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90095-1569, United States;

K. N. Houk
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Abstract

The mechanism and dynamics for the formation of the delitschiapyrone family of natural products 

are studied by density functional theory (DFT) calculations and quasiclassical molecular dynamics 

simulations with DFT and xTB. In the uncatalyzed reaction, delitschiapyrones A and B are formed 

by Diels–Alder reactions through a single transition state and a post-transition state bifurcation 

that favors formation of delitschiapyrone B. In water and most likely in the enzyme, the acidic 

hydroxyquinone ionizes, and the resulting conjugate base undergoes cycloaddition preferentially 

to delitschiapyrone A. We demonstrate a new type of biosynthetic transformation and variable 

selectivity from a (4 + 2)/(4 + 3) ambimodal transition state.
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INTRODUCTION

Delitschiapyrone A (1) and B (4) are hybrid naphthoquinone/2-pyrone.1 Both classes of 

natural products include potent drugs or drug candidates, as shown in Figure 1. The 

biosynthetic pathway that has been postulated1 for formation of 4 involves an exo Diels–

Alder reaction, while the formation of 1 involves a subsequent α-hydroxy ketone (α-ketol) 

rearrangement and cyclization (Figure 1a). Synthetically, 1 and 4 were made by a related 

process. The ratio of 1 and 4 was found to be solvent-dependent (Figure 1b).2 We have 

studied these reactions with density functional theory (DFT) and quasiclassical molecular 

dynamics (MD) simulations with the xTB3 method and have discovered a novel mechanism 

that leads in one step to the skeletons of both 1 and 4. We find that 1 and 4 are generated 

from a single reaction step involving a Diels–Alder/α-ketol rearrangement or (4 + 2)/(4 + 3) 

ambimodal transition state. Delitschiapyrone B (4) is dynamically preferred for the neutral 

reactant, but ionization of the acidic hydroxyquinone moiety in water alters the dynamic 

preference to lead to delitschiapyrone A (1).

Naphthoquinones and 2-pyrones are formed from polyketide biosynthetic pathways.4–14 

Representative members of these families of natural products include tetracycline, rifamycin, 

and solanapyrones.15 Delitschiapyrone A (1) is a naphthoquinone 2-pyrone hybrid first 

isolated from subtropic-plant-associated fungi collected in Florida.1 Delitschiapyrone A 

(1) bears an unprecedented 6/6/5/7/6 pentacyclic multibridged ring system and displays 

bioactivities toward various human tumor cell lines in vitro. The proposed biosynthetic 

precursors 2 and 3 may react in an exo (4 + 2) fashion [assuming the (Z)-alkene is 

involved] leading to the formation of the tetracyclic ring system of delitschiapyrone B (4), 

which has not been isolated from cultures. An α-ketol rearrangement of 4 then permits 

ring expansion that forms the seven-membered ring of 5. Enzymes that catalyze the (4 + 

2) cycloaddition/α-ketol rearrangement cascade are not known. Finally, an intramolecular 

hemiketalization/cyclization of 5 completed the proposed biosynthesis of delitschiapyrone 

A (1), with the structure confirmed by X-ray crystallographic analysis.1 As shown from the 

XRD structure, delitschiapyrone A (1) possesses a strained ring system.

A biomimetic chemical synthesis of delitschiapyrone A (1) has been reported.2 The 

key synthetic transformation is an endo-selective Diels–Alder reaction [of the (E)-
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alkene]/α-ketol rearrangement/cyclic-hemiketalization cascade leading to the formation of 

delitschiapyrone A (1) as the only stereoisomer as well as delitschiapyrone B (4), which 

was isolated and structurally characterized for the first time. Remarkably, all four additional 

consecutive stereogenic centers of 1 were constructed via asymmetric induction from the 

allylic stereo-center of 3. Interestingly, change from a nonpolar solvent such as toluene to 

water leads to acceleration of the reaction and significantly increases the yield of 1.

