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Abstract. We give a short and self-contained argument that shows that, for any positive
integers t and n with t = O

(
n

logn

)
, the number α([t]n) of antichains of the poset [t]n is at

most
exp2

[(
1 +O

(( t log3 n
n

)1/2))
N(t, n)

]
,

whereN(t, n) is the size of a largest level of [t]n. This, in particular, says that if t≪n/ log3n
as n → ∞, then logα([t]n) = (1 + o(1))N(t, n), giving a (partially) positive answer to a
question of Moshkovitz and Shapira for t, n in this range.

Particularly for t = 3, we prove a better upper bound:

logα([3]n) ⩽ (1 + 4 log 3/n)N(3, n),

which is the best known upper bound on the number of antichains of [3]n.
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1. Introduction

An antichain of a poset P is a set of elements of P , any two of which are incomparable in
the partial order. We denote by α(P ) the number of antichains of P . “Dedekind’s Problem”
of 1897 [Ded97] asks for the number of antichains of the Boolean lattice Bn = {0, 1}n. Since
any subsets of a middle layer of Bn is an antichain, a trivial lower bound is α(Bn) ⩾ 2(

n
⌊n/2⌋).

Kleitman [Kle69] and subsequently Kleitman and Markowsky [KM75] proved that this trivial
lower bound is optimal in the logarithmic scale, namely,

logα(Bn) ⩽
(
1 +O

( log n
n

))( n

⌊n/2⌋

)
. (1.1)

(In this paper, log always means log2.) Asymptotics for α(Bn) itself were obtained by Kor-
shunov [Kor80] via a very involved argument. Later, Sapozhenko [Sap89] gave a simpler (yet
still difficult) proof for the asymptotics. The main tool that Sapozhenko used in this work is now
called (Sapozhenko’s) graph container method, and has been very influential; see e.g. [Gal19]
for an excellent exposition.

Kahn [Kah01] used entropy methods to give an optimal upper bound on the number of in-
dependent sets of a regular bipartite graph. In [Kah02], he extended this idea to the layers of
a graded poset to recover the result of Kleitman and Markowsky in (1.1). Independently, Pip-
penger [Pip99] also gave a slightly weaker bound logα(Bn) ⩽

(
1 +O

(
log3/2 n
n1/4

)) (
n

⌊n/2⌋

)
. Pip-

penger’s work also uses entropy functions, but his approach was more akin to that of [Kle69]. A
shorter proof of a version of (1.1) was also given by Balogh, Treglown, and Wagner [BTW16]
with a weaker error term O

(
logn√

n

)
, using the graph container method.

Carroll, Cooper and Tetali [CCT12] considered the question of counting antichains for the
following natural generalizations of the Boolean lattice: for an integer t ⩾ 2, let [t]n be the poset
consisting of all n-tuples (x1, . . . , xn) of integers in {0, 1, . . . , t − 1} with the partial order ⪯
defined by x ⪯ y ⇔ xi ⩽ yi , for all 1 ⩽ i ⩽ n. Following Pippenger’s approach, they proved
an analogous result for this generalized Boolean lattice:

Theorem 1.1 ([CCT12]). For integers t, n such that 1 < t < n,

logα([t]n) ⩽

(
1 +

11t2 log t(log n)3/2

n1/4

)
N(t, n), (1.2)

where N(t, n) is the size of (one of) the middle layer(s) of [t]n.

We note that the special case of t = 3 was independently considered in [NSS18], in which it
was proved that logα([3]n) ⩽

(
1+O

(√
log n/n

))
N(3, n). The asymptotics for N(t, n) on the

right-hand side of (1.2) was obtained in 1960’s: in [And67] (and, more recently, in [MR08]), it
was proved that for n → ∞ and every t,

N(t, n) = tn

√
6

π(t2 − 1)n
(1 + on(1)) . (1.3)
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Similarly to the Boolean lattice, N(t, n) is a trivial lower bound on logα([t]n). So Theo-
rem 1.1 tells us that even in this generalized setting of [t]n, it still holds that logα([t]n) is asymp-
totically bounded above by the trivial lower bound, as long as t is much smaller than around n1/8

(up to some poly-log terms).
We note that getting the right dependency of α([t]n) on each of t and n has an interest-

ing connection to some Ramsey-type problems, which we will briefly discuss in Section 1.2.
Tsai [Tsa19] gave the following bound which is better than the bound in (1.2) for t ≫ n1/8

(logn)3/4
.

Theorem 1.2 ([Tsa19]). For any integers t, n ⩾ 1,

logα([t]n) ⩽ N(t, n) log(t+ 1).

Recently, Pohoata and Zakharov [PZ24] used the graph container method to treat the case of
constant t, which yields better dependency on n (but dependency unspecified on t).

Theorem 1.3 ([PZ24]). For any integer n ⩾ 2,

logα([t]n) ⩽

(
1 + Ct

log n√
n

)
N(t, n),

where Ct > 0 is a constant depending solely on t.

1.1. Our results

Our first result is an upper bound on logα([3]n) with a better dependency on n.

Theorem 1.4. For any integer n ⩾ 1,

logα([3]n) ⩽

(
1 +

4 log 3

n

)
N(3, n).

We remark that our proof almost identically applies to α(Bn) to improve the right-hand
side of (1.1) to (1 + O(1/n))N(2, n). (Of course, even with this improvement, this bound is
much looser than the actual asymptotics proved by Korshunov and Shapozhenko.) The proof
of Theorem 1.4 was inspired by Kahn’s entropy approach in [Kah02], but Kahn’s result applies
under quite a strict condition on the degrees of the vertices in the bipartite graph induced by two
consecutive layers of Bn. More precisely, any two consecutive layers of Bn form a bi-regular
bipartite graph, but for any t > 2, two consecutive layers of [t]n do not satisfy this condition.

