 over the
entire 1982 HRS Sample. It is important to highlight that the RD approach only provides
estimates of the treatment effect at the regulatory discontinuity (i.e., HRS = 28.5). To
extend the external validity of the RD estimates to the full 1982 HRS Sample, it is necessary
to assume a homogeneous treatment effect in this sample.

The RD approach is implemented in three different ways. In the first, a quadratic in
the 1982 HRS score is included in Xc1980 to partial out any correlation between residual
housing prices and the indicator for a 1982 HRS score exceeding 28.5. This approach relies on
the plausible assumption that residual determinants of housing price growth do not change
discontinuously at the regulatory threshold. The second regression discontinuity approach
involves implementing the IV estimator on the regression discontinuity sample of 227 sites
with 1982 HRS scores between 16.5 and 40.5. Here, the identifying assumption is that all
else is held equal in the “neighborhood” of the regulatory threshold. More formally, it is
E[1(HRSc82 > 28.5)εc2000]|16.5 < 1982HRS < 40.5] = 0.

Recall, the HRS score is a nonlinear function of the ground water, surface water, and
air migration pathway scores. The third regression discontinuity method exploits knowledge
of this function by including the individual pathway scores in the vector Xc1980. All three
regression discontinuity approaches are demanding of the data and this is reflected in higher
sampling errors.

The key feature of the quasi-experimental approach is to restrict the sample to the areas
surrounding the 487 sites in the 1982 HRS Sample. Among these sites, a simple comparison of
outcomes between NPL and non-NPL sites is likely to mitigate concerns about confounding
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associated with the conventional approach. The other two features refine the comparisons
within this sample. The use of 1(HRSc82 > 28.5) as an instrumental variable for 1(NPLc2000)
accounts for the possibility of the endogenous rescoring of sites. The RD design offers a
potentially valid “control function” solution to any remaining concerns about confounding.

Finally, the primary focus of the housing price regressions is to conduct a cost-benefit
analysis of Superfund clean-ups. Specifically, we report p-values from tests that the coeffi-
cient on the NPL indicator is large enough so that the aggregate change in housing prices
exceeds the mean costs of a Superfund clean-up ($43 million in the 1982 HRS sample).
This assumes that clean-up benefits are entirely reflected in local housing prices, which is
equivalent to assuming that the housing supply curve is perfectly inelastic and that all ben-
efits occur in the local housing market. Although we report whether the estimates of θ are
statistically different from zero, the cost-benefit tests are more meaningful in this setting.

3.6 Empirical Results

3.6.1 Balancing of Observable Covariates

This subsection examines the comparisons that underlie the subsequent least squares and
quasi-experimental estimates of the effect of NPL status on housing price growth. We be-
gin by assessing whether NPL status and the 1(HRSc82 > 28.5) instrumental variable are
orthogonal to the observable predictors of housing prices. Formal tests for the presence of
omitted variables bias are of course impossible, but it seems reasonable to presume that re-
search designs that balance the observable covariates across NPL status or 1(HRSc82 > 28.5)
may suffer from smaller omitted variables bias ([14]). Further, if the observables are bal-
anced, consistent inference does not depend on functional form assumptions on the relations
between observable covariates and housing prices.

Table 2 shows the association of NPL status and 1(HRSc82 > 28.5) with potential de-
terminants of housing price growth measured in 1980. Column (1) reports the means of the
variables listed in the row headings in the 985 census tracts with NPL hazardous waste sites
and complete housing price data. Column (2) displays the means in the 41,989 census tracts
that neither contain a NPL site nor share a border with a tract containing one. Columns
(3) and (4) report on the means in the 181 and 306 census tracts with hazardous waste sites
with 1982 HRS scores below and above the 28.5 threshold, respectively. Columns (5) and
(6) repeat this exercise for the 90 and 137 tracts below and above the regulatory threshold in
the regression discontinuity sample. The remaining columns report p-values from tests that
the means in pairs of the first six columns are equal. P-values less than 0.01 are denoted in
bold.

Column (7) compares the means in columns (1) and (2) to explore the possibility of
confounding in the least square approach. The entries indicate that 1980 housing prices are
more than 20% lower in tracts with a NPL site. Moreover, the tracts with NPL sites have
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lower population densities, lower household incomes, and mobile homes account for a higher
fraction of the housing stock (8.6% versus 4.7%). Overall, the hypothesis of equal means
can be rejected at the 1% level for 22 of the 26 potential determinants of housing prices.
Due to this confounding of NPL status, it may be reasonable to assume that least squares
estimation of equation (5) will produce biased estimates of the effect of NPL status.

Columns (8) and (9) compare all tracts with hazardous wastes that have 1982 HRS scores
below and above the 28.5 regulatory threshold and those in the regression discontinuity
sample, respectively. It is immediately evident that by narrowing the focus to these tracts,
the differences in the potential determinants of housing prices are greatly mitigated (e.g., see
population density and % mobile homes). This is especially so in the regression discontinuity
sample where the hypothesis of equal means cannot be rejected at the 3% level for any of
the 27 variables. Notably, the differences in the means are substantially reduced for many
of the variables, so the higher p-values do not simply reflect the smaller samples (and larger
sampling errors).

One variable that remains a potential source of concern is 1980 housing prices in the sites’
tracts and circles of 2- and 3-mile radii around the sites. The differences are greatly reduced in
the 1982 HRS Sample, relative to columns (1) and (2), but they are not eliminated (although
they are statistically insignificant in the circle samples). Table 4 in [54] demonstrates that the
difference in prices in the sites’ census tracts disappears after adjustment for 1980 housing,
economic, and demographic variables. Overall, the entries suggest that the above and below
28.5 comparison, especially in the regression discontinuity sample, reduces the confounding
of NPL status.