We are interested in elucidation of the mechanism of this transformation in both biological 

and abiological conditions as well as the origin of the stereoselectivity and the mechanism 

of water acceleration. There have been no previous mechanistic studies on the formation of 

a bicyclo[4.3.1]decane system from cycloadditions of a hydroxynapthoquinone. Studies on 

an α-hydroxycarbonyl substrate were previously reported by our group: 2-hydroxyacrolein 

and 1,3-butadiene are predicted to give both a (4 + 2) and (4 + 3) + H shift from a single 

ambimodal transition state.16 An α-ketol rearrangement interconverts the two products. 

While that was a purely hypothetical reaction, we believe that nature uses a related reaction 

in the biosynthesis of delitshchiapyrones A and B. We use ωB97X-D17 density functional 

theory to show that an ambimodal transition state and a post-transition state bifurcation18–23 

leads to B (4) or a precursor (5) to A (1). Applying quasiclassical molecular dynamics (MD) 

simulation starting from the ambimodal (4 + 2)/(4 + 3) pericyclic transition state, we show 

the relationship of these two products and show how water solvation reshapes the potential 

energy surface. We have used the rapid semiempirical quantum mechanical method, xTB 

from Grimme,3 checked vs ωB97X-D for some cases. Water is known to accelerate various 

pericyclic reactions24–26 and to influence the α-ketol rearrangements27 and other reactions 

by hydrogen-bond catalysis, polarity and surface effects.28,29

RESULTS AND DISCUSSION

We initiated our studies with the cycloaddition transition states that lead to the (4 + 2) 

product 4, which could be generated from either 3 or 6 depending on whether an exo or 

endo pathway is followed. We compute that the (E)-isomer is 1–2 kcal/mol more stable 

than the (Z). In the proposed biosynthetic pathway, the (4 + 2) cycloaddition of 2 with 3 
proceeds with exo transition state TS1-Z and an energy barrier of 27.4 kcal/mol (Figure 

2), although the exact configuration of the exocyclic double bond of 3 was not confirmed 

biosynthetically. By comparison, the energy barrier for the endo pathway of 2 with 6, as 

proposed in the chemical synthesis, is lower (TS1, 21.9 kcal/mol), likely due to stabilizing 

secondary orbital interactions for TS1 and the strong steric repulsions in TS1-Z arising 

from the diene planarity in the concerted transition state that always disfavors reactions 

of Z-dienes. Both transition states are asynchronous with C2–C19 as the first forming 

bond with a forming distance of 2.1 Å. Among all possible endo and exo stereoisomeric 

transition states, the endo transition states are in general approximately 6~10 kcal/mol lower 

in energy than the exo transition states.30 TS1 (TS1-endo1 in Figure 3) has the lowest 

energy. The regioselectivity of TS1-endo1 vs TS1-endo3 can be rationalized by the larger 

frontier orbital coefficients at both C2 and C19 compared with C3 and C13, respectively. 

The facial selectivity of TS1-endo1 is due to a preferred conformation of the C19 side 

chain with respect to the C2–C19 forming bond; in the favored transition state, the largest 
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alkyl group is anti to the forming bond, whereas for the other facial isomeric transition 

states (TS1-endo2 and TS1-endo4), this conformation is no longer preferred; similar cases 

were studied extensively earlier.31–33 The orchestration of both orbital and steric interactions 

results in TS1 as the favorable transition state that leads to the (4 + 2) product 4 that is 

thermodynamically downhill with a Gibbs free energy of −32.9 kcal/mol relative to the 

prereaction complex of 2 and 6. Next, the α-ketol rearrangement proceeds with transition 

state TS2 with a relative Gibbs free energy of 9.3 kcal/mol leading to ring expansion and 

product 5 with a free energy of −27.0 kcal/mol.

