
UC Davis
UC Davis Previously Published Works

Title
Large-Eddy Simulations of cavitation in a square surface cavity

Permalink
https://escholarship.org/uc/item/1cr1n403

Journal
Applied Mathematical Modelling, 38(23)

ISSN
0307-904X

Authors
Dai, Shaoshi
Younis, Bassam A
Sun, Liping

Publication Date
2014-12-01

DOI
10.1016/j.apm.2014.04.059
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1cr1n403
https://escholarship.org
http://www.cdlib.org/


Applied Mathematical Modelling 38 (2014) 5665–5683
Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier .com/locate /apm
Large-Eddy Simulations of cavitation in a square surface cavity
http://dx.doi.org/10.1016/j.apm.2014.04.059
0307-904X/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author. Tel.: +86 (530) 312 8373; fax: +86 (530) 752 7872.
E-mail address: daishaoshi@163.com (S. Dai).
Shaoshi Dai a,⇑, Bassam A. Younis b, Liping Sun a

a Deepwater Engineering Research Center, Harbin Engineering University, 150001, China
b Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 18 July 2013
Received in revised form 18 March 2014
Accepted 29 April 2014
Available online 9 May 2014

Keywords:
Cavitation
LES
Multiphase
Vortex shedding
We report on the development and application of a multiphase approach to the prediction
of cavitation induced by high-speed flow over and within a square surface cavity. The
approach entails employing a full cavitation model in conjunction with Large-Eddy
Simulations in order to capture the initiation and development of bubble formations in
turbulent-flow conditions. The incipient formation of the bubble cloud, and the flow pro-
cesses of vortex shedding and shear-layer oscillations are tracked using the Volume of Fluid
method. The validity of the computational approach was assessed by comparisons with
experiments on cavitating flow over a hydrofoil. Application to the case of flow over and
within a two-dimensional square cavity with cavitation clearly reveal the presence of trav-
eling cavitation at the corner of the cavity trailing edge, and vortex cavitation within the
cavity. It is shown that the collapse of cavitation bubbles results in an impact frequency
that is higher than the frequency of the shear-layer oscillations. This implies that structural
damage due to cavitation is likely to be most severe at the corner formed at the intersection
of the cavity’s trailing edge and the flat surface upstream of it.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Cavitation, by which it is meant the formation and subsequent collapse of air bubbles in a moving fluid due to drop in the
local pressure to below the vapor pressure, is known to occur in many areas of engineering practice such as on the surfaces of
maneuvering underwater vehicles and on their rotating propellers, in water-supply systems generally and in pumps in
particular, and in various components of other hydraulic machinery. In most cases, the collapse of the air bubbles upon
contact with a solid surface imparts a significant transient load on the surface. This load can exceed by a significant margin
the static design load thereby promoting structural failure by fatigue and excessive pitting, or the degradation of the overall
performance of the system by the generation of vibrations and noise. The ability to accurately predict the occurrence and
consequences of cavitation is therefore prerequisite to the safe and efficient design of systems where this phenomenon is
likely to occur. The primary objective of this paper is to advance a computational approach that can be relied upon to meet
this need.

The choice of a computational approach to the prediction of cavitation depends to a large extent on the mechanism
underlying the initiation of local boiling, and this in turn depends on the geometry leading to reduction of the local pressure
to a value below the vapor pressure. In this work, we are concerned with cavitation that occurs within a square surface cavity
below a fast-moving stream. In certain conditions of flow Reynolds number and cavity aspect ratio, the shear layer that
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Nomenclature

A symbol representing qsij

B viscous stress tensor, B ¼ 2~lS
C hydrofoil chord length
Cp static pressure coefficient
C0p fluctuating pressure coefficient
Cw, Cs constant coefficients
fs, fv, fb frequency of shear layer oscillation, vortex shedding and bubble movement respectively
Fc, Fe vapor volume gasification and condensation coefficient
gij velocity gradient tensor
L characteristic scale of structure
m mass of n-bubbles per unit volume
mb mass of bubble
nb number of bubbles per unit volume of mixture flow
_m mass flow rate of net vapor
_mþe vapor generation rate
_m�e vapor condensation rate

p absolute pressure
pv liquid vapor pressure
p1 reference pressure
Rb bubble radius
Re Reynolds number
S rate of strain tensor
St Strouhal number
t moving time
ui Cartesian velocity
u1 reference velocity
VB volume of bubble
Vv vapor volume
X distance from monitoring points to corner point of leading edge

Greek symbols
a angle of attack
av vapor volume fraction
anuc nuclei volume fraction
dij Kronecker delta
D sub-grid characteristic length scale
lv ; ll; ~l dynamic viscosity of vapor, net liquid and mixture flow respectively
m kinematic viscosity
tSGS sub-grid scale (eddy) viscosity
~q; ql; qv density of mixture, liquid density and vapor density respectively
r cavitation number
sij sub-grid stress tensor
Xij rotational stress tensor