3.6.2 Conventional Estimates of the Impact of Clean-ups on Prop-
erty Values with Data from the Entire US

Table 3 presents the first ever large-scale effort to test the effect of Superfund clean-ups
on property value appreciation rates. Specifically, it reports the regression results from
conventional approaches that involve fitting 3 least squares versions of equation (5) for 2000
housing prices on data from the entire US. The entries report the coefficient on the NPL
indicator and its heteroskedastic-consistent standard error below in parentheses. The exact
covariates in each specification are noted in the row headings at the bottom of the table and
are described in more detail in the Data Appendix.

In Panel A, 985 observations are from census tracts that contain a hazardous waste site
that had been on the NPL at any time prior to 2000. The remainder of the sample is
comprised of the 41,989 observations on the tracts with complete housing price data that
neither have a NPL site nor are adjacent to a tract with a NPL site. The remaining Panels
use slightly different samples. In Panel B, the observations from each tract with a NPL site
in the Panel A sample are replaced with the observations based on the 3-mile radius circles
around the NPL sites. Panels C and D are identical to A and B, except that the set of NPL
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sites is restricted to those in the 1982 HRS Sample placed on the NPL by January 1, 2000;
these results are a benchmark for comparison with the preferred quasi-experimental ones.

The Panel A results show that this conventional approach finds a positive association
between NPL listing and housing price increases in the sites’ tracts between 1980 and 2000.
Specifically, the estimates indicate that housing prices grew by 4.0% to 6.7% (measured in
ln points) more in tracts with a site placed on the NPL. All of these estimates would easily
be judged statistically significant by conventional criteria. The column (3) estimate of 6.7%
is the most reliable one, because it is adjusted for all unobserved state-level determinants of
housing price growth.

Panel B explores the growth of housing prices within 3 miles of the NPL sites to summa-
rize the total gain in housing prices. All of the estimates are statistically different from zero
and imply that the placement of a site on the NPL is associated with a substantial increase
in housing prices within three miles of the site. The column (3) specification indicates a
precisely estimated gain in prices of 10.6%. In this sample, the 1980 aggregate value of the
housing stock is $855 million and the mean cost of a clean-up is $39 million, so we test
whether the change in housing prices exceeds 4.6%. The null that the clean-ups pass the
cost-benefit test cannot be rejected in any of the specifications.

The own census tract results in Panel C are similar to those in A. The 3-mile radius circle
results in D also indicate large increases in housing prices. The point estimates from the
richer specifications are about twice as large as those in B. Further, they all indicate that
Superfund passes this cost-benefit test.

It is worth emphasizing that three features of the evidence presented so far suggest that
the Table 3 estimates may be unreliable. First, Table 2 demonstrated that NPL status is
confounded by many variables. Second, four of the six 3-mile radius sample point estimates
exceed the own census tract estimates. This seems suspicious, because it seems reasonable
to expect the impact on housing prices to be greater closer to the sites, especially in light
of their relatively small size (recall, the median size is less than 30 acres). Third, the point
estimates from the 3-mile samples are unstable across specifications, so the exact choice of
controls plays a large role in any conclusions. For example, in Panel D, the implied increase
in housing prices ranges from 4.6% to 19.1%.17

3.6.3 Quasi-Experimental Estimates of the Impact of NPL Status
on Housing Prices

We now turn to the preferred quasi-experimental approach. For the remainder of the paper,
we use the 1982 HRS sites as the basis for the samples. In a few cases, which are noted, we

17The point estimate on the NPL indicator is especially sensitive to the choice of functional form for two
controls: the number of housing units and number of owner occupied units in both Panels B and D. This
likely reflects the fact that the values of these variables differ substantially between the observations on
the 3-mile circles and the census tracts. It also underscores the importance of unverifiable functional form
assumptions when the variables are not balanced across the areas with and without NPL sites.
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focus on the subset of sites with 1982 HRS scores between 16.5 and 40.5 that form the RD
sample.

Figure 4 plots the bivariate relation between the probability that a site was placed on
the NPL by 2000 and its initial HRS score among the 487 sites in the 1982 HRS Sample.
The plots are done separately for sites above and below the 28.5 threshold and come from
the estimation of nonparametric regressions that use the [35] tricube weighting function and
a bandwidth of 0.5. Thus, they represent a moving average of the probability of NPL status
across 1982 HRS scores. The data points represent the mean probabilities in the same 4-unit
intervals of the HRS score as in Figure 3.

The figure presents dramatic evidence that an initial HRS score above 28.5 is a strong
predictor of NPL status. Virtually all sites with initial scores greater than 28.5 were placed
on the NPL by 2000. The nonzero probability of NPL placement by 2000 among sites with
an initial score below 28.5 is explained by rescoring. A statistical model reveals that a HRS
score above 28.5 is associated with an 83% increase in the probability of placement on the
NPL. In the context of the IV approach, it is evident that there is a powerful first-stage
relationship.

Table 4 presents quasi-experimental estimates of the effect of NPL status on housing
prices in 2000. In Panel A, the observations are from the census tracts containing the 487
hazardous waste sites in the 1982 HRS Sample. In Panel B, each observation is comprised of
the average of all variables across tracts that share a border with these tracts. In Panels C
and D, the sample includes the land area within circles with radii of 2 and 3 miles centered
at each site’s longitude and latitude. The means of the 1980 values of the total housing stock
in the four samples are $71, $552, $311, and $736 million, respectively.