However, in order to generate 5 from 4, an energy barrier of 42.2 kcal/mol must be 

overcome. Yet 5 is 5.9 kcal/mol less thermodynamically stable than 4. These energetics 

indicate that 5 cannot be formed. However, a significant amount of 1 (spontaneous 

cyclization product of 5) was isolated from both culture and reaction mixture.1,2 This 

disagreement between theory and experiment let us to postulate that the reaction must not 

proceed via the proposed cascade reaction pathway. Based on our previous studies, we 

propose here that the formation of 5 may not undergo a α-ketol rearrangement but instead 

directly from 2 and 6 via a single cycloaddition step. Although (4 + 2) was the major 

pathway in cases we previously studied, due to a post-transition state proton transfer that 

played an important role to slow down the (4 + 3) pathways,16 we wonder why in this 

case (4 + 3) is the major product. We first studied a dipolar (4 + 3) cycloaddition pathway 

that would lead an oxyallyl cation tautomer of 2, where the enol proton was transferred to 

the adjacent carbonyl, and 6 directly to 5 without an α-ketol rearrangement (Figure S2). 

However, the energy of this dipolar (4 + 3) transition state (TS-S1) is too high (29.7 kcal/

mol) to be overcome under noncatalyzed conditions at room temperature.

We then investigated whether this potential energy surface indeed bifurcates to both products 

4 and 5. As demonstrated in our previous studies on post-transition state bifurcations of 

different types of pericyclic reactions, quasiclassical MD simulation is a powerful tool to 

explore bifurcating potential energy surfaces and to predict product ratios.34–39 To generate 

statistically significant results, we propagate a large amount of MD trajectories (>1000) 

on TS1 structures employing the Grimme’s GFN2-xTB quantum chemical method. The 

relative Gibbs free energies calculated using GFN2-xTB method are significantly different 

from those obtained with the ωB97X-D/6–31G(d,p) method (Figures 4a and S3); however, 

the force calculations employed by the ProgDyn program result in a similar dynamic ratio 

compared with those obtained with the ωB97X-D/6–31G(d,p) method (Figure S4) likely due 

to similar shapes in both potential energy surfaces after TS1, and both methods agreed with 

the experimental results (vide infra). The former method is more than 2000 times faster on 

our system than the latter and therefore holds great potential for full QM/MD simulation on 

large systems. Different implicit solvation models (GBSA toluene or water) were applied 

to simulate the experimental conditions. We performed normal-mode sampling of TS1 and 

conducted MD simulations on TS1 structure samples (Figure 4b). Analyzed from the TS1 
structure samples, the competing bond-forming distances of C3–C13 (bond 1) and C4–C13 

(bond 2) are similar, which indicates TS1 is ambimodal.40 Analyzed from the trajectories 

(Figure 4d), the reaction pathway in both toluene and water41 does bifurcate after passing 

the TS1 region and leads to either product 4 or 5. The mainly dynamically concerted nature 
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of this cycloaddition is demonstrated by molecular dynamics studies, in which the average 

time gap between the formation of the first and second bond is 30 and 65 fs for 4 (Movie 

S1) and 5 (Movie S2), respectively (Figure 4c). The predicted distribution of 4/5 using 

xTB-MD is 30:1, while the experimental ratio is 30:5. This result agrees with our previous 

discovery and more recent example that the (4 + 2) product is always preferred to the (4 

+ 3) product.42 The large dynamic preference for 4 is associated with the steepness of 

the potential energy surface. As studied earlier by Singleton and co-workers, the shape of 

the potential energy surface influences reaction dynamics.43,44 The steepness of the slope 

likely affects the product ratio of 4 and 5. The trajectory descends faster along the steeper 

side of a bifurcating surface due to a larger force, and therefore, this pathway is preferred. 

The other pathway requires a proton shift and is disfavored for that reason. The uneven 

product distribution is related to the nature of the bifurcating surface as illustrated in Figure 

5. Figure 5a is a symmetric bifurcating surface with two products formed equally on the 

two sides of the valley ridge inflection. A representative class of reaction with this type of 

potential energy surface is an ambimodal homodimerization, such as the homodimerization 

of cyclopentadiene first studied by Caramella.45 In the case an ambimodal reaction generates 

two different products, the bifurcating surface is unsymmetrical as illustrated in Figure 5b. 