Subscripts
i, j Cartesian tensor indices
l liquid phase
v vapor phase
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emerges from the upstream corner of the cavity becomes unstable and begins to oscillate at a discrete frequency associate
with the shedding of vortices from that corner. The resulting reduction in pressure due to the vertical motion can be suffi-
ciently large so as to cause cavitation to occur. The unsteady character of the flow, together with the fact that the flow is both
multiphase and turbulent, poses this problem of shear-layer induced cavitation as a severe challenge to both experimenta-
tion and to computational modeling. In recent years, considerable efforts have been expended in both of these areas [1–8]. In
connection with computational modeling, it is now generally accepted that predictions based on potential-flow theory are
no longer adequate for the purpose of engineering design. It is also generally accepted that the accurate representation of
this phenomenon requires the solution of the full set of the Navier–Stokes equations at high Reynolds number. Since Direct
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Numerical Simulations (DNS) that require resolution of the small-scale turbulent motions are not currently feasible due to
computer limitations, it is customary to time-average these equations and to then deal with the resulting unknown Reynolds
stresses via a suitable turbulence model. A review of the published literature indicates that the most widely used turbulence
model in this application is the k-e, two-equation, eddy-viscosity closure. Previous studies utilizing this model include those
of Huang et al. [1], Li et al. [2], Barre et al. [3] and Coutier-Delgosha et al. [4] who used this model for the prediction of cav-
itation in a wide variety of conditions. In many cases, it was found necessary to modify the standard k–e model in some way
to bring about closer agreement with the experimental data. This element of empiricism has led some researchers to con-
sider the use of more advanced turbulence models to predict cavitation [5,6], but a generally-applicable model has not
emerged so far.

The alternative to DNS and to turbulence modeling is to use Large-Eddy Simulations (LES) to resolve the large-scale struc-
tures while taking into account the effects of the small-scale motions via a suitable model. Regarding the cavitation in an
open cavity, Shams et al. [7] reported on predictions of cavitation of the trailing edge using LES, but no details were provided
on the bubble-vortex coupling at the shear layer, or on the effects of the local void faction. The prediction of these two
parameters constitutes the main focus of the present study. Moreover, a number of computational issues remained to be
resolved in this particular flow [8], and some of these will be addressed here. The principal difference between the present
and the previous work is thus in the use of LES in preference to eddy-viscosity closures, and to fully account for the effects of
turbulence on the bubble-water interactions. While LES does not by itself provide solutions that are free of modeling errors
(something that can only be achieved by DNS), it is expected that these errors will be more limited in severity and extent
with advances in computer capabilities. Meanwhile, it is expected that the increased numerical resolution necessitated by
the need to resolve the unsteady small-scale motions in LES will also lead to better tracking of the air bubbles that are
formed by cavitation. This will be demonstrated in subsequent sections of this paper.

2. Mathematical formulation

The present computational model consists of three distinct but coupled components: a finite-volume method for solving
the equations that govern the conservation of mass and momentum in the Large-Eddy Simulations framework, a cavitation
model to capture the formation of air bubbles, and a multi-phase model to handle the interactions between the air bubbles
and the water flow field. These models are now presented in turn.

2.1. Conservation equations and the LES model

By assuming thermodynamic equilibrium of the gas–liquid phases, the Continuity equation and the Navier–Stokes equa-
tions for variable-density flows are given as:
@~q
@t
þ @

@xj
ð~qujÞ ¼ 0; ð1Þ

@ð~quiÞ
@t

þ @

@xj
ð~quiujÞ ¼ �

@p
@xi
þ @

@xj
ð2~lSÞ þ f ; ð2Þ
where � represents volume-weighted quantity i.e.
~q ¼ avqv þ ð1� avÞql:

~l ¼ avlv þ ð1� avÞll
and av is the vapor volume fraction, which is obtained by solving the transport equation presented below. The quantity
S ¼ 1

2 ðruþruTÞ is the rate of strain tensor, ui is the velocity, ql and qv are density of net liquid and vapor, ll and lv are
the dynamic viscous coefficients of net liquid and vapor, p the pressure, f is the gravity.

By application of a Gaussian filter to Eqs. (1) and (2) and by taking the volume average we obtain:
@ð~q�uiÞ
@t

þ @

@xj
ð~q �ui �ujÞ ¼ �

@�p
@xi
þ @

@xj
ðB� AÞ þ f ; ð3Þ
where B ¼ 2~lS is viscous stress tensor. A ¼ ~qsij and sij ¼ uiuj � �ui�uj is the subgrid stress tensor.
The Sub-Grid Scale (SGS) model needed to approximate the values of sij is based on the Smagorinsky assumption of a lin-

ear stress–strain relationship, that is:
sij ¼ �2tSGSSij þ
1
3
skkdij; ð4Þ

tSGS ¼ ðCsDÞ2jSj; ð5Þ
where dij is the Kronecker delta, tSGS is the eddy viscosity and Sij is the strain rate tensor for the resolved scale,