Our approach to overcome this difficulty is roughly as the following: we consider weighted
antichains in a manner that takes into account the degrees of the vertices of the poset. It turned out
that much more careful and delicate analysis were required to handle the weighted antichains, and
to that end, we prove a refined version of Kahn’s inequality for the independence polynomial of a
bipartite graph (Theorem 3.1). We then use it to upper bound the weighted sum of antichains of a
graded poset (Theorem 3.6). The seemingly complicated inequality becomes easier to handle in
the case of equal weights, and analyzing it more carefully on [3]n allows us to obtain Theorem 1.4.

Unfortunately, the proof of Theorem 1.4 does not extend to t > 3 because of the structural
difference of the bipartite graphs formed by consecutive layers of [t]n. However, it is not clear
whether the inequality obtained from Theorem 3.6 itself fails.

Our second result concerns any t and n, whenever n is large enough compared to t.
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Theorem 1.5. There exists an absolute constant C such that for integers t, n such
that 1 ⩽ t < n/(100 log n),

logα([t]n) ⩽

(
1 + C

(t log3 n
n

)1/2)
N(t, n). (1.4)

Theorem 1.5 confirms the very interesting phenomenon that logα([t]n) is asymptotically
equal to its trivial lower bound,N(t, n), for the range of pairs (t, n) even further than what is con-
firmed in Theorem 1.1. We note that the constant 100 in the restriction on t is not important – we
can make it any constant by choosing C appropriately. In the proof, for example, we will see
that the choice of 100 suggests C ≈ 15.

The proof of Theorem 1.5 adapts the beautiful entropy approach in [Pip99]: note that an-
tichains are in 1-1 correspondence with monotone Boolean functions, by mapping each antichain
to the function which equals 0 below each element of the antichain and 1 everywhere else. With f
a random monotone Boolean function on [t]n chosen uniformly at random, we have

logα([t]n) = H(f) ,

where H(·) is the binary entropy function. (See Section 2 for entropy basics.) To bound H(f),
we define a series of auxiliary random variables that determine f , and will bound the entropy
of those auxiliary random variables instead. At the high-level, this approach is similar to that
of [Pip99, CCT12], but we had to input extra insights to the choice of the auxiliary random
variables to obtain the improvements of the error terms both in [Pip99, CCT12].

As a final remark, we do not expect matching lower bounds to our results: in the Boolean
case, α([2]n) is actually much closer to

(
n

⌊n/2⌋

)
than the right-hand side of (1.1) (as proved

in [Kor80], [Sap89]), and there is no reason to believe a similar behavior should not manifest
in [t]n.

1.2. Connection to a Ramsey-type problem

Antichains of [t]n are closely related to another interesting combinatorial problem that we
briefly discuss in this section. Following [FPSS12], for any sequence of positive integers
j1 < j2 < . . . < jl, we say that the k-tuples (ji, ji+1, . . . , ji+k−1) (i = 1, 2, . . . , l − k + 1) form
a monotone path of length l. Let Mk(t, n)

1 be the smallest integer M with the property that no
matter how we color all k-element subsets of {1, 2, . . . ,M} with n colors, we can always find a
monochromatic monotone path of length t. In this language, the celebrated results of Erdős and
Szekeres [ES35] can be written as M2(t, n) = (t − 1)n + 1 and M3(t, 2) =

(
2t−4
t−2

)
+ 1. Fox,

Pach, Sudakov, and Suk [FPSS12] showed that

2(t/n)
n−1

⩽ M3(t, n) ⩽ 2t
n−1 log t for n ⩾ 2 and t ⩾ n+ 2,

and suggested closing the gap between the lower and upper bound as an interesting question.
Answering this question, Moshkovitz and Shapira [MS14] proved the following result.

1We use Mk(t, n) for the notation Nk(q, n) in [FPSS12] to make it consistent with our main theorems.
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Theorem 1.6. [MS14] For every t, n ⩾ 2,

2
2
3
tn−1/

√
n ⩽ M3(t, n) ⩽ 22t

n−1

.

The proof of the above theorem uses the fascinating relationship

α([t]n) = M3(t, n)− 1 for all t, n ⩾ 2

that is also proved in [MS14] and independently in [MSW15]. Moshkovitz and Shapira conjec-
tured that

M3(t, n) = 2Θ(tn−1/
√
n),

and more boldly, asked whether (as n → ∞)

M3(t, n) = 2(1+on(1))N(t,n). (1.5)

Of course, the motivation of this bold question is the fascinating phenomenon proved by Kleit-
man and Markowsky that almost all antichains in the Boolean lattice are subsets of the middle
layer(s). Our second main result, Theorem 1.5, confirms that (1.5) holds for t, n
with t ≪ n

log3 n
as n → ∞ (t is not necessarily fixed), improving on the previous best

range t ≪ n1/8 of [CCT12].
We note that the case where t is much larger than n as n → ∞ remains interesting for

the verification of (1.5) in all ranges, as well as the Ramsey-type problem of Fox et al. when
the length of the path t is much larger than the number of colors. It was recently announced by
Falgas-Ravry, Räty and Tomon [FRRT23] (after we submitted this paper) that this holds, indeed,
for all t, n when n → ∞ .

Organization. Section 2 collects basic properties of entropy. The two main theorems are
proved in Sections 3 and 4, respectively.

