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ABSTRACT OF THE DISSERTATION 
 

Three Essays on Environmental Economics 
 

 
by 

 

Zhiyun Jiang 

 

Doctor of Philosophy in Economics 

University of California San Diego, 2022 

Professor Richard T. Carson, Chair 
 

 

This dissertation studies three distinctive aspects of environmental economics. Chapter 1 

examines the impact of smoke from fires on agriculture production of the two main U.S. cash 

crops: corn and soybeans. Linking smoke plume maps derived from satellite images with county-

level information on corn and soybean yields, I use a panel data approach to estimate exposure 

to smoke plumes treating their exact frequency, timing, and location in any year as exogenous 

shocks. Exposure to one more day of smoke, on average, reduces yields of corn and soybeans by 

0.31% and 0.23%, respectively. To help put these results in an economic context for corn and 

soybeans, a 10% increase in smoke relative to 2019 results in an annual loss of almost $1 billion. 
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Chapter 2 explores the interaction relation of temperature and precipitation with number 

of outdoor recreation trips. Using detailed information on outdoor recreation trips in England 

over a four-year period, I use a semi-parametric response surface approach to examine the 

interaction relation. I found that although daily visits increase with temperature and decrease with 

rain, these gradients only have small variations across rain or temperature. Interaction of the two 

variables plays a small role in outdoor recreation. 

Chapter 3 examines how the introduction of ridesharing services such as Uber and Lyft 

into the U.S. urban market influences trip choice decisions. Using data from the 2009 and 2017 

National Household Travel Surveys, I show that the longer Uber and Lyft have been in an urban 

market, the greater the increase in the 2017 survey trips that were made using taxi/rideshare 

services relative to the 2009 survey benchmark. This increase is driven by an upward shift that 

is more pronounced for short and longer distance trips than for middle distance trips and is also 

more pronounced on weekdays relative to weekends. Ridesharing services are shown to be a 

substitute for short haul bus trips, but a complement with longer rail trips. 
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Chapter 1  

Impact of Smoke from Fires on 

Agriculture 

Abstract: With wildfires projected to substantially increase under climate change, there 

is growing interest in understanding their economic cost. While wildfires directly burn forests 

and homes, they also produce smoke that can cover wide areas and travel long distances, 

physiologically harming people and plants. These injuries have economic consequences. This 

paper provides the first national economic estimates of the impact of this smoke on the production 

of the two main U.S. cash crops: corn and soybeans. To do this, I link smoke plume maps derived 

from satellite images with county-level information on corn and soybean yields. A panel data 

approach is used to estimate exposure to smoke plumes treating their exact frequency, timing, 

and location in any year as exogenous shocks. This allows separation of smoke impacts from the 

better studied air pollutant impacts, which is important because, while pollution from vehicles 

and power plants is falling, that from smoke is increasing. Exposure to one more day of smoke, 

on average, reduces yields of corn and soybeans by 0.31% and 0.23%, respectively. Using these 

estimated yield response functions for policy purposes requires specific future smoke generation 
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scenarios. To help put these results in an economic context for corn and soybeans, a 10% increase 

in smoke relative to 2019 results in an annual loss of almost $1 billion. Some climate change 

scenarios for 2050 involve considerable larger increases in U.S. smoke levels. If other U.S. 

agricultural production is equally sensitive to smoke and, if the findings reported here hold for 

other countries with wildfires, then total agricultural losses from likely increase in smoke over 

the next 30 years through 2050 are likely to be on order of several hundred billion dollars. The 

estimates provided here are likely to be of use in consideration of policies to reduce wildfires. As 

an example, I consider the debate over mechanical removal of fuel wood versus prescribed 

burning to reduce wildfire risks. Taking account of impacts of prescribed burning smoke on corn 

and soybean yields can shift the preferred option from a benefit-cost perspective. 

1.1   Introduction 

The U.S. has been experiencing record-breaking wildfire events, with large economic 

damages occurring from loss of structures and, in some instances, life. Wildfires have always 

existed as part of the ecosystem. They have been increasing over time in acreage burned (Burke 

et al., 2007) for reasons related to fire suppression efforts and the increasing encroachment of 

urban development into areas of high fire risk (Radeloff et al., 2018). Climate change is now 

further exacerbating the wildfire activities. For example, the work of Abatzogloua and Williams 

(2016) shows climate change contributed to about half of the total burned area by wildfires in 

Western U.S. between 1984 to 2015. Projection shows that the frequency of wildfires and length 

of fire season will increase on roughly three-quarters of the world’s land areas by the end of this 

century, with the U.S. being one of the countries likely to experience the most substantial impacts 

(Sun et al., 2019). 
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With concern over increasing wildfires under climate change, there is growing interest in 

understanding their full economic costs. These costs go beyond the dramatic destruction of homes 

media audience see and the direct loss of life. Wildfires also generate enormous amounts of 

smoke. Smoke can travel for long distances, with its reach extending for thousands of miles 

(Miller et al., 2017). The fires themselves can last for days or even weeks. Smoke from such fires 

hangs in the air even longer. There is a growing literature, mostly in the biological sciences, 

looking at different physiological impacts of smoke. Many of these seek to understand underlying 

mechanisms or look at impacts associated with specific wildfire events. Moving in the policy 

direction, attention has largely been directed at health effects on farm workers and local residents 

(Reid et al., 2016; Vo et al., 2021). Here I look at the impact of wildfires on agriculture 

demonstrating that smoke from wildfires can reduce crop yields. To the best of my knowledge, 

this paper provides the first national estimates of the economic damage done by smoke to the two 

major U.S. cash crops: corn and soybeans. 

Surprisingly, the intersection between wildfires and agriculture production yields has 

been little explored by economists. Work on prescribed burning, which deliberately sets fires in 

favorable weather conditions, to reduce later wildfire risk (and hence creates smoke similar to 

wildfires), often mentions possible local health effects and public opposition (Mercer et al., 2007; 

Florec et al., 2020), but has not considered the possibility of substantial yield impacts on major 

crops across the entire United States. 

In contrast, the role of air pollutants in causing economic damage to major U.S. crops has 

been well studied (e.g., Garcia et al., 1986; Westenbarger and Frisvold, 1995; Boone et al., 2019). 

Turning to smoke, the difficulty comes in separating the effect of air pollution from all sources 

(measured at U.S. Environmental Protection Agency (EPA)’s monitoring stations) and from that 
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of smoke, whose chemical components evolve in complex atmospheric reactions, into various 

pollutants such as ozone that are known to reduce crop yields. Solving this problem of separating 

the impact of smoke from air pollution from all sources requires a different data source. I use 

smoke plume maps derived from satellite images for this purpose. 

I link this satellite smoke plume imaging and fire location with county-level information 

on agricultural yields and production expenses. Using variation in exposure to smoke plumes as 

exogenous shocks providing the source of identification, I find that exposure to an additional day 

of smoke on average decreases corn and soybean yields by 0.31% and 0.23%, respectively. The 

estimation coefficients are reasonably robust to range of alternative specifications.  

For policy purposes, the dose response relationships identified in this paper need to be 

coupled with projections of wildfires and smoke dispersion under different climate change 

scenarios. That is beyond the scope of this paper. Nevertheless, it is likely to be useful to cast 

results in terms of economic loss rather than yield reductions. I do this by considering the annual 

loss from a 10% increase relative to 2019 smoke levels, which is well within current year to year 

variation. For corn, this loss estimate is just under $600 million and for soybeans almost $300 

million.  This 10% change is small relative to projected increases in wildfires in many regions in 

the contiguous U.S., where some estimates range up to 75% by mid-century (2040-2069)1 and 

the greatest increases are in the areas where corn and soybean production is concentrated (Gao 

et al., 2021). In the absence of other information, a reasonable assumption is that yields of other 

U.S. crops are as sensitive to smoke as corn and soybeans and that smoke from wildfires in other 

countries have similar impacts. Corn and soybeans are well studied crops, where switching the 

particular varietal grown, as well as crop switching behavior in response to pollution exposure 

 
1 The 75% increase is compared with baseline period (1971–2000) in Gao et al. (2021). 
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have long been recognized (Griliches, 1957; Kopp et al., 1985). Because of corn and soybeans’ 

prominence, comprising almost half of all U.S. total crop cash receipts, research at agricultural 

experiment stations and commercial entities aimed at implicit adaptation to smoke is likely to be 

more advanced than other crops and it is less likely to think that other commercial crops are less 

sensitive to smoke. Smoke may also impact agriculture output in other major agricultural 

producers such as Australia, Brazil, Canada, China, European Union, India, Russia, and Turkey. 

These producers are among the top 30 in terms of crop production value in the world (Food and 

Agriculture Organization of the United Nations, 2018) with the U.S. output comprises about 8% 

of the world. These regions are projected to have increases in wildfires in the future and some 

may experience substantial impacts (Sun et al., 2019). Referring to 2050 as short hand for mid-

century and based on the assumptions that smoke also affect other crops and other countries, 

agricultural losses from the likely increase in wildfire-related smoke could be in the several 

hundred-billion-dollar range cumulated to 2050.  

My analysis strategy also allows me to decompose the smoke days over three phases of 

the growing season (i.e., planting, cultivation, and harvest). Smoke impacts are concentrated in 

cultivation and, to a lesser significance, the planting stages. More detailed smoke data available 

for the later part of my sample period suggests that heavier smoke levels reduce yields more. I 

also look at whether farmers adapt to the smoke. Here, farmers respond to more smoke days by 

applying more agricultural chemicals and fertilizer. 

My results may also be helpful to a contentious debate over deploying measures to reduce 

wildfire risks by reducing the fuel wood (e.g., brush and dead timber) that increase the intensity 

of wildfires and help direct their path. This debate, fundamentally different from climate 

consideration and building on the urban wildland interface, focuses on prescribed burning versus 
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mechanical removal. The negative smoke externality effect on corn and soybean yields from 

prescribed burning follows from my modeling as it generates similar type of smoke wildfires do. 

Based on a simplified calculation, adding in these economic losses implies that mechanical 

removal from a welfare standpoint is likely to be the preferred option even though it is generally 

several times more expensive from the immediate financial outlay perspective of a local, state or 

federal agency. Adding in the monetary value of health effects only strengthen this case. 

1.2   Literature Review 

The impact of smoke from fires rises from the air pollutants it contains. The main suspects 

are those pollutants already known to do harm to human health and plants: particulates and ozone. 

Particulate matter is one of the most obvious air pollutants emitted and the one known to do the 

most harm to human health. According to the 2017 National Emissions Inventory (NEI) Data 

from U.S. EPA, wildfires are major source of PM2.5 contributing to almost 30% of primary PM2.5 

emissions. U.S. EPA Air Pollutant Emissions Trends Data indicate that while contribution of 

anthropogenic sources to PM2.5 in recent years have been decreasing, the contribution of wildfires 

has been increasing. Ford et al. (2018) predicts that, under some climate change scenarios, by the 

end of the century, emission from fires will contribute to more than half of annual PM2.5 in the 

contiguous U.S. states. Wildfires also emit over 10% of primary PM10 according to the U.S. EPA 

2017 NEI Data.   

The science literature has looked at the impact of smoke from fires on plant productivity 

by studying different mechanisms. Particulates can both absorb and diffuse light. On the 

absorption side, aerosols from fires can reduce total radiation reaching plants and reduce 

photosynthesis (Park et al., 2018; Yamasoe et al., 2005). On the other hand, in some instances 

diffusion of solar radiation due to particulate matter from fires appears to increase plant 
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productivity (Park et al., 2018; Yamasoe et al., 2005). Studies have found mixed results for the 

overall impacts of particulate matters from fires under different scenarios or geographic scales 

(Hemes et al., 2020; Yue and Unger, 2018).  

Less obvious wildfires emit a host of other less visible chemicals. Some of these are 

known to be ozone “precursors”. Ozone, a colorless gas long known to be harmful to plants 

(Krupa and Manning, 1988). It is both toxic to plants and reduces photosynthesis (Ainsworth et 

al., 2012; Yue and Unger, 2018). Ozone is a not a pollutant directly released by combustion. 

Instead, it forms as the result of complex atmospheric chemistry that converts nitrogen 

oxides (NOx) and non-methane organic carbons (NMOC) into ozone under sunlight (Jaffe and 

Wigder, 2012). Importantly, ozone levels can be highly variable over time and space 

(Ainsworth et al., 2008) and, in this sense, are the antithesis of carbon dioxide, a pollutant 

characterized by uniform mixing. This interacts with the much sparser pollution monitoring 

network in rural areas to make quantifying how substantive the role ozone plays in reducing 

crop yields more difficult. In contrast to particulates, controlled plant experiments show that 

increasing ozone concentrations are detrimental to plants. A question following such work is 

how harmful is ozone to particular crops under field conditions. Real world agricultural 

production can be affected by farmer decisions.  

Economists have looked at agriculture and air pollution for a long time. Earlier papers 

find expected negative, and substantial, harmful relationship between ozone and agricultural 

production (Garcia et al., 1986; Westenbarger and Frisvold, 1995). In more recent work, Boone 

et al. (2019) provides evidence of non-linear impacts of ozone on corn production. Da et al. 

(2021) show effects of ozone and climate conditions on a set of crops. Zhou et al. (2018) show 

significant negative impacts of PM2.5 on corn (and wheat) yields in China. There have been 
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papers more generally look into climate change and agriculture (Schlenker and Roberts, 2009; 

Deschênes and Greenstone, 2007). However, the specific link between agriculture yields and 

smoke from wildfires has not been explored by economists.  

Outside of agriculture, there is a small but growing literature in economics and 

epidemiology aiming to understand impacts of smoke from fires on other sectors. The most 

studied area is health. Jayachandran (2009) received widespread attention by showing that 

Indonesia large wildfires were causally linked to early childhood mortality. A number of other 

studies have shown linkages between wildfires and respiratory morbidity and mortality (Reid et 

al., 2016; Miller et al., 2017). Richardson et al. (2012) look specifically at the health impacts of 

western wildfires on Los Angeles residents. A recent study looking into labor market shows 

smoke from fires reduce earnings and a third of those earning losses can be explained by 

employment loss (Borgschulte et al., 2020). Lastly, there is work on how individuals respond to 

air pollution. Most of this literature is related to pollution avoidance, such as increasing face 

masks purchases or reduce outdoor activities to reduce pollution exposure (Zhang and Mu, 2018; 

Neidell, 2009). Individuals also increase medication expenditures as defensive investments 

(Deschênes et al., 2017). There is also specific work on how people engage in various types of 

avoidance behavior in response to wildfires (Richardson et al., 2012; Santana et al., 2021). My 

contribution to this literature will be to look at how farmers receiving smoke from wildfires 

respond after that shock has been received. 

1.3   General Modelling Strategy and Data 

The general modeling strategy employed here will assume that the number of acres 

harvested with the crop of interest is observed and, as is eventually, average yield across those 

acres. I can observe farms aggregated at the county level. This leads me to concentrate on corn 
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and soybeans, the two crops with the largest quantity of planted acreage. According to U.S. 

Department of Agriculture (USDA) statistics in 2019, corn and soybean together accounted for 

more than 40% of total U.S. crop cash receipts. Both have reasonably wide county-level 

distribution but clear concentrations that are not in areas where there is substantial direct fire risk 

to burning fields. Corn and soybeans are also among the U.S. major agricultural exports. There 

is an effective world price, after taking tariffs and transportation costs, making the assumption of 

even a large corporate agricultural operation in a county being firms in a competitive industry 

tenable.      

The initial assumption is that farmers have taken their perceived probability distribution 

(conditional on currently available information) of being hit by wildfire impacts into account at 

the time their crop was planted. This distribution intersects with the same farmer’s priors on the 

timing and magnitudes of different components of climate change. I abstract from these longer 

run considerations and focus on what happens after that decision has been made. This is done by 

using county-level fixed effects to control for those components that are idiosyncratic to location. 

Climate region specific fourth order yearly polynomial is used to remove region specific 

technological improvement in agriculture.  

There are two potential selection effects. The first is that I exclude counties that are not 

producing corn or soybeans in any given year. This paper focus on what happens after planting 

when the wildfire shocks and smoke exposure are treated as exogenous from a farmer’s 

perspective. My analysis can therefore not answer the question of whether the farmer would have 

made a different planting decision under a different baseline level of wildfire risk. The other is 

imposed by USDA data availability. Data for some individual counties or some states are not 
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reported by USDA. These appear to be small fraction and available county level data accounts 

for about 80% or more of the total production. 

Wildfire shocks can affect a location in two forms. One is through actual fire, where a 

local fire spread to crop land can lead to direct loss. Wildfires also generate smoke plumes which 

float through space and time. The specification of this stimulus variable will be discussed further 

in later sections, whose impact on corn and soybean yields will be the target of my primary focus. 

Yield is then regressed on the two wildfire stimulus variables, the local binary indicator, and a 

measure of how many days there had been smoke over the crop land in the county. In between, 

weather takes its influential course and weather variables are also controlled. This provides an 

estimate of how a change in the number of days of smoke at a location changes yield.  

Implicitly included in this estimate are actions taken by farmers after the wildfire shocks 

and smoke exposure. Since total annual expenditures can be disaggregated to several broad 

categories, it is possible to look at differences across years with appropriate controls. The rest of 

this section describes where particular variables come from. Some of the issues involved in 

assembling the dataset used for analysis are also discussed. 

1.3.1   Agriculture Data 

Agricultural yield is the main outcome variable. Yields of corn and soybeans are obtained 

from the USDA’s National Agricultural Statistics Service (NASS) Survey. County-level yield 

data was collected each year in the study period of 2006 to 2019. Yields are in unit of bushels 

per acres, representing bushels of production divided by acres of area harvested. 

