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Richard C. Brower
Laboratory for Nuclear Science
Massachusetts Institute of Technology

- Cambridge, Massachusetts
and
. J. He. Weis*
T : . Lawrence Radiation Laboratory

University of California
Berkeley, California

April 7, 1970
ABSTRACT

" We extend the model for conserved vector currents

' in the dual résonance model to incluide the infinite set of

"universally coupled vector mesons. One~ and two-current

amplitudes satisfying current algebra and factorizing on the

M highest trajectories are constructed for a form factor

‘,:falling like (q2)-M. Physically acceptable completely

4factorizéd amplitudes'are not obtained in the limit

M — », however. Complete factorization and unsubtracted

 dispersion relations in q2 for single~current amplitudes

‘are shown to indeed imply exponentiaily fallihg form factors.

N .

_However, we then prove .that no acceptable completely

factorized two-current amplitudes can be constructed from

a current coupling only to the universal vector mesons.
&
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I. INTRODUCTION
Thg successful constructioh of a dual Reggeized resonance model .
(DRM) férvhadronié amplitudesl Sﬁggests the poésihility of a similar
model fbf amplitudes ipVolving theveleétromagne£ic énd.weak éurfents.
in the casé‘bf axial cﬁrrénts, however, thé preséﬁt_dual N-¥partiéle
‘amplitﬁdeé'Suffer aﬁ obviouS’and fatal fiéw: taken as ampiiﬁudes for
N .pioné;_they fail td vanish for pi“.—ao‘ (exqepf for N = 4).
Conseqﬁently, fhe formulation of a model for a.physically reasonablé
axial éurreht with a pion—pole—dominated divergence requireé é simul-
tanequs‘réfbrmulatioﬁ'of the hadronic model.

. For vectér cﬁrrents, on fhe‘other hand, the situation is more
promising._ A fundamental réquirement for the existence of a physically
acceptabie]vector-meson-dominated conserved cufrent is the existence
of univérsally coupled vector ﬁésons, since sﬁch mesons give the only
contribution for soft currents.'(qi“ —-0) and provide the full charge

.coupling. This requirement is met by the DRM, éince as we have pfeviously
shown,2 the -lowest mass vector meson coupleé_universally.B' Furthermdre,
assuming_the domiﬁance of this vector meson, Qe~have been able to
constructgldual amplitudes for one current [Vc“(q)]':anditwb currents
[Maﬁuv(ql’qz)] plus N sﬁinléss hadrbns that obey exacfly‘the current

algebra divergence condition,
(33% s . v : ' :
qlP- Mab (ql}qg) - 1 fabc VC (ql + q2) t4 ’ » . (l'l)

and factorize on all leading trajectories.
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in order to satisfy factorization for hoﬁléading trajectories
and obtaih more rapidly falling form factors; it is natural to iﬂclude
poles in: q2' corresponding to'higher méss Vecfdr mesoné. Here we
extend.our previous model to include all the vector mesoﬁs in the DRM
which cbuplé universélly, i.e., the lowest nass Vecfér mééon and its
recurrénceé, one at each mass' még = m2 +1 +.ﬂ .(E =lO, 1, 2, ...).h
-Since the iow*lying tfajectories in the DRM have a very large degeneracy,
these vector mesoné are.énly a small subset of the.total, but, as notéd
above,-they play a particulariy vital role in models for currents.

Applying generalized.Véctor—meson dominance fdr thése'mésons,
we can construct one- and'two—currenﬁ amplifudeé.that.(i) obey the |
current algebra condition, (ii) factorize on the“ M highest trajectories,
and (iii) have form factors that fall like (a°)™. oOn the other hand,
if only leading tréjecfofy facfofization is réquired, the current
algébra andition can be satisfied for arbitrary form'factors, as
demoﬁstraﬁed in Appendii B beiow. |