Sij ¼ 1
2

@ui
@xj
þ @uj

@xi

� �
. Cs is the Smagorinsky coefficient, D is the subgrid characteristic length scale, and jSj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
.
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This model does not perform well in a number of situations, including the one of present interest. Thus, for example, the
rotational effects associated with the large-scale separation are not adequately accounted for. Also, the viscous coefficient is
not zero very close to the wall although the turbulence activity there is very weak. Moreover, in more complex geometries,
there is considerable ambiguity in how to interpret the SGS model in relation to the numerical grid used for the computa-
tions. It is for these reasons that the conventional SGS model was abandoned in this study in favor of an alternative model
proposed by Nicond and Ducros [9] which takes into account the influence of the ratio of strain and rotation. In this model, it
is generally preferable to consider the traceless symmetric part of the square of the velocity gradient tensor which is given
as:
Sd
ij ¼

1
2

�g2
ij þ �g2

ji

� �
� 1

3
dij�g2

kk; ð6Þ
where �g2
ij ¼ �gik�gkj.

The anti-symmetric part of �g is written as:
Xij ¼
1
2

@�ui

@xj
� @

�uj

@xi

� �
: ð7Þ
The tensor defined by Eq. (6) can be rewritten in terms of S and �X:
Sd
ij ¼ SikSkj þXikXkj �

1
3

dij SmnSmn �XmnXmn

h i
: ð8Þ
According to the Cayley–Hamilton theorem, the quantity Sd
ijS

d
ij can be written as:
Sd
ijS

d
ij ¼

1
6
ðS2S2 þX2X2Þ þ 2

3
S2X2 þ 2IVSX; ð9Þ
where S2 ¼ SijSij; X2 ¼ XijXij; IVSX ¼ SikSkjXjlXli.

Depending on the value of Sd
ijS

d
ij, the turbulence structures can be associated with either high strain rates, high rotation

rates, or both. Thus defining a spatial operator OP to replace jSj, OP will behave like y3 near a wall, at the same time by scaling
it must be of O(1) near a wall before it being used in the subgrid scale model formulation (Eq. (4)). This has the effect of elim-

inating the numerical instabilities that can arise in the computations. Note that OP is proportional to OP1 ¼ ðSd
ijS

d
ijÞ

3=2
and is

inversely proportional to OP2 ¼¼ ðSijSijÞ
5=2 þ ðSd

ijS
d
ijÞ

5=4
.

The revised model is now given as:
tSGS ¼ ðCwDÞ2 OP1

OP2
¼ ðCwDÞ2

ðSd
ijS

d
ijÞ

3=2

ðSijSijÞ
5=2 þ ðSd

ijS
d
ijÞ

5=4 ;
where Cw ¼ C2
s
h
ffiffi
2
p
ðSijSijÞ

3=2
i

hSijSijOP1=OP2i
; Cs ¼ 0:18

Cw is a constant usually assigned a value in the range 0:55 6 Cw 6 0:6. Comte-Bellot et al. [10] obtained good results by
taking Cw ¼ 0:5. This value will be used in the present study.

2.2. Multiphase flow model

For the prediction of cavitation in the open cavity, we adopt a model for mixed and homogeneous single flow where the
mixture density depends on an equilibrium transport equation for the gas–liquid phases. Thus Eqs. (1) and (3) for
conservation of mass and momentum are supplemented by an equation for the gas volume fraction:
@

@t
ðð1� avÞqlÞ þ

@

@xj
ðð1� avÞqlujÞ ¼ � _m; ð10Þ
where _m is the net rate of change of vapor content which is calculated by using the phase transition models. Combining
Eqs. (1) and (10) yields a relation between the mixture density and vapor volume fraction.

2.3. Phase transition model

The cavitation model used in this study is based on Rayleigh–Plesset Equation (RPE) which describes the generation and
collapse of bubble to estimate the rate of vapor production. The dynamic growth of the bubble can be described by RPE as
follows:
Rb
€Rb þ

3
2

_R2
b þ

2r
qlRb

þ 4ml

Rb

_Rb ¼
pv � p

ql
; ð11Þ
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where _Rb ¼ dRb
dt , Rb is the radius of bubble, pv the vapor pressure in the bubble, p is pressure in the surrounding liquid and ql is

liquid density.
In this work, the following two assumptions were made: (i) the growth and collapse of bubbles follow the RPE neglecting

higher order terms, viscous terms and the effects of surface tension. This is due to the fact that the acceleration is only nec-
essary in the initial birth stage of cavitation and it can be neglected in other cases [11], and (ii) there are no thermal barriers
to bubble growth:
Based on these assumptions; the velocity of bubble radius is given by :
dRb

dt
¼ 2

3
pv � p

ql

� �1
2

: ð12Þ
Based on the volume change of a single bubble, mass changing rate is given by: dmb
dt ¼ 4pqvR2

b
dRb
dt .