In addition to yield data, I collect county-level data of farm production expenses, 

farmland areas, and number of hired farm workers through the USDA’s Census of Agriculture. 

Since the Census of Agriculture is quinquennial, these data are only available for three years 
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within the study period, in 2007, 2012 and 2017. Farm production expenses includes all farm 

related expenses such as agricultural chemicals, fertilizer, fuel costs, hired labor costs, and etc. 

These expenses are not only for the production of corn and soybeans, the dominant crops 

produced in most of the counties included in the analysis, but also for other crops grown and 

livestock operations. The Census of Agriculture provides total production expenses, as well as 

expenses broken out by particular categories. Some of these are reasonably assignable time-wise 

to a particular phase of the growing season such as agricultural chemicals and fertilizer. Farm 

land area within a county is the acreage designated as land in farms by USDA, used for crops or 

grazing. Production expenses are divided by farmland areas in acres, to create variables of per 

acre expenses. These are used as outcome variables to when examining how farmers respond to 

wildfire shocks. The Census of Agriculture also provides information on number of hired farm 

workers, which is defined to include full time and part-time workers, and paid family members, 

but excludes contract labor. 

The USDA NASS Cropland Data Layer (CDL) is used to build up geographic information 

on crop and other agricultural land. It provides land use maps in 30-meter resolution. These maps 

contain different agricultural land cover types, including corn and soybean fields, land cover for 

other types of crops as well as for grassland/pastures. The CDL covers entire contiguous United 

States and goes back to 2008. For 2006 and 2007 in the study period, CDL 2008 is used as a 

proxy since changes at the annual level tend to be small. The CDL allows the spatial connection 

of crop fields, smoke plumes and fire locations. 

1.3.2   Smoke Plume and Fire Location Data 

Smoke plumes and fire location data are collected from the U.S. National Oceanic and 

Atmospheric Administration (NOAA) Hazard Mapping System (HMS). HMS process 
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information from multiple satellites to provide daily maps of smoke plumes and active fires. 

Smoke plume maps show polygons of smoke cover over North America. These are produced by 

analysis based on visual classification of plumes using satellite imagery (U.S. NOAA, 2021). 

Fire maps show points representing corresponding satellite pixels where a potential fire event 

was detected. These fire pixels are derived from automated fire detection process using satellite 

images, followed by quality control by expert image analysts (U.S. NOAA, 2021). For both 

smoke and fire data, HMS is not able to differentiate the source of fire between wildfire, 

prescribed burning, or agricultural burning.  According to U.S. EPA 2017 NEI Data for criteria 

air pollutants, among the three types of fires, wildfires account for about 68% of these emissions, 

prescribed burning, 31%, and agricultural burning only about 1%. Thus, the smoke emissions of 

interest are largely from wildfires, followed by prescribed burning, whose smoke should be quite 

similar in chemical composition because it is the result of burning the same type of biomass. 

The smoke plume data is used to construct the variable of smoke days, which is the 

variable of interest to measure smoke exposure. This is defined as number of days that a particular 

crop land in a county is entirely (100%) under a smoke plume in growing season in a year. This 

definition of smoke days is similar to that used in Borgschulte et al. (2020). Smoke plume maps 

are available at daily level. The CDL is available annually and corn or soybean land cover map 

can be obtained from this layer each year. For each day, the smoke plume map is overlayed with 

corn or soybean land cover map as well as the county boundary map. This allows to check 

whether corn or soybean land in a county is entirely under a smoke plume on that day. If so, that 

day can be counted towards the smoke days. Smoke days over the course of a year are constructed 

by summing all of smoke days during corn or soybeans growing season in that year. Growing 

seasons for crops are state specific, following the USDA usual planting dates (USDA, 2010). 
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USDA usual planting dates provides begin and end dates for when crops are planted and 

harvested in most years. Begin dates are when planting or harvesting is at about 5% complete 

and end dates are at about 95% complete. Growing season in this paper is then defined from the 

begin dates of planting to the end dates of harvesting. This further allows me to divide the 

growing season into three stages, planting, cultivation and harvest. Planting and harvest stages 

follow the corresponding begin to end dates and the cultivation stage is the time in between. 

Calculated smoke days for corn and soybeans for 2008 and 2019 are shown in maps in 

Figure 1.1 and Figure 1.2, where different red color corresponds to different ranges of smoke 

days. The white areas are either states that USDA does not usually collect survey data for corn 

or soybean, or when a particular county does not have corn or soybean land cover2. Figure 1.1 

and Figure 1.2 show variation of exposure to smoke days for both crops across counties and 

years. 2008 represents a year with fewer smoke days exposure while 2019 represents a year with 

more smoke days exposure. Since corn and soybeans have similar geographic distribution, they 

also experience similar distribution of smoke days. I also calculate average number of smoke 

days for corn and soybean over the 14 years study period, shown in maps in Figure 1.3 in the 

Appendix. An indicator variable for local fire is also generated to account for whether there has 

been any active fire in corn or soybean land in a county in the growing season in a year. Similar 

to smoke, for each day, fire maps with points of active fire location are overlayed with corn or 

soybean land cover map and county boundary map. If for any day in the growing season in a 

year, there is fire point occur on corn or soybean land in a county, then, the fire indicator variable 

for that county for that year becomes 1. 

 
2 Calculation of smoke days are based on corn or soybean land cover. The regression sample for corn and soybean 
contains fewer number of counties than non-white counties shown in Figure 1.1 or Figure 1.2 as yield data is not 
reported by USDA for some counties. 
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Note: This figure shows location of crop land cover and experienced smoke days in each county in different 
ranges. (a) shows corn land cover and smoke days in 2008 and (b) shows soybean land cover and smoke days in 
2008. 

 

Figure 1.1: Smoke Days in 2008 

(b) Smoke Days for Soybeans

(a) Smoke Days for Corn
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Note: This figure shows location of crop land cover and experienced smoke days in each county in different 
ranges. (a) shows corn land cover and smoke days in 2019 and (b) shows soybean land cover and smoke days 
in 2019. 

 

Figure 1.2: Smoke Days in 2019 

(a) Smoke Days for Corn

(b) Smoke Days for Soybeans
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1.3.3   Weather Data 

Weather variables, daily mean temperature and precipitation were obtained from the 

Parameter-elevation Regressions on Independent Slopes Model (PRISM) and PRISM provides 

daily temperature and precipitation information spanning the study period in 4km grids, across 

the contiguous United States (PRISM Climate Group). Daily mean temperature and daily 

precipitation from PRISM is averaged over corn or soybean land cover within each county, 

depending on the nature of the dependent variable. For corn and soybeans, average daily 

temperature is then converted to degree days following previous literature (Deschênes and 

Greenstone, 2007), which uses a base of 8 ℃ and a ceiling of 32 ℃. Degree days are defined to 

reflect those plants that are only able to absorb heat above a threshold, and cannot absorb more 

heat above a ceiling when temperature is too high (Deschênes and Greenstone, 2007). A daily 

temperature below 8 ℃ contributes to 0-degree days. For temperature between base and ceiling, 

it contributes the number above 8 ℃. If daily temperate exceeds the ceiling temperature, it 

contributes ceiling less the base degrees. Then, degree days are summed over the growing season 

to provide an estimate of yearly growing degree days. Growing season precipitation is 

constructed by summing daily precipitation over the growing season. 

1.3.4   Summary Statistics 

The yield of corn and soybean is linked to exposure to smoke, fire and weather variables 

by county by year. Table 1.1 shows the summary statistics for the variables to be used in the 

empirical modeling exercise. There are 22,045 observations for corn and 19,236 observations for 

soybeans. Most of corn and soybean production occurs in the counties in the eastern part of the 

United States. Corn field and soybean field both on average experience about 28 smoke days 
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each year. They also experience similar percentage of fire exposure. Corn fields are exposed to 

slightly higher growing degree days, as well as higher growing precipitation. 

Table 1.1: Summary Statistics 
 

  Corn     Soybean   

Variable Mean Std. Dev.   Mean Std. Dev. 
Yield (bu/acre)  140.18 39.30  42.11 11.01 
Smoke Days  28.30 18.65  28.35 18.54 
𝟙(Fire) 0.48 0.50  0.44 0.50 
Growing Degree Days  2399.92 618.52  2319.36 553.53 
Growing Precipitation (mm)   711.36 218.16  682.04 198.30 
N  22,045     19,236  
Note: This table shows summary statistics for corn and soybean sample separately. Yields are in 
bushels per harvested acres. Smoke days, 𝟙(fire), growing degree days, and growing 
precipitations are calculated following definition in the previous sections. 

 

1.4   Empirical Specification 

The regression model forming the core of my empirical specification is given by: 

                         log(Yct) = α + βSmoke Daysct + δ𝟙(Fire)ct + γXct + µc + f(t) + εct                  (1.1) 

where Yct is outcome variable of yield in county c in year t. Smoke Daysct is the main variable 

of interest, representing number of days being exposed to smoke, and that variable is defined in 

the previous section. The direct impacts from a local fire burning are controlled for using 

𝟙(Fire)ct, an indicator of whether there has been fire in the corn or soybean land in the county, as 

defined in the previous section. Weather variables are likely to be correlated with smoke exposure 

and agriculture production. These variables are contained in the Xct set of controls. In my main 

specification, they are operationalized using a quadratic in growing degree days and a quadratic 

in growing precipitation. County fixed effects, µc, are used to account for characteristics that are 

time invariant at the county level over my sample period. f(t) represents controls for national or 

regional level temporal effects and these are operationalized in different variants of Equation 1.1 

using polynomial time trends or year fixed effects. The year fixed effects can remove national 
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shocks each year. 4th order polynomial time trend aims to control for technological improvement 

over the years while the regional 4th order polynomial time trend allows to capture different 

technological improvement in each region. Where regional level controls are used, they are 

defined by the nine U.S. climate regions developed by National Centers for Environmental 

Information for the contiguous United states, where each is climatically consistent (Karl and 

Koss, 1984). Thus Equation 1.1 uses year to year county-level variation to identify impacts of 

smoke from fires. Since yield is measured by production per harvested acres, Equation 1.1 is 

estimated using weights defined by harvested acres. Robust standard errors are clustered at the 

state level.  

 Corn and soybean fields are in eastern U.S. as can be seen in Figure 1.1 and Figure 1.2.  

Brey et al. (2018) link observed smoke plumes to sources of active fires and their results indicate 

that much of the smoke in eastern U.S. comes from other regions. For the northern parts of the 

eastern U.S., smoke tends to be produced in fires occurring western U.S. or other countries such 

as Canada. The southern part of the eastern U.S. has more smoke produced internally, but large 

share of the smoke it receives comes from western U.S. and outside of U.S. With much of the 

smoke coming from outside of areas where corn and soybeans are being produced rather than by 

local fire activity, it is less likely for smoke to be correlated with unobserved local environment 

conditions influencing yields. This should help with identification. 

Estimates based on variants of Equation 1.1 implicitly incorporate post planting responses 

by farmers after wildfire shocks occur. I now turn to the question of whether, and, if so, how do 

farmers respond to smoke.  It is possible to estimate a regression similar as Equation 1.1, but now 

using farm production expenses and number of hired farm workers as the dependent variables. 

This analysis is substantially more limited for two main reasons. First, production expenses data 
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are only available through the U.S. Agriculture Census administered every five years, and hence 

for only three years, in 2007, 2012 and 2017. Second, production expenses and hired workers 

data are for all farm production activities, including other crops and livestock, and hence do not 

directly correspond to my corn or soybean production models. Congruent with this new 

definitional basis, Smoke Daysct and 𝟙(Fire)ct are now calculated based on all agricultural land 

cover in a county instead of that specific to corn or soybeans, and for the entire year, rather than 

for corn or soybean’s growing season. Weather variables are now specified in terms of quadratic 

functions of yearly average temperature and yearly total precipitation. 

1.5   Results 

1.5.1   Main Results 

Table 1.2 displays the results from estimating variants of Equation 1.1. The first three 

columns show results for corn, while the last three columns are results for soybeans. Each column 

uses a different approach to account for temporal effects as indicated in the table. Coefficients 

and standard errors for smoke days and fire indicator are scaled by 100, so they represent the 

percentage change in yield. For both corn and soybeans, the parameter estimates on the main 

variables of interest are all statistically significant and reasonably insensitive to the particular 

approach used to control for temporal effects. Column (3) and column (6) using regional 4th 

order polynomial in years is my preferred specification, since it captures both technological 

improvement and allows for regional differences.  

These results show that exposure to an additional smoke day decreases the corn yield by 

0.313% and the soybean yield by 0.232%. Corresponding elasticities at means are estimated to 

be -0.117 for corn and -0.082 for soybeans. This effect is somewhat smaller than the impacts 
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found for temperature changes found. Schlenker and Roberts (2009) for instance show that yields 

for corn and soybeans gradually increases with temperature to about 30 ℃ and then sharply 

decreases, with exposed to one day of temperature above this decreasing corn and soybean yields 

in the range of about 1% to 6%. 

Table 1.2: Main Results for Yields of Corn and Soybeans 
 

 Corn  Soybean 
 (1) (2) (3)  (4) (5) (6) 
(Scaled by 100) log(Yield) log(Yield) log(Yield)  log(Yield) log(Yield) log(Yield) 
        
Smoke Days -0.203** -0.340*** -0.313***  -0.328*** -0.253*** -0.232*** 
 (0.082) (0.083) (0.073)  (0.063) (0.046) (0.044) 
𝟙(Fire) -0.464 -0.156 -0.092  -0.601 -1.030 -0.712 
 (0.346) (0.438) (0.447)  (0.564) (0.669) (0.600) 
        
County FE  Yes Yes Yes  Yes Yes Yes 
Year FE  Yes No No  Yes No No 
4th Order  No Yes No  No Yes No 
Regional 4th 
Order 

No No Yes  No No Yes 

        
N 22,045 22,045 22,045  19,236 19,236 19,236 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

        
Elasticity at 
means 

-0.076 -0.127 -0.117  -0.115 -0.089 -0.082 

Note: This table shows main regression results following Equation 1.1 using temporal effects as indicated. 
Column (1) to (3) show results for corn and column (4) to (6) show results for soybeans. All the coefficients 
and standard errors are scaled by 100. The values for elasticity at means are reported in the bottom in original 
scale. Standard errors are clustered at the state level. 

 

1.5.2   Differential Impacts 

My treatment variable, the number of smoke days, can be decomposed in various ways 

that provide additional insight into the nature of its differential impacts by looking at when the 

smoke occurs, the second how much smoke occurs, and the third where the smoke appears.  I 

can look at the when issue since I have temporal information on when the smoke days occur. As 
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explained in the previous section, I divided the growing seasons into three time periods of 

planting, cultivation and harvest. Statistical identification comes from seeing different patterns 

of smoke days. Table 1.3 shows the impact of smoke for both corn and soybeans during the three 

parts of the growing seasons. Results for cultivation show the most significance for both crops. 

For corn, the magnitude of coefficient is largest during the planting season, but significance is 

less than cultivation. Results for harvest season is insignificant. It is important to note that the 

effect is better defined during the cultivation period. This time period is larger and hence the 

variation in the number of smoke days being used for identification is larger. For soybeans, the 

coefficients on smoke during the planting and cultivation period are almost identical in 

magnitude, but like corn the smoke effect is better defined during the cultivation phase. In 

contrast to corn, there is a positive, but very noisy and insignificant effect during the harvest 

season for soybeans. 

Secondly, main results provide estimates for impacts of number of days exposed by 

smoke, but does not differentiate by smoke intensity. There are two reasons for this. It is not clear 

how the bundle of pollutants that impact plants changes with smoke intensity and NOAA’s HMS 

data does not provide detailed smoke intensity measurement for my entire sample period. I can, 

however, look at smoke intensity measure from 2011, when HMS starts to provide qualitative 

information on smoke density. Smoke plume coverage is classified into thin, medium, and thick 

smoke bins. The number of thick days (e.g., close proximity to a large wildfire) is too small for 

analysis, thus are grouped with medium smoke days. Table 1.4 shows results of switching the 

original undifferentiated number of smoke days. These results suggest a dose-response 

relationship for both corn and soybeans with higher smoke intensity having more deleterious 

impacts. It is important to note though that these effects are much noisier statistically. 
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Table 1.3: Results from Different Stages in Growing Season 
 

 (1) (2) 
 Corn Soybean 
(Scaled by 100) log(Yield) log(Yield) 
   
Planting Smoke Days  -0.768** -0.256* 
          (0.338) (0.134) 
Cultivation Smoke Days  -0.290*** -0.257*** 
          (0.059) (0.036) 
Harvest Smoke Days  -0.490 0.238 
          (0.293) (0.236) 
   
County FE  Yes Yes 
Regional 4th Order  Yes Yes 
            
N 22,045 19,236 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows regression results by decomposing smoke 
days in the growing season into three time periods of planting, 
cultivation and harvest. Coefficients and standard errors are all 
scaled by 100. Standard errors are clustered at the state level. 