The major product is the one located on the steeper side. The shape of each surface shown 

here is generated via an analytical function we derived, Z = k[aXsin(Y2) + bY2 + csin(X) + 

dXY], in which Z stands for potential energy, X is the bifurcating reaction coordinate, and Y 
is the perpendicular reaction coordinate.

xTB-MD simulations including water solvation resulted in the product distribution of 4/5 as 

89:1 which is similar to the predicted ratio with toluene solvation; however, the experimental 

ratio of 4/5 is 1:3.4 using water as the reaction solvent. This disagreement suggests that the 

reaction must have proceeded differently in water. The α-keto–enol of 2 is acidic and will be 

ionized in water. The predicted pKa of the enol hydroxy group of 2 is 5.2,46 so that enolate 

anion (2a) of 2 is the major species in water at pH 7. We calculated the anionic pathway 

as shown in Figure 6a. The barrier height (TS1c, 19.7 kcal/mol) of the cycloaddition step 

is 2.2 kcal/mol lower in the anionic pathway than in the neutral pathway (Figure 2, vide 
supra). TS1c has a shorter bond-forming distance of C4–C13 (2.9 Å) compared with the 

competitive C3–C13 (3.1 Å), which suggests that TS1c may prefer the (4 + 3) product 5a. 

Interestingly, the anionic cycloaddition is now of the inverse-electron-demand type, since 

the HOMO/LUMO gap of the diene–dienophile (10.4 ev) is higher than the dienophile–

diene (7.8 ev), respectively; whereas the neutral cycloaddition is normal-electron-demanding 

[HOMO/LUMO gap of 8.2 eV (diene–dienophile) vs 10.0 eV (dienophile–diene)]. Thus, the 

reaction polarity is reversed by deprotonation of the dienophile. The anionic intermediate 5a 
(5.0 kcal/mol) resulting from the cycloaddition is now higher in energy due to high basicity 

of a tertiary alkoxide anion. This anionic intermediate 5a can undergo readily α-ketol 

rearrangement via TS2c (9.6 kcal/mol) that could lead to alkoxide 4a (−10.1 kcal/mol), 

except that protonation of either 5a or 4a will occur readily because of the much higher pKas 

of the products, around 17. TS1c is ambimodal but will have a difference postbifurcating 

behavior because of its very different geometry from TS1.
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We propagated xTB-MD trajectories based on the normal-mode sampling of TS1c using 

the xTB method (see Figure 6b). We found that 56% of the trajectories now lead to 5a, 

representing the experimentally observed major product in water. The predicted dynamic 

ratio of 5a and 4a is 3.9:1 that is comparable to the experimental product ratio of 1 and 

4 (3.4:1). The anionic cycloaddition is now dynamically stepwise, since the average time 

gaps between the formation of the two bonds are 211 and 203 fs for 4a (Movie S3) and 

5a (Movie S4), respectively. Notably, a significant amount of entropic intermediate47 was 

observed, which lies on a potential energy plateau preceding full formation of the second 

bond.34 Although 5a could undergo fast α-ketol rearrangement to 4a due to the low barrier 

(4.6 kcal/mol), this is unlikely to happen in water, since a tertiary alkoxide such as 5a or 

4a is instantaneously quenched by water upon generation, and therefore, the dynamic ratio 

of anion 5a and 4a represents the experimental ratio of the quenched products. In order to 

understand further how water molecules change the dynamic behavior of the reaction, we 

also performed MD simulations with the explicit solvation model, in which a TIP3P water48 

box was constructed around TS1c. As compared with the implicit solvation dynamics 

(Figure 6b), the cycloaddition reaction in explicit water (Figure 6c) starts with a complex 

with closer distance between 2a and 6 due to the confined cavity for TS1c. The time gaps 

between the formation of the two bonds are 167 and 208 fs for 4a (Movie S5) and 5a (Movie 