2. Entropy Basics

For p ∈ [0, 1], we denote by H(p) = −p log p − (1 − p) log(1 − p) (where 0 log 0 := 0) the
binary entropy function. For a discrete random variable X, we define its entropy as

H(X) =
∑
x

−p(x) log p(x),

where p(x) = P(X = x). Note that by Jensen’s inequality we get

H(X) ⩽ log | range(X)| (equality holds iff X is uniform on range(X)). (2.1)

For any event T , we define the entropy of X given T as

H(X|T ) =
∑
x

−p(x|T ) log p(x|T ),
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where p(x|T ) = P(X = x|T ). The conditional entropy of X with respect to a discrete random
variable Y is

H(X|Y) = E(H(X|Y = y)) =
∑
y

p(y)
∑
x

−p(x|y) log p(x|y). (2.2)

Below are some standard facts about entropy (for their proofs, see, for example, [Gal14]);
for any discrete random variables X and Y,

H(X,Y) = H(X) +H(Y|X), (2.3)

and
if Y determines X, then H(Z|Y) ⩽ H(Z|X). (2.4)

Fact 2.1 (Subadditivity of entropy). For any random vector X = (X1, . . . ,Xn) we have

H(X) ⩽ H(X1) + · · ·+H(Xn).

We will also need a celebrated inequality due to Shearer, which generalizes the subadditivity
property of entropy.

Lemma 2.2 ([GGFS86]). Let X = (X1, . . . ,Xk) be a random vector and for every A ⊆ [k]
let αA ∈ R+. If

∑
A∋i αA ⩾ 1 for all i ∈ [k], then

H(X) ⩽
∑
A⊆[k]

αAH(XA),

where XA = (Xi : i ∈ A).

A derivation of the following elementary fact can be found in [Kah02].

Fact 2.3. Let X be a discrete random variable. Then,

H(X|X ̸= 0) =
H(X)−H(P(X = 0))

1− P(X = 0)
.

3. Proof of Theorem 1.4

As sketched in Section 1.1, our goal is to bound the weighted sum of antichains of a graded
poset where the bipartite graphs induced by two consecutive layers of the poset are irregular.
We will proceed with induction, and to that end, we first extend [Kah02, Theorem 1.2] to bound
the weighted sum of independent sets in an irregular graph. In this setting, we allow the vertices
of one of the parts to have different weights (activities).

For any graph G and any vertex v ∈ V (G), we denote by d(v) the degree of v and by N(v)
the set of neighbors of v. An independent set in a graph is a set of vertices in which no pairs are
adjacent, and I(G) is the collection of independent sets of G.
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Theorem 3.1. Let G be a bipartite graph on A ∪ B with the weight for each vertex x ∈ A ∪ B
defined to be λx ⩾ 1. For v ∈ A, let

dN(v) = min{d(u) : u ∈ N(v)}

and assume that the weight on each v ∈ A is

λv = µ ,

for some µ. Then∑
I∈I(G)

∏
x∈I

λx ⩽
∏
v∈A

[
(1 + µ)dN(v) +

∏
u∈N(v)

(1 + λu)− 1
]1/dN(v)

.

We use the setup in [Kah02] for our proof. For the time being, G = (V,E) is an arbitrary
graph and λ : V → [1,∞) is an arbitrary assignment of weights to the vertices. Set

Z = Z(G, λ) =
∑

I∈I(G)

∏
x∈I

λx.

With each v ∈ V we associate a set Sv ∋ 0 and nonnegative weights αv(s), s ∈ Sv, such that

αv(0) = 1,
∑
s ̸=0

αv(s) = λv,

and the r.v. Xv given by P(Xv = s) = αv(s)
1+λv

satisfies

H(Xv) = log(1 + λv). (3.1)

(As noted in [Kah02], this is possible iff λv ⩾ 1.) We say that a vector (sv : v ∈ V ) ∈
∏

Sv

is independent if {v : sv ̸= 0} ∈ I(G). Finally, let Y = (Yv : v ∈ V ) be chosen from the
independent vectors in

∏
Sv so that P(Y = (sv)) is proportional to

∏
αv(sv).

Remark 3.2. If we define a random independent set I = {v ∈ V : Yv ̸= 0} with Y as above,
then P(I = I) =

∏
v∈I λv/Z for any I ∈ I(G) (because P(I = I) is equal to the probability for

the event that Yv ̸= 0 if and only if v ∈ I).
It was proved in [Kah02] that

H(Y) = logZ. (3.2)

Proof of Theorem 3.1. Let G and the values λx be as in the statement of the theorem, and Y be
the random independent vector defined as above. Our goal is to show that

H(Y) ⩽
∑
v∈A

1

dN(v)

log
[
(1 + µ)dN(v) +

∏
u∈N(v)

(1 + λu)− 1
]
, (3.3)

from which the conclusion of Theorem 3.1 will follow using (3.2). Denote by Qv the
event {Yw = 0 ∀w ∈ N(v)}, and set qv = P(Qv). Note that, by the definition of Y, we
have

H(Yv|Qv) = H(Xv). (3.4)
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Let YW = (Yw : w ∈ W ). Then,

H(Y)= H(YA,YB)
(2.3)
= H(YA|YB) +H(YB)

⩽
∑
v∈A

[
H(Yv|YN(v)) +

1

dN(v)

H(YN(v))

]
,

(3.5)

where the second inequality uses subadditivity for conditional entropy, (2.4), and Lemma 2.2.
The first term in the above sum is

H(Yv|YN(v))
(2.2)
=
∑
ξ

P(YN(v) = ξ)H(Yv|YN(v) = ξ)

(†)
= qvH(Yv|Qv)
(3.1),(3.4)
= qv log(1 + µ),

(3.6)

where ξ ranges over all possible choices for YN(v) and (†) holds because H(Yv|YN(v) = ξ) = 0
unless ξ is the zero vector. The second term in the sum in (3.5) is, with 1A the indicator of A,

H(YN(v)) = H(YN(v),1Qv)
(2.3)
= H(1Qv) +H(YN(v)|1Qv)

= H(qv) + qvH(YN(v)|Qv) + (1− qv)H(YN(v)|Qv)

= H(qv) + (1− qv)H(YN(v)|Qv).