 

Table 1.4: Results from Different Smoke Density 
 

 (1) (2) 
 Corn Soybean 
(Scaled by 100) log(Yield) log(Yield) 
   
Thin Smoke Days -0.280** -0.206* 
          (0.135) (0.112) 
Mid & Thick Smoke Days -0.332 -0.364** 
          (0.209) (0.161) 
   
County FE  Yes Yes 
Regional 4th Order  Yes Yes 
            
N 13,449 11,961 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows regression results by decomposing smoke 
days into different density category of thin smoke days and mid & 
thick smoke days. The regression is conducted over 2011 to 2019 
due to data availability. Coefficients and standard errors are all 
scaled by 100. Standard errors are clustered at the state level. 
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Table 1.5: Results from Smoke Days Interacting with County Income Level 
 

 (1) (2) 
 Corn Soybean 
(Scaled by 100) log(Yield) log(Yield) 
   
Smoke Days -0.264*** -0.208*** 
          (0.065) (0.042) 
Smoke Days* 𝟙(Low Income) -0.240*** -0.081 
          (0.067) (0.059) 
   
County FE  Yes Yes 
Regional 4th Order  Yes Yes 
            
N  22,045  19,236 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows regression results by adding interaction term of 
smoke days with indicator of whether a county is below the median 
income. Coefficients and standard errors are all scaled by 100. Standard 
errors are clustered at the state level. 

 

Lastly, I interact the number of smoke days with two types of county level indicators. 

One is indicator of whether a county is below the median in terms of income to examine whether 

lower income counties are more negatively affected. Results are shown in Table 1.5. The 

coefficients for interaction of smoke days and lower income counties are negative for both 

commodities but only the one for corn is statistically significant. Another indicator is whether 

the county has more smaller farms. This indicator is based on the median farm size in each county 

and the indicator is 1 if the median farm size in a county is below the median for all counties. 

Thus, the indicator can be interpreted as whether the farm has more smaller farms. Table 1.6 

shows negative coefficients for the interaction term but again, only the one for corn is statistically 

significant. 
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Table 1.6: Results from Smoke Days Interacting with County Farm Size Distribution 
 

 (1) (2) 
 Corn Soybean 
(Scaled by 100) log(Yield) log(Yield) 
   
Smoke Days -0.283*** -0.221*** 
          (0.067) (0.048) 
Smoke Days* -0.172** -0.052 
𝟙(More Smaller Farms) (0.073) (0.038) 
   
County FE  Yes Yes 
Regional 4th Order  Yes Yes 
            
N  22,045  19,236 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows regression results by adding interaction 
term of smoke days with indicator of whether a county has more 
smaller farms. Coefficients and standard errors are all scaled by 
100. Standard errors are clustered at the state level. 

 

1.5.3   Robustness Check 

I conduct several additional robustness checks to improve confidence in the main results.   

First, most of the smoke in northern parts of eastern U.S. states are from outside that area while 

a large proportion of smoke in the southern part of the eastern U.S. states is generated internally 

and hence may hide some unknown important source of endogeneity that would influence the 

interpretation of my results. I rerun my main specification excluding southern regions of eastern 

U.S. to only consider impacts of smoke if smoke is coming from outside regions. These results 

are shown in Table 1.10 in the Appendix. The coefficients are similar to the main results. Since 

the HMS data is not able to distinguish between wildfire, prescribed burning or agricultural 

burning, another concern to the specification is that farmers conduct agricultural burning before 

planting according to the expectation of yields, creating potential endogeneity. To address this 

issue, I drop observations where there is fire in the county in a particular year. Table 1.11 in 
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Appendix shows these results. Most results are similar to my main specifications, although I note 

that the coefficients under year-FE become less significant for corn.  This limits the concern of 

potential endogeneity of agricultural burning. Many papers have looked into the impact of 

temperature and climate change on agriculture production. There may be concerns of whether 

the impact of smoke identified in this paper has been captured as part of the temperature impact. 

I regress log(yield) on residual of smoke days removing temperature and precipitation to examine 

impact of smoke apart from temperature and precipitation. To be specific, I regress smoke days 

on quadratic growing degree days and quadratic growing precipitation to obtain smoke residual 

and then run regression of Equation 1.1, but replacing smoke days and weather variables with 

smoke residual. Results can be seen in Table 1.12 in Appendix. The coefficients for smoke 

residual are similar to main regression results, indicating that the impact shown in this paper is 

likely from smoke itself instead of temperature or precipitation. 

Next, I turn to the potential role of irrigation. Previous research on climate change impacts 

has shown that areas with and without irrigation systems may be differently impacted with 

respect to yield outcomes (Schlenker and Roberts, 2009). The irrigation status of a county is 

defined following Schlenker and Roberts (2009), where counties east of the 100 degree meridian 

are considered non-irrigated counties and those west of the 100 degree meridian are considered 

irrigated counties. Table 1.13 shows results allowing for each of the weather variables to differ 

between irrigated vs. non-irrigated counties, i.e., providing interaction of weather variables with 

irrigation status.  These are largely consistent with the main results. In part, this occurs because 

most corn and soybeans are planted in eastern counties, and hence classified as non-irrigated 

counties.  
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My main results in Table 1.2 displays several specifications involving different 

specifications for modeling the temporal component (e.g., fixed effects vs time trends). I explore 

this specification issue further here by considering region-year fixed effects, quadratic time 

trends, as well as regional quadratic time trends. These results are shown in Table 1.14 in the 

Appendix. Again, parameter estimates for smoke days are similar to my main regression results. 

I also look at using yield rather than log(yield) as the dependent variable. Table 1.15 in 

Appendix shows coefficients from models using yield as the dependent variable. When the 

estimated coefficients are divided by weighted mean yield to obtain the percent change in yields 

from exposure to one more day of smoke, the results are similar to my main specifications. 

For the purposes of this paper, I defined a smoke day as occurring when the entire (100%) 

area where a particular crop is planted in a county is covered by smoke plumes, similar to 

Borgschulte et al. (2020). I also explore alternatives to use smoke days measures based on 

different percentage of area devoted to corn or soybeans that was covered by smoke. I look at 

smoke days defined by having at least a percentage cover of 75% or 50% of the crop’s area in a 

county covered by smoke plumes.  These results are displayed in Table 1.16 in Appendix, and 

show very little change to the coefficients for the smoke days. 

1.5.4   Farmer’s Responses 

In addition to corn and soybean yields, I can also examine how farmers experiencing 

smoke adjust their production inputs. The key caveat noted earlier is that farm production 

expenses and hired labor data are only available for total farm operations in each county, not for 

specific crops. Further, county level expenses and hired labor data are only available for the three 

USDA Census of Agriculture years: 2007, 2012 and 2017. I run a regression similar to Equation 

1.1 for these three years. Smoke days and fire indicators are now counted over the entire year 
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rather than a specific growing season and over all agricultural land instead of those planted with 

corn (or soybeans). I also replace crop specific growing degree days and growing precipitation 

with average yearly temperature and total annual precipitation as the weather controls. Three 

years of data do not define 4th order polynomial in time, so I only look at models with year fixed 

effects for f(t). While regressions are still clustered at the state level, they are now weighted using 

farm land areas. 

Table 1.7: Results of Farm Production Expenses for All Counties 
 

 (1) (2) (3) (4) (5) (6) 

 

Total 
Production 

Agricultural 
Chemical 

Fertilizer Labor Fuel Others 

(Scaled by 100) 

log( 
Expense 
/Acre) 

log( 
Expense 
/Acre) 

log( 
Expense 
/Acre) 

log( 
Expense 
/Acre) 

log( 
Expense 
/Acre) 

log( 
Expense 
/Acre) 

       
Smoke Days  0.109**   0.266**   0.351**  0.028 0.035  0.108** 

 (0.044) (0.128) (0.143) (0.064) (0.071) (0.050) 

               
County FE  Yes Yes Yes Yes Yes Yes 
Year FE  Yes Yes Yes Yes Yes Yes 

       
N   8,808 8,808 8,808 8,808 8,808 8,808 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows regression results for farm production expenses. Column (1) shows result for 
total farm production expenses. Column (2) to (5) show results for selected detailed categories of 
expenses. Column (6) shows result for rest of the other expenses. Regression is conducted over 2007, 
2012 and 2017. All the coefficients and standard errors are scaled by 100. Standard errors are clustered 
at the state level. 

 

I first look at farm production expenses. The expenses are divided by farm land areas to 

obtain per acre expenses and then log of per acre expenses are used as outcome variable. 

Regression results are displayed in Table 1.7. The first column is for total production expense, 

which includes all types of expenses for production. One additional day of smoke exposure 

increases total farm production expense per acre by 0.109%. Columns (2) to (5) show similar 
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results for selected categories of production expenses. Agricultural chemical, which includes 

insecticides, herbicides, fungicides and other pesticides (USDA, 2017), and fertilizer expenses 

are substantially more responsive and increase by 0.266% and 0.351%, respectively. On the other 

hand, the coefficients on labor and fuel expenses are positive, but quite small and insignificant. 

An “other” expense category provides similar results to rest of other production expenses. Taken 

as a whole, these results suggest that farmers do engage in some adjustment of production inputs 

as a result of exposure to smoke and that these changes are concentrated in the agricultural 

chemicals and fertilizer categories. Table 1.17 in Appendix splits out corn and soybean counties 

(there is some overlap) and provides a noisier but perhaps more nuanced view. It suggests that 

the agricultural chemical response is concentrated in corn counties, that allowing the separate 

effects on fertilizer are similar but now insignificant. There is now a hint of employing more 

labor for corn and a highly significant “other” expense category effect for soybeans. I take the 

combination of Table 1.7 and Table 1.17 as suggestive that there are farm level responses that 

try to compensate for receiving more smoke days. Sorting those effects out is a useful extension 

of this paper and will require detailed farm level data used in crop level studies of agricultural 

production. 

Lastly, I look at the impacts of the number of smoke days on number of workers hired. 

There could be three underlying mechanisms behind the need for more labor. One is through 

farm workers becoming less productive due to smoke, but smoke exposure in this paper is usually 

not thick smoke day as depicted over California fields during wildfire season. The second is that 

more labor is needed to apply agricultural chemicals and fertilizer. The third comes from noting 

that one way to deal with falling yields is to hire more labor to increase the fraction of the crop 

successfully harvested. The coefficient on smoke days in Table 1.8 is positive, but small and 
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insignificant. This suggests that hired farm labor is not one of the main channels for smoke 

impacts on the input side. Table 1.18 in the Appendix suggests to the extent that there is a hired 

labor effect it is concentrated in soybeans rather than corn. 

Table 1.8: Results of Hired Farm Labor for All Counties 
 

 (1) 
(Scaled by 100) log(Hired Labor) 
  
Smoke Days 0.055 
          (0.048) 
  
County FE  Yes 
Year FE  Yes 
           
N 8,741 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows regression results for 
number of hired farm workers. Regression is 
conducted over 2007, 2012 and 2017. All the 
coefficients and standard errors are scaled by 
100. Standard errors are clustered at the state 
level. 

 

1.6   Economic and Policy Implications 

1.6.1   Economic Loss 

Using the results reported in the previous sections, the economic costs of the damages 

associated with a given change in smoke days can be estimated by a simple back-of-the-envelope 

calculation using the following equation: 

Δ% in Smoke Days × 2019 Average Smoke Days × Δ% in Yield per Smoke Day ×  

 2019 Average U.S. Yield × 2019 Total U.S. Harvested Acres × 2019 Average U.S. Price (1.2) 
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Assuming a 10% increase in number of smoke days relative to 2019, this leads to an annual loss 

of $576 million for yields of corn and $262 million for yields of soybeans. Adding the two leads 

to $838 million. Thus, the total loss of corn and soybeans is almost $1 billion. 

This calculation assumes that average U.S. prices for corn and soybeans do not change. 

This may not be a conservative assumption, as it would be natural to think that agricultural 

commodity prices would increase, if world production decreases. For both corn and soybeans, 

the U.S. produces about third of world production, so the change above is on the order of 3% of 

world production. There would no doubt be adjustments, however, there is already a reasonable 

amount of price variation, with corn and soybean prices being volatile. 

A 10% increase is used in the calculation as a base to consider economic loss. Detailed 

damage estimates for particular climate change scenarios would require a model that predicts 

changes in wildfire location, timing and duration. An air dispersion model calibrated to current 

satellite-based plume maps projecting number of location-specific smoke days for those 

scenarios would also be required. This has not been done and is beyond the scope of this paper. 

However, many of the individual components exist for such projections and these could be 

included as comprehensive assessment of overall economic damages under climate change in 

future studies. 

While such projection is not available, a simple analysis here may shed some useful light. 

I conduct a simple projection by fitting a straight line to average number of growing season 

smoke days each year from 2006 to 2019 for corn and soybeans. Then I use this model to predict 

number of smoke days for years forward from 2019, end of my sample period, using the fitted 

time trend. This simple projection suggests that the coming decade will lead to a 38% increase 

in smoke days between 2019 and 2029 for both corn and soybeans. A further extrapolation to 
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2050 suggests over 80% increase in smoke days compared to 2019 for both crops. These 

predictions are substantially greater than 10% increase used in the back-of-the-envelope 

calculation above. The larger increases are consistent with predicted increases in wildfires. Gao 

et al. (2021) projected increases in fire probability by mid-century (2040-2069) compared to 

baseline period (1971–2000) in most regions in the contiguous U.S., where many regions 

experience substantial increases and largest increase is up to 75%. This also suggests smoke 

levels under climate change are likely to be much higher, although further modeling is required 

to link increases in wildfires to specific smoke levels. Projections by Gao et al. (2021) also 

suggest that greatest increases are in regions where corn and soybean production are 

concentrated. This is likely to lead to exposure to smoke with higher density by corn and soybean 

and lead to further damage. All these projections suggest that the economic loss due to increase 

in smoke levels in the future is likely to be larger than the back-of-the-envelope calculation using 

10% increase in smoke. 

Furthermore, according to USDA statistics, corn and soybeans together account for 43% 

of total crop cash receipts (USDA, 2019). This paper focus on impacts of smoke on production 

of corn and soybeans and similar impacts are likely to impose on other crops. Corn and soybeans 

are major cash crops and have been well studied. There have been earlier evidences of varietal 

switching as well as crop switching behavior in response to pollution exposure (Griliches, 1957; 

Kopp et al., 1985). Research conducted for corn and soybeans aimed at implicit adaptation to 

smoke is likely to be more advanced than other crops and it is less likely to think that other crops 

are less sensitive to smoke.  

Further economic losses may also occur in countries other than U.S. Calculating from 

data in Food and Agriculture Organization of the United Nations (2018), in terms of gross 
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production value for total crops, U.S. accounts for 8% of the world value. Other major 

agricultural producers such as Australia, Brazil, Canada, China, European Union, India, Russia, 

and Turkey, which are among the top 30 for gross production value of total crops in the world 

(Food and Agriculture Organization of the United Nations, 2018) may also be affected by smoke. 

They are projected to have increases in wildfires and some of them may experience substantial 

impacts (Sun et al., 2019). 

Current back-of-the-envelope calculation shows that 10% increase in smoke relative to 

2019 leads to annual economic loss of corn and soybeans to be almost $1 billion. If assuming 

similar damage of smoke on other crops, as well as damage in other countries, the potential 

increase in wildfire-related smoke over the next 30 years through 2050 are likely to lead to 

impacts on agriculture in the order of hundred-billion-dollar magnitude. 

1.6.2   Wildfire Management Options 

My empirical results also have policy implication for wildfire management. Government 

expenditures on dealing with the threat of wildfires has grown over time, reaching $6.11 billion 

in FY2020 (Hoover, 2020). Fuel reduction programs play an important role in mitigating the 

threat. The purpose of these programs is to remove grasses, shrubs, and trees to preserve 

ecosystems and constrain the damages of wildfires (U.S. Department of the Interior, Office of 

Wildland Fire, 2021). There are two main and often competing variants:  prescribed burning and 

mechanical removal. Prescribed burning deliberately sets fire to vegetation likely to amplify 

wildfires or direct such fires toward high value targets like homes. The vegetation that serves as 

the fuel (e.g., scrubs and dead timber) is almost identical to that burned during a wildfire. The 

major difference is that prescribed burns are set during favorable weather conditions for 

containment. Prescribed burning is usually less costly than mechanical removal (Wade and 
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Lunsford, 1989), which uses machines and people to remove the same vegetation. There is public 

controversy over prescribed burning often relates to concerns of risks in escaping of fires (Ryan 

et al., 2013) as well as the obvious air pollution in the form of visible smoke. 

Table 1.9 provides a highly simplified cost comparison of prescribed burning vs. 

mechanical treatment. The per acre costs for fuel management follow estimates from Calkin and 

Gebert (2006) and are converted to $2019. With the per acre cost of mechanical removal more 

than three times larger than prescribed burning, the attraction of government agencies to 

prescribed burning is obvious. However, prescribed burning also generates smoke and air 

pollution. This should be taken into account in making a choice between the two approaches. 

Table 1.9 adds per acre costs of loss of corn and soybeans from smoke based on back-of-the-

envelope calculation. Using the equation in the previous section, a 31% of smoke is used to 

estimate total loss from prescribed burning as according to U.S. EPA 2017 NEI Data. Out of 

agricultural burning, prescribed fire and wildfires, prescribed burning accounts for about 31% 

emission out of the three types of fires. The loss is then divided by total prescribed burning acres 

in 2019 of 6.06 million acres (National Interagency Fire Center, 2019) to obtain a per acre cost.  

Table 1.9: Per Acre Cost Comparison for Fuel Management 
 

(Per Acre) 
Prescribed 
Burning 

Mechanical 
Treatment 

Cost of Fuel Management $83 $296 
Cost of Yields of Corn $296 - 
Cost of Yields of Soybean $135 - 
Total Cost $515 $296 
Note: This table shows cost comparison between prescribed 
burning and mechanical treatment as fuel management 
methods. All costs are in per acre, based on acres that are 
applied with fuel management treatments. 

 

Under current assumptions, calculations show that while cost of fuel management itself 

for prescribed burning is less expensive than mechanical treatment, the total cost considering 
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negative impacts of yield is higher for prescribed burning. Policy makers need to take into 

account the costs associated with smoke from fires when making decisions. Other than yield loss, 

smoke also generates health costs, including to elderly, child, farm workers, etc. Miller et al. 