The column (1) specification adjusts for 1980 housing prices only and is based on the
least squares fitting of equation (5). The remainder of the specifications uses the IV strategy
outlined in equations (5) and (7). The controls in columns (2)-(4) are identical to the three
specifications in Table 3.

The specifications in columns (5) - (7) are the three RD-style approaches that all build
on the column (4) specification. In columns (5) and (6), the 1982 HRS score and its square
and the individual pathway scores are added to the column (4) specification, respectively.
Column (7) fits the column (4) specification on the RD sample of the 227 sites with 1982
HRS scores between 16.5 and 40.5. The sample and specification details are noted in the
row headings at the bottom of the table.

The Panel A results suggest that a site’s placement on the NPL has a modest impact on
the growth of property values in its own census tract, relative to tracts with sites that nar-
rowly missed placement on the NPL. The point estimates indicate an increase in prices that
ranges from 0.7% to 4.7%, but they all have associated t-statistics less than two. The regres-
sion discontinuity specifications in columns (5) - (6) produce the smallest point estimates
(although they are also the least precise).

Panel B presents the adjacent tract results. The point estimates from the most credible
specifications in columns (4) - (7) range between -0.6% and 1.5%. Further, zero cannot be
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rejected at conventional levels for any of them. Thus, there is little evidence of meaningful
gains in housing prices outside the site’s own census tract.

Panels C and D summarize the total gain in housing prices associated with a site’s
placement on the NPL by using the 2- and 3-mile radius circle samples. They also report
whether the clean-ups pass cost-benefit tests analogous to those in Table 3. The threshold
housing price gains are 13.8% and 5.8%.

The circle sample results provide further evidence that the NPL designation has little
effect on housing prices. In the columns (4) - (7) specifications, six of the eight point
estimates are negative and the largest indicates an increase of just 2.3%. Further in all
seven of the 2-mile specifications and the most reliable 3-mile ones, the null that the gain
in housing prices exceeds the break-even threshold is rejected at conventional significance
levels. These findings stand in sharp contrast to the conclusions suggested by the results
from the conventional approach in Table 3.

Figure 5 provides an opportunity to better understand the source of these regression
results. It plots the nonparametric regressions of 2000 residual housing prices (after adjust-
ment for the column (4) covariates) against the 1982 HRS score in the 2-mile radius sample.
The nonparametric regression is estimated separately below (dark line) and above (light line)
the 28.5 threshold. It confirms that there is little association between 2000 residual housing
prices and 1982 HRS scores. A comparison of the plots at the regulatory threshold is of
especial interest in light of the large increase in NPL status there. It is apparent that the
moving averages from the left and right are virtually equal at the threshold.

We conducted a number of other specification checks. We failed to find evidence of
greater price responses in census tracts with the highest population densities, where quan-
tity responses are more constrained. Additionally, the results are robust to several other
specification checks that include using the ln of the mean (rather than the median) house
price as the dependent variable, using the difference between the lns of 2000 and 1980 house
prices as the dependent variable, controlling for the fraction of census tracts within the 2-
mile circles with a boundary change between 1980 and 2000, testing for a price response
in 1990, and adding the 1970 values of the controls (including ln 1970 housing prices) as
separate covariates to adjust for pre-existing trends in the subsample where these variables
are available.18

18The own census tract sample regression results for some of these specification checks are presented in
[54]. That version of the paper also reports on a test of whether there was greater housing price appreciation
near sites where the groundwater was heavily contaminated and residents use well water for drinking. We
assumed that clean-ups would be highly valued in these areas; however this test failed to find significant
evidence of differential house price appreciation in these areas. There are eleven sites in the 1982 HRS
Sample where all RODs received the ”no further action” classification so no remediation activities took place
at them. The regression results are virtually identical to those presented in Table 4 when the observations
from near these sites are dropped. Additionally, we implemented the regression discontinuity estimators
without instrumenting for NPL status. This approach produced generally smaller estimated increases in
house prices than those in Table 4 (in fact they are generally negative). Finally, we would have liked to test
whether the effects of clean-ups differed for large sites or ones where the estimated costs of clean-up are high
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These specification checks all lead to the same qualitative finding that a site’s addition
to the NPL has little effect on the growth of nearby housing prices nearly 20 years later. It is
impossible to rule out positive impacts on prices, but the most reliable specifications fail to
provide a single case where the estimated price increases exceed the costs of the clean-ups.

3.6.4 Quasi-Experimental Estimates of the Impact of Superfund
Clean-Ups on Rental Rates

We now turn to using the ln median rental rates as the outcome variable. Rental units
account for roughly 20% of all housing units and generally differ on observable characteristics
from owner occupied homes. Part of this outcome’s appeal is that rental rates are a measure
of the current value of housing services, so it is possible to abstract from the problem with
the housing price outcome that individuals’ expectations about time until the completion of
the clean-up are unknown. Further, it is possible to test whether the impact on the value of
local housing services varies at different stages of the clean-ups.

Table 5 presents separate estimates of the effect of the different stages of the remediation
process on the ln median rental rate from the 2-mile radius circle sample. We stack equations
for 1990 and 2000 ln rental rates, so there are two observations per county. The 1980 housing
characteristics variables are calculated across rental units, rather than across owner occupied
units as in housing price analysis. The effects of the controls listed in the row headings are
allowed to differ in 1990 and 2000.