YWe feel that these results give a goodvindication of the power
of factoriiation in deterﬁining the structure of currents in zerq—width
models and suggest that in a full solutiqn to the problem form factors
.will f;lilexponentially. However, the‘limit Moo= 6f our amplitudes
does not léad to a full éolution. Indeed, we prove ﬁhat complete
factorization cannot be obtained for cufrents satisfyingvdur require-
ments (see Sec., II and Figs. 1 and 2), if oniy the Universaily coupled

vector mesons are included. If factorization of MFV in channels

containing a single current (Fig. 2 ¢) is imposed, form factors are
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required to be exponential, but the reéultant ampiitude develops
unphysicai'poles in the two éurrent channel which is dual to the single-
current channels.” o

 Therefore approximate solutions, sucﬁ as thosé'presented here,
are the MOst»ﬁhat can be obtained if only the unive}sallyvcoupled vector
ﬁesons are iﬁcluded.' However, a‘completely factorizable solution may
be obtainébie if somé or al11 of the other vector meéons are included.
The majér'difficulty with this'liés inuthe treﬁendoué number of eXisting
paramétérs (the»current-vectpr—meson coupling conéfants, fn--see
Fig._l;a) that are dpparently arbitrary if only singlé;current ampli-~
tudes are cénsidered, but are in fact severely conétrained in a non-
obviouslﬁéﬁner byvthe psnnection'of these ampliﬁudes to ﬁhe two-current
aﬁplitudés_through factorizdtion (Fig. 21c)n ' In the conclusion Qe
discﬁss:briefly the full problem and suggest some possible ways of
‘formulating it in a general manner. o

‘In Séc. IT we review the properties of éurfent amplitudes‘and
.the strong conséquences duality has for them. Weviﬁtroduce a general
operator.nétation for currents. The divergence (Ward) identities.in the
DRM.whiqh_are essential to the construction of current amplifudes are
discﬁséed in detail in Appendix A. We then discuss the ﬁroperties of
the current algebra parameterization with M highest trajectoriesv
factorizable. The details are given in Apéendices B and C. In Sec. IIT,
we use a-éystematic approaéh to the construction of factorized current
amplitudes in order to demonstrate the insufficiéncy of the universally

coupled vector mesons: the two current amplitudes are constructed from
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'the single—current amplitudes by use of Quadratic factorization. Finally,
some general comments on dual models for currénté and the work of other

authorsé—lo are made in Sec. IV.
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IT. PARTTALLY FACTORIZABLE CURRENT ALGEBRA AMPLITUDES
We seek here,'as in IT, currents consiStenf with the simplest

dual resohahce model for mesons:: the hadronic dmplitudes are products

of orbital factors, B(pl,-Q-pN) (N-point beta functions),l and SU(3)

internal symmetry factors,ll %Tr(xlxg"'xN), summed over permutations .
of the pérticle momenta (pi).u. Of coﬁrée, éli the existing hadronic
models are.at the moment rather conjectural,and it is possible that

only new models will adﬁit cénsistent vector cufrents. In any

case, wé_bélieve our methods have quite generaibapplicability: for
example, fhe existence of universally coupled vector mesons follows with

only very natural,weak restrictions on the trajectories in the N-point
12

beta functions.

We note one feature of the hadronic model which has vital
importance in the construction of current amplitudes. The hadronic
spectrum.l5 is in fact smaller than that exhibited éxplicitly by the
operatorvformalism of FGV:LLL because certain "spurious"” states actually
do not"coupleog’15 We will insure.the absence of such states by using
the modified vertex function,15 G(p) which has no coupling to spufious
statesg

Before describing the partially factorizable current algebra

parameterizations, we discuss briefly some of the general properties

of dual current amplitudes. For more extensive discussion the reader

is referred to I.
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A, Pro?erties of DuaivVector Current;Amplitudes
Tﬁevassumption that current amplitudes,sétisfy planaf duality
has impoftant C§nsequences because thé divergencé éonditionsv
can be.appliéd to each term in the dual decomposifidn of an amplitude;2
Thus CvC iﬁplies,for each term of the single cufrent'amplitudel6 (see
Fig. 3),

a, v, M@= 0. (2.2)

.As 'qg 490,'this term has just two soft poles,

T n m
4" * 2Pp(y_1) 4" * 2Pp(4)