(3.7)

Claim 3.3. For any v ∈ A,

H(YN(v)|Qv) ⩽ log

( ∏
u∈N(v)

(1 + λu)− 1

)
. (3.8)

We now state an easy proposition that we will use to prove the above claim:

Proposition 3.4. For any set B, λ : B → [0,∞), S ⊆ 2B, and probability distribution p on S,

∑
S∈S

p(S)
(
log(1/p(S)) +

∑
x∈S

log λx

)
⩽ log

(∑
S∈S

∏
x∈S

λx

)
. (3.9)

Proof. Set W =
∑

S∈S
∏

x∈S λx and q(S) =
∏

x∈S λx/W . Then the left-hand side of (3.9)
is
∑

S∈S p(S) log(q(S)/p(S)) + logW . By Jensen’s inequality,
∑

S∈S p(S) log(q(S)/p(S)) ⩽
log
(∑

S∈S q(S)
)
= 0, from which the conclusion follows.

Proof of Claim 3.3. Let I be the random independent set defined in Remark 3.2, and
T = I ∩N(v). Observe that H(YN(v)|T = T ) =

∑
u∈T H(Xu|Xu ̸= 0)

Fact 2.3
=

∑
u∈T log λu.

Thus, setting pT : = P(T = T |Qv),

H(YN(v)|Qv) = H(YN(v),T|Qv) = H(T|Qv) +H(YN(v)|T, Qv)

=
∑
T ̸=∅

pT

(
log(1/pT ) +

∑
u∈T

log λu

)
,
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where the last equality uses

H(YN(v)|T, Qv)
(2.3)
=
∑
T

P(T = T |Qv)H(YN(v)|T = T,Qv)

=
∑
T ̸=∅

pTH(YN(v)|T = T )

=
∑
T ̸=∅

pT
∑
u∈T

log λu.

By Proposition 3.4, this is at most

log

( ∑
∅̸=T⊆N(v)

∏
u∈T

λu

)
= log

( ∏
u∈N(v)

(1 + λu)− 1

)
.

The combination of (3.5)-(3.8) gives

H(Y) ⩽
∑
v∈A

[
qv log(1 + µ)

+
1

dN(v)

{
H(qv) + (1− qv) log

( ∏
u∈N(v)

(1 + λu)− 1

)}]
.

(3.10)

The contribution of v is

1

dN(v)

log

( ∏
u∈N(v)

(1 + λu)− 1

)

+
1

dN(v)

H(qv) + qv

dN(v) log(1 + µ)− log

( ∏
u∈N(v)

(1 + λu)− 1

)
 .

Note that only the term in the brackets depends on qv, and the function H(q) + q · R is
maximized at q = 2R

1+2R
. Therefore, the contribution of v is maximized at

qv =
2R

2R + 1
=

(1 + µ)dN(v)

(1 + µ)dN(v) +
∏

u∈N(v)(1 + λu)− 1
,

where R = dN(v) log(1 + µ)− log[
∏

u∈N(v)(1 + λu)− 1].
Inserting this value of qv in (3.10) gives

logZ = H(Y) ⩽
∑
v∈A

1

dN(v)

log
[
(1 + µ)dN(v) +

∏
u∈N(v)

(1 + λu)− 1
]
.
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Let P be a graded poset with levels P1, P2, . . . , Pk. For X ⊆ Pj for some j, write

P<X = {z ∈ P : z < v for some v ∈ X}, M(X) = Pj \X,

PX = {z ∈ P1 ∪ · · · ∪ Pj−1 : z ̸< x ∀x ∈ X}, and PX = PX ∪M(X).

If X is a singleton {v}, then we simply write P<v for P<X . Finally, let

N i(v) = Pi ∩ {y : y > v or y < v}, di(v) = |N i(v)|
and dN i(v) = min{di+1(w) : w ∈ N i(v)}.

When not working with the main poset P , we will be adding subscripts to the notation to keep
track of the poset we are considering.

For a poset P with k levels and λ1, . . . , λk ⩾ 0, define fP (λ1, . . . , λk) recursively as follows:
for any poset Q with one level, fQ(λ1) := (1 + λ1)

|Q|. If P has k ⩾ 2 layers, then

fP (λ1, . . . , λk) :=
∏
v∈Pk

(
(1 + λk)

d
Nk−1(v) + fP<v(λ1, . . . , λk−1)− 1

)1/d
Nk−1(v)

.

For example,

if P = P1 ∪ P2, then fP (λ1, λ2) =
∏

v∈P2

(
(1 + λ2)

dN1(v) + (1 + λ1)
d1(v) − 1

)1/dN1(v) .
(3.11)

Observe that the assumption λi ⩾ 0 easily yields

fP ⩾ 1 , for any poset P . (3.12)

In Theorem 3.6, we prove that fP is an upper bound on the weighted number of antichains
in a graded poset, by applying Theorem 3.1 inductively. One might wish to avoid the nested
products in the definition of fP for the sake of simplicity, but then one would lose track of the
structure of the previous layers. The recursive definition of fP is, thus, crucial for obtaining
Theorem 1.4, and more specifically for the proof of Lemma 3.7.

The following proposition is a key ingredient for the proof of Theorem 3.6.

Proposition 3.5. Let P be a graded poset with k levels, and λ1, . . . , λk ⩾ 0. For any Y ⊆ Pk,
fPY

(λ1, . . . , λk) ⩽ fP (λ1, . . . , λk).