The indicator variable for NPL status is replaced by three independent indicator variables.
They are equal to 1 for sites that at the time of the observation (i.e., 1990 or 2000) were:
placed on the NPL but no ROD had been issued; issued a ROD but were not completely
remediated; and “construction complete” or deleted from the NPL. The instruments are the
interactions of the indicator for a 1982 HRS score above 28.5 and these three independent
indicators. The table reports the three point estimates and their standard errors, which
allow for clustering at the site level, along with the p-value from an F-test that they are
equal. The number of sites in each category and the mean HRS score are listed in brackets.

There is some evidence that higher voter turnout and per capita income are associated
with the speed through which a site moves through the clean-up process and the stringency
of clean-ups ([55]; [56]; [100]; [96]). For this reason, the two-stage least squares strategy is
unlikely to purge these sources of endogeneity. Consequently, these three parameter estimates
should be considered associational or descriptive.

There are a few important findings. First, sites in the “NPL Only” category have been
on the NPL for either 7 or 17 years, but the EPA has not developed a remediation plan for
them yet. The estimates from the more reliable specifications in columns (2) through (5)
suggest that there is little effect on rental rates near these sites. This finding contradicts
the “stigma” hypothesis’ key prediction that a site’s placement on the NPL leads to an

(so called ”mega” sites) but the size and estimated cost data are only available for NPL sites.
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immediate reduction in the value of housing services near the site as nearby residents revise
upwards their expectation of the risk they face from the site.19

Second, in the more reliable specifications, 3 of the 4 estimates for the “Construction
Complete or NPL Deletion” indicator are negative and zero cannot be rejected for any of
them. This finding is telling, because these sites have been fully remediated and yet there is
little effect on rental rates.

Third, the null that the three parameter estimates are equal cannot be rejected in any of
the specifications. This finding demonstrates that the approximately zero effect on housing
prices is not due to the averaging of a positive effect at fully remediated sites and a negative
effect at sites where remediation is incomplete or hasn’t been initiated. Overall, these results
complement the housing price findings that Superfund clean-ups have small effects on the
value of local housing services.

3.6.5 Quasi-Experimental Estimates of the Impact of NPL Status
on Sorting

If consumers value Superfund clean-ups, then the clean-ups should cause individuals to sort
such that there is an increase in the number of people who place a high value on environmental
quality living near NPL sites. Table 7 tests for changes in residents’ income and wealth (i.e.,
education) and demographic characteristic that proxy for taste for environmental quality, as
well as total population. The entries report the parameter estimate and standard error on
the dummy for NPL status from the same five specifications in Table 5. The sample is the
2-mile radius circles sample based on the 1982 HRS Sample sites. The means of the 1980
variable and its 2000-1980 change are in square brackets.

The estimated impacts of the NPL designation on the measures of income and wealth
are inconsistent across specifications with about half positive and half negative. The null
of a zero impact cannot be rejected in any of the more reliable specifications. We had
hypothesized that the clean-ups would increase the demand for these areas among families
with young children. However, Panel B fails to provide any meaningful evidence that the
NPL designation leads to changes in the age composition of a tract’s population. It is unclear
how to apply the environmental justice hypothesis to a setting where environmental quality
increases while prices are largely unchanged. Although the interpretation is unclear, there
is some evidence that the percentage of blacks declines but none of the estimates would be
judged to be statistically different from zero. Finally, the instability of the point estimates
across specifications in Panel C suggests that there is little effect on total population.

Notably, this table’s qualitative findings are unchanged by the inclusion of 1980 housing

19The stigma hypothesis is poorly defined, but one version is that a site’s placement on the NPL causes
nearby residents to revise their expectation of its health risk upwards permanently so that the value of nearby
housing services is lower even after remediation is completed. [59] reviews the stigma literature. [80] and
[81] provide empirical case study tests.
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prices and housing characteristics as covariates. Overall, there is little evidence that the
NPL designation is associated with changes in variables that proxy for shifts in demand for
environmental quality.

3.6.6 Quasi-Experimental Estimates of the Impact of NPL Status
on Housing Supply

An increase in the supply of housing units in the vicinity of a NPL site would provide evidence
that Superfund clean-ups increase the value of the surrounding land. In Table 7, we test
this possibility with the 2- and 3-mile radius samples, using the same five specifications from
Tables 5 and 6. These results are also inconsistent across specifications. The most reasonable
conclusion is that the assignment of the NPL designation has little effect on the supply of
housing.

3.7 Interpretation and Policy Implications

This paper has shown that across a wide range of housing market outcomes, there is little
evidence that Superfund clean-ups increase local residents’ welfare substantially. In light of
the significant resources devoted to these clean-ups and the claims of large health benefits,
this finding is surprising. This section reviews three possible explanations.

First, the individuals that choose to live near these sites before and after the clean-ups
may have a low willingness to pay to avoid exposure to hazardous waste sites. In this
case, society provides these individuals a good that they don’t value highly. It is possible
(and perhaps likely) that there are segments of the population with a high WTP to avoid
exposure to hazardous waste sites. It may even be the case that the population average
WTP is substantial. However, the policy relevant parameter is the WTP of the population
that lives near these sites, and this is the parameter that the paper has estimated.