@+ pP(i-l)>2 - m @ * _pP(iDE - e Ahadron |

2 .
Vi,P (Q.) -
and clearly satisfies (2.1).
For the two-current terms with adjacent currents there is only
one soft pole and fhus the divergence in 9y is nonvanishing as
- 0. Eyvuse of‘CVC and quadratic factorization'(Fig. 2 c), this can be

 extended to qu =0, q22'= t and all-kid, implying a J =1 fixed

. qlu
pole in thé t channel. This yields the usual right—sigﬁature fixed.
poles in isospin antisymmetric amplitﬁdes and in addition wrong
signatﬁre'fixed poles in isospin symmetric amplitudeé, a stronger
result than that which obtains without duality (for the casé of two
hadronéithis actually éan be shown with just the assumpﬁion of disper-
sion rélatibns for signatured amplitudes).
Iﬁ tﬁe‘remainder of this paper exotic resonances are assumed
to bé ab'sent_.l7 Duality and current algebra (l;l) then give the
' 6

particularly simple divergence conditions (see Fig. h)l
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V . . . .
9 ng,P<ql’q2) = 0, (1 %,J) L (2.2)
and
v v -
p Mgi,P(ql’qQ) - Vi,P (ql +4)
B | (2.3)
v : L 1 n
Mgi,P(ql’QQ)qev = -V p (e tay) .

These adtually hold independéntly of current algébfa for qlg ; 0 and
q22 = ﬁ.A We remark thatvit is quite natural that only the adjacent
cdrrénﬁ:terms.havé fiXed poles; since.they are the Oniy énés with
sinéulafities ip the two-current (t) channel’whefe,fixed poles occur.

As we found in IT, the nonadjacent current terms automatically satisfy

,(2.2) and need not be considered further.

‘iﬁjSeé..I we héve briefly.menfioned'the strong consistency
éondition§ the hadronié amblitudeé place on the current amplitudes.
fhese arevshown diagfématicaliy in Figs. 1 and 2. We hdve alfeady
emphasized the power of the quadratic factorization qonétraint (Fig. 2 c),
and our exﬁlicit mddels alsb show this élearly. ' The linear factorization
constraints (Figs. 1 b and 2 b) are weaker, buﬁrwill play'an important
réle ih Sec. III; The determination of the current ampiitudés by the
vectof-méson amplitudes through unsubtracted»disﬁersién relations (USDR)
in q2_ (Figs. 1 a and 2 a) means that they can be expecfed to |
-possésé mény of the same properties; é.g., Regge’behaviof, duélity (pole-
dominated USDR in subenefgies), etc. However, since the sum over vector

mesons must in fact be infinite, the possibility of nonuniformities in



-8- o  UCRL-19750

convergénce must be kept in ﬁind.v Indeed, the éxiétence of a fixed

pole iﬁ the:two-current amplitude which cannot Bé;present in the vecfor-

. meson amﬁlitudes;implies such a qonuniformity.' On the othervhand, there
seems to be no reason why duality should be violated; the.current algebra ‘
divergence condition is not in conflict with duality, i.e., it does not

require that any invariant amplitude not satisfy USDR in the'subenergies.l

B. Operator Approach to Currents
In order to implement these consistency conditions, wé find it
convenieht to use the operator formalism. All the intermediate states

in Figs'lsand 2 have the formlu

x o
In) = ﬁ [a‘(*:)],lf/(xrz)?lm

' 2 . . s
"at mass m- +n, n>RE z:r_xr. This rich spectrum contains many

. vector mesons: a%;)|0> and many more formed from contraction of higher

HVAC M

rank tensors with g“v, € , and q .:
| ~ The lowest mass vector meéon (m2 + i),- a%;)[0>, used in the
model of II, recurs at m2 + é, m? + 3,*°+, These mesons play a unique “
 ro1e because theirﬁsPin-one parts are exactly conserved even off the mass
shell;. Theif.amplitude to N spinless partidlés is thus conserved;g’15

9, B“(Q)‘;io; where |
(B9 = Ve ey sl (2.1)

with



-9- S UCRL-19750

V(o) D7) Vipy) <o V(o) o)

i

e 2 -
v(p,) D(R,X, %) V(p,) ** V(py)|0)
Conservation follows from the fact that
1,0/0V2 2y + ¢#1] = (Ols(@)

is tﬁe firet epuinUS state generated by the spufious state‘operator
' S(q)l9 (see Appendlx A), and thus has vanishing coupling to |p).