S6), respectively. Less entropic intermediate is involved likely due to the reaction entropy 

being significantly reduced with restriction by the water cavity. The predicted dynamic ratio 

of 5a and 4a is 4.1:1. Thus, the overall process of the generation of 5 from 2 and 6 in water 

involves both anionic and neutral pathways: (1) ionization of dienophile 2 results in 2a, (2) 

post-transition state bifurcation of ambimodal TS1c of the anionic pathway generates 5a 
as the major species, (3) rapid protonation quenches alkoxide 5a to form a thermodynamic 

well of the neutral reaction pathway, and (4) 5 is therefore trapped and isolated as the major 

product.

CONCLUSIONS

In summary, we have studied the dynamic effects that control the formation of 

natural products delitschiapyrone A and B. Delitschiapyrone A is not formed from the 

proposed Diels–Alder/α-ketol rearrangement cascade but instead formed directly from a 

single cycloaddition reaction. Bifurcation of the reaction pathway from the ambimodal 

cycloaddition transition state results in both delitschiapyrone A and B. Delitschiapyrone 

B is intrinsic-dynamically preferred. Water changes this dynamic preference by favoring 

the deprotonated substrate. The dynamics then lead to the predominant formation of 

delitschiapyrone A. Nature has already developed a strategy to take advantage of ambimodal 

reactions to avoid overcoming high kinetic barriers and to control the periselectivity by 

proton transfer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representative naphthoquinone and 2-pyrone natural products and the structures of 

delitschiapyrone A (1) and delitschiapyrone B (2). (a) Proposed biosynthetic and (b) 

chemical synthetic pathways of delitschiapyrone A (1).
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Figure 2. 
Calculated energies and structures of the transition states for different reaction pathways 

with ωB97X-D/6–31G(d,p)/CPCM(water or toluene, black/blue numbers, respectively). 

Free energies are in kcal/mol. The optimized geometries shown are in CPCM water.
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Figure 3. 
Stereoisomeric endo transition states. Free energies are relative to the reactive complex of 

2 and 6 that leads to TS1-endo1 and are in kcal/mol. The energies in black numbers are 

applying CPCM water solvation. The energies in blue numbers are applying CPCM toluene 

solvation. The optimized geometries shown are in CPCM water.
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Figure 4. 
Quasiclassic molecular dynamics simulation of TS1. (a) Schematic presentation of post-

transition state bifurcation of TS1 calculated with ωB97X-D/6–31G(d,p)/CPCM(toluene), 

numbers in black color, and GFN2-xTB(gas phase), numbers in blue color. The numbers in 

the front/back are free energies/enthalpies, respectively. (b) Overlaid normal-mode samples 

of the ambimodal TS1 calculated with xTB and (c) distance distribution of the forming 

bonds 1, 2, and 3 in transition state structures calculated with xTB. (d) xTB-MD distance 

plot showing statistic distribution of the MD trajectories (1 ps) in GBSA toluene monitoring 

two bond forming distances and locations of key species along the reaction pathway. Bond 1 

is the distance between C3 and C13, bond 2 is the distance between C4 and C13, and bond 

3 is the distance between C2 and C19. Blue points are the locations of the normal-mode 

structural samples of TS1.
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Figure 5. 
Two types of bifurcation surface. (a) Symmetrical bifurcation of the potential energy surface. 

(b) Asymmetrical bifurcation of the potential energy surface. The 2D plots are projections of 

the XY plane along Z axis with energy contours.
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Figure 6. 
Anionic reaction pathway in water. (a) Calculated relative free energies and transition 

state structures with ωB97X-D/6–31G(d,p)/CPCM(water). (b) xTB-MD distance plot with 

implicit GBSA water solvation and (c) with explicit TIP3P water solvent box. Bond 1 is 

the distance between C3 and C13, and bond 2 is the distance between C4 and C13. Blue 

points are the locations of the normal-mode-sampled MD origins of TS1c. The red box is 

the transition state zone.
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