Second, consumers may believe that the clean-ups do not appreciably alter the health
risks of living near a Superfund site. In fact, the epidemiological literature has not found
decisive evidence of substantial health benefits from the clean-ups ([101]; [38]). Consequently,
consumers may believe that the reductions in risk are small and rationally place a low
value on them. Of course, the discovery of large health improvements in the future could
cause consumers to increase their valuations of the clean-ups and this would presumably be
reflected in the housing market.20

20Another possibility is that consumers are imperfectly informed about the location of Superfund sites
and their clean-ups. We think this is unlikely, because local media often devote extensive coverage to local
Superfund sites and their clean-ups. Further, at least a few states (e.g., Alaska and Arizona) require home
sellers to disclose whether there are hazardous waste sites in close proximity. See [41] on the capitalization
of perceived health risks.
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Third, the non-NPL sites may have also received complete remediations under state or
local land reclamation programs. In this case, a zero result is to be expected since both NPL
and non-NPL sites would have received the same treatment. We investigated this possibility
by conducting an extensive search for information on remediation activities at these sites.21

From these investigations, we concluded that the clean-up activities were dramatically
more ambitious and costly at NPL sites. For example, we were unable to find evidence of
any remediation activities by 2000 at roughly 60% of the non-NPL sites. Further, among the
remaining 40% of non-NPL sites where there was evidence of clean-up efforts, the average
expenditure was roughly $3 million. This is about $40 million less than our estimate of the
average cost of a Superfund clean-up. This difference is not surprising, because the state
and local clean-ups were often limited to restricting access to the site or containing the
toxics, rather than trying to achieve Superfund’s goal of returning the site to its “natural
state.” Nevertheless, some remediation took place at these sites, so it may be appropriate to
interpret the results as the impact of the additional $40 million cost of Superfund clean-ups.

In our view, the most likely explanations are that the people that choose to live near
these sites don’t value the clean-ups or that consumers have little reason to believe that
the clean-ups substantially reduce health risks. In either case, the results mean that local
residents’ gain in welfare from Superfund clean-ups falls well short of the costs. Unless
there are substantial benefits that are not captured in local housing markets , less ambitious
clean-ups like the erection of fences, posting of warning signs around the sites, and simple
containment of toxics might be a more efficient use of resources.22

3.8 Conclusions

This study has used the housing market to develop estimates of the local welfare impacts of
Superfund sponsored clean-ups of hazardous waste sites. The basis of the analysis is a com-
parison of housing market outcomes in the areas surrounding the first 400 hazardous waste
sites chosen for Superfund clean-ups to the areas surrounding the 290 sites that narrowly
missed qualifying for these clean-ups. We find that Superfund clean-ups are associated with
economically small and statistically indistinguishable from zero local changes in residential
property values, property rental rates, housing supply, total population, and the types of
individuals living near the sites. These findings are robust to a series of specification checks,

21Specifically, we filed freedom of information act requests with the EPA for information on these sites
and followed any leads from these documents. We also searched the Superfund web site and the sites of state
departments of environmental quality and used internet search engines. Additionally, we contacted national
and regional EPA personnel and state and local environmental officials. Although we expended considerable
effort in these searches, there is no centralized database about these sites so we cannot be certain that further
efforts wouldn’t turn up different information.

22It is possible that there are other benefits of these clean-ups that are not captured in the local housing
market, including health and aesthetic benefits to individuals that do not live in close proximity to Superfund
sites, reductions in injuries to ecological systems, and protection of ground water.
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including the application of a regression discontinuity design based on knowledge of the se-
lection rule. Overall, the preferred estimates suggest that the local benefits of Superfund
clean-ups are small and appear to be substantially lower than the $43 million mean cost of
Superfund clean-ups.

More broadly, this paper makes two contributions. First, it models the consequences of
a quasi-experiment that improves a local amenity in the context of the hedonic model. The
key theoretical findings are that if consumers value the amenity, then there will be increases
in local housing prices and new home construction. Further, there will be taste-based sort-
ing such that individuals that place a high value on the amenity will move to areas where
they can consume it. Second, it contributes to a growing body of research ([26]; [34]; [43])
demonstrating that it is possible to identify research designs that mitigate the confound-
ing that has historically undermined the credibility of conventional hedonic approaches to
valuing non-market goods. Perhaps most importantly, this paper has demonstrated that the
combination of quasi-experiments and hedonic theory are a powerful method to use markets
to value environmental and other non-market goods.

3.9 Data Appendix

This data appendix provides information on a number of aspects of the data set that we
compiled to conduct the analysis for this paper. Due to space constraints, this is an abridged
version of the data appendix that is available in [54]. The longer data appendix includes
details on the variables on: the size of the hazardous waste sites; whether a site has achieved
the construction complete designation; the placement of sites into 2000 Census tracts; and
the determination of expected and actual remediation costs.

3.9.1 Covariates in Housing Price and Rental Rate Regressions

The following are the control variables used in the housing price and rental rate regressions.
They are listed by the categories indicated in the row headings at the bottom of these tables.
All of the variables are measured in 1980 and are measured at the census tract level (or are
the mean across sets of census tracts, for example tracts that share a border with a tract
containing a hazardous waste site)23:

1. 1980 Ln House Price
ln mean value of owner occupied housing units in 1980 (note: the median is unavailable
in 1980)

2. 1980 Housing Characteristics
total housing units (rental and owner occupied); % of total housing units (rental and

23In the rental regressions in Table 5, the owner occupied housing variables are replaced with renter
occupied versions of the variables.
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owner occupied) that are occupied; total housing units owner occupied; % of owner
occupied housing units with 0, 1, 2, 3, 4, and 5 or more bedrooms; % of owner occupied
housing units that are detached; % of owner occupied housing units that are attached
% of owner occupied housing units that are mobile homes; % of owner occupied housing
units built within last year, 2 to 5 years ago, 6 to 10 years ago, 10 to 20 years ago,
20 to 30 years ago, 30 to 40 years ago, more than 40 years ago; % of all housing units
without a full kitchen; % of all housing units that have no heating or rely on a fire,
stove, or portable heater; % of all housing units without air conditioning; and % of all
housing units without a full bathroom.