These unlversally coupled vector mesons can be used to construct
COhéerved'vector current amplitudes. Thus,'as"will'be shown in Sec. IIT,

the "cufrentvoperator”
- 9”(@1) = F@)V2 2yt + ] [ - (2.5)

is conserved and generates the couplings (OIS&“(q) V(p |x> of the
current fo a spin-zero particle (p) and an ex01ted state Ix) (o +q)-
It obe&s USDR in q2 if F(qgj falls faster than any power as
|q2| - oo, ﬁote the crucial role the vertex V plays: it both
_eliminates spurious excited states |xs) and ineures current conserva-
| tion.. The - oneFtbfone relationship between current conservation and
absence of spurioﬁs states is also seen clearly in the calculations of
Sec. TIT.. |

More‘general»conserved currentsrcan be censtructed from
operators 1ike (o 6% - o"0") ar)"s acagy ey - et ey gy’

ete. Indeed the fundamental divergence conditions are easily put in
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: algebraic form. Condition (2.1) becomes
q, S}“(q) - W, o (2.6)

where qé} is some operator which, like §, satisfies (Ok{)[p) =0,

and (2.§)fbecomes
Blag) Us,) 2 Flog)ee0 T(s) Pla)
- o) D 9(ep) D Vo) Glay +0) 5 e

to within térms which have vanishing ]O)- matrix elements. This
‘formulatiénbbf fhe conditions is undoubtedly much_mdre general than

‘the specific N-point beta function model considered here. The difficulty
v with solving fhem is that (2.7) constrains the huge class of éolutions

to (2.6) very strongly but in a very nonobvious ﬁanner. For the

remainder of this paper we make the approximatioh_(2.5).

C. Partially Factorizablé.Soluﬁioﬁs |

vwith the restriction to dominance by the universally céupléd
vector mesbné, we can construct approximate solutions to (2.1) throdgh
(2.3) [alternatively, (2.6) and (2.7)], if we allow violations of
factorization on loﬁ lying trajectories. With this restriction,Completé
factorization cannot be obtained,as we show in Sec. III. Here we
discuss the important features of the approximate solutioné; the
mathematical details are relegated to Appendices B and C.

“In II We gave amplitudes with single Vector-meson.poles which
satisfy the current algebra divergence conditions and factorize on

leading trajéctorieso If only leading-trajectory factorization 1is
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required, this‘can be generaiized to includé gll-uqiversally coupled
Vectbr mesons with arbitrary coupling cqnstants 'fn (see A?pendix B).
.More interesting,»however, are the_currenﬁ algebra amplitudes
which factorize on all trajectories lying less than M units below the
leading,trajectory and have theﬁform‘factor'r
o R - -
F (a®) = ) - BeEE e @O )

~O m + 1 + 8 ' 4" w

(see Appendix C). This model, which satisfies essentially all the other
reQuireménts discussed above, is obtained by truncating the expansion

(A.4) for V after M terms to yield V. (see Eq. C.3). The factoriza-

M
tion of the single-current amplitude is then violated by the presence of
spurious states on trajectories that are M or more units below the leading
one. We note also that the current matrix element for a spinless

particle and an excited state on a trajectory k units below the

leading trajectory in general behaves like

R ) (@) ~ @Mk o (2.9)

2 .
as q - o,
Factorization is violated in a more serious manner by the tWo—A
current amplitudes. These are written, following Brower and Halpern2o

and II, as the sum of three terms

Wapa,) = wMV(ag,a,) 1 a,) it (ag,a,) L (2210)