If the number of bubbles per unit volume of mixture is nb, then the volume fraction of vapor becomes: av ¼ nb
4
3 pR3

b .
Moreover, the mass transfer rate of n-bubbles per unit volume is:
dm
dt
¼ nbqv

dVB

dt
¼ 4pnbqvR2

b
dRb

dt
: ð13Þ
The mass transfer rate can be derived based on vapor volume fraction:
_m ¼ 3avqv
Rb

dRb

dt
: ð14Þ
The mass transfer rate has two parts. One is source terms ( _mþe ) representing the vapor generation during cavitation, the
other is sink terms ( _m�e ) accounting for possible condensation rate. Using Kubota model [12] the mass transfer rate is:
_mþe ¼ Fc �
3anucð1� avÞqv

Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
jpv � pj

ql

s
sgnðpv � pÞ p 6 pv ;

_m�c ¼ Fe �
3anucð1� avÞqv

Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
jpv � pj

ql

s
sgnðpv � pÞ p > pv :

ð15Þ
In the above, the radius for cavitation bubble Rb is replaced by Rnuc , namely Rnuc ¼ 1 lm. anuc is the vapor volume fraction
for the nuclei (anuc = 5 � 10�4). The vapor volume gasification coefficients were assigned the values Fc ¼ 50 and Fe ¼ 0:01
based on the experimental data of Shen and Dimotaks [13] and Gerber [14].

The final model thus consists of substituting Eq. (15) into Eq. (10) and then by simultaneously solving Eqs. (1), (3) and
(10).

In order to track the transient liquid–gas interface, we use the Volume of Fluid (VOF) method wherein the tracking of the
interface between two phases is accomplished by solving the continuity equation for the volume fraction of the two phases
i.e. the water and the vapor in this case. The vapor volume fraction av is determined by the continuity equation (10). A fully
implicit scheme is used for the time discretization, and the transport equation is solved iteratively for each of the secondary-
phase volume fractions at each time step.
3. Verification of the computational model

The equations presented in Section 2 were solved using a three-dimensional finite-volume solver. Discretization of the
convective terms was by second-order accurate central differencing. This is the customary practice in most cases where
Large-Eddy Simulations are involved. Temporal discretization was also second-order accurate utilizing a multi-step scheme.
Concerning the numerical accuracy of the simulations, this is a controversial issue in LES since by refining the grid, the model
for the Sub-Grid Scale motions is also changed since the characteristic sub-grid length-scale is taken simply to be the cubic
root of the cell volume. In principle, therefore, truly grid-independent results can only be achieved when Large-Eddy Sim-
ulations become, in effect, Direct Numerical Simulations. Unlike the case with RANS, where a quantitative measure of grid
dependence can be obtained using e.g. a method based on Richardson extrapolation, no such procedure is available for LES.
We have therefore followed the usual practice of employing the finest grid that can be accommodated by the available com-
puter platform and relied on the Sub-Grid Scale model to account for the effects of the motions that were too small to cap-
ture. Concerning the remaining computational details, the SIMPLE algorithm was used to calculate the pressure field by
coupling the solution of the continuity and momentum equations. In performing the calculations where cavitation was
expected to occur, the computations were first started in single-phase mode until convergence was achieved and then there-
after commencing the calculation of cavitation. In what follows, we verify the computational model’s performance against
the benchmark cases of cavitation from a submerged hydrofoil at incidence, and the flow-induced oscillations over an open
cavity at high Reynolds number.
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3.1. Cavitating flow over a hydrofoil

Cavitation in the flow over a submerged hydrofoil at incidence has been the subject of numerous computational and
experimental studies [1–3]. In this work, we validate the model using the parameters of the Clark-y hydrofoil for which
experimental data are available [15–17]. The Clark-y hydrofoil is the most typical planar-convex airfoil. This kind of hydrofoil
has round head, linear lower chord and curvilinear upper chord. The hydrofoil is shown in Figs. 1 and 2 where the compu-
tational grid is also shown. The cavitation number (r) is taken as 0.8, the angle of attack angle is 8�, and the Reynolds number
(based on the chord length c and reference velocity) is 7:5� 105. Following Wang et al. [15], the computation domain
extended to a distance of 11.5 chord lengths in the streamwise direction with the inlet boundary being located at distance
2.5 chord lengths upstream of the leading edge. The outflow boundary was located at 8 chord lengths downstream of the
trailing edge. In the other two directions, the computational domain extended to a distance of 3 chord lengths from the
hydrofoil’s center (see Fig. 1).

The computations were performed on a structured hexahedral mesh with a C-C topology being used around the hydrofoil
to closely match the contours of the leading edge. The computational mesh consisted of 118,368 active cells (Figs. 1 and 2).
The smallest grid size of the first layer adjacent to the wall was 10�6 m. The boundary conditions used for these computa-
tions were as follows: at inlet, a uniform velocity profile was prescribed corresponding to the experimental value of Reynolds
number. At outlet, the pressure was fixed to the atmospheric value. At the upper, lower and side boundaries, slip conditions
was applied. The no-slip condition was applied at the walls. The computational time step is set to be 10�4 s. Iterations were
performed at each time step with the convergence criterion taken to be when the absolute sum of all residuals fell to a value
below 10�4. This level of convergence was typically achieved after 3 iterations.