Proof. Let Q = P Y . We use induction on the number of levels k. The assertion trivially holds
for k = 1. For k ⩾ 2,

fQ(λ1, . . . , λk) =
∏
v∈Qk

(
(1 + λk)

d
Nk−1
Q

(v) + fQ<v(λ1, . . . , λk−1)− 1

)1/d
Nk−1
Q

(v)

⩽
∏
v∈Qk

(
(1 + λk)

d
Nk−1(v) + fQ<v(λ1, . . . , λk−1)− 1

)1/d
Nk−1(v)

,
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where the inequality uses the facts that 1
x
log(Ax + B) (A,B ⩾ 0) is decreasing for x > 0 and

that dNk−1
Q

(v) ⩾ dNk−1(v) for any v ∈ Qk: Q is upwards closed in P , hence dkQ(u) = dk(u) for all
u ∈ Nk−1

Q (v) and dNk−1
Q

(v) = min{dk(u) : u ∈ Nk−1
Q } ⩾ min{dk(u) : u ∈ Nk−1

Q } = dNk−1(v).
Furthermore, the induction hypothesis yields fQ<v(λ1, . . . , λk−1) ⩽ fP<v(λ1, . . . , λk−1) for
any v ∈ Qk (because, with Z := Nk−1(v) ∩ P<Y , we have Q<v = (P<v)Z). Therefore,

fQ(λ1, . . . , λk) ⩽
∏
v∈Qk

(
(1 + λk)

d
Nk−1(v) + fP<v(λ1, . . . , λk−1)− 1

)1/d
Nk−1(v)

⩽
∏
v∈Pk

(
(1 + λk)

d
Nk−1(v) + fP<v(λ1, . . . , λk−1)− 1

)1/d
Nk−1(v)

= fP (λ1, . . . , λk)

(the last inequality holds because each extra term is ⩾ 1).

We are now ready to prove the main theorem of this section.

Theorem 3.6. Let P be a graded poset with levels P1, P2, . . . , Pk, and A(P ) be the collection
of antichains of P . For each x ∈ Pi, define λx ≡ λi where λj ⩾ 1 for all 1 ⩽ j ⩽ k. Then,∑

I∈A(P )

∏
x∈I

λx ⩽ fP (λ1, . . . , λk). (3.13)

Proof. We proceed by induction on k. The base case (k = 2) follows from Theorem 3.1
(see (3.11)). Assume the theorem is true for any poset with k − 1 levels and let P be a poset
with k levels. Then for any X ⊆ Pk, we have∑

I∈A(P )
I∩Pk=X

∏
x∈I

λx = λ
|X|
k

∑
I∈A(PX)

∏
x∈I

λx ⩽ λ
|X|
k fPX

(λ1, . . . , λk−1).

Therefore,∑
I∈A(P )

∏
x∈I

λx ⩽
∑
X⊆Pk

λ
|X|
k fPX

(λ1, . . . , λk−1)

=
∑
X⊆Pk

λ
|X|
k

∏
v∈(PX)k−1

(
(1 + λk−1)

d
Nk−2
PX

(v)
+ f(PX)<v(λ1, . . . , λk−2)− 1

)1/d
Nk−2
PX

(v)

(∗)
⩽
∑
X⊆Pk

λ
|X|
k

∏
v∈(PX)k−1

(
(1 + λk−1)

d
Nk−2(v) + f(PX)<v(λ1, . . . , λk−2)− 1

)1/d
Nk−2(v)

⩽
∑
X⊆Pk

λ
|X|
k

∏
v∈(PX)k−1

(
(1 + λk−1)

d
Nk−2(v) + fP<v(λ1, . . . , λk−2)− 1

)1/d
Nk−2(v)
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where (∗) uses the facts that 1
x
log(Ax + B) (A,B ⩾ 0) is decreasing for x > 0 and

that dNk−2
PX

(v) ⩾ dNk−2(v) for any v ∈ (PX)k−1; the last inequality follows from Proposition 3.5
(applied to P<v with Y = (P<v)k−2 ∩ P<X). For each v ∈ Pk−1, define

µv =
(
(1 + λk−1)

d
Nk−2(v) + fP<v(λ1, . . . , λk−2)− 1

)1/d
Nk−2(v) − 1. (3.14)

We have shown that ∑
I∈A(P )

∏
x∈I

λx ⩽
∑
X⊆Pk

λ
|X|
k

∏
v∈(PX)k−1

(1 + µv).

Recall from (3.12) that fQ ⩾ 1 for any graded poset Q, so

µv ⩾
(
(1 + λk−1)

d
Nk−2(v)

)1/d
Nk−2(v) − 1 = λk−1 ⩾ 1.

Now, by applying Theorem 3.1 with A = Pk, B = Pk−1, µ = λk, and µv in (3.14) the weight
for each v ∈ B, we get

∑
X⊆Pk

λ
|X|
k

∏
v∈(PX)k−1

(1 + µv) ⩽
∏
v∈Pk

[
(1 + λk)

d
Nk−1(v) +

∏
u∈Nk−1(v)

(1 + µu)− 1

]1/d
Nk−1(v)

(3.14)
=

∏
v∈Pk

[
(1 + λk)

d
Nk−1(v)

+
∏

u∈Nk−1(v)

(
(1 + λk−1)

d
Nk−2(u) + fP<u(λ1, . . . , λk−2)− 1

)1/d
Nk−2(u) − 1

]1/d
Nk−1(v)

=
∏
v∈Pk

(
(1 + λk)

d
Nk−1(v) + fP<v(λ1, . . . , λk−1)− 1

)1/d
Nk−1(v)

= fP (λ1, . . . , λk),

which completes the induction.

For the rest of this section, we work specifically on [3]n. Write P0, P1, . . . , P2n for the levels
of [3]n. Note that [3]n enjoys the special property that

dN i−1(x) − di−1(x) ⩾ n− i ∀x ∈ Pi. (3.15)

Indeed, assume x has a zeroes, b ones and c twos. The up-degree of any neighbor of x
in Pi−1 is the number of zeroes and ones it has, which can’t be less than the same
number for x; that is dN i−1(x) ⩾ a + b. On the other hand, it is clear that di−1(x) = b + c.
Thus dN i−1(x) − di−1(x) ⩾ a− c = (a+ b+ c)− (b+ 2c) = n− i.