SRY

The terms MH“V and MC“V are purely Regge behaved; Mﬁ contains
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all the:yecfor—meson poles and MC“V caﬁcels its,unwanted Regge -
behaved‘aivérgencé. The exacﬁ cﬁrrent élgebra aivérgence comes from
MFP“V,-Which has fixed poles in J,. ‘Thé.term 'Mﬁuv is constructed by
using ‘GM and has contributions from spurious Stgtes Qn‘trajectories
displaéed»by M units or.more° ‘The sum MCuV.+'MFé“v contributes only
to such trajectories and the contribution is badly nonfactorizable.
Furthérmore, since this piécé has no poies.in 'q?,vit éorrespbnds to
subtractiéhs in . the q2 diépersion relations éontrary to our require-
menté._'This fact,along with (2.9);means that fhé currenf algébra sum
rule.is-safisfied.uniformly in .qgl'aﬁd is saturatedbfor large q2' by
the loﬁ lying ﬁohfactorized poles. This hints-at the failure of this
parameteriéation as M —>w?l In fact,in this limit MC“V +'MFP“V would
have no poleé in ki2 (Fig. 2 ¢). Since it is Regge behaved for |
kie—;—w and nonzero, it must violate Regge behavior for ki2_9+m.

' We believe that more general parameterizations with the M
highest'tfajectories factorizing can be constructed with only the
condition that F(qe) decrease at least.as rapidly aé v(qg)-M. This
éonnéction between the asymptotic beha#ior of form factors and factoriéa-

tion is very suggestive--but only suggestive, due to the negative result

of the fo_llowing_sectiono
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III. INSUFFICIENCY OF UNIVﬁRSALLY COU?LEﬁ_VECTOR MESONS
We first construct the single-current aﬁplitudes‘assuming

dominance’ of the universally coupled vector mesons and find that factor-
ization and unsubtraétgd dispersion relations in 'q2 imply exponehtial
fofm factors. The two-current amplitudes are then constructed from the
singleféufrent amplitudes and are found to possess unphysical singu-
laritiéé which violate linear factorization.

' Thé complete determination of the two-current émplitudes by the
single?cﬁffent amplitudes follows from quadratic factorization and

unsubtracted dispersion relations which imply22 (see Fig. 2 '¢c)

IJ' LRI v s 00
Vi (GsPyston5p) V(o 050 ee,py50,)
- K 2 -m?2 | o
i on

Muv“/(qE’pl’ T ’pN’gl)' = Z

(3.1)

. | | . . ‘v 5
where. n labels the full spectrum of internal states in the ki

channel (ki =Qy +t Py ko pi). We remind the reader that, although

VnIJ is exactly divergenceless on-mass-shell (kig = mng) and in the
eXpansibn
ST e _ gty (0) by (1) L., by (1)
Vo (@0p,ensopy) = @ VT 4 py TV T e ey TV

. (3.2)
each invariant amplitude, Vn(z), is evaluated on-mass-shell, the

L-vectors allow nonzero divergence off-mass-shell,

' .2 2 -
qlJ- Vnu(Q)Pl,""Pi) = (.ki - m, ) Dn . (3.3)
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Consequently, both MPV and its divergence are determined entirely by
the on-mass shell amplitudes V K, o
A._ Single-Current Amplitude and Exponential Form Factors
‘A likely candidate_for the single-current amplitude 1825
v,(a,py,00p) = Fla ><o|n/3a(1) +qu<pl> D-++¥(p,) |2}
T (3.1)

since‘the Vertex G eiiminates spurious,states-and makes Vju exactly

conserved (see Eqs. A.l and A. 5) Furtheg in ordef-to compensate.the
polynomials.in q2 introduced by v (see Eq. A h), one suspects that
F(q ) must fall faster than any pouer. We now demonstrate that this is
indeed the case. |

The single-current amplitude by assumption is determined from

the amplitudes for the on-mass-shell universally coupled vector mesons

of mass mze, Bzxp by writing unsubtracted disper31on relations in
q2. Th’usa2
2, 2,2
Z £, Fz<q ) By By = 1/ - @/ v 1+ 0] ,(505)
 £=0 : '

where -

B, " = (o|Z[[\/’2‘ ay + '] -,——————-Z:_ — q“}P (2) v(pl)Do-vv(p YAy, -
’ r=0 ’ : o
(3 6) .