3. 1980 Economic Conditions
mean household income; % of households with income below poverty line; unemploy-
ment rate; and % of households that receive some form of public assistance.

4. 1980 Demographics
population density; % of population Black; % of population Hispanic; % of population
under age 18; % of population 65 or older; % of population foreign born; % of house-
holds headed by females; % of households residing in same house as 5 years ago; % of
individuals aged 16-19 that are high school drop outs; % of population over 25 that
failed to complete high school; and % of population over 25 that have a BA or better
(i.e., at least 16 years of education)

3.9.2 Assignment of HRS Scores and their Role in the Determi-
nation of the NPL

The HRS test scores each pathway from 0 to 100, where higher scores indicate greater risk.24

The pathway scores are a multiplicative function of the waste characteristics, likelihood of
release, and characteristics of the potentially affected population. The logic is, for example,
that if twice as many people are thought to be affected via a pathway then the pathway
score should be twice as large.

The final HRS score is calculated using the following equation: HRSScore = [(S2
gw +

S2
sw + S2

a)/3]1/2, where Sgw, Ssw, and Sa, denote the ground water migration, surface water
migration, and air migration pathway scores, respectively. It is evident that the effect of an
individual pathway on the total HRS score is proportional to the pathway score. (In 1990,
the EPA revised the HRS test and soil became a fourth pathway.)

24The capping of individual pathways and of attributes within each pathway is one limiting characteristic
of the test. There is a maximum value for most scores within each pathway category. Also, if the final
pathway score is greater than 100 then this score is reduced to 100. The capping of individual pathways
creates a loss of precision of the test since all pathway scores of 100 have the same effect on the final HRS
score but may represent different magnitudes of risk. See the EPA’s Hazard Ranking System Guidance
Manual for further details on the determination of the HRS score.



CHAPTER 3. DOES HAZARDOUS WASTE MATTER? 84

HRS scores can’t be interpreted as strict cardinal measures of risk. A number of EPA
studies have tested how well the HRS represents the underlying risk levels based on cancer
and non-cancer risks ([28]). The EPA has concluded that the late 1980s version of the HRS
test is an ordinal test but sites with scores within 4 points of each pose roughly comparable
risks to human health ([12]).25

From 1982-1995, the EPA assigned all hazardous waste sites with a HRS score of 28.5
or greater to the NPL. Additionally, the original legislation gave every state the right to
place one site on the NPL without the site having to score at or above 28.5 on the HRS test.
As of 2003, 38 states have used their exception. It is unknown whether these sites would
have received a HRS score above 28.5. Six of these “state priority sites” were included on
the original NPL released in 1983, but due to their missing HRS scores these six sites are
excluded from this paper’s analysis.

3.9.3 Matching of 2000 Census Tracts to 1980 and 1990 Censuses

The census tract is used as the unit of analysis, because it is the smallest aggregation of
data that is available in the 1980, 1990 and 2000 US Census. As noted in the text, year
2000 census tract boundaries are fixed so that the size and location of the census tract is
the same for the 1980 and 1990 census data. The fixed census tract data boundaries were
provided by Geolytics, a private company. Information on how the 1980 and 1990 census
tracts were adjusted to fit the 2000 census tract boundaries can be found on their website
at: www.geolytics.com. Further, [54] provide some details.

3.9.4 Neighbor Samples

We use two approaches to define the set of houses outside each site’s tract that may be
affected by the clean-up. We refer to these sets of houses as “neighbors.”

The first approach defines the neighbors as all census tracts that share a border with
the tract that contains the site. GIS software was used to find each primary census tract
and extract the identity of its adjacent neighbors. In the 1982 HRS sample, the maximum
number of neighboring census tracts is 21 and the median is 7. The population of each
adjacent census tract was used to weight the housing price, housing characteristics, and
demographic variables for each tract when calculating the mean adjacent neighbor values.

The second approach defines neighbors based on circles of varying radii around the exact
location of the site. GIS software is used to draw a circle around the point representing
the site (generally the center of the site, but sometimes the point associated with the street
address). For example in the 2 mile sample, the GIS program draws circles with radii of
2 miles around each of the sites. For a given site, data from all census tracts that fall

25The EPA states that the early 1980s version of the HRS test should not be viewed as a measure of
“absolute risk”, but that “the HRS does distinguish relative risks among sites and does identify sites that
appear to present a significant risk to public health, welfare, or the environment” ([2]).
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within its 2-mile radius circle (including the tract containing the site) are used to calculate
the mean housing values, housing and demographic characteristics, and economic variables.
To calculate these weighted means, each census tract within the circle is weighted by the
product of its population and the portion of its total area that falls within the circle. For
the 2 (3) mile ring the maximum number of tracts inside the ring is 80 (163), with a mean
and median of 9.9 and 8 (18.2 and 12).