(2017) used similar smoke plume data and estimated annual death of elderly (over 65) from 

smoke to be 489. This can be converted to a cost by multiplying the value of statistical life of 

$7.4 million ($2006), according to mortality risk valuation from U.S. EPA. This can be further 

converted to $2019, then similarly, multiplying by 31% and diving by 6.06 million acres to obtain 

a per acre cost of $236 (in $2019). This health cost is estimated for the elderly and the total health 

costs can be even larger. Adding these costs will make the prescribed burning option less 

favorable. The current cost comparison is derived from a highly simplified calculation and based 

on various assumptions, including implicitly assuming per acre application of the two fuel 

management treatments have similar impacts in reducing wildfires. More detailed cost benefit 

analysis is needed for future research. 

1.7   Conclusion 

In this paper, I show that exposure to one more day of smoke from fires reduces yields of 

corn and soybeans by 0.31% and 0.23%, respectively. I estimate that the annual damage 

associated with a 10% increase in smoke relative to 2019 for these two crops from reduced yields 

to be $838 million. Various projections suggest that wildfires and smoke levels are likely to 

increase in the future. If assuming there will be similar impacts of smoke on other crops and the 

impact in U.S. may also occur in other countries, the potential increase in smoke over the next 

30 years through 2050 are likely to lead to agricultural losses on order of several hundred billion 

dollars.  
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My results suggest that the smoke effects are concentrated in cultivation stage. This 

makes intuitive sense. Application of agricultural chemicals and fertilizer are classic ways for 

farmers to respond to adverse shocks in an effort to try to drive expected yields back up. On the 

other hand, demand for labor doesn’t seem to decrease as a result of decreased yields. More 

detailed smoke data in later years also suggests that heavier smoke levels reduce yields more. 

There is some empirical support for the proposition that lower income U.S. counties and counties 

with a greater concentration of small farms suffer proportionately larger adverse yield reductions. 

Exploring this issue further requires farm level data. The current study also leaves an open 

question for the longer term, to understand how much room is left for farmers to respond to 

increasing levels of smoke by switching to alternative cultivar without substantial reductions to 

the profits, in a sector that already has low margins. 
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1.8   Appendix 

Note: This figure shows location of crop land cover in 2019 and average experienced smoke days over 14 years 
from 2006 to 2019 in each county. (a) shows corn land cover in 2019 and average smoke days and (b) shows 
soybean land cover in 2019 and average smoke days. 

 

Figure 1.3: Average Smoke Days

(a) Smoke Days for Corn

(b) Smoke Days for Soybeans
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Table 1.10: Results for Yields Dropping Southern States 
 

 Corn  Soybean 
 (1) (2) (3)  (4) (5) (6) 
(Scaled by 100) log(Yield) log(Yield) log(Yield)  log(Yield) log(Yield) log(Yield) 
        
Smoke Days -0.161 -0.359*** -0.332***  -0.333***  -0.269*** -0.248*** 
 (0.095) (0.093) (0.082)  (0.075) (0.048) (0.046) 
        
County FE  Yes Yes Yes  Yes Yes Yes 
Year FE  Yes No No  Yes No No 
4th Order  No Yes No  No Yes No 
Regional 4th 
Order 

No No Yes  No No Yes 

        
N 15,192 15,192 15,192  13,351 13,351 13,351 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows regression results of yields for corn and soybean dropping southern states in the 
sample. Specific states dropped are Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, 
North Carolina, Oklahoma, South Carolina, Tennessee and Texas. All the coefficients and standard errors are 
scaled by 100. Standard errors are clustered at the state level. 
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Table 1.11: Results for Yields Dropping Observations Where There is a Fire in the County 
 

 Corn  Soybean 
 (1) (2) (3)  (4) (5) (6) 
(Scaled by 100) log(Yield) log(Yield) log(Yield)  log(Yield) log(Yield) log(Yield) 
        
Smoke Days  -0.203*   -0.277***   -0.253***     -0.372***   -0.250***   -0.233*** 
  (0.106)  (0.094)  (0.087)   (0.090)  (0.044)  (0.047) 
        
County FE  Yes Yes Yes  Yes Yes Yes 
Year FE  Yes No No  Yes No No 
4th Order  No Yes No  No Yes No 
Regional 4th 
Order 

No No Yes  No No Yes 

        
N 8,106 8,106 8,106  6,216 6,216 6,216 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows regression results of yields for corn and soybean dropping observations that there is 
fire in a county in the year. All the coefficients and standard errors are scaled by 100. Standard errors are 
clustered at the state level. 
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Table 1.12: Results for Yields Regressing on Smoke Residuals 
 

 Corn  Soybean 
 (1) (2) (3)  (4) (5) (6) 
(Scaled by 100) log(Yield) log(Yield) log(Yield)  log(Yield) log(Yield) log(Yield) 
        
Smoke Residuals  -0.247***   -0.465***   -0.461***    -0.194***   -0.283***   -0.284*** 
  (0.086)  (0.084)  (0.081)   (0.060)  (0.065)  (0.062) 
        
County FE  Yes Yes Yes  Yes Yes Yes 
Year FE  Yes No No  Yes No No 
4th Order  No Yes No  No Yes No 
Regional 4th 
Order 

No No Yes  No No Yes 

        
N 22,045 22,045 22,045  19,236 19,236 19,236 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: Smoke residuals are the residuals of regressing smoke days on quadratic growing degree days and 
quadratic growing precipitation. This table shows regression results from Equation 1.1 but replacing smoke 
days, quadratic growing degree days and quadratic growing precipitation with smoke residuals. All the 
coefficients and standard errors are scaled by 100. Standard errors are clustered at the state level. 
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Table 1.13: Results for Yields with Controls of Growing Degree Days and Precipitation Interacting 
with Irrigation Status 

 
 Corn  Soybean 
 (1) (2) (3)  (4) (5) (6) 
(Scaled by 100) log(Yield) log(Yield) log(Yield)  log(Yield) log(Yield) log(Yield) 
        
Smoke Days  -0.210**   -0.341***   -0.311***     -0.325***   -0.253***   -0.232*** 
  (0.083)  (0.085)  (0.074)   (0.065)  (0.046)  (0.044) 
        
County FE  Yes Yes Yes  Yes Yes Yes 
Year FE  Yes No No  Yes No No 
4th Order  No Yes No  No Yes No 
Regional 4th 
Order 

No No Yes  No No Yes 

        
N 22,045 22,045 22,045  19,236 19,236 19,236 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows regression results of yields for corn and soybean, where controls for each term of 
quadratic growing degree days and quadratic growing precipitation allowed to be interacted with irrigation 
status. All the coefficients and standard errors are scaled by 100. Standard errors are clustered at the state 
level. 
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Table 1.14: Results for Yields with Alternative Fixed Effects and Time Trends 
 

 Corn  Soybean 
 (1) (2) (3)  (4) (5) (6) 
(Scaled by 100) log(Yield) log(Yield) log(Yield)  log(Yield) log(Yield) log(Yield) 
        
Smoke Days  -0.264***   -0.384***   -0.373***    -0.274***   -0.302***   -0.285*** 
  (0.092)  (0.100)  (0.095)   (0.059)  (0.047)  (0.049) 
        
County FE  Yes Yes Yes  Yes Yes Yes 
Region-Year FE Yes No No  Yes No No 
2nd Order No Yes No  No Yes No 
Regional 2nd 
Order 

No No Yes  No No Yes 

        
N 22,045 22,045 22,045  19,236 19,236 19,236 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows regression results of yields for corn and soybean, where each column follows alternative 
fixed effects and time trends as specified. All the coefficients and standard errors are scaled by 100. Standard 
errors are clustered at the state level. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



42 
 

 
 
 
 
 
 
 
 
 
 
 

Table 1.15: Results for Level of Yields of Corn and Soybean 
 

 Corn  Soybean 
 (1) (2) (3)  (4) (5) (6) 
 Yield Yield Yield  Yield Yield Yield 
        
Smoke Days  -0.209**   -0.394***   -0.375***     -0.114***   -0.099***   -0.098*** 
  (0.100)  (0.097)  (0.083)   (0.020)  (0.018)  (0.018) 
        
County FE  Yes Yes Yes  Yes Yes Yes 
Year FE  Yes No No  Yes No No 
4th Order  No Yes No  No Yes No 
Regional 4th 
Order 

No No Yes  No No Yes 

        
N 22,045 22,045 22,045  19,236 19,236 19,236 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

        
Coefficient/ 
mean yield 

 -0.130%   -0.245%   -0.233%    -0.249%   -0.218%   -0.214% 

Elasticity at 
means 

-0.048 -0.091 -0.087  -0.088 -0.077 -0.075 

Note: This table shows regression results of yields for corn and soybean, using level of yields instead of 
log(yield) as outcome. Standard errors are clustered at the state level. 
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Table 1.16: Results for Yields at Different Smoke Coverage over Crop Fields 
 

 Corn  Soybean 
 (1) (2) (3)  (4) (5) (6) 
 ≥50% 

Cover 
≥75% 
Cover 

Full 
Cover 

 ≥50% 
Cover 

≥75% 
Cover 

Full 
Cover 

(Scaled by 100) log(Yield) log(Yield) log(Yield)  log(Yield) log(Yield) log(Yield) 
        
Smoke Days  -0.314***   -0.314***   -0.313***      -0.227***   -0.228***   -0.232*** 
  (0.073)  (0.072)  (0.073)   (0.044)  (0.043)  (0.044) 
        
County FE  Yes Yes Yes  Yes Yes Yes 
Regional 4th 
Order  

Yes Yes Yes  Yes Yes Yes 

        
N 22,045 22,045 22,045  19,236 19,236 19,236 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows regression results of yields for corn and soybean, using alternative smoke coverage as 
specified. Column (3) and (6) are same as the main specification. All the coefficients and standard errors are 
scaled by 100. Standard errors are clustered at the state level. 
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Table 1.17: Results of Farm Production Expenses for Corn or Soybean Counties 
 

 (1) (2) (3) (4) (5) (6) 

 

Total 
Production 

Agricultural 
Chemical 

Fertilizer Labor Fuel Others 

(Scaled by 100) 

log( 
Expense 
/Acre) 

log( 
Expense 
/Acre) 

log( 
Expense 
/Acre) 

log( 
Expense 
/Acre) 

log( 
Expense 
/Acre) 

log( 
Expense 
/Acre) 

Panel A: Regression for Corn Counties 
       
Smoke Days    0.111*    0.198*  0.051   0.142*  -0.037   0.110* 

  (0.064)  (0.101)  (0.127)  (0.083)  (0.104)  (0.061) 

               
N   4,980 4,980 4,980 4,980 4,980 4,980 

Panel B: Regression for Soybean Counties 
       
Smoke Days   0.139**  0.010 0.048 0.159 -0.017 0.164*** 
  (0.057)  (0.127)  (0.122)  (0.094)  (0.050) (0.059) 
               
N   4,270 4,270 4,270 4,270 4,270 4,270 

County FE  Yes Yes Yes Yes Yes Yes 
Year FE  Yes Yes Yes Yes Yes Yes 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows regression results for farm production expenses in restricted samples. Panel A 
shows regression results only in corn counties and Panel B shows regression results only in soybean 
counties. Regressions are conducted over 2007, 2012 and 2017. All the coefficients and standard errors 
are scaled by 100. Standard errors are clustered at the state level. 
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Table 1.18: Results of Hired Farm Labor for Corn or Soybean Counties 
 

 (1) 
(Scaled by 100) log(Hired Labor) 
Panel A: Regression for Corn Counties 
  
Smoke Days 0.055 
          (0.089) 
  
N 4,971 
Panel B: Regression for Soybean Counties 
  
Smoke Days 0.105 
          (0.067) 
  
N 4,266 
County FE  Yes 
Year FE  Yes 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows regression results for 
number of hired farm workers in restricted 
samples. Panel A shows regression results only in 
corn counties and Panel B shows regression results 
only in soybean counties. Regressions are 
conducted over 2007, 2012 and 2017. All the 
coefficients and standard errors are scaled by 100. 
Standard errors are clustered at the state level. 
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Chapter 2  

The Interaction Relation of Temperature 

and Precipitation with Outdoor 

Recreation 

Abstract: Impacts of weather variables on various outcomes have been studied in a large 

amount of literature. Many studies usually focus on one weather variable as variable of interest 

and use others as controls. This paper explores whether the interaction of two weather variables 

plays a role in outdoor recreation trips. Using detailed information on outdoor recreation trips in 

England over a four-year period and a semi-parametric response surface approach, this paper 

examines the interaction relation of temperature and precipitation with number of outdoor 

recreation trips. It was found that although daily visits increase with temperature and decrease 

with rain, these gradients only have small variations across rain or temperature. Interaction of the 

two variables plays a small role in outdoor recreation. 
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2.1   Introduction 

The impact of weather variables and climate change on economic performance has been 

a key area of research. Many studies have been conducted and a large literature has looked into 

the impacts from different perspectives, including agriculture, health, energy, conflict, and 

economic growth, etc. These papers help provide insights on economic impacts of climate change 

in the future and facilitate policy making involving climate change mitigation and adaptation. In 

literature looking into effects of weather variables, many studies focus on the average impact of 

one weather variable and using others as controls. The interaction effects of weather variables 

are less explored, though the relationship between one weather variable and outcome variable 

may vary depending on other weather variables. Using outdoor recreation as an example, people 

may take different decisions of trips in response to temperature depending on the presence or 

different levels of rainfall. People may also have different tolerance of rainfall to take outdoor 

activities depending on temperature. This study examines the interaction relation of weather 

variables, in particular, the impact of interaction of temperature and precipitation on England 

outdoor recreation trips. Using survey data for outdoor recreation in England and UK climate 

data, I apply a semi-parametric regression to address this question. Making temperature and 

precipitation a non-parametric term in the regression allows the exploration of non-linear 

interaction relation of the two weather variables without restriction of function form or how they 

interact. A response surface is generated to examine how temperature and precipitation influence 

number of trips. Results show a general pattern of increase in daily visits along maximum 

temperature and decrease in daily visits along precipitation. However, variation for gradients 

along temperature across different levels of total rain is small and there is also little variation of 

gradients along rain at different maximum temperature. These results suggest that interaction of 
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temperature and precipitation plays a small role for outdoor recreation. The interaction relation 

is also further explored in different types of trips and different groups of individuals. Interaction 

plays a small role in most of the types and groups though they may have different shape of 

response surfaces. More visits are made to town and countryside vs. seaside or coastline. For 

different groups, female is more sensitive to temperature and precipitation. Individuals with 

car(s) or dog(s) are slightly more sensitive to temperature at higher temperature and lower level 

of rain compared to individuals without car or dog. At different life stages, interaction plays a 

bigger role in the family group compared to independents and empty nesters. They strongly favor 

outdoor recreation trips at a peak around 25 ℃ at lower level of rain and the peak becomes much 

smaller at higher level of rain. 

This study focuses on outdoor recreation as outcome, which is an important sector that is 

highly sensitive to weather variables. In U.S., outdoor recreation industry was $459.8 billion in 

2019, which accounted for about 2% of gross domestic product (GDP) (U.S. Bureau of Economic 

Analysis, 2020). In Great Britain, expenditure on outdoor-related tourism and leisure activities 

was £36.8 billion in 2019 (Office for National Statistics, 2021b). This is a key spending sector 

where the total annual family spending is about £820 billion (averaged over financial year ending 

2018 to 2020) (Office for National Statistics, 2021a). Furthermore, looking into the impact of 

interaction of temperature and precipitation, this study focuses on outdoor recreation trips in 

England, which is in the region considered to have large amount of precipitation and lots of 

variation. According to State of the UK Climate 2020, UK has shown large annual variation in 

precipitation data, where recent period of 2011 to 2020 is 4% wetter than period of 1981 to 2010. 

Monthly and seasonal rainfall patterns also vary strongly within a year (Kendon et al., 2021). 

Rainfall is also likely to be affected by global warming, projections show that daily rainfall will 



54 
 

increase under warming scenarios across UK and number of days with extreme rainfall will also 

increase (Hanlon et al., 2021). The large variation in precipitation facilitates the study of 

interaction of temperature and precipitation and results may help provide further insights for 

climate change. 

This paper uses an alternative way to empirically estimate response surface to interaction 

of weather variables by semi-parametric approach other than regression with certain functional 

forms of interaction terms. This allows the examination of the non-linear interaction relationship 

without assuming for specific functional forms. While this paper focuses on outdoor recreation, 

the empirical method can be used for other economic sectors where temperature and precipitation 

play an important role, such as agriculture yields, air conditioning demand, etc. The method can 

also be useful in other settings where interaction of other variables is of interest.  

2.2   Literature Review 

This paper directly links to other literature that study impact of weather variables and 

climate change on outdoor recreation. This study closely follows Fezzi et al., 2018, who show 

that weather patterns largely affect the number of trips of outdoor recreation in England and their 

projection indicates that there will be greater number of outdoor recreation trips and increase in 

welfare in the future. This paper further explores the interaction effect of temperature and 

precipitation in outdoor recreation in England. It also adds knowledge to other literature that aims 

to understand the impacts of weather and climate change on outdoor recreation from perspective 

of different types of activities. For example, skiing activities has been one of the research 

interests. Wake, et al. (2006) suggest that there are fewer skiers’ visits during low snow years 

and ski ticket sales decrease. Scott et al. (2006) examine how adaptation strategies help with ski 

tourism under climate change. There have also been literature focusing on impacts of weather 
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and climate change on park visitation. Scott et al. (2007) suggest that due to direct impact of 

climate change, visits to the Waterton Lakes National Park in Canada will increase in mid-

century. Hewer and Gough (2016) examined visits to a zoo in Canada and found that temperature 

is the weather variable that imposes largest impact on zoo visitation. Other than these, impacts 

on beach and coastal zone visits (Moreno et al., 2008), golf participation (Scott and Jones, 2006), 

recreational fishing (Dundas and von Haefen, 2020), has also been explored. 