Comparison between the predicted and measured cavitation cloud (presented in the form of the vapor volume fraction) is
shown in Fig. 3. In that figure, t0 is the initial time of cavitation. Also shown in Fig. 3 are the results of Huang [17] obtained
using the RNG two-equation model of turbulence. The figure shows the time evolution of cavitation flow from the sheet cav-
itation stage to the cloud cavitation stage. It is clear that the shape of the cavitation cloud is well reproduced in the present
predictions compared to both experimental findings and the previous calculations. Some differences between predictions
and measurements are apparent. These must be viewed in the light of the difficulty in obtaining accurate measurements
in a highly complex, unsteady flow in a confined space. A more quantitative assessment of the model’s performance can
be obtained by comparing the predicted and measured values of the lift and drag coefficients. This is done in Table 1 where
it can be seen that the maximum differences between predictions and measurements are well within the bounds of
infinite boundary

infinite boundary

outletinlet

Fig. 1. Hydrofoil geometry and grid blocking arrangement.

Fig. 2. Grid distribution near the hydrofoil.



Fig. 3. Predicted and measured cavitation cloud for the Clark-y hydrofoil.

Table 1
Predicted and measured lift and drag coefficients for submerged hydrofoil.

r = 0.8 Numerical calculated results base on LES method Experimental results [15] Calculated error (%)

Cl 0.730 0.770 5.2
Cd 0.123 0.115 7.8
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experimental uncertainty. The time history of these parameters is presented in Fig. 4 where it can be seen that the fluctu-
ations in these parameters are quite significant and fairly random.
3.2. Flow-induced oscillations in open cavity

This case concerns the flow-induced oscillations that occur inside an open cavity without cavitation (see Fig. 5 for geom-
etry). The purpose of computing this flow is to validate the LES model that will subsequently be used for the case cavitation.
The boundary conditions were as before: specified uniform velocity at inlet, and fixed pressure at outlet where the reference
pressure was set to atmospheric. The computations were performed at Reynolds number (based on length of open-cavity in
streamwise direction) of 2:06� 105.

The computational grid is shown in Fig. 6. The computational domain extends to a distance of 5.7 cavity lengths in the
streamwise direction, the inlet plane being at distance 1.7 lengths upstream of the leading edge and the outflow boundary
at distance of 3.0 lengths from the trailing edge. The computational grid was formed in multi-blocks with hexahedral meshes
that were non-uniformly distributed in order to better resolve the near-wall layer. In order to capture the vortex generation
and development, the first layer mesh adjacent to the wall was placed close enough to the surface such that yþ < 1. The
dimension of the smallest mesh was 10�5 m and that of the largest mesh was 4� 10�3 m. The total number of elements
was 110,507.



Fig. 4. Time series of lift and drag coefficients for hydrofoil with cavitation (r ¼ 0:8; a ¼ 8�).

inlet outlet

leading edge
trailing edge

cavity

Infinite boundary

Circumfluence
region

mainstream
region

leading flow board trailing  flow board

Fig. 5. Geometry of open surface cavity.

Fig. 6. Grid distribution for cavity flow.

Leading edge Top edge
Trailing edge

Shear layer

Incoming flow
Calculated resultsNorburg

Cp

X/L

X/L

YamamotoGaulty

Fig. 7. Predicted and measured wall static pressure coefficient Cp (Re ¼ 2:06� 105).
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Comparison between the predicted and measured wall static-pressure distribution is presented in Fig. 7. Also plotted
there are results from the experimental studies of Yamamoto et al. [18] and Chang [19]. It can be seen that there is close
agreement between the computations and measurements over a large portion of the cavity except, perhaps, very close to
the corners where some underprediction is observed. At the horizontal surface of the cavity (X=L � 0:9), the wall static pres-
sure attains its maximum value. At X=L ¼ 1:0, at the upper corner of the trailing edge, the pressure is at its minimum. These
results show that the minimum pressure value always appears at the corner of trailing edge without cavitation. A similar
conclusion was also arrived at in [20].

4. Results and discussion

Attention is now turned to the central problem addressed here, namely that of flow over an open cavity in conditions
leading to the occurrence of cavitation. The flow geometry is identical to that of the previous case (Fig. 5). In order to capture
the small cavitation bubbles and the vortices that are expected to form inside the open cavity, a structured hexahedral grid
was again adopted for this case where, as before, the grid was concentrated near the walls with the smallest grid size being
equal to the expected radius of a bubble (10�6 m) while the largest size was equal to 3� 10�3 m. Total number of elements
was 170,257 (see Fig. 6). The time step was set equal to 10�4 s in order to capture the collapse of bubbles. The CPU time
required for a typical run was about 96 h on a 32 bit computer with 2 Gb memory. In order to adequately analyze the flow,
24 observation points were located on the cavity walls (see Fig. 8). As before, the boundary conditions consisted of a specified
uniform velocity at inlet and a fixed pressure at outlet. The remaining boundaries were designated as planes of symmetry.
Further details are given in Table 2.