Let P = P0 ∪ P1 ∪ · · · ∪ Pn be the bottom half. Recall that α(P ) denotes the number of
antichains in P .
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Y M(Y)Pn

(0, 0, . . . , 0)

P<Y

Rj0 ̸= ∅

R0 = ∅

P Y =: R

Figure 3.1: The poset P Y .

Lemma 3.7. For any Y ⊆ Pn,

α
(
P Y

)
⩽ 2|M(Y )|(1+ 2 log 3

n ). (3.16)

Proof. Let R := P Y and Rj = R ∩ Pj for 0 ⩽ j ⩽ n. Note that the Rj’s are the levels of R,
with possibly some empty sets in the beginning. Let j0 be minimal such that Rj0 ̸= ∅. See
Figure 3.1 for the schematic presentation of R. We will prove that for any j ⩾ j0 + 1,

fR<v(1, . . . , 1) ⩽ 2d
j−1(v)(1+1/d

Nj−1(v)) ∀v ∈ Rj. (3.17)

We first show that (3.17) implies the lemma. We have

α(R)
(3.13)
⩽ fR(1, . . . , 1) =

∏
v∈Rn

(
2
d
Nn−1
R

(v) + fR<v(1, . . . , 1)− 1
)1/d

Nn−1
R

(v)

⩽
∏
v∈Rn

(
2dNn−1(v) + fR<v(1, . . . , 1)

)1/dNn−1(v)

(3.17)
⩽

∏
v∈Rn

(
2dNn−1(v) + 2d

n−1(v)(1+1/dNn−1(v))
)1/dNn−1(v)

⩽
∏
v∈Rn

2 · 31/dNn−1(v) =
∏
v∈Rn

21+log 3/dNn−1(v) .

The last inequality is obtained using (3.15): Letting a = dNn−1(v) and b = dn−1(v), we
have a− b ⩾ 0. Thus(

2a + 2b(1+1/a)
)1/a

= 2
(
1 + 2b−a+ b

a

)1/a
⩽ 2

(
1 + 2

b
a

)1/a
⩽ 2 · 31/a.

Finally, the lemma follows by noticing that dNn−1(v) ⩾ n/2 for any v ∈ Rn.
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Proof of (3.17). We proceed by induction. For the base case, for any v ∈ Rj0+1, we trivially
have

fR<v(1) = 2d
j0
R (v) ⩽ 2d

j0 (v) < 2d
0(v)(1+1/dN0(v)).

Next, assume the statement is true for any vertex up to layer j − 1. For any v ∈ Rj,

fR<v(1, . . . , 1) =
∏

u∈Nj−1(v)

(
2
d
N

j−2
R

(u) + fR<u(1, . . . , 1)− 1
)1/d

N
j−2
R

(u)

⩽
∏

u∈Nj−1(v)

(
2dNj−2(u) + fR<u(1, . . . , 1)− 1

)1/d
Nj−2(u)

(†)
⩽

∏
u∈Nj−1(v)

(
2dNj−2(u) + 2d

j−2(u)(1+1/d
Nj−2(u))

)1/d
Nj−2(u)

⩽
∏

u∈Nj−1(v)

2
(
1 + 2d

j−2(u)−d
Nj−2(u)

+dj−2(u)/d
Nj−2(u)

)1/d
Nj−2(u)

(3.15)
⩽

∏
u∈Nj−1(v)

21+1/d
Nj−2(u) ,

where (†) uses the induction hypothesis. But for every u∈N j−1(v), we have dNj−2(u)⩾dNj−1(v):
as the up-degree increases when we traverse a chain towards lower layers, dj−1(w) ⩾ dj(u) for
all w ∈ N j−2(u), which means dNj−2(u) ⩾ dj(u) ⩾ min{dj(u) : u ∈ N j−1(v)} = dNj−1(v).
Hence, the above expression is at most 2d

j−1(v)(1+1/d
Nj−1(v)).

Proof of Theorem 1.4. For I ∈ A(Pn+1∪. . .∪P2n), let X = X(I) ⊆ Pn be the “lower shadow”
of I on Pn, namely, X = {v ∈ Pn : ∃ w ∈ I : v < w}. Then

α([3]n) =
∑
Y⊆Pn

|{I ∈ A(Pn+1 ∪ . . . ∪ P2n) : X(I) = Y }| · |A(P̄Y )|

(3.16)
⩽

∑
Y⊆Pn

2(1+2 log 3/n)|M(Y )||{I ∈ A(Pn+1 ∪ . . . ∪ P2n) : X(I) = Y }|

⩽ 22 log 3|Pn|/n
∑
Y⊆Pn

2|M(Y )||{I ∈ A(Pn+1 ∪ . . . ∪ P2n) : X(I) = Y }|

= 22 log 3|Pn|/n|A(Pn ∪ . . . ∪ P2n)|
(3.16)
⩽ 22 log 3|Pn|/n2(1+2 log 3/n)|Pn| = 2(1+4 log 3/n)|Pn|,

where in the last step, (3.16) is applied for Y = ∅ in the dual poset of Pn ∪ . . . ∪ P2n, which is
simply P0 ∪ . . . ∪ Pn.
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4. Proof of Theorem 1.5

The proposition below immediately follows from the proof of [dBvETK51, Theorem 2].