This paper is also related to the broad stream of literature that focus on impacts of weather 

and climate change on various economics performance in different sectors. Outdoor recreation 

is most closely related to literature focusing on amenity value and leisure. Albouy et al. (2016) 

examine households’ willingness to pay to live in an area depending on local climates in U.S. 

and their projections show that by the end of the century, there will be 1% to 4% yearly welfare 

losses of income due to changes in climate amenities. Meier and Rehdanz (2017) explore the 

willingness to pay for changes in climates in Britain in both housing and labor market and show 

that compensation for climate amenities mainly comes from housing market. On the other hand, 

research related to leisure has examined the time allocation between working and leisure hours. 

Graff Zivin and Neidell (2014) found that increase in higher end temperature leads to decrease 

in outdoor leisure time for the non-employed and increase in indoor leisure while increase of 

temperature at the lower end increases outdoor leisure and decreases indoor leisure. Another 

study focusing on impacts of rain shows that on rainy days, men allocate half an hour to work 

from leisure (Connolly, 2008). Beyond amenity and leisure, research has also provided evidence 

of impacts from weather variables and climate change on agriculture sector (Deschênes and 

Greenstone, 2007, Schlenker and Roberts, 2009), health and mortality (Deschênes and 

Greenstone, 2011), etc. 
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2.3   Conceptual Framework and Data 

This paper uses panel data analysis to examine the interaction relation of temperature and 

precipitation on number of outdoor recreation visits. Using county fixed effects, time invariant 

characteristics are controlled from visitation patterns and the variation of weather variables 

identifies the impacts on outdoor recreation trips. Detailed daily outdoor recreation trip data used 

in this paper allows for treatment of weather variables precise to daily level, which facilitates 

identification and estimation of impacts. To study the interaction relation of temperature and 

precipitation, the econometric model follows a semi-parametric approach. Keeping various 

control variables and fixed effects linearly in the model, temperature and precipitation is included 

as a non-parametric term. This allows the estimation of the non-linear interaction relation for 

temperature and precipitation, imposing no restrictions on how they interact. 

Datasets used by this paper follows Fezzi et al., 20181, where outdoor recreation trip data 

is linked with weather data. The first data source is the Monitor of Engagement with the Natural 

Environment (MENE)2 from the UK government. Four years of survey data from March 2009 to 

February 2013 are used. The MENE survey collects detailed information on visits to the natural 

environment by people over 16 in England (Natural England, 2013). Each surveyed individual 

was asked to provide information on their outdoor visits for each of the last 7 days before the 

survey time, including number of visits and type of visits. Demographic and other individual 

characteristics are also collected in the survey. About 40,000 individuals are surveyed in England 

every year. 

 
1 I thank Carlo Fezzi, Richard Carson, Silvia Ferrini, and Amii Harwood for suppling their data with outdoor 
recreation trips linked with weather data. 
2 From https://www.gov.uk/topic/outdoor-access-recreation/recreation. 
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Weather data comes from the British Met Office, where 1.5 km grid weather data is 

generated by UKV3 including various weather characteristics. Variables used in the study include 

maximum temperature, total rain during daylight, total snow during daylight, hours of bright 

sunshine, which are hours where the median solar radiation is greater than 120W/m2, hours of 

cloudy skies, which are hours where median solar radiation between 0 and 120W/m2 and mean 

wind speed during daylight (Fezzi et al., 2018). The weather variables are linked with outdoor 

recreation trips according to residence postcode of individuals surveyed. 

This paper focuses on the interaction impact of temperature and precipitation. To be 

specific, temperature refers to the maximum temperature and precipitation mostly refers to the 

total rain during daylight in the main specification. Maximum temperature is used in this study 

considering outdoor visits are mostly likely to be taken during day time. For the same reason, 

total rain during daylight is used for precipitation. Another form of precipitation to be considered 

in snowfall. In the main specification, total snow during daylight is included as a control variable 

and this paper focuses on the interaction of temperature and rainfall. In robustness check, 

regression using combined total rain and snow as precipitation is explored. The maximum 

temperature data is distributed with high frequencies at middle range of temperature and the total 

rain data is highly skewed with most frequencies concentrated at zero and low level of total rain. 

Since the long right tail of total rain has only few observations but span to as high as over 100 

mm, for this study, the observations with total rainfall above 13 mm are excluded to remove the 

last 1% data at tail. To combine total rain and snow, a new variable is created with name total 

rain and snow. From conversion table by U.S. National Oceanic and Atmospheric 

 
3 From https://www.metoffice.gov.uk/ research/news/2012/ukv. 
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Administration, total snow is converted to a water equivalent measure. The total rain and snow 

variable is calculated by summing the total rain and converted water equivalence of total snow. 

 

 

Figure 2.1: Histogram of Maximum Temperature and Total Rain 
 
 
 

 

Figure 2.1 shows a two-way histogram representing frequency of maximum temperature 

and total rain during daylight in the sample. Separate histogram for the two variables can be seen 

in Figure 2.11 in Appendix. The final sample has 1,272,625 observations. Table 2.1 shows the 

summary statistics for dependent variable and weather variables. Number of daily visits are from 

0 to 3. People do not go out for outdoor recreation for about 85% days, even if people go out, 

usually only one trip is made. The maximum temperature is from about -7 ℃ to 32 ℃, with mean 

of about 13 ℃. Mean total rain during daylight is at about 1 mm. 

 
Note: This figure shows a histogram with frequency of maximum temperature and total rain during daylight in 
the sample. Higher frequency is represented by darker red and lower frequency is represented by darker blue. 
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Table 2.1: Summary Statistics 
 
 

 

 

 

 

 

 

 

 

 

2.4   Empirical Strategy 

To study the interaction relationship of temperature and precipitation, an empirical 

strategy with the following specification is used: 

                   Yipct = α + g(Tpct, Ppct) + δXpct + γZipct + µc + θSt + εipct                            (2.1) 

The dependent variable Yipct is the number of outdoor recreation visits taken for individual i, who 

lives in postcode p, county c, in day t. The g(Tpct, Ppct) represents the non-parametric term 

containing maximum temperature and total rain during daylight for a specific postcode on a 

particular day. These are the variables of interest. Since the g(Tpct, Ppct) is non-parametric, this 

has advantage over using Tpct + Ppct + TpctPpct by allowing non-linear relation for temperature and 

rain, as well as imposing no restrictions on how they interact. Xpct includes a group of control for 

other weather variables indicated in the previous section. Zipct is individual specific control 

variables capturing individual characteristics, using variables shown in Table 2.2 in Appendix. 

Variable  Mean Std. Dev. Min. Max. 
Daily Visits     
Number of Visits 0.162 0.410 0 3 
  Percent Visits=0 0.851 0.356 0 1 
  Percent Visits=1 0.137 0.344 0 1 
  Percent Visits=2 0.009 0.095 0 1 
  Percent Visits=3 0.002 0.048 0 1 
     
Weather Variables     
Max Temperature (℃) 13.067 6.103 -6.699 31.799 
Total Rain (mm) 0.954 1.993 0 13 
Total Rain and Snow (mm) 0.957 1.993 0 13.274 
Total Snow (mm) 0.031 0.310 0 15.935 
Hours of Sunshine (hrs) 8.554 4.057 0 15 
Hours of Cloudy Skies (hrs) 4.428 1.918 1 15 
Mean Wind Speed (m/s) 4.326 1.990 0.099 19.126 
Note: This table shows the summary statistics for outcome variable and weather 
variables. 1,272,625 observations are included in the sample. 
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µc is the county fixed effects. St is used to represent several time fixed effects and indicators, 

including year fixed effects, quarter fixed effects, day of week fixed effects, as well as indicators 

of whether it is a holiday and indicator of whether it is during summer school holiday. Year and 

quarter fixed effects are used instead of month-year fixed effects to control underlying 

macroeconomics with temperature highly correlated with months.  

To estimate the specification, I start from using a binning method for the non-parametric 

term. Temperature and rain are divided into grids and the interaction term is represented as 

indicators of each grid. From the temperature dimension, grids are divided according to less than 

0 ℃, then each 2.5 ℃ increment until 27.5 ℃ and greater than 27.5 ℃. Along the total rain 

dimension, grids are divided according to 0 mm, each 1 mm increment until 5 mm, then 5 to 10 

mm, and greater than 10 mm. Some grids with fewer observations are further grouped. With 

binned temperature and precipitation, two types of regressions are run. Following exactly 

Equation 2.1, an Ordinary Least Square (OLS) is conducted as baseline. Considering the 

dependent variable is number of trips, being non-negative and has discrete values, a count data 

model of Poisson regression is also run. Then, to allow for a smooth response surface, a second 

non-parametric method is used with the Generalized Additive Model (GAM). In the GAM, non-

parametric term of temperature and precipitation are included as smooth terms using thin plate 

regression splines and the rest of the control variables are included as linear terms. Similar to the 

binning, the GAM is also run in two cases, firstly running regression following normal 

distribution as a baseline case, then running Poisson regression. 
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2.5   Results 

2.5.1   Main results 

The estimation results using binning for the non-parametric term is shown in Figure 2.2. 

This figure represents a response surface with the z axis being the daily visits predicted from 

different levels of maximum temperature and total rain during daylight, while holding other 

control variables at mean4. Figure 2.2 a) shows the 3D response surface of predicted daily visits 

following OLS regression. The general shape follows expectation, where daily visits increase 

with the maximum temperature and daily visits decrease with total rain during daylight. At the 

lower level of rain, there is sharp increase in daily visits in maximum temperature below about 5 

℃. The increase trend then becomes gentler until about 25 ℃, and there is sharp increase again. 

While the binned OLS results have variations and not being smooth, it can be seen that the general 

increase in daily visits along the maximum temperature have similar shape across different levels 

of total rain. Figure 2.2 b) uses a similar response surface as Figure 2.2 a) to show binning results 

using Poisson regression. The magnitude of predicted daily visits from Poisson are smaller than 

predicted values from OLS in general. However, the shape of the response surface in Figure 2.2 

b) is very similar to Figure 2.2 a).  

The results from GAM with thin plate regression spline for non-parametric term are 

shown in Figure 2.3. Figure 2.3 a) represents results of response surface from GAM following 

normal distribution while Figure 2.3 b) shows results of GAM using Poisson regression. As in 

Figure 2.2, the z axis is predicted number of daily visits. The two response surfaces follow a 

similar pattern as results in the binning method. They also show increase of daily visits along  

 
4 Predicted response surfaces are shown in this paper and prediction intervals can be computed by bootstrap. 
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(a) Baseline 

(b) Poisson 

Figure 2.2: Response Surfaces from Binning 

 
Note: This figure shows predicted daily visits as a response surface of maximum temperature and total rain 
during daylight with non-parametric term binned. (a) follows OLS and (b) uses Poisson regression. 
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(a) Baseline 

(b) Poisson 

Figure 2.3: Response Surfaces from GAM 
 
Note: This figure shows predicted daily visits as a response surface of maximum temperature and total rain 
during daylight from GAM with thin plate regression spline for non-parametric term. (a) follows normal 
distribution and (b) uses Poisson regression. 



64 
 

maximum temperature and decrease of daily visits along total rain during daylight. Between 

baseline and Poisson results, the response surfaces also show a similar shape, with slightly lower 

predicted daily visits for GAM Poisson regression. The GAM results allow for smooth response 

surfaces compared to binning method. Since GAM allows for a smooth surface and GAM 

Poisson regression has lower residual sum of square compared to baseline GAM, GAM Poisson 

regression is the preferred specification.  

This result is then taken a closer look by plotting the cross sections of this response 

surface along maximum temperature and total rain during daylight. Figure 2.4 shows cross 

section cuts at different levels of total rain during daylight. To facilitate understanding of results, 

the y axis is converted to index of daily visits, which converts predicted visits by linear rescaling, 

so that the lowest predicted visit has index of 0 and highest predicted visit has index of 1. When 

there is no rain, the predicted daily visits firstly increase sharply over 0 ℃, then there is generally 

gentler increase trend with local peaks, lastly when it is closer to 25 ℃, there is slightly sharper 

increase in temperature. There is a local maximum of predicted visits at around 15 ℃, followed 

with a smaller peak above 20 ℃. These peaks are likely to reflect temperature being appropriate 

for certain types of recreation activities. The sharp increase in lower temperature may represent 

people’s preference over warm weather. When there is rainfall during daylight, as amount of rain 

increase up until about 5 mm, the local peak fades off, suggesting that people won’t be favoring 

the recreation trips around certain temperature any more if rain gets heavier. However, the shape 

of sharp increase with temperature at lower temperature, followed by gentler increase, then 

shaper increase again at higher temperature remains. When rain increases beyond 5mm, the non-

linear relation becomes relatively linear. This is partly due to fewer number of observations at 

higher level of rainfall. Overall, the relation between outdoor recreation trips and temperature  
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Figure 2.4: Cross Sections of Response Surface at Different Levels of Total Rain 
 

 

 

 

 

 

 

 

 

 
Note: This figure shows cross section cuts of response surface using GAM Poisson regression. Each line 
represents index of daily visits vs. maximum temperature at different levels of total rain during daylight. 
Predicted daily visits are linearly rescaled as index so that it is 0 for the lowest predicted daily visits of the 
response surface and 1 for the highest. The color of each line represents the amount of total rain during daylight, 
with axis to the right. 
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Figure 2.5: Cross Sections of Response Surface at Different Maximum Temperature 
 

 

 

 

 

 

 

 

 

 
Note: This figure shows cross section cuts of response surface using GAM Poisson regression. Each line 
represents index of daily visits vs. total rain during daylight at different levels of maximum temperature. 
Predicted daily visits are linearly rescaled as index so that it is 0 for the lowest predicted daily visits of the 
response surface and 1 for the highest. The color of each line represents the levels of maximum temperature, 
with axis to the right. 
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across precipitation is relatively consistent and there is only small variation in local peaks. Figure 

2.5 shows the cross sections cuts at different level of maximum temperature. At lower and higher 

level of temperature, predicted daily visits decrease with rain relatively linearly. At middle range 

of temperature from about 8 ℃ to 28 ℃, there is a sharper decrease of visits at lower level of 

rain, then followed by gentler decrease of visits. Similarly, relation between recreation trips and 

rain across temperature is relatively similar with small differences at middle temperature and 

lower level of rain. These results suggest that interaction of temperature and precipitation only 

plays a small role in outdoor recreation visits. 

2.5.2   Results for Different Trip Types and Individual Groups 

Next, the paper shows results for different types of trips and results for different 

individual groups. The MENE data separates the outdoor recreation trips taken by four types: 

trips in town or city, trips in countryside, trips in a seaside resort or town, and trips at other 

seaside coastline. I further group trips into two types: trips in town or country side and trips in 

seaside resort or other coastline. I then rerun the GAM Poisson regression for each type of trips, 

i.e., the outcome variable becomes number of trips in town or country side or number of trips in 

seaside resort or other coastline. Figure 2.6 shows the results for two types of trips. There are 

much fewer number of trips to seaside resort or other coastline and predicted visits in (b) are 

much lower than (a). The two graphs use different scales of z-axis to show the shape of response 

surface. Figure 2.6 (a) follows a similar shape as main regression results, also showing small 

variations for interaction with local peaks at small amount of rain. Figure 2.6 (b) also indicates 

that there are local peaks at lower level of rain. Overall, the gradients of daily visits along 

temperature across rain and gradients of daily visits along rain across temperature are relatively 

consistent.  
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(a) Town or Countryside 

(b) Seaside resort or other coastline 

Figure 2.6: Response Surfaces for Different Types of Trips 
 
Note: This figure shows different types of predicted daily visits as a response surface of maximum temperature 
and total rain during daylight from GAM Poisson regression. (a) uses daily visits in town or countryside as 
outcome variable and (b) uses daily visits in seaside resort or other coastline as outcome variable. 
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Using total number of outdoor recreation daily visits, GAM Poisson regressions are also 

run separately divided by individual groups to examine whether different characteristics of 

individuals generate different response surfaces. The first comparison is between male and 

female, shown in Figure 2.7. To allow for easier comparison for groups, z-axis and color key of 

response surfaces are scaled to be the same within each comparison. Both male and female have 

similar number of outdoor recreational trips. However, male is less sensitive to temperature or 

rain. The increase of maximum temperature and decrease in rain during daylight is associated 

with less change of daily visits for male than female. Similar to the main results, interaction plays 

a small role for both male and female. Both show a local peak at around 15 ℃ and fades away 

as amount of rain increases. In general, there are small differences for relationship between 

predicted visits and temperature across rain or predicted visits and rain across temperature. 

The next feature examined is life stage. Regression is run separately by dividing 

individuals to four life stage: empty nester, family, older independent, young independent. 

Results are shown in Figure 2.8. The four life stage groups also have similar number of outdoor 

recreational trips in general, with young independents having slightly fewer number of trips, but 

they vary in shapes of response surfaces. Empty nesters have relatively sharp increase in lower 

temperature and milder increase in higher temperature, suggesting their dislike of cold weather. 