In this study, the relevant non-dimensional parameters are defined as follows:
r ¼ 2ðp1�pvÞ
qlu2

1
; av ¼

Vv

V
; Cpðx; yÞ ¼ 2ðpðx; yÞ � p1Þ

qlu2
1

and Cp0ðx; yÞ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
½pðx; y; tÞ � pðx; y; tÞ�2=N

q� �
qlu2

1
;

where r is the cavitation number, av is vapor volume fraction, Vv is vapor volume, Cp is the mean wall static-pressure coef-
ficient and C0p is the fluctuating pressure coefficient, m is the kinetic viscosity coefficient, N is the number of samples used in
Fig. 8. Location of wall-pressure monitoring points.

Table 2
Boundary conditions and physical parameters.

Inlet boundary u = u1, v = 0, w = 0
Outlet boundary p = 36 KPa + qlgh
Cavity boundary un = 0, us = 0
Infinite boundary us – 0
Initial condition u = u1, v = 0, w = 0

T ¼ 20 �C; al = 1
ql = 998 kg/m3

qv = 0.017 kg/m3

al = 1; av = 0
Saturation vapor pressure pv = 2300 Pa
Cavitation number r = 2.176,1.615,1.249,0.996,0.816
Reynolds number Re = 5.98 � 105–9.96 � 105, DRe = 1 � 105
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the averaging process, p1 is the average steady pressure taken to be that of the inlet flow and p(x,y, t) is the transient pres-
sure at arbitrary position in flow region. pv is the liquid vapor pressure. f is frequency, fs, fv and fb represent frequency of
shear layer oscillation, frequency of vortex shedding and of the bubble movement, respectively.

4.1. Traveling cavitation at corner of trailing edge

An overview of the results can be seen from Figs. 9 and 10 which show, respectively, the location of the vapor volume
fraction and the velocity vectors inside the cavity. As expected, flow separation occurs from the sharp leading-edge corner
leading to the formation of a layer of high shear. This layer is inherently unstable and it oscillated as vortices are shed from
this corner. At the beginning, clear traveling cavitation is generated at the corner of trailing edge and at the shear layer. Gen-
eration of traveling cavitation is close to the shear layer oscillation. When the shear layer reaches the attachment region, it
rises along the side of downstream wall. Above the attachment region, fluid is entrained into the inner cavity, while below
the attachment region fluid flows into the free stream region. A high-pressure region appears near the attachment point as
can be seen in Fig. 11, while a low-pressure region appears at the corner of trailing edge which is where the traveling
cavitation bubbles are initially generated. A detailed time evolution of the vapor volume fraction showing the traveling cav-
itation bubble is shown in Fig. 11 where it can be seen that traveling cavitation appears at the corner of trailing edge which is
where the minimum pressure is located. The process of generation and subsequent movement of traveling cavitation can be
Vortex cavitation 
bubble

Traveling cavitation 
bubble

trailing edge

leading edge

Fig. 9. Predicted vapor volume fraction in open cavity (r ¼ 0:816; Re ¼ 9:96� 105; t ¼ t0 þ 123:5 ms).
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Fig. 10. Velocity vectors in open cavity (r ¼ 0:816; Re ¼ 9:96� 105; t ¼ t0 þ 123:5 ms).



Fig. 11. Time evolution of traveling cavitation (r ¼ 0:816; Re ¼ 9:96� 105).
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divided into two stages. The first stage is the inception and movement of a single traveling cavitation, while the second stage
is the generation and movement of secondary traveling cavitation. We define the initial time of transient calculation as t0,
whole calculation time is t. At time t ¼ t0 þ 16 ms, a single small cavitation bubble appears at the corner of the trailing edge
which at time t ¼ t0 þ 19 ms begins to grow with the expansion of the local low-pressure region. There are also changes to
the bubble shape. A single bubble diffuses along the wall and moves downstream while being stretched because the mini-
mum pressure point exists at larger adverse pressure gradient along the normal direction of the surface of trailing edge.



Fig. 11 (continued)
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Thereafter, the bubble starts to contract and become smaller due to gradually increasing external pressure. Bubble collapses
and disappears after 0.5 ms. In the second stages, a new cycle begins. At time t0 þ 186 ms, the first bubble appears then the
second traveling cavitation generates at the corner of trailing edge after 5 ms. The two bubbles move downstream along the
trailing-edge wall. At time t ¼ t0 þ 199 ms, the second bubble begins to grow and stretch while the nucleus of the first bub-
ble disappear and begin to contract. Due to increasing adverse pressure gradient, two bubbles collapse during motion. The
generation, development and subsequent collapse of the traveling cavitation change periodically. Although the process of the
second inception is the same as the first, the vapor volume fraction is a little lower, and its time duration is also small.

4.2. Vortex cavitation at shear layer

At the leading edge of the open cavity, an intense region of mixing is formed due to the presence of high shear generated
below the moving stream. The free shear-layer is inherently unstable leading to the precession of high-intensity vortices.
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Due to the sudden expansion of the flow area, the velocity within the inner cavity decreases while the pressure there is
increased leading to the formation near the leading edge of a local region of adverse pressure gradients. As a result, irregular
vortices are generated, as can be seen in Fig. 12. Due to advection by the incoming flow, the vortices enter the positive pres-
sure gradient region and diffuse into the flow. After that the vortices are convected in the streamwise direction, accompanied
by shear layer oscillation. When the pressure at the center of the vortex drops below the vapor pressure, vortex cavitation
occurs.