Finally, we were able to place 487 of the 690 sites in the 1982 HRS sample in census
tracts with nonmissing house price data. We obtained the exact longitude and latitude for
483 of these sites. Thus, the circle samples have 483 observations, while the sample size for
the own census tract and adjacent neighbor tract samples is 487.
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Table 3.1: Summary Statistics on the Superfund Program

 All NPL Sites w/ 

non-Missing House 

Price Data 

1982 HRS Sites w/ 

non-Missing 

House Price Data  

1982 HRS Sites w/ 

Missing House 

Price Data 

 (1) (2) (3) 

Number of Sites 985 487 189 

1982 HRS Score Above 28.5 ------ 306 95 

A. Timing of Placement on NPL 

Total 985 332 111 

# 1981-1985 406 312 97 

# 1986-1989 340 14 9 

# 1990-1994 166 4 3 

# 1995-1999 73 2 2 

B. HRS Information 

Mean Scores | HRS > 28.5 41.89 44.47 43.23 

Mean Scores | HRS < 28.5 ----- 15.54 16.50 

C. Size of Site (in acres) 

Number of sites with size data 920 310 97 

Mean (Median) 1,187 (29) 334 (25) 10,507 (35) 

Maximum 195,200 42,560 405,760 

D. Stages of Clean-Up for NPL Sites 

Median Years from NPL Listing Until:   

ROD Issued ------ 4.3 4.3 

Clean-Up Initiated ------ 5.8 6.8 

Construction Complete ------ 12.1 11.5 

Deleted from NPL ------ 12.8 12.5 

1990 Status Among Sites NPL by 1990   

NPL Only 394 100 31 

ROD Issued or Clean-up Initiated 335 210 68 

Construction Complete or Deleted 22 16 7 

2000 Status Among Sites NPL by 2000   

NPL Only 137 15 3 

ROD Issued or Clean-up Initiated 370 119 33 

Construction Complete or Deleted 478 198 75 

E. Expected Costs of Remediation (Millions of 2000 $s) 

# Sites with Nonmissing Costs 753 293 95 

Mean (Median)  $28.3 ($11.0) $27.5 ($15.0) $29.6 ($11.5) 

95
th
 Percentile  $89.6 $95.3 $146.0 

F. Actual and Expected Costs Conditional on Construction Complete (Millions of 2000 $s) 

Sites w/ Both Costs Nonmissing 477 203 69 

Mean (Median) Expected Costs $15.5 ($7.8) $20.6 ($9.7) $17.3 ($7.3) 

Mean (Median) Actual Costs $21.6 ($11.6) $32.0 ($16.2) $23.3 ($8.9) 
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Table 3.3: Conventional Estimates of the Association Between NPL Status and House Prices
with Data from the Entire US

 (1) (2) (3) 

A. All NPL Sample, Own Census Tract Observation 

1(NPL Status by 2000) 0.040 0.046 0.067 

 (0.012) (0.011) (0.009) 

    

R-squared 0.579 0.654 0.779 

B. All NPL Sample, 3-Mile Radius Circle Sample Obsevation 

1(NPL Status by 2000) 0.030 0.060 0.106 

 (0.011) (0.013) (0.011) 

    

Ho: > 0.046, P-Value 0.061 0.862 0.999 

R-squared 0.580 0.652 0.776 

C. Restrict NPL Sites to those in 1982 HRS Sample, Own Census Tract Observation 

1(NPL Status by 2000) 0.071 0.076 0.057 

 (0.016) (0.015) (0.013) 

    

R-squared 0.581 0.655 0.780 

D. Restrict NPL Sites to those in 1982 HRS Sample, 3-Mile Radius Circle Sample Observation 

1(NPL Status by 2000) 0.046 0.143 0.191 

 (0.015) (0.021) (0.021) 

    

Ho: > 0.058, P-Value 0.215 0.999 0.999 

R-squared 0.580 0.653 0.777 

    

1980 Ln House Price Yes Yes Yes 

1980 Housing Characteristics No Yes Yes 

1980 Economic and Demographic Variables No No Yes 

State Fixed Effects No No Yes 
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Table 3.4: Quasi-Experimental Estimates of the Effect of NPL Status on House Prices,
Samples Based on the 1982 HRS Sites

 

     RD-Style Estimators 

 (1) (2) (3) (4) (5) (6) (7) 

A. Own Census Tract 

1(NPL Status by 2000) 0.035 0.037 0.043 0.047 0.007 0.022 0.027 

 (0.031) (0.035) (0.031) (0.027) (0.063) (0.042) (0.038) 

B. Adjacent Census Tracts 

1(NPL Status by 2000) 0.071 0.066 0.012 0.015 -0.006 -0.002 0.001 

 (0.031) (0.035) (0.029) (0.022) (0.056) (0.035) (0.035) 

C. 2-Mile Radius from Hazardous Waste Sites 

1(NPL Status by 2000) 0.021 0.019 0.011 0.001 0.023 -0.018 -0.007 

 (0.028) (0.032) (0.029) (0.023) (0.054) (0.035) (0.034) 

        

Ho: > 0.138, P-Value 0.000 0.000 0.000 0.000 0.018 0.000 0.000 

D. 3-Mile Radius from Hazardous Waste Sites 

1(NPL Status by 2000) 0.059 0.055 0.035 -0.004 -0.027 -0.024 -0.006 

 (0.033) (0.038) (0.031) (0.022) (0.051) (0.034) (0.034) 

        

Ho: > 0.058, P-Value 0.483 0.467 0.236 0.003 0.048 0.007 0.031 

        

1980 Ln House Price Yes Yes Yes Yes Yes Yes Yes 

Instrument for 1(NPL 2000) No Yes Yes Yes Yes Yes Yes 

1980 Housing Char’s No No Yes Yes Yes Yes Yes 

1980 Econ & Demog Vars No No No Yes Yes Yes Yes 

State Fixed Effects No No No Yes Yes Yes Yes 

Quadratic in 1982 HRS Score No No No No Yes No No 

Control for Pathway Scores No No No No No Yes No 

Reg Discontinuity Sample No No No No No No Yes 
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Table 3.5: Quasi-Experimental Estimates of Stages of Superfund Clean-ups on Housing
Rental Rates, Sample of 2-Mile Radius Circles Around 1982 HRS Sample Sites