Similarly, as main results, at lower amount of rain, relation between predicted daily visits vs. 

temperature show local peaks, but fades off as rain increases. Interaction plays a bigger role for 

the family group. There is sharp increase in visits with temperature and a large peak around 25 

℃ at lower level of rain during daylight, this peak becomes smaller as the amount of rain 

increases and at higher level of rain, the increase in visits with temperature is gentler with much 

smaller peak. The response surface shows that interaction affects predicted visits for families and  
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(a) Male 

(b) Female 

Figure 2.7: Response Surfaces for Male and Female 
 
Note: This figure shows predicted daily visits as a response surface of maximum temperature and total rain 
during daylight from GAM Poisson regression. (a) only uses data for male and (b) only uses data for female. 
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(a) Empty Nester (b) Family 

(c) Older Independent (d) Young Independent 

Figure 2.8: Response Surfaces for Different Life Stages 
 
Note: This figure shows predicted daily visits as a response surface of maximum temperature and total rain 
during daylight from GAM Poisson regression. (a) only uses data for individuals who are empty nesters, (b) only 
uses data for the family group, (c) only uses data for individuals who are older independents, and (d) only uses 
data for individuals who are young independent. 
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suggests that they strongly favor a temperature at around 25 ℃ at lower level of rain. Interaction 

plays a small role for both older and young independents. Older independents are relatively less 

sensitive to temperature and rain. Again, there is local peak of visits at around 15 ℃ at lower 

level of rain and peak fades off as rain increases. Young independents do not show a local peak 

and change in visits along temperature or rain are mostly linear. 

Individuals with car(s) or with dog(s) are examined as well. Figure 2.9 shows results for 

individuals with car(s) or not. Number of visits predicted for individuals with car(s) are slightly 

higher than individuals without car. Ownership of car(s) may provide greater mobility to go out 

and people who own car(s) may also be the group who prefer outdoor trips more. Similar to the 

main results, interaction plays a small role here. For individual with car(s), there is again a small 

local peak of visits around 15 ℃ at lower level of rain, and the peak fades with greater amount 

of rain. After the peak, at higher temperature and lower level of rain, the increase in daily visits 

along temperature is steeper than people without car. Figure 2.10 shows results for individuals 

with dog(s) or not. The case for individuals with dog(s) indicate that the number of predicted 

trips is much higher than the case for individuals without dog, consistent with the need to walk 

dogs. For individuals with dog(s), the increase in temperature associates with a slightly sharper 

increase of daily visits at higher temperature and at lower amount of rain. Compared to 

individuals without dog, the increase of temperature leads to a milder increase of visits at higher 

level of temperature and lower amount of rain. Similar to most of the groups, interaction plays a 

small role for both cases. 
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(a) With Car(s) 

(b) Without Car 

Figure 2.9: Response Surfaces for Individuals with Car(s) or Not 
 
Note: This figure shows predicted daily visits as a response surface of maximum temperature and total rain 
during daylight from GAM Poisson regression. (a) only uses data for individuals with car(s), (b) only uses data 
for individuals without car. 
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Note: This figure shows predicted daily visits as a response surface of maximum temperature and total rain 
during daylight from GAM Poisson regression. (a) only uses data for individuals with dog(s), (b) only uses data 
for individuals without dog. 

(a) With Dog(s) 

(b) Without Dog 

Figure 2.10: Response Surfaces for Individuals with Dog(s) or Not 
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2.5.3   Robustness Check 

Various robustness checks are conducted. This study mainly focuses on rain as the 

precipitation variable. Another type of precipitation to be considered is snow. Snow is solid 

instead of liquid and thus is likely to lead to different response in visits and different interaction 

with temperature. I examine the interaction relation using combined precipitation of both rain 

and snow, converting snow into a water equivalence as described in data section and add to total 

rain, and see whether response surface changes. Regression is run using this total rain and snow 

variable to replace total rain in the main specification. The control variable of total snow is then 

switched to indicator of whether there is snow on a particular day. Results are shown in Figure 

2.12 in Appendix and the response surface is similar to that of the main specification. Though 

the relation between daily visits and total rain and snow is slightly flatter compared to the main 

specification, combining rain and snow together does not largely change the results. In general, 

the interaction still plays a small role. In addition, regression is also restricted to a sample where 

all the days with snow are excluded, with results in Figure 2.13 in Appendix. The response 

surface also has a similar shape as main specification, with decrease of predicted number of trips 

with rain slightly steeper than main results. While this study does not specifically explore the 

difference between interaction effect by rain and snow, this could be explored in future research. 

This paper focuses on number trips as the outcome variable. I also examine the results of 

using indicator of whether individuals have outdoor recreation trips to examine whether there is 

different response to this binary outcome. Results of Figure 2.14 in Appendix now show z-axis 

to be has visits, which can be interpreted as predicted probability of having an outdoor recreation 

trip. This response surface is similar to the main results, suggesting a small interaction effect also 

to individual’s decision of whether to go for an outdoor recreation trip or not. The preferred 
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specification follows GAM Poisson regression, which assumes variance equals to the mean. 

GAM is also run with Negative Binomial regression to relax this assumption and allow for 

variance to exceed the mean. Results are shown in Figure 2.15 in Appendix, suggesting a similar 

response surface as Poisson regression. Lastly, I also explore robustness in terms of changing 

time fixed effects. The main specification uses year and quarter fixed effects. Regressions are 

also run using year-quarter fixed effects, as well as year and month fixed effects. Figure 2.16 and 

Figure 2.17 in Appendix also indicate consistent results as the main specification. 

2.6   Conclusion 

This paper studies the interaction relation of temperature and precipitation with outdoor 

recreation trips. Using detailed information for trips in England and a semi-parametric approach, 

I show response surfaces of predicted daily visits corresponding to maximum temperature and 

total rain during daylight. The results suggest that while there is increase of visits in temperature 

and decrease of visits in rain, the increasing gradient along temperature has only small variations 

across rain and the decreasing gradient with rain is similar across temperature. The interaction 

plays a small role for outdoor recreation. This paper also shows results for different types of trips, 

where the number of visits for town and countryside is greater than those for seaside and 

coastline. Gradients along temperature and precipitation are relatively consistent. Looking at 

different groups of individuals, interaction also plays a small role in most cases, though shapes 

of response surfaces vary. Female is more sensitive to both temperature and rain. Individuals 

with car(s) and with dog(s) are more sensitive to temperature at higher temperature and lower 

level of rain. For individuals in different life stage, interaction plays a greater role for people in 

the family group. The family group strongly favors outdoor recreation around 25 ℃ at lower 
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level of rain during daylight, and leads to a peak in the response surface. This peak becomes 

much smaller as the amount of rain increases to higher level.  

The results in this paper suggest that interaction of temperature and precipitation plays a 

small role in outdoor recreation in England. The method can be applied to other sectors, such as 

agriculture, labor market, etc., as well as other areas, and results may differ depending on specific 

sector and geographic region. In this paper, precipitation mostly refers to total rain during 

daylight in the main specification. How outdoor recreation reacts to interaction of temperature 

and snow could be further explored in future studies. Furthermore, impact from interaction of 

other weather variables, such as interaction of temperature and humidity, may play an important 

role depending on sectors and could also be further studied in future research. 
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2.7   Appendix 

 
 
 

(a) Histogram for Maximum Temperature 

(b) Histogram for Total Rain During Daylight 

Figure 2.11: Histogram for Maximum Temperature and Total Rain During Daylight 
 
Note: This figure shows histogram for maximum temperature and total rain during daylight separately in (a) and 
(b). 
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Figure 2.12: Response Surface with Total Rain and Snow from GAM 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Note: This figure shows predicted daily visits as a response surface of maximum temperature and total rain and 
snow during daylight from GAM Poisson regression. 
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Figure 2.13: Response Surface for Observations Without Snow 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Note: This figure shows predicted daily visits as a response surface of maximum temperature and total rain 
during daylight from GAM Poisson regression. Only observations without snow are included. 
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Figure 2.14: Response Surface with Has Visits as Outcome 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note: This figure represents predicted probability of visit as a response surface of maximum temperature and 
total rain and snow during daylight from GAM Poisson regression. 
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Figure 2.15: Response Surface following Negative Binomial Regression 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
Note: This figure shows predicted daily visits as a response surface of maximum temperature and total rain 
during daylight from GAM following Negative Binomial regression. 
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Figure 2.16: Response Surface Using Year-Quarter Fixed Effects 

 
 
 

 
 
 

 
 
 

 
 
 
 
 
 

 

 
Note: This figure shows predicted daily visits as a response surface of maximum temperature and total rain 
during daylight from GAM Poisson regression. Year-quarter fixed effects are used instead of the year and quarter 
fixed effects in main specification. 
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Figure 2.17: Response Surface Using Year and Month Fixed Effects 

 
 
 

 
 
 
 
 
 
 
  

 
Note: This figure shows predicted daily visits as a response surface of maximum temperature and total rain 
during daylight from GAM Poisson regression. Year and month fixed effects are used instead of the year and 
quarter fixed effects in main specification. 
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Table 2.2: Summary Statistics of Individual Control Variables 
 

Variable  Mean Std. Dev. Min. Max. 
Age      
  20 0.135 0.342 0 1 
  30 0.159 0.366 0 1 
  40 0.164 0.370 0 1 
  50 0.152 0.359 0 1 
  60 0.144 0.351 0 1 
  75 0.246 0.430 0 1 
Male  0.464 0.499 0 1 
Race     
  White  0.867 0.340 0 1 
  Black  0.039 0.194 0 1 
  Asian  0.076 0.265 0 1 
  Others  0.018 0.133 0 1 
Marital Status     
  Single  0.252 0.434 0 1 
  Married  0.569 0.495 0 1 
  Others  0.179 0.383 0 1 
Work Status     
  At School  0.007 0.086 0 1 
  Full Time 30+ hrs  0.352 0.477 0 1 
  Full Time Higher Education  0.053 0.224 0 1 
  Not Seeking  0.109 0.312 0 1 
  Part Time 8-29 hrs  0.119 0.324 0 1 
  Part Time < 8 hrs  0.006 0.077 0 1 
  Retired  0.288 0.453 0 1 
  Unemployed  0.066 0.248 0 1 
Social Economic Groups     
  Senior Manager or Professional  0.183 0.387 0 1 
  Clerical, Administrative  0.268 0.443 0 1 
  Skilled Worker  0.204 0.403 0 1 
  Unskilled Worker, etc.  0.345 0.475 0 1 
Life Stage      
  Empty Nester  0.381 0.486 0 1 
  Family  0.303 0.459 0 1 
  Older Independent  0.158 0.364 0 1 
  Young Independent  0.159 0.366 0 1 
Physical  2.279 2.558 0 7 
Tenure     
  Mortgage  0.272 0.445 0 1 
  Owned Outright  0.322 0.467 0 1 
  Rent Local Authority  0.177 0.381 0 1 
  Rent Private  0.184 0.388 0 1 
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Table 2.2: Summary Statistics of Individual Control Variables (Continued) 
     
  Other  0.045 0.207 0 1 
Disability  0.210 0.408 0 1 
Car  0.708 0.455 0 1 
Dog  0.226 0.418 0 1 
Average Income  32495.33 11624.85 9168.5 127069.5 
Note: This table shows the summary statistics for individual level control variables 
representing individual characteristics. 1,272,625 observations are included in the sample. 
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Chapter 3  

The Role of Ridesharing in Changing 

Urban Trip Patterns 

Abstract: Ridesharing is becoming an important consideration in many discussions 

involving urban planning and transportation initiatives. This paper looks at how the introduction 

of ridesharing services such as Uber and Lyft has influenced trip choice decisions. Using data 

from the 2009 and 2017 National Household Travel Surveys, I show that the longer Uber and 

Lyft have been in an urban market, the greater the increase in the 2017 survey trips that were 

made using taxi/rideshare services relative to the 2009 survey benchmark. This increase is driven 

by an upward shift in the utilization of taxi/rideshare services that is more pronounced for short 

and longer distance trips than for middle distance trips. This upward shift is also more 

pronounced on weekdays relative to weekends. Ridesharing services are shown to be a substitute 

for short haul bus trips, but a complement with longer rail trips. 
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3.1   Introduction 

Policies on urban planning related to transportation and its environmental impacts have 

long received considerable attention. Traditionally, mass public transit has been seen as one of 

the major tools for decreasing driving to reduce traffic congestion and air pollution. In recent 

years, a new transportation choice has been added to the traditional mix of buses, cars, taxi cabs 

and rails by ridesharing companies such as Uber and Lyft. Ridesharing companies allow people 

to easily arrange a trip through mobile-app and then be picked up by a driver and taken to their 

destination. These services have been widely adopted by many users and are now in heavy use 

in some urban areas. Calculating using the 2017 National Household Travel Survey (NHTS) from 

U.S. Department of Transportation, Federal Highway Administration, nearly 10% of people 

across the United States used ride-sharing services in the previous month. In metropolitan 

statistical areas (MSA) with populations above one million, this fraction, about 15%, was much 

bigger. The numbers are likely to continue to grow after the survey.  

The availability of ridesharing services is changing how people make trip decisions and 

this brings into sharp perspective the link between driving and mass transit. Are ridesharing 

services and mass transit substitutes or complements? The case for substitution is easy to make. 

Ridesharing services represent a new option to personal driving that is more expensive than 

traditional mass transit but less expensive than taxi cabs. Ridesharing services offer door to door 

service on the individual’s schedule and avoids issues involved with parking, thereby generally 

reducing commute times relative to mass transit. Vehicles used for ridesharing are typically more 

comfortable than mass transit and taxi cabs, in most places, and are more conducive to activities 

such as making phone calls. As such they would be expected to draw market share from both 

driving and mass transit.  
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Ridesharing services, however, might be a complement to mass transit if they are used to 

make a relatively short low-cost trip to and from a transit hub such as a light rail station and this 

tips the decision to drive or take mass transit in favor of mass transit. Other more extreme variants 

are also possible. A household may decide to give up one or more of its current vehicles now that 

ridesharing is ubiquitously available, shifting that demand to some combination of ridesharing 

and mass transit. The greater flexibility of ridesharing can also potentially increase the overall 

amount of driving, if it garners market share from trips that would have been previously 

undertaken by biking, walking, or carpooling. As such the widespread availability of Uber and 

Lyft and other similar ridesharing services has the potential to substantive change views on urban 

planning policies and city structures.  

This paper addresses some of the same issues as the seminal paper by Hall et al. (2018), 

on the implications of introducing modern ridesharing services like Uber and/or Lyft. I do this 

using the shift observed in the last two waves (2009 and 2017) of the National Household Travel 

Survey (NHTS), the large scale nationally representative survey periodically undertaken by the 

U.S. Department of Transportation. I look at how long Uber and/or Lyft have been serving a 

metropolitan area influences different aspects of trip choice behavior such as mode, trip start 

time, and trip distance. By using the travel diary component of the 2009 and 2017 NHTS, I am 

able to implement a difference-in-differences framework with large nationally representative 

samples. I find number of daily rideshare trips (which includes traditional taxi trips in the NHTS 

survey) increases substantially with these increases being concentrated in both short and longer 

distant trips (relative to middle distant trips) and in weekday (as opposed to weekend) trips.  

I also find modern ridesharing services to be a clear substitute for short haul bus trips 

while a complement for longer distant rail trips. In contrast, Hall et al. (2018) found the entry of 
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Uber results in increased bus ridership and decreased rail ridership. The main reason for the 

divergence between my bus and rail ridership results and those of Hall et al. (2018) is due to their 

study focus on transit agency level bus and rail ridership, weighting agencies equally, instead of 

using a random sample of individual level trip data. When Hall et al. (2018) uses a different 

weighting scheme to estimate the effect of Uber entry on national transit ridership, my results for 

bus trips and rail trips have consistent signs with Hall et al. (2018). 

The ability to draw on the individual trip level diary data from the 2009 and 2017 waves 

of the very large nationally representative NHTS survey allows me to paint a rich, representative 

picture of how ridesharing services has thus far changed the nature of travel decisions in 

American cities. In addition to allowing me to examine how the presence of ridesharing services 

like Uber and Lyft influence public transit use, I am also able to examine how it impacts other 

trip modes including private vehicles, biking and walking., as well as the interaction of trip mode 

choice with distance and when the trip was taken. 

3.2   Literature Review 

The question of how ride sharing services would change the nature of mode choice in 

making trips in urban areas has received considerable media attention. Jaffe (2013), for instance, 

argues that ridesharing services may actually increase public transit ridership and reduce single-

occupancy drivers. Walker (2018) believes that, even with ridesharing, buses will still play an 

important role in transporting most people in urban areas as the cost of doing so using ridesharing 

services is still too high. Lee (2019), on the other hand, contends that pooling services provided 

by ridesharing companies reduce cost for riders while providing convenient services, and have 

the potential to reduce bus usage. McFarland (2019) notes that if ridesharing services attract 

ridership away from buses and subways, congestion will result. The likelihood of ridesharing 
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reducing congestion has also been questioned if people take rideshare trips alone and if they 

replace trip segments now undertaken by walking (Walker, 2018). Jaffe (2015) sees opportunities 

for urban agencies to collaborate with ridesharing companies to better integrate ridesharing and 

public transit. My paper contributes to this debate by providing empirical evidence on the effect 

of ridesharing on the number and nature of trips taken via public transit. 