The predicted time evolution of vortex cavitation and the distribution of absolute pressure are shown in Figs. 12 and 13
respectively. It is clear from these figures that the motion of the vortex cavitation is closely related to the pressure
Fig. 12. Time evolution of cavitation vortices (r ¼ 0:816; Re ¼ 9:96� 105).



5678 S. Dai et al. / Applied Mathematical Modelling 38 (2014) 5665–5683
distribution at the shear layer. At the incipient cavitation stage, when t ¼ t0 þ 20 ms, small vortices-bubbles occur at local
vortices region of the shear layer. At subsequent times, from t0 þ 20 ms to 24 ms, the bubbles grow and move downstream,
while the pressure gradients at the attachment region at trailing edge increase and their region of influence expands (see
Fig. 12). At time t ¼ t0 þ 24 ms, the vortex-bubbles move to the trailing edge where they encounter increasing pressure
levels that eventually lead to their collapse. At t0 þ 115 ms, flow separation at the leading edge induces periodic vortex shed-
ding again, and a series of new oval vortex-bubbles is generated. At t0 þ 120 ms. Thereafter, the vortex-bubbles are stretched
and move with shear layer oscillation. At t0 þ 125 ms, due to increasing local pressure, bubbles with smaller vorticity
collapse again whereas bubbles with high vorticity are pushed into attachment region due to oscillation of the shear layer
and in the process enter into the inner cavity. In this process, the shape of the bubbles can be either spherical or oval
depending on changes in the surrounding pressure. Due to screening effect, the vortex bubbles avoid the minimum pressure
point during their motion as is apparent in Figs. 11 and 12. At t0 þ 171 ms, the pressure of the surrounding flow region
increases, leading to the sudden contraction and collapse of the vortex bubbles (see Figs. 12 and 13). In the absence of
detailed experimental observations, the trends described above, while qualitative in nature, serve to highlight the
complexity of vortex-induced cavitation.

4.3. Wall pressure and shear layer oscillation

The predicted wall static pressure distributions on the cavity walls are plotted in Figs. 14 and 15 at several cavitations
number intervals. It can be seen in Fig. 14 that the pressure fluctuates widely depending on location. Thus, for example,
Fig. 13. Time evolution of absolute pressure in cavitation flow (Re ¼ 9:96� 105).
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Fig. 14. Predicted variation of mean wall pressure with cavitation number.
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Fig. 15. Predicted variation of fluctuating wall pressure with cavitation number.
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the value of the wall pressure coefficient Cp increases with decreasing r. At X=L ¼ 0;1;2 (which corresponds to the corner
points), the Cp values show a local maximum, but at X=L ¼ 0:5;1:5;2:5 (the middle point of every edge), the Cp values are at
local minimum. As the bubbles move near the trailing edge and the trailing flow board (see Figs. 8 and 12), their presence
causes the liquid density to drop, and the vapor volume fraction to increase with increasing incoming velocity. This causes a
decrease in Cp. At X=L ¼ 3, Cp drops to its minimum value and hence the traveling cavitation is generated here.

Fig. 15 shows the predicted distribution of the fluctuating pressure on the wall. It is clear that Cp0 reaches its maximum
level at the corner of trailing edge where the influence of traveling cavitation is most strongly felt, and the impact of the
shear layer oscillations is quite intense. Moreover, Cp0 decreases with decreasing value of r. Thus the lower the value of
r, the more severe is the cavitation phenomena and the more is the gas content in gad-liquid mixed fluid. At X=L 6 3, Cp0

increases with increasing X=L value, but this change is very small. At X=L > 3, Cp0 value increases with decreasing r since
this region has higher vapor content (see Fig. 16).
4.4. Frequency of vortex shedding, cavitation bubbles and shear-layer oscillation

Finally, we turn to consideration of the frequencies of the vortex shedding, and the cavitation bubble and shear-layer
oscillations. The occurrence of cavitation within a cavity involves very strong coupling between the dynamics of the bubbles,
the shed vortices and the shear-layer oscillations. The physical phenomenon is thus very complicated, though something of
its nature can be deduced by inspection of the energy spectra of the various oscillations. It was noted earlier that the periodic
collapse of traveling cavitation causes high frequency impact and results in high levels of fluctuating pressure. Fig. 17 shows
the time history of the vapor volume fraction and its frequency content as obtained by performing a Fast Fourier Transform
(FFT) on the signal. The locations of points 5 and 9 are shown in Fig. 8. In Fig. 18, the power spectrum of fluctuating pressure
at the corner of trailing edge is shown. The high frequency at which the traveling cavitation occurs is clearly evident. Due to
the influence of high frequency, the corner point at the trailing edge suffers most from the impact of the fluctuating pressure
forces. Moreover, due to fluctuating pressure forces increasing as r decreases, the strength of impact increases accordingly. It
may therefore be concluded that the damage due to cavitation is likely to occur first at this location. Compared to traveling
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Fig. 16. Time history of fluctuating pressure at point 19 with cavitation number.