Proposition 4.1. For any t, n ⩾ 1, the poset [t]n admits a chain partition C = {C1, C2, . . . , CN}
of size N = N(t, n) that satisfies the following property:

if y is immediately below x in a chain C ∈ C, then y ⋖ x in [t]n. (4.1)

We also recall from [MS14] the following easy lower bound on N(t, n) that works for all t
and n.

Lemma 4.2 (Lemma 2.6, [MS14]). For all t, n ⩾ 1,

N(t, n) ⩾
2tn−1

3
√
n
.

An element x ∈ [t]n = {0, 1, . . . , t−1}n is called a point. For l ∈ {0, 1, . . . , t−1}, let dl(x)
be the number of coordinates of x equal to l. We say x is low if dl(x) < n

2t
for some 1 ⩽ l ⩽ t−1

and high otherwise. We also say a chain Cj ∈ C is low if it contains a low point and high
otherwise.

Let (F(t, n),≺) be the poset on the family of monotone Boolean functions on [t]n

where f ≺ g iff f(x) ⩽ g(x) ∀x ∈ [t]n. Observe that |F(t, n)| = α([t]n). Thus, with f a
uniformly chosen element of F(t, n), we have

logα([t]n)
(2.1)
= H(f).

Following the approaches in [Pip99] and [CCT12], we will define a series of random variables
that determine f in order to bound H(f). In what follows, we use bold-face letters (f ,y,Y, . . .)
for random variables, while plain letters (f, y, Y, . . .) represent values that the corresponding
random variable takes.

For f ∈ F = F(t, n) and j ∈ [N ], let γj(f) = |{x ∈ Cj : f(x) = 1}|. Note that (γj(f))j
determines f . But exposing γj(f) for all j is too expensive, so we will make a random choice on
which chains to expose. To that end, first define yj as follows. Let p = [t log((t− 1)n)/n]1/2.
If the chain Cj is high, then P(yj = 1) = p = 1 − P(yj = 0); if Cj is low, then yj ≡ 1.
Having yj = 1 means we will expose γj(f). Define Ỹj(f) = yjγj(f).

As in [Pip99, CCT12], in order to complement (Ỹj(f))j , we introduce another random vari-
able. Write Ỹ = (Ỹj)j (and similarly for Ŷ later). Given Ỹ(f) = Ỹ , let f̃ be the smallest in F
that satisfies γj(f̃) ⩾ Ỹj for all 1 ⩽ j ⩽ N , and set Ŷj = γj(f) − γj(f̃) (⩾ 0). Observe that f
is determined by the pair (Ỹ (f), Ŷ (f)), so in particular,

H(f) ⩽ H(Ỹ(f), Ŷ(f)) ⩽ H(Ỹ(f)) +H(Ŷ(f)).

(Note that, given f , the randomness of Ỹ(f) and Ŷ(f) is inherited from y.) Therefore, the next
two assertions complete the proof of Theorem 1.5. Here and for the rest of the section, we will
use ϵ, ϵ′, . . . for small (absolute) constants.

H(Ỹ(f)) ⩽ (2 + ϵ)N
t1/2(log((t− 1)n))3/2

n1/2
, (4.2)
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and
H(Ŷ(f)) ⩽ N

(
1 +

(4 + 2ϵ′)t1/2(log(t1/2(t− 1)n))3/2

n1/2

)
. (4.3)

The following handy lemma is given in [Pip99].

Lemma 4.3 (Pippenger [Pip99]). Suppose the random variable K takes values in {0, 1, . . . , n},
and P (K ⩾ k) ⩽ q for some k ⩾ 1 and 0 ⩽ q ⩽ 1. Then

H(K) ⩽ h1(q) + log k + q log n,

where

h1(q) =

{
−q log q − (1− q) log(1− q) if q ∈ [0, 1/2];

1 if q ∈ [1/2, 1].

For future reference, we remark that

h1(q) ⩽ −2q log q for q ⩽ 1/2. (4.4)

Proof of (4.2). If Cj is low, then we apply the naive bound H(Ỹj(f)) ⩽ log((t − 1)n + 2).
If Cj is high, then noticing that Ỹj(f) ⩾ 1 implies yj = 1, we apply Lemma 4.3 with k = 1
and q = p to obtain

H(Ỹj(f)) ⩽ h1(p) + p log((t− 1)n+ 1).

Therefore, with M the number of low chains in C,

H(Ỹ(f)) ⩽
N∑
j=1

H(Ỹj(f)) ⩽ M log((t−1)n+2)+(N−M)(h1(p)+p log((t−1)n+1)). (4.5)

Since each low chain contains a low point, we may bound M by the number of low
points. Any such point satisfies dl(x) < n

2t
for some l ∈ {1, . . . , t − 1}. Let x be a

uniformly random point in [t]n; equivalently, each coordinate of x is chosen uniformly
and independently from {0, . . . , t − 1}. Then for each l ∈ [t − 1], the Chernoff bound yields
that P(dl(x) < n/(2t)) ⩽ e−n/(8t), hence by the union bound,

M ⩽ (t− 1)tne−n/(8t) ⩽ tn+1e−n/(8t). (4.6)

By combining (4.4) (note p ⩽ 1/2 since t ⩽ n/(100 log n)), (4.5) and (4.6), we have

H(Ỹ(f)) ⩽ tn+1e−n/(8t) log((t− 1)n+ 2) +N(−2p log p+ p log((t− 1)n+ 1))

⩽ (2 + ϵ)N
t1/2(log((t− 1)n))3/2

n1/2
,

where the last inequality uses Lemma 4.2 (and that t ⩽ n/(100 log n)).
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Proof of (4.3). For each j ∈ [N ], let qj = P(Ŷj(f) ⩾ 2). By Lemma 4.3 with k = 2 and q = qj ,
H(Ŷj(f)) ⩽ h1(qj) + 1 + qj log((t− 1)n). Therefore, with Q :=