There has been limited evidence in the economics literature that examines how 

ridesharing services affect trip choice decisions. A major empirical paper in the literature is by 

Hall et al. (2018). They look at how Uber impacts public transit. To do so, they use aggregate 

monthly ridership data at transit agency level from 2004 to 2015, and their main analysis is based 

on a difference-in-differences design. Hall et al. (2018) show that for average transit agency, 

Uber is a complement. Specifically, they find Uber increases public transit ridership by 5 percent 

in the two years after Uber’s entry into the market. They also show entry of Uber increases bus 

ridership and decreases rail ridership. Another paper by Nelson and Sadowsky (2018) shows 

increase in public transit use after entry of first ridesharing company in 28 major U.S. urbanized 

areas, also using aggregate ridership data. A very different approach was taken in a recent paper 

by Zhao (2019). That paper looks at the general equilibrium effects of Uber on urban area in the 

long run using numerical simulation approach. Zhao’s results show that with a high-quality 

transit system, Uber enhance public transit and with low quality transit system, it reduces public 

transit. Parameters in Zhao’s model follows existing literature or are calibrated based on 

Chicago's characteristics. While a simulation study, it points to the possibility of heterogeneous 

outcomes across urban areas, indicating that average effects potentially depend on the 

aggregation scheme used. 
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While the literature on the national impacts of ridesharing on urban trip mode choice is 

sparse, there have been many studies in individual locales and states, or combination of large 

urban areas. These papers also tend to produce a range of results that are sometimes 

contradictory. Babar and Burtch (2020) show that ridesharing largely decreases utilization of bus 

services and increases commuter rail services in U.S. urbanized areas. Alemi (2018) finds in a 

survey of young and middle-aged California adults that, in the absence of Uber and Lyft, about 

35% of frequent rideshare users would have driven a car, a bit more than 30% would have used 

public transportation, and somewhat under 20% would have walked or biked. Another paper 

using data from San Francisco, shows 33% of people using ridesharing services would use public 

transit as alternative while 6% will drive on their own (Rayle et al., 2016). Smith (2016) finds 

that people who use ride-sharing services on a daily or weekly basis are more likely to walk, bike 

or use public transit than non-rideshare users. In a study sampled from seven metropolitan areas, 

Clewlow and Mishra (2017) find that ridesharing services reduce use of public buses by 6%, light 

rail by 3%, while increasing use of heavy rail by 3%. Murphy and Feigon (2016) find in seven 

large U.S. cities that ridesharing tends to complement public transit and substitute for vehicle 

trips. In another paper, this time using data from 50 largest transit agencies in the U.S., Malalgoda 

and Lim (2019) show an increase in ridesharing was associated with increased rail ridership in 

2015, while having an insignificant influence on bus ridership. Erhardt et al. (2021) use data in 

San Francisco to show that ridesharing decreases the net bus ridership while insignificantly affect 

light rail ridership. 

The work in this paper is also related to the growing literature that looks at a range of 

other issues related to the advent of ridesharing services.  On strand of the literature estimates the 

consumer surplus generated by the introduction of ridesharing services, Cohen, et al. (2016), for 
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instance, estimates that UberX service provided $2.9 billion in consumer surplus in four U.S. 

cities in 2015. Lam et al. (2017) shows that the magnitude of the gain in consumer surplus differs 

substantially across neighborhoods with different accessibility in New York City. Another strand 

of the literature, looks into labor market for Uber drivers. Chen, et al. (2019) show Uber drivers 

earn more surplus than they would in less-flexible environment. Uber drivers are attracted largely 

due to the flexibility, compensation, and invariant hourly earnings from hours worked (Hall and 

Krueger, 2018). Still another branch of the literature examines Uber’s surge pricing scheme. 

Chen and Sheldon (2015) detail how the surge pricing mechanism helps the Uber ecosystem 

generate more supply of rides. Similarly, Uber’s pricing mechanism allows fare changes to 

influence both driver utilization and passenger wait times (Hall et al., 2020). Surge pricing also 

allows low prices to be charged during low passenger demand hours (Castillo et al., 2017). Work 

comparing the ridesharing and taxi industry reveals UberX drivers have higher capacity 

utilization than taxi drivers (Cramer and Krueger, 2016). Uber has been shown to reduce earnings 

of taxi drivers (Berger et al., 2018; Brodeur and Nield, 2018). Uber also reduces drunk driving 

and accidents by making rides easier and less expensive to obtain (Peck, 2017; Dills and 

Mulholland, 2018). Finally, Uber has been shown to lead to better air quality (Sarmiento and 

Kim, 2021). 

3.3   Conceptual Framework and Data 

When ridesharing enters a market, it does not immediately grab a large number of users 

and achieve a high market share of trips. A potential customer first needs to download the 

relevant app and get familiar with how to use. The service is initially awkward because a large 

pool of users is needed to attract a large pool of drivers. Like many new technologies, as early 

adapters gain both experience with the services and enjoy favorable outcomes relative to their 



96 
 

prior pattern of trip mode choice, more and more people start to hear about the ridesharing via 

word of mouth, news reports, and social media or newspaper. The user base responds by growing 

as does the pool of drivers, who are being motivated by some of the same information diffusion 

but also learning about opportunities to drive for Uber from its initial driver pool in the urban 

area. Overtime this process has caused ridesharing services to grow and, in turn, to have more 

influence on trip mode choice decisions. The import of this is that the specific date when 

Uber/Lyft entered a particular market can, with some important caveats, be used as variable of 

interest to estimate the effects of ridesharing on individual trip choices. Following Hall et al. 

(2018), I use a difference-in-differences framework that compares trip patterns before the first 

launch of ride-sharing services and trip patterns years later, considering whether and when Uber 

and/or Lyft entered the market.  

To examine individual trip decisions, detailed information concerning those decisions 

including trip mode(s) choice, trip distance, the day of week and start time of the trip, and the 

traveler’s demographic characteristics are needed.  The main data sources I use are the 2009 and 

2017 NHTS, which contain this information for a very large representative sample of American 

households. All trips made by each household member above 5 years old on a particular travel 

day are recorded in the diary provided as part of the NHTS surveys. Travel days are assigned 

over the course of a year, from March, 2008 to April, 2009 for 2009 NHTS and from April, 2016 

to April, 2017 for 2017 NHTS. 

For this paper, modes of taxi/rideshare, private vehicle1, bus2, rail3, walk and bike are 

included in the analysis. Taxi, hired car (limo) and rideshare trips are recorded as a combined 

 
1 Private vehicle mode includes car, SUV, van, pickup truck, golf cart, motorcycle and recreation vehicles, following 
the NHTS definition of privately operated vehicle. 
2 Bus mode includes public or commuter bus. 
3 Rail mode includes subway, elevated rail, light rail, street car, Amtrak, and commuter rail. 
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mode in the 2017 NHTS. Therefore, it is important to note that whether a trip is taxi or Uber/Lyft 

is not differentiated in the travel day trip records. In general, taxi usage has declined with the 

introduction of Uber and Lyft (Brodeur and Nield, 2018). As such substitution of rideshare 

services for taxi and hired car services is not captured here. I restrict my analysis, to households 

located in 51 MSAs with over one million in population in both surveys. This is largely done to 

facilitate matching the household MSA codes (which are not provided for smaller places) with 

the date that Uber or Lyft first began providing rideshare services in the MSA.    

The NHTS provides a set of individual and household demographic characteristics, 

including gender, age, education level and worker status of each individual, as well as the life 

cycle classification for each household. The main role of the 2009 NHTS is to provide trip 

patterns before the first launch of ridesharing, while the NHTS 2017 provides information on 

later trip patterns. People living in these MSAs experienced substantially different ridesharing 

entry times and, for two of my MSAs, neither Uber or Lyft had entered that market by the 2017 

NHTS survey period. 

The month and year when Uber and Lyft were firstly launched in an MSA was collected 

through various online sources, including Uber Blog, Lyft Blog, as well as online news websites. 

By collecting the entry time, ridesharing entry length faced by each individual can be calculated 

as number of months between the month that Uber/Lyft enters the MSA that the individual lives 

in and the month of travel day the individual is surveyed. If Uber or Lyft enters a city in different 

month, the earlier month is considered as the entry month. Entry length thus represents how long 

Uber/Lyft has been available to the individual. Entry length is 0 if Uber/Lyft hasn’t entered where 

a person lives in till the survey day. Table 3.1 shows the summary statistics for number of trips 

in different modes as well as entry length calculated from sample. 
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Figure 3.1 a) shows the number of taxi/rideshare trips over entry length using data in 

NHTS 2017. Each bubble comes from an entry length shown in the sample, the vertical axis 

represents the weighted average number of trips using NHTS person weights traveled on the 

survey day from individuals with same entry length. The bubble size represents the person 

weights at that entry length. It can be seen that in general, when Uber/Lyft becomes available 

longer to a person, the number of taxi/rideshare trips increase. Although in the travel diary data, 

taxi and rideshare trips cannot be separated, in the 2017 NHTS, a specific question was asked to 

collect data on number of rides purchased through a ridesharing app in the previous 30 days of 

travel day surveyed for each individual. Figure 3.1 b) shows a similar graph as Figure 3.1 a) using 

the number of rideshare trips in 30 days without taxi trips in the vertical axis. Figure 3.1 b) also 

shows that when Uber/Lyft enter longer in the market, more rideshare trips are used. These 

graphs support that it takes time for ridesharing services to be adopted and support the use of 

how long Uber/Lyft enter as a measure to estimate the impacts on trip decision. 

Table 3.1: Summary Statistics for Number of Trips and Entry Length 
 

Variable  Mean Std. Dev. Min. Max. 
Number of Trips in Taxi/Rideshare Mode  0.013 0.165 0 8 
Number of Trips in Private Vehicle Mode  3.775 2.428 0 16 
Number of Trips in Bus Mode  0.039 0.299 0 7 
Number of Trips in Rail Mode  0.031 0.251 0 8 
Number of Trips in Walk Mode  0.433 1.071 0 16 
Number of Trips in Bike Mode  0.031 0.298 0 12 
Entry Length  21.087 24.932 0 81 
Notes: This table shows the summary statistics for number of trips under the specified mode per 
person per day, as well as the summary statistics for entry length in the sample. 

 

The control variables are collected through several different sources. The MSA 

population and land area each year is collected from U.S. Census Bureau. MSA level per capita 

income is obtained through U.S. Bureau of Economic Analysis. The MSA level demographic  
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(a) Taxi/Rideshare Trips per Person per Day 

(b) Number of Rideshare Trips in 30 Days 

Figure 3.1: Number of Trips and Entry Length from NHTS 2017 
 
Note: This figure shows weighted average number of trips against entry length, with bubble size representing 
person weights at corresponding entry length, calculated based on 2017 NHTS. 
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controls are aggregated using data in Current Population Survey (CPS), from the U.S. Census 

Bureau and the U.S. Bureau of Labor Statistics (BLS). Gasoline prices are from U.S. Energy 

Information Administration and are available weekly at each Petroleum Administration for 

Defense Districts (PADD). The data is aggregated to monthly level and then matched to 

households according to the state they reside in. Various transit capacity variables are collected 

from National Transit Database provided by U.S. Department of Transportation, Federal Transit 

Administration. These data are available at transit agency level and are aggregated and matched 

to each MSA. Table 3.7 provides summary statistics for control variables in Appendix. 

3.4   Empirical Strategy 

Difference-in-differences framework is used as the main empirical strategy with 

following specification:  

                  Yict = α + βEntry Lengthict + γXct + δZict + µc + θSt + εict                          (3.1) 

The dependent variable Yict is number of trips for a particular type per person per day, where i is 

each surveyed individual, c is each MSA, t is survey time. This is calculated by counting all trips 

in a particular type made by each person on the surveyed travel day. In the NHTS, a trip is defined 

as going from one place to another. In particular, bus and rail stations are not counted as a separate 

place. Therefore, in the case where people mainly use public transit mode but using walk, Uber, 

Lyft or other mode to connect origin or destination to the stations, it will be counted as one trip 

and public transit mode. Entry Lengthict is the main variable of interest, calculated as mentioned 

in the previous section. Xct are MSA level control variables4. Zict are individual and household 

 
4 MSA level control variables include log(populaiton), log(population density), log(per capita income), gas price, 
unemployment rate, percentage population above 65 years old, percent population with bachelor degree, as well as 
𝟙 (revenue miles>0) * log(revenue miles), 𝟙 (revenue miles>0) * fare per trip, for each public transit category. 
Monetary variables are calculated to be in 2008 dollars. 
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control variables5. µc is MSA fixed effects and St includes survey fixed effects, month fixed 

effects, and day of week fixed effects. The regression is weighted using NHTS person weights. 

Standard errors are clustered at the MSA level. 

Variation of entry length comes from two sources. Firstly, entry length varies with Uber 

and Lyft entering different MSA at different time. Secondly, within an MSA, households face 

different entry length since they are randomly surveyed for a travel day during the survey year 

and lengths of time from survey day to rideshare entry are different. This creates randomness of 

entry length across about a year for each MSA. One concern to the identification is that the entry 

of Uber and Lyft not being random. In this paper, only MSAs with population above one million 

in both surveys are included. These are large MSAs where Uber and Lyft would want to launch 

in all quickly, making less of concern that may be raised if Uber/Lyft chose to enter some MSAs 

later when they expect there will be less growth. The change in percent of taxi drivers out of total 

employment in each MSA is used as a proxy for taxi growth before ridesharing to compare with 

entry time. Figure 3.2 in Appendix shows the change in percent taxi drivers from 2006 to 2009 

and 2008 to 2009 vs. entry time. No clear pattern is shown for taxi growth and entry time. Then, 

percentage changes in ridership are used as proxies to examine growth in public transit before 

ridesharing. Figure 3.3 and Figure 3.4 in Appendix show percentage changes in bus ridership and 

rail ridership from 2006 to 2009 and 2008 to 2009 for each MSA against entry time. No clear 

relation is found either. According to Hall et al. (2018), Uber’s entry decision into city is largely 

based on population rank and other than population, education also well predicts Uber’s entry. 

These variables, as well as other MSA level variables that are likely to affect entry decisions of 

Uber and Lyft are added as control variables. For each mode, average number of trips weighted 

 
5 Individual and household control variables include gender, indicator of age group, indicator of having bachelor 
degree, indicator of being a worker and indicator of category in the life cycle classification. 
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by person weights for MSAs with different categories of entry time is also plotted over each 

survey including earlier surveys of 2001 NHTS, 1995 Nationwide Personal Transportation 

Survey (NPTS) and 1990 NPTS to show trends of trips over time. The plot is shown in Figure 

3.5 in Appendix and trends are relatively consistent. Although earlier surveys are available, new 

MSA definitions were made since 2003 (U.S. Census Bureau, 2016). This makes earlier surveys 

with less similar MSA geographic area than later surveys. Only 2009 and 2017 NHTS are used 

for regression and most MSAs in the study sample provide similar geographic area. 

3.5   Results 

Regressions are run following Equation 3.1 in each transit mode and results are shown in 

Table 3.2. Each column represents a separate regression where the dependent variable is total 

number of trips per person per day in the mode described. In column (1), it shows that when 

Uber/Lyft enter the market for one more month, the number of trips in taxi or rideshare mode 

increases by 0.000418 per person per day in large MSAs. This can be translated to when 

Uber/Lyft enter the market for one more year, each person takes 0.15 more taxi or rideshare trips 

each month. This is relatively small in magnitude and increase is significant at 5%. For trips 

using private vehicles, while number of trips decrease when Uber/Lyft are available longer in the 

market, the decrease is insignificant. The change in number of trips in public transportation show 

statistically significant results, with a decrease in bus trips and increase in rail trips. As mentioned 

in the previous section, when people mainly use public transit to travel while using other modes 

such as Uber/Lyft to connect origin and destination with stations, it will only be counted as one 

trip as public transit mode. Therefore, the increase in rail trips may include the ones using 

Uber/Lyft to connect. There can also be other channels that Uber/Lyft entry can increase number 

of rail trips. For example, when Uber/Lyft allows for access to public transportation at one 
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station, there can be further increase in rail trips linked to that trip. Both walk and bike trips 

decrease insignificantly. The coefficients showing change in number of trips are computed as 

percentage of mean trips weighted by person weights in the sample for each mode, shown in 

Table 3.8 in Appendix.  

Table 3.2: Impacts of Entry Length on Number of Trips in Different Modes 
 

 (1) (2) (3) (4) (5) (6) 

Variables 
Taxi/ 

Rideshare 
Private 

Vehicles 
Bus Rail Walk Bike 

       
Entry Length 0.000418** -0.00167 -0.000969*** 0.00155*** -0.00150 -0.000157 
 (0.000200) (0.00166) (0.000328) (0.000267) (0.00112) (0.000286) 
       
N 184,421 184,421 184,421 184,421 184,421 184,421 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows coefficients of entry length following regression specification of Equation 3.1. 
Dependent variable for each column is number of trips per person per day under specified mode. Standard 
errors are clustered at the MSA level. 

 

When Uber/Lyft are available longer in the market, there are significant impacts on public 

transit for both bus and rail. Regression is also run by combining the total number of trips for bus 

and rail as dependent variable to examine the effect on overall public transit. Results are shown 

in Table 3.3. When Uber/Lyft enter one more month in the market, total public transit trips per 

person per day increase by 0.000585 in large MSAs. However, the increase is small in magnitude 

and not significant. Compared to Hall et al. (2018), their results show that Uber entry increase 

bus ridership and decrease rail ridership. These results differ from my results mainly due to their 

study focus on transit agency level bus and rail ridership and they weigh transit agencies equally. 

When they use a different weighting scheme of pre-Uber average ridership to reflect national 

transit ridership, their results show that Uber entry decrease bus ridership and increase rail 

ridership. In this case, my results have consistent signs of bus trips and rail trips. Although when 
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weighting by pre-Uber average ridership, Hall et al. (2018) show decrease of total public transit 

and my results show an increase, the effect is insignificant in both cases. 

Table 3.3: Impacts of Entry Length on Public Transit 
 

 (1) 
Variables Bus and Rail Total 
  
Entry Length 0.000585 
          (0.000362) 
           
N 184,421 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows coefficients of entry length 
following Equation 3.1. Dependent variable is 
number of total bus and rail trips per person per 
day. Standard errors are clustered at the MSA 
level. 