Fig. 17. FFT of vapor volume fraction at point 5 (r ¼ 0:816; Re ¼ 9:96� 105).

Fig. 18. Power spectral density of fluctuating pressure (r ¼ 0:816; Re ¼ 9:96� 105).
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cavitation, the generation and collapse of vortex-cavitation at the shear layer is far more random in nature. Also evident in
this figure is the very close coupling between the oscillations of the vortices, the bubbles and the shear layer.
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Fig. 19 shows the time history of the vapor volume fraction and its associated FFT at different positions within the flow.
The time history of the vortex velocity and the FFT for different cavitation numbers are shown in Fig. 20. The collapse of the
vortex bubbles at the shear layer occurs at high frequency, while the bubbles moving along the fluid have low frequency
characteristics. Fig. 19(a) shows that the vortex bubbles instantly collapse during their motion and thus erupt at high fre-
quency. A small portion of the bubbles migrates into the positive pressure gradient region, thereafter vortex bubbles enter
into the inner cavity along the wall and into counterclockwise rotation (see Fig. 12), while they encounter negative gradient
region they may instantly collapse during motion. The frequency of bubbles motion before their collapse is the same as that
of vortices (see Figs. 19(b) and 20(b)), and is about 19.5 Hz. Comparison of Fig. 20(a) and (b) shows that the frequency of
vortex motion increases with decreasing value of r. This indicates that the frequency of the vortex bubbles will increase.
It can be seen that the location near the sharp corner of trailing edge has more vapor than the upstream separation zone
near the leading edge. Although these two types of cavitation will erupt at high frequency, the frequency of the vortex-bub-
bles collapse is somewhat higher than that of the traveling cavitation at the same value of r. A similar conclusion can be
drawn from comparison of Figs. 17 and 19(a). It can be seen from the complex frequency spectra that the overall flow is char-
acterized by three distinct frequencies, those of the bubbles and vortex motions being relatively low relative to that of the
bubbles’ collapse. The dominant frequency, however, is that of the shear-layer oscillations.

Fig. 22 shows the power spectrum of the fluctuating pressure at the cavity’s trailing edge which is where the most intense
shear-layer oscillations occur. When the cavitation number is large, several peaks appear in the power spectrum. The first of
these is the frequency of the vortex-bubbles motion which at 10.5 Hz. This is nearly coincident with the frequency of the
shed vortices of 10.9 Hz (Fig. 20(a)). The second is the first-order frequency of the shear-layer oscillations. The third peak
value is the second-order frequency of shear-layer oscillations. These oscillations obviously strengthen with decreasing
cavitation number. Moreover, the first-order frequency of oscillation dominates over the energy with increasing cavitation
(a) (b)

Fig. 19. Time history of vapor volume fraction and FFT (r ¼ 0:816; Re ¼ 9:96� 105).

Fig. 20. Time history of vortex velocity and FFT.



Fig. 21. Comparison of vapor volume fraction for traveling cavitation and vortex cavitation (r ¼ 0:816; Re ¼ 9:96� 105).

(a) (b)

Fig. 22. Power spectral density of fluctuating pressure for different cavitation number.
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number (see Fig. 21(b)). The conclusion that can be drawn here is that the collapse frequency of bubbles is greater than the
frequency of shear-layer oscillations, whereas the frequency of the vortex motion is the lowest amongst the three.

5. Conclusions

This paper describes the development of a computational model for the prediction of cavitation induced by high-speed
flow over a square surface cavity. The model is based on approach that combines Large-Eddy Simulations with the Kutoba
model for the initiation and growth of the cavitation bubbles. A Volume of Fluids algorithm was used to track the oscillations
of the shear layer that develops from the upstream corner. The complete model was first validated against the benchmark
flows of flow over a hydrofoil at incidence where cavitation did occur, and flow within a square cavity in the absence of cav-
itation. In both cases, the results obtained where in general accord with data and with other computations. For the case of
cavitation due to shear-layer oscillations, the predictions revealed the presence of two types of cavitation: a traveling cav-
itation, wherein the vapor bubbles were generated at the corner of the trailing edge, and vortex-induced cavitation gener-
ated by the shear-layer oscillations. The bubbles formed as traveling cavitation moved near the wall and most collapsed a
short distance after their inception. However, a few were observed to migrate into the cavity and form a region of counter-
clockwise motion below the oscillating shear layer and eventually collapsed upon encountering the region of elevated static
pressure. Among the other findings of this work was the observation that the location of the point of minimum pressure
coincided with the corner of trailing edge which is also where the maximum pressure fluctuations occurred. It was also
observed from the computations that the mean wall static pressure decreases with increasing cavitation number, while
the fluctuating pressures increase due to the influence of the traveling cavitation and the shear-layer oscillations. It was also
observed that the collapse of the cavitation bubbles results in an impact frequency that is higher than the dominant fre-
quency of the shear-layer oscillations, while the frequency of the bubbles and of the shed vortices is distinctly lower.
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