and

x(x - l)oo-(x -r +1) S(S - 1)eee(S = r +1)
'(m + l)"°(m +r)

| P,(x)
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This expression is obtained by using.(A.6) to eliminate all except

one G iaqd‘then letting the projection operatof_aét'on the on-mass-
shell stéiev (Ol[\/E a(l)“ + q%] at q2 - n° +_1'} z ‘(see Eq. A,9).
The sum iﬁ.(3.6) terminates at r = J since Pi‘ annihilates all on- -
mass-shell states |A) at NG ifor f->‘J;u

Tﬁe difficulty witﬁ‘(3.5) er general 'q2  is that spurious

intermediate states contribute and it is not conserved. By demanding

either (i) no spurious states contribute,

v, H-o0,  for jkf‘= me +J , .

or (ii) current conservation, .

| e 2
_qu qu =0, . for ko =m + J,
we arrive at identical conditions on the £,
o - : : '
' 2 n '
o fz(m +1+4) =0, for n =1,2,3, " (3.7)
2=0 B

Writing a dispersion relation for F(qe), it is easy to see that (3.7)

requires that F(q2) fall faster than any power as |q2| S0

j(fekponehtial.form,factorV).

With exponential'form factors, we have
r(a®) a(d® - of - }: £, F,(d°) Q&)

for any finite polynomial Q, as is easily demonstrated by writing a

“dispersion relation for the left-hand side. Applying this result to

(3.5). for on-mass-shell states Ix) we obtain
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<
=
1l

v - J - - .
| _'F(qz)(olz (Ve a(l)“' +q"7 - —2——'1:"2-—— "y
: =0 - - _ :

q - nm - T

2

X Pp(a® = uf - 1) V(p)De -V (p,) 1)

ECOIC IR ER R R CH RR (RIS

Therefore, (3.4) with eprnential form factors, is indeed required by
unsubtracted dispersion'relatiohs in q2 and factorization (correct

‘internal spéctrum without spurious states).

'B. ' Two-Current Amplitude -
Using the above single-current amplitude (3.4) and quadratic

factorization (3.1), we easily obtaih the two current am‘plitud.egLF
' ' 2\ A 2 o
- M Y(ay,a9,) = FlayT) B"V(ap,9,) Fla,T) ' (3.8)
where
B*(q,,q,) = -(0|[V2 a,, " + .V ¥(p )+ -7 (p IRVEL ay s q.H1]0)
N 2 ' (L) 2 F1 NN VT (1) 1 :

. The structure of this amplitude is most easily studied by using
its iﬁtégralgrepresentationvwhich.is readily obtained from (A.4) and

(A.9). Using the notation of Appendix A, we have

B0y 0,) = (B H g, (3.9)

where
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' — g, - a.’
TRV N § -, 9 ny 2. , O
@ = (‘2/(1) T3 —2 ! BuY)(W(l) T > 3
S m +1~-79 m +1 -gq
1 ‘ 2
- P |
+ _2u.gHV ?Fl(mg + 1 - ql?, m2 +1 - q223 m- o+ 1; u')| - .
: i SR u'=u

* We examine the singularities in the two-current (t) channel.

They arise from divergences of the integrand as u —1 [1i.e.,
-l S o
e (1 - u) t ], where the hypergeometric function has the

IN+2
behavicr'

: 2. 2 2 - 2 2
- ‘2Fl(m + } -q s, W+ 1-g,73m +1; u)

@R+ 1) T2 4 0. - n? - 1)

r(g,”) ra,")

- B S 2 2 2 2 '
-Xi 2Fl(m +1-q°,m +1 -q s m t2-q” -9 1- u)

® - qgg)
%)

‘ q 2+q 2-me-l I‘(m2 + 1) P(m? +1 -q.
: 1 2 L
+.(l»~_ 'Ll)

2 2 2
r(m® +1 - qy ) ©(m :+ 1-4,

| 2 2 2 2 2
X . EFl(ql )q2 3 ql + q2 -m; 1 - U) . (5.10)

The first term yields the usual poles on the trajectory at and its

daughters. The second term, however, gives poles at

. ql? - q22 + m2 +1 = qu' a5 + 1 = O,l,2,-~f. Such singularities
~ are clearly unphysical, since their positions depend on the current