∑N
j=1 qj ,

H(Ŷ(f)) ⩽
∑
j

H(Ŷj(f)) ⩽
∑
j

[h1(qj) + 1 + qj log((t− 1)n)]

(∗)
⩽ Nh1(Q/N) +N +Q log((t− 1)n) ,

where (∗) follows from the concavity of h1 (so 1
N

∑
j h1(qj) ⩽ h1

(∑
j qj/N

)
). We will prove

that
Q ⩽

(2 + ϵ′)t1/2(log(t1/2(t− 1)n))1/2

n1/2
N. (4.7)

Let’s first show that (4.7) implies (4.3). By (4.4) (and Q/N ⩽ 1/2),

h1

(
Q

N

)
⩽

(2 + ϵ′)t1/2(log(t1/2(t− 1)n))1/2

n1/2
log n,

thus

H(Ŷ(f)) ⩽ N

(
1 +

(4 + 2ϵ′)t1/2(log(t1/2(t− 1)n))3/2

n1/2

)
.

The rest of this section is devoted to proving (4.7). To this end, we first define an event that
is implied by Ŷj(f) ⩾ 2. Given f and Ỹ (f), say a point x ∈ Cj is bad if

1. x is high (that is, dl(x) ⩾ n
2t

for all 1 ⩽ l ⩽ t− 1); and

2. f̃(x) = 0; and

3. f(y) = 1 for y ∈ Cj that is immediately below x.

Define rx to be the probability (w.r.t. f and y) that x is bad. Notice that if Ŷj(f) ⩾ 2, then the
chain Cj must contain a bad vertex. Therefore,

Q =
∑
j

qj ⩽
∑
j

P(some x ∈ Cj is bad) ⩽
∑
x

rx.

Set s = p−1 log(t1/2(t − 1)n) = (n/t)1/2(log(t1/2(t − 1)n))1/2. Say y is a k-child
(k ∈ {1, . . . , t − 1}) of x if y ⋖ x and y differs from x in a coordinate that has the value k
in x. Given f , define a point x to be heavy if there exists some k ∈ {1, . . . , t − 1} for which x
has at least s of k-children y with f(y) = 1, and light otherwise. Say x is occupied if f(x) = 1.

Given x ∈ [t]n, let Cx ∈ C be the chain containing x, and y = y(x) be y ⋖ x and y ∈ Cx.
Such y exists by Proposition 4.1 unless x is the smallest in Cx. If x is the smallest in Cx, then
write y(x) = ∅. Note that

if x is bad, then x is high and occupied, y(x) ̸= ∅, and f(y) = 1. (4.8)

For convenience, denote by Qx the event that x is high, occupied, and y(x) ̸= ∅. Then by (4.8),
rx = P(x heavy and bad) + P(x light and bad)

⩽ P(x heavy and bad) + P(x light, Qx) · P(f(y) = 1|x light, Qx).
(4.9)

We will bound each term in the expression above.
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Bounding P(x heavy and bad). Say x is k-heavy for k ∈ {1, 2, . . . , t− 1} if x has at least s of
k-children y with f(y) = 1. In order for a k-heavy x to be bad, each of the chains Ci containing
the k-children y with f(y) = 1 must have yi = 0, which happens with probability at most 1−p.
Therefore,

P(x heavy and bad) ⩽
∑
k

P(x k-heavy and bad)

⩽
∑
k

P(x bad| x k-heavy) ⩽ (t− 1)(1− p)s ⩽ (t− 1)e−ps =
1

t1/2n
.

(4.10)

Bounding P(f(y) = 1|x light, Qx). Suppose y is a k-child of x for some k, and let Nk(x)
be the set of k-children of x. Consider Sn, the group of permutations on [n]. For π ∈ Sn,
π acts on x ∈ [t]n by π(x) = (xπ(1), . . . , xπ(n)) and on f ∈ F by π(f) = f(π(x)).
Let Stab(x) = {π ∈ Sn : π(x) = x}, noticing that Stab(x) acts transitively on Nk(x).
Therefore, for each f ∈ F , the fraction of elements g in Orb(f) := {π(f) : π ∈ Stab(x)}
with g(y) = 1 is precisely |f−1(1) ∩ Nk(x)|/|Nk(x)|. Given that x is high, light and occu-
pied, |Nk(x)| ⩾ n/(2t) and |f−1(1) ∩ Nk(x)| ⩽ s. Finally, {Orb(f) : f ∈ F} partitions F .
Therefore,

P(f(y) = 1|x light, Qx) ⩽
s
n
2t

=
2t1/2(log(t1/2(t− 1)n))1/2

n1/2
. (4.11)

Bounding
∑

x P(x light, Qx). Given f , write R(f) for the set of points that are light and sat-
isfy Qx. Say x is marginal if x is occupied, y(x) ̸= ∅, and f(y) = 0. Then

P(x non-marginal|x light, Qx) = P(f(y) = 1|x light, Qx)

(4.11)
⩽

2t1/2(log(t1/2(t− 1)n))1/2

n1/2
,

so,

E[|{x : x marginal, light, Qx}|] ⩾
(
1− 2t1/2(log(t1/2(t− 1)n))1/2

n1/2

)
E[|R(f)|].

However, for any f , the number of marginal points is at most N since each chain has at most
one marginal point. Therefore, (using the fact that 1/(1− x) ⩽ 1 + 2x for x ∈ [0, 1/2],)

∑
x

P(x light, Qx) = E[|R(f)|] ⩽
(
1 +

4t1/2(log(t1/2(t− 1)n))1/2

n1/2

)
N. (4.12)

Now, by combining (4.9), (4.10), (4.11), and (4.12), we obtain that

Q ⩽
(2 + ϵ′)t1/2(log(t1/2(t− 1)n))1/2

n1/2
N.
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