 

   RD-Style Estimators 

 (1) (2) (3) (4) (5) 

1(NPL Only) 0.126 -0.018 -0.040 -0.054 -0.043 

[115 Sites, Mean HRS = 40.2] (0.046) (0.033) (0.049) (0.037) (0.051) 

      

1(ROD & Incomplete Remediation) 0.106 -0.017 -0.045 -0.059 -0.075 

[329 Sites, Mean HRS = 44.3] (0.030) (0.022) (0.041) (0.028) (0.032) 

      

1(Const Complete or NPL Deletion) 0.062 0.002 -0.023 -0.036 -0.034 

[214 Sites, Mean HRS = 41.6] (0.032) (0.021) (0.041) (0.028) (0.031) 

      

P-Value from F-Test of Equality 0.22 0.59 0.51 0.47 0.37 

      

1980 Rental Rate Yes Yes Yes Yes Yes 

1980 Housing Characteristics of Rental Units No Yes Yes Yes Yes 

1980 Economic and Demographic Variables No Yes Yes Yes Yes 

State Fixed Effects No Yes Yes Yes Yes 

Quadratic in 1982 HRS Score No No Yes No No 

Control for Pathway Scores No No No Yes No 

Regression Discontinuity Sample No No No No Yes 
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Table 3.6: Quasi-Experimental Estimates of 2000 NPL Status on 2000 Demand Shifters,
Sample of 2-Mile Radius Circles Around 1982 HRS Sample Sites

 

   RD-Style Estimators 

 (1) (2) (3) (4) (5) 

A. Income and Wealth 

Household Income 2,698 1,431 -1,232 123 -593 

[1980 Mean: 42,506; 2000 – 1980 Mean: 14,301] (1,237) (1,302) (3,130) (1,900) (2,227) 

      

% Public Assistance -0.007 -0.005 0.008 0.003 0.004 

[1980 Mean: 0.078; 2000 -1980 Mean: 0.000] (0.003) (0.003) (0.007) (0.004) (0.005) 

      

% College Graduates 0.001 -0.001 -0.009 -0.005 -0.010 

[1980 Mean:0.134; 2000 -1980 Mean: 0.082] (0.007) (0.007) (0.019) (0.011) (0.013) 

B. Demographics Demand Shifters 

% Population Under Age 6 0.000 -0.000 0.002  0.000          0.001 

[1980 Mean: 0.086; 2000 -1980 Mean: -0.019] (0.001) (0.001) (0.003) (0.002) (0.002) 

      

% Population Over Age 65 -0.000 -0.003 -0.014 -0.007 -0.005 

[1980 Mean: 0.106; 2000 -1980 Mean: 0.019] (0.004) (0.004) (0.009) (0.005) (0.005) 

      

% Black -0.015 -0.016 -0.007 -0.012 -0.008 

[1980 Mean: 0.088; 2000 -1980 Mean:0.026] (0.008) (0.007) (0.018) (0.010) (0.009) 

C. Total Population 

Total Population 1,864 514 -2,342 -23 -289 

[1980 Mean: 18,038; 2000 – 1980 Mean: 1,226] (526) (522) (1,556) (809) (811) 

      

1980 Dependent Variable Yes Yes Yes Yes Yes 

State Fixed Effects No Yes Yes Yes Yes 

Quadratic in 1982 HRS Score No No Yes No No 

Control for Pathway Scores No No No Yes No 

Regression Discontinuity Sample  No No No No Yes 
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Table 3.7: Quasi-Experimental Estimates of the Effect of 2000 NPL Status on Housing
Supply, Samples of 2-Mile and 3-Mile Radii Circles Around 1982 HRS Sample Sites

 

   RD-Style Estimators 

 (1) (2) (3) (4) (5) 

Total Housing Units 

2 Mile Radius from Hazardous Waste Sites 332 94 -829 -208 -255 

[1980 Mean: 6,835; 2000 – 1980 Mean: 853] (139) (147) (349) (210) (187) 

      

3 Mile Radius from Hazardous Waste Sites 1,046 292 -903 61 -77 

[1980 Mean: 15,657; 2000- 1980 Mean: 1,960] (317) (278) (669) (408) (356) 

      

1980 Dependent Variable and Ln House Price Yes Yes Yes Yes Yes 

1980 Housing Characteristics No Yes Yes Yes Yes 

1980 Economic and Demographic Variables No Yes Yes Yes Yes 

State Fixed Effects No Yes Yes Yes Yes 

Quadratic in 1982 HRS Score No No Yes No No 

Control for Pathway Scores No No No Yes No 

Regression Discontinuity Sample No No No No Yes 
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Figure 3.1: Welfare Gains Due to Amenity Improvements

Bid Curves, Offer Curves, and the Equilibrium Hedonic Price Schedule in a Hedonic Market for Local 

Environmental Quality 
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Figure 3.2: Geographic Distribution of Hazardous Waste Sites in the 1982 HRS Sample

A. Sites with 1982 HRS Scores Exceeding 28.5 

  

 
 

B. Sites with 1982 HRS Scores Below 28.5 
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Figure 3.4: Probability of Placement on the NPL by 1982 HRS Score in the 1982 HRS
Sample
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Figure 3.5: 2000 Residential House Prices by 1982 HRS Score, Sample of 2-Mile Radius
Circles Around 1982 HRS Sites
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