12

"masses' qi""o The presence of these anomalous singularities in place
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of the desired fixed pole can be understood, if We“nofice'that'our

guv' 0. As wé argued

i

ampiitgdg (5.8) has vénishing divérgence, a4,
in I, the absence of an unphysical J = 1 intermediate state at
t = qE?' implieé a nonvdnishiné divergence qlu MHP v’ for qlu —gO
'which,,Wheﬁ'combiﬁéd wiﬁh quadratic fdétorization, implies a fixed ‘
pole. Ouf'anomalous singularity‘violates the_conditions of this théorem
by prdviding jusf such an unphysical state.g5

The origin 6f thé vanishing divergence of our‘:M“V can be
seen cléariy»in (3.4). Although, if the invariant amplitudes afe

 evaluated on-maésfshell_at ki2 = m2 +_j,vthe infinite seriésvfor-'V

terminates and the basic equation (3.3) holds, it is clear thaﬁ (3.4)
as'itvstands répresents a certain off-shell continuation which is

divergenceless everywhere. Since in our case (3.1) can be .rewritten

in terms of this off-shell continuation,
Y v 2.,
‘M“ = Z v, (x|D(R,%)Ir >v7\,*l ,
AN

it is oﬁ&ious that M"Y has vanishing divergence. We note that this
off-she;i_coﬁtinuation isvnevér needed in our.dérivation of Muv,
since ~M“V obéys(USDR-in kiz, but unhappily it provides an equivalent
formﬁlation. vThis'appears to be the origin of the difficulty with

the dni?ersally cbupled vector meson approximation.
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IV. CONCLUSION

We have seen that, if onlyvthe‘universally_éoupled mesons ére
included,ifector curréﬁts completeiy consistentIWiﬁh the present DRM
cannot béTconétruéted.' However, the.ekisfénce'of.partiélly factorizable
amplitﬁdésICOnsistenf with current algebfa is encouraging and leads to
some optimiém that tﬁevinclﬁsioﬁ of fﬁrther ﬁeétor mesons hay allow é
full solutibn. The difficuity with this (and part of the source of
optimigh) is fhé_vasf number of meéons available in the DRM. Clearly
some gUide'to seleéting the apprbpriafe cufreﬁt (analogous to the
minimal prihciple of electrodyﬁamiés) is needed. ‘We meﬁtionvtwo
appfoaches that may yield this guide. |

Fifst,‘the algebraic approach éuggestedvin thié paper (Sec. II.B)
.shbuld_ﬁevdeveloped furthéf. Byvexpfessing the divergence conditions
as conditions on N—point functions we were ablertp resfrict our
attention ﬁo tﬁe éurrent-ground state-arbitrafy ?ésonance vertex. Of
course;_the fuﬁdémentai object in a zéro-width mOdel is the vertex for
a current and two arﬁitrary resonances. The cuffent algebra diveréence
conditibﬁs are expressed.naturally in.tefms of it, but, at present,
the conditions that duality imposes are not well.understood. Generally,'
oné would'like to be able to see directly how the singulafities in dual
channels (e.g,, t and kiz) are related. This would help circumvent
difficulties like thqse encountered in Sec. III where we satisfied
factérization in one channel and then found unpermitted singularities in
the dual channel. We expect that a deeper understanding of duality26

will allow a conecise vertex formulation of the conditions on currents.
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A;Second approach is.to tempdrérily ignore thé factorization
coﬁstréints and e%pldre various dual parémetétizatibﬁs satisfying
current cdnservétion and having good large—q2 ,’behavidr (e.g., Bjorken
limit, éléctroproductibn limit, etc.); As haS beéﬁtpreViously noted,9
parametérizations like thbéé presented here have té& large-qg behavior,

6-9

whereaé thgéparémetefizétions given by other authérs -7 have good
behavior, ~}ﬁrthérmqre,‘amplitudes of the form discuéséa in Refs. 7-16
have many properties‘suggestedAby field theory, é;é., relationéhips'
between asymptotic'béhavior ofzform.factors énd.the'spins of'particleé

and fixed ﬁoles, electr&pfoduction scaling, relationship tetween»threshold
behavior of electroprodﬂction-struéture functions and elastic fprm-factors,
etc,27v Onvthe other hand, the only models which:have successfully satiéfied ‘i
current élgebralfof.N-point functionsg’lo hévé used the divergence