 

Although in NHTS trip diary data, taxi/rideshare are recorded as a combined category of 

trips, 2017 NHTS also separately ask each individual for number of rideshare purchased in the 

previous 30 days. The 30 day rideshare trips are averaged to daily rideshare trips and used as a 

dependent variable for regression following Equation 3.1. This variable is set to 0 for 2009 NHTS 

survey. The results are shown in Table 3.4. When Uber/Lyft becomes available for one more 

month, it corresponds to 0.000565 more rideshare trips per person per day. This translates to 0.2 

more trips per month for one more year of entry. This change is of 2.53% weighted mean of 

rideshare trips in NHTS 2017. The magnitude is greater than the change in taxi/rideshare trips 

and the coefficient is statistically significant. The greater magnitude may come from the increase 

in rail trips connecting to origin or destination using ridesharing services, as well as increase in 

rideshare trips substituting from taxi trips.  
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Table 3.4: Impacts of Entry Length on Average Daily Rideshare 
 

 (1) 
Variables Average Daily Rideshare 
  
Entry Length 0.000565*** 
          (9.60e-05) 
           
N 184,278 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows coefficients of entry length 
following Equation 3.1. Dependent variable is average 
daily rideshare trips per person. Standard errors are 
clustered at the MSA level. 

 

The number of trips is then further decomposed into different type of distances, with 

results shown in Table 3.5. Each coefficient in Table 3.5 is from a separate regression, with 

number of trips in a particular range of distances and particular mode as the dependent variable.  

Some coefficients are left blank since some modes are naturally shorter, thus not having a lot of 

trips for longer distances. From Table 3.5, it can be seen that the most significant results are in 

taxi/rideshare mode and public transit. The overall significant increase in taxi/rideshare trips are 

driven by trips less than 4 miles and trips greater than 10 miles. On the other hand, the significant 

decrease in bus trips is driven by shorter trips that are less than 4 miles. For rail trips, the 

significant increase is mainly driven by trips greater than 4 miles. For private vehicle trips, results  

are insignificant and number of trips decrease in all ranges except for trips from 4 to 10 miles. 

There is increase in trips from 4 to 10 miles, indicating there may be shift from self-driving in 

shorter or longer trips to median distance trips when Uber/Lyft enter longer in the market. This 

result is significant, but only at 10%. Most of the walk trips are within 2 miles and thus the result 

is very similar to overall walk trips. The effect on bike trips is small in magnitude and 

insignificant. 
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Table 3.5: Impacts of Entry Length on Number of Trips in Different Modes and Distances 
 

 (1) (2) (3) (4) (5) (6) 

Variables 
Taxi/ 

Rideshare 
Private 

Vehicles 
Bus Rail Walk Bike 

Panel A: Number of trips < 2 miles in a particular mode 
       

Entry Length  0.000150**  -0.000951  -0.000441**  -5.74e-05 -0.00145 -9.87e-05 
 (6.88e-05) (0.00132) (0.000203) (4.28e-05) (0.00111) (0.000226) 
       

Panel B: Number of trips from 2 to 4 miles in a particular mode 
       

Entry Length  0.000112*  -0.00119  -0.000435*** 0.000100    4.50e-05 
 (6.59e-05) (0.000896) (0.000106) (7.62e-05)    (7.87e-05) 
       

Panel C: Number of trips from 4 to 10 miles in a particular mode 
       

Entry Length 1.53e-05 0.00175* -5.92e-05 0.000341**        
 (9.56e-05) (0.00104) (0.000174) (0.000166)       
       

Panel D: Number of trips > 10 miles in a particular mode 
       

Entry Length  0.000140*** -0.00128 -3.40e-05 0.00117***        
 (5.22e-05) (0.000921) (0.000133) (0.000207)       
       

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows coefficients of entry length following regression specification of Equation 3.1. 
Dependent variable for each column under each panel is number of trips per person per day under specified 
mode and specified distance category. Observations used for each regression are 184,421. Standard errors are 
clustered at the MSA level. 

 

Other than decomposing trips into different distances, trips are also decomposed into 

different starting time. In Table 3.6, each coefficient is from a separate regression with number 

of trips in different starting time in a particular mode as the dependent variable. The weekday 

peak hours are defined as 6:00 to 10:00 AM and 4:00 to 8:00 PM. It can be seen that the 

significant increase of taxi/rideshare trips are mainly driven by weekday trips, especially during 

peak hours. There is also significant decrease in number of trips in private vehicles during 

weekday peak hours, while there is insignificant increase in trips during weekday non peak hours 

and weekends. The different effects lead to the insignificant decrease of overall private vehicle 
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trips as seen in Table 3.2. Bus trips starting from all times decrease and the overall significant 

decrease is driven by weekend trips. Rail trips starting from all times increase and the result is 

significant during weekday peak hours as well as weekends. During weekends, people also take 

significantly fewer walk trips when Uber/Lyft enter market longer. 

Table 3.6: Impacts of Entry Length on Number of Trips in Different Modes and Starting Time 
 

 (1) (2) (3) (4) (5) (6) 

Variables 
Taxi/ 

Rideshare 
Private 

Vehicles 
Bus Rail Walk Bike 

Panel A: Number of trips starting in weekday peak hours by a particular mode 
       

Entry Length  0.000287***  -0.00493*** -0.000396  0.00150***  -0.000113 8.68e-05 
 (9.77e-05) (0.00144) (0.000260) (0.000274) (0.000690) (0.000192) 
       

Panel B: Number of trips starting in weekday non-peak hours by a particular mode 
       

Entry Length  0.000199*  0.000358 -0.000307 0.000204 6.03e-05 -9.92e-05 
 (0.000106) (0.00122) (0.000265) (0.000127) (0.000745) (0.000152) 
       

Panel C: Number of trips starting in weekend by a particular mode 
       

Entry Length 7.06e-05 0.00573  -0.00157***  0.00116***   -0.00495***  -0.000598 
 (0.000413) (0.00496) (0.000427) (0.000292) (0.00181) (0.000449) 
       

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows coefficients of entry length following regression specification of Equation 3.1. 
Dependent variable for each column under each panel is number of trips per person per day under specified 
mode and specified starting time category. Observations used for Panel A and Panel B are 139,359. Observations 
used for Panel C are 45,044. Standard errors are clustered at the MSA level. 

 

In the main specification, variable of interest is entry length to estimate average impact 

of how long ridesharing has entered market affect number of trips. For taxi/rideshare mode of 

trips, different function forms of entry length, including adding higher order terms of entry length 

as well as using indicators of categories of entry length, are further explored to examine whether 

the rate of increase of taxi/rideshare trips changes over time. Results are shown in Table 3.9 in 

Appendix. According to the F-test for whether coefficients for higher order terms of entry length 
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are 0, tests are all rejected. Then, predicted number of taxi/rideshare trips over entry length in 

these specifications with other variables held at mean are shown in  Figure 3.6 in Appendix. The 

results indicate that as Uber/Lyft enter longer in the market, the increasing rate of taxi/rideshare 

trips also increases. These results are based on current data where longest entry length is less than 

seven years. How the increasing rate change with more years of entry could be studied in future 

research. 

Lastly, various robustness checks are conducted. The dependent variables in this paper 

are number of trips and thus are non-negative discrete values. Count data regression models of 

Poisson and Negative Binomial are also used to examine the results. Equation 3.1 are run under 

Poisson regression and Negative Binomial regression. Results are shown in Table 3.10 in 

Appendix. Marginal effects on entry length show similar sign for most of these regressions, 

although magnitudes for some are smaller than linear regression. Robustness check is also 

conducted using year-month fixed effects instead of survey and month fixed effects. Results are 

shown in Table 3.11 in Appendix. Sign and magnitude of the results are similar to the main 

specification.  

3.6   Conclusion 

Ridesharing companies such as Uber and Lyft have been increasing in use in urban areas. 

Such services affect how people make trip decisions, and are linked to larger discussions of urban 

planning policies. This paper uses 2009 NHTS and 2017 NHTS individual travel diary data to 

explore how Uber/Lyft enter longer in the market affect people’s trip choices. I find that when 

Uber/Lyft has been longer in the market, number of taxi/rideshare trips largely increase. 

Individuals take more taxi/rideshare trips mainly for shorter trips below 4 miles or longer trips 

above 10 miles. While people substitute away from short bus trips, they take more long rail trips. 
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When looking into the trip starting time, the increase in taxi/rideshare trips are mainly driven by 

trips that are starting from weekday. People significantly reduce private vehicle trips during 

weekday peak hours. While bus trips mostly decrease on weekends, increase in rail trips are 

mostly seen in weekday peak hours and weekends. Providing empirical evidence on how 

ridesharing services influence trip choice decisions, this paper adds knowledge to current 

literature looking into impacts of ridesharing on mass transit and other modes of transport, as 

well as provides insights for the many discussions involving urban planning policies and 

transportation initiatives. 
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3.7   Appendix 

 

(a) 2006 to 2009 

(b) 2008 to 2009 

Figure 3.2: Change in Rate of Taxi Driver Out of Total Employment vs. Entry Time 
 
Note: This figure shows change in percent of taxi drivers out of total employment from 2006 to 2009 and 2008 
to 2009 for each MSA against entry time of Uber/Lyft. 
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Note: This figure shows percentage change in bus ridership (unlinked passenger trips) from 2006 to 2009 and 
2008 to 2009 for each MSA against entry time of Uber/Lyft. One outlier with large percentage change is not 
shown in (a).  

(a) 2006 to 2009 

(b) 2008 to 2009 

Figure 3.3: Percentage Change in Bus Ridership against Entry Time 
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Note: This figure shows percentage change in rail ridership (unlinked passenger trips) from 2006 to 2009 and 
2008 to 2009 for each MSA against entry time of Uber/Lyft. Only MSAs with positive ridership in 2006 are 
included in (a) and an outlier with large percentage change is not shown in (a). Only MSAs with positive ridership 
in 2008 are included in (b). 

(a) 2006 to 2009 

(b) 2008 to 2009 

Figure 3.4: Percentage Change in Rail Ridership against Entry Time 
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Figure 3.5: Number of Trips Over Surveys 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note: This graph represents number of trips per day weighted by NPTS or NHTS person weights over 1990, 
1995, 2001, 2009, and 2017 survey for three groups of MSAs. Dashed line represents MSAs that Uber/Lyft did 
not enter by 2017 survey, red line represents MSAs that Uber/Lyft entered after January of 2014 and yellow line 
represents MSAs that Uber/Lyft entered on or before January of 2014. Only MSAs included in all or four of the 
surveys are included in the calculation. 
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 Figure 3.6: Number of Taxi/Rideshare Trips Predicted by Different Functional Forms of Entry Length 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Note: The four lines in the figure show predicted number of taxi/rideshare trips from different entry length 
functional forms with other variables held at mean. Bubbles are weighted average number of trips per person per 
day from individuals with same entry length, with bubble size representing the person weights at that entry 
length. 
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Table 3.7: Summary Statistics for Control Variables 
 

Variable Mean Std. Dev. Min. Max. 
MSA Level Variables   
Population (1,000,000)  5.95 5.16 1.05 20.32 
Population Density   835.10 588.98 109.34 2343.15 
Per Cap Income (10,000)  4.6 0.87 2.87 8.34 
Unemployment  0.06 0.02 0.01 0.14 
Gas Price  2.52 0.82 1.55 4.45 
Percent Population above 65  0.13 0.03 0.06 0.25 
Percent Population with Bachelor Degree  0.32 0.07 0.11 0.57 
Bus Revenue Miles (1,000,000)  4.96 6.48 0.04 27.35 
Bus Average Trip Fare  0.84 0.22 0.33 1.43 
Rail Type 1 Revenue Miles (1,000,000)  1.50 4.24 0 16.00 
Rail Type 1 Rail Average Trip Fare  2.39 2.46 0 6.38 
Rail Type 2 Revenue Miles (1,000,000)  3.26 7.85 0 29.40 
Rail Type 2 Average Trip Fare  0.79 0.62 0 3.80 

     
Individual and Household Level Variables 
Female  0.527 0.499 0 1 
Age Group:    
  5 to 20  0.036 0.186 0 1 
  21 to 64  0.701 0.458 0 1 
  over 65  0.263 0.440 0 1 
Has Bachelor Degree  0.489 0.500 0 1 
Is Worker  0.608 0.488 0 1 
Life Cycle Classification   
  one adult, no children 0.084 0.278 0 1 
  2+ adults, no children  0.256 0.436 0 1 
  one adult, youngest child 0-5  0.004 0.059 0 1 
  2+ adults, youngest child 0-5  0.104 0.305 0 1 
  one adult, youngest child 6-15  0.011 0.106 0 1 
  2+ adults, youngest child 6-15  0.138 0.345 0 1 
  one adult, youngest child 16-21  0.008 0.091 0 1 
  2+ adults, youngest child 16-21  0.072 0.259 0 1 
  one adult, retired, no children  0.064 0.245 0 1 
  2+ adults, retired, no children  0.258 0.438 0 1 
Note: This table shows the summary statistics for MSA level control variables, as well as individual and 
household level control variables. Rail type 1 includes commuter rail. Rail type 2 includes monorail, 
light/heavy rail and streetcar. For MSA level variables, population, population density, per cap income, 
and average trip fare varies yearly while other variables vary monthly. For individual and household 
level variables, life cycle classification is household characteristic while other variables are individual 
characteristics. 
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Table 3.8: Change in Number of Trips as % of Weighted Mean 
 

 (1) (2) (3) (4) (5) (6) 

Variables 
Taxi/ 

Rideshare 
Private 

Vehicles 
Bus Rail Walk Bike 

Change as % of 
weighted mean 

1.90% -0.05% -1.17% 2.30% -0.29% -0.44% 

Note: This table shows change as % of weighted mean, calculated using coefficients from Table 3.2 
divided by average number of trips weighted by person weights under specified mode times 100%. 
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Table 3.9: Impacts of Entry Length on Number of Trips in Different Functional Forms 
 

 (1) (2) (3) (4) 

Variables 
Taxi/ 

Rideshare 
Taxi/ 

Rideshare 
Taxi/ 

Rideshare 
Taxi/ 

Rideshare 
     
Entry Length  0.000418**   -0.00116**  0.00104    
  (0.000200) (0.000544) (0.00127)    
Entry Length2     1.92e-05**  -4.21e-05    
     (7.59e-06) (3.36e-05)    
Entry Length3        4.92e-07*     
        (2.49e-07)    
𝟙(Entered < 1 yr)          0.000338 
           (0.0153) 
𝟙(Entered 1 to 2 yrs)          0.00272 
           (0.0154) 
𝟙(Entered 2 to 3 yrs)          0.00835 
           (0.0135) 
𝟙(Entered 3 to 4 yrs)          0.00895 
           (0.0129) 
𝟙(Entered 4 to 5 yrs)          0.0130 
           (0.0116) 
𝟙(Entered 5 to 6 yrs)           0.0214*  
           (0.0127) 
𝟙(Entered > 6 yrs)           0.0383***  
           (0.0123) 
     
 P-Values for F-Test             
𝛽ா௧௬ ௧మ=0    0.0145       
𝛽ா௧௬ ௧య=0       0.0532     
𝛽ா௧௬ ௧మ=𝛽ா௧௬ ௧య=0     0.00200      

Observations  184,421 184,421 184,421 184,421 
Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
Note: Column (1) shows regression following Equation 3.1 using number of taxi/rideshare trips per 
person per day as dependent variable. Column (2) and (3) adds quadratic and cubic entry length. 
Column (4) switches entry length with indicators of entry length categories. Standard errors are 
clustered at the MSA level. 
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Table 3.10: Impacts of Entry Length on Number of Trips Using Count Data Model 

 
 (1) (2) (3) (4) (5) (6) 

Variables 
Taxi/ 

Rideshare 
Private 

Vehicles 
Bus Rail Walk Bike 

Panel A: Poisson Regression 
       
Marginal Effects 0.000103  -0.00332*   -0.00126*** 0.0000930 -0.00157 -0.000109 
of Entry Length  (0.000260)  (0.00173)  (0.000339)  (0.000507)  (0.00122)  (0.000263) 
       
N 184,421 184,421 184,421 184,421 184,421 184,421 
Panel B: Negative Binomial Regression 
       
Marginal Effects 8.64e-05 -0.00336*   -0.00168*** 0.000371  -0.00199  9.43e-06 
of Entry Length  (0.000256) (0.00175)  (0.000425)  (0.000549)  (0.00121)  (0.000343) 
       
N 184,421 184,421 184,421 184,421 184,421 184,421 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note: This table shows marginal effects of entry length using Poisson and Negative Binomial Regression on 
specification of Equation 3.1. Dependent variable for each column is number of trips per person per day under 
specified mode. Standard errors are clustered at the MSA level. 
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Table 3.11: Impacts of Entry Length on Number of Trips in Different Modes Using Year-Month 
Fixed Effects 

(1) (2) (3) (4) (5) (6)

Variables 
Taxi/ 

Rideshare 
Private

Vehicles
Bus Rail Walk Bike

Entry Length 0.000341 -0.000910  -0.000968***  0.00180***  -0.00177 -0.000307
 (0.000214)  (0.00180)  (0.000341)  (0.000293)  (0.00120)  (0.000297) 

N 184,421 184,421 184,421 184,421 184,421 184,421 
Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
Note: This table shows coefficients of entry length using year-month fixed effects instead of survey and 
month fixed effects in Equation 3.1. Dependent variable for each column is number of trips per person per 
day under specified mode. Standard errors are clustered at the MSA level. 
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