" identities and no one has yet succeeded in combining these with current

28

amplitudes of a more general type.  If this couldbbé done with just
leading trajectory factorization, much could probably be learned about
the role of high-mass vectof mesons. | |
'1Finally, the results of this paper suggeét a crucial role for
exponeﬁtial form factors in a factorized modelvfor conserved currents.
We suggest that the difficulty of combining the requirements of good

large-qe behavior, factorization, and conservation may be reduced ifv

exponéﬁtial form factors are assumed initially.
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APPENDIX.A,Y DIVERGENCE IDENTITIES
in'this Appendix wevfeviéwfand generalize tﬁé divergenéé (Ward)
identitieSVOfvthe DRM whiéh are essential to the conétruction_of gurrent
amplitudés.-

(i) ‘Operator Notation

The divergence identities are conveniently expressed in the

FGV operator notation by using the spurious state operator19

r

- o : o 1 N
S k = 2 ke« a + k + Z Y12 . - .
Sk = Nekeagy vk« L v 1)Fagyen) -

' : (A.1)
We haVe followed the notation of Ref. 15. Spurious states. (xs| ..then

have the form

- {n

o= s®) (all m)_,_

where k is the momentum of the state directed to the right. The

basic "commutation" relations of S with the vertex and propagator of

FGV are \
s(k) V(o) = V(p)[S(-k - p) - p°]
»and_ - . ,
[s(k) - e - 2] D(R + z,kg) = D(R + Z +’1,k2)[s(k) - 2] ,'
_ (A.2)
for all FZ,
- 15,29

It is also convenient to introduce the '"projection' operator
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P - 1 - I8k - 02 — - 2 S(k)
| P | s(k)[s'(-k) - n"]

which has the explicit form >

B TR R V5
| f(-l_{)__ f; (-mi- 1)( ¢ z> - (a3)

To eliminate spurious intermediate states one replaces the

vertex V(p) of FGV by15

il

H(o)

P ) 7o) Pk - v)

= ._ ¢ s*_(-k)-mg':lv | S(k+p)—m2>

I

(A.L)
This vertex has vanishing:coupling to spurious states,
<Ksiv. = ”les) = 0, since
s(k) v(p) = v(p) s (-k-p) = 0 . (4.5)
‘=The'following identities are useful:
YDV = VDV = VDV L | (A.6)
vio) = vjo), (o|lv = (o|v, (A.7)

where ]O)' has momentum squared of m2;
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[(s = n° - 2)ee-(8 - n® - 1)(s - ut)Is"

- [(3+ - 4 -1)(8 ~m° - 2 - 1) -v(z b 1) (0 1)]

X (s - n° - £)++-(s - n° - 1)”§  ..' -~ (A.8)

.and . _ .
(O|,['.'\/—é-a(l)”- +'q“](s+ _ m2)(.s+ _ _m2 _ l)---(S+_-‘m2‘ . +. 1 .

_ (oj{q2 o - 1)@ - w2 - 2)ee (R - w1+ 1)

X IVE o) + 2@ - o - 2) o), ()

whefe .(O[ has momentum squared of ng.

(ii) Divergence Identities

;'Using the operator techniques, we may eaSily rederive and.
'generalize.the divergence-identities of II.

_The amplitude.

Bi(a) = ItV ey +dllp) , (4.10)

where

e = W(e)) DR,E,) V(p,)e e F(py_)]0)

(A.ll)

Il

2 BTN
V(e ) DR,k 7) V(py) e V(py ,)]0)
for q2 = m2 + 1 + k, describes the scattering of a universal vector

meson and N scalars of lowest mass. Evaluation of (A.lO) yields an

integfal representation for B":



¢

-25- . © UCRL-19750

1

p Bu(q) dul. o .dgN-Q %I)p(ul’ . ..,- ’u’N-E) IN+l(ul’ e ’uN-Q)
0 ' . '

(A.12)

c%/(l)p>ﬁ+l ’

where - .

‘2{;)“ = o" +'2p1“ +‘2péu‘+ cee 4 epN_i“(ul--;uN-E) (A.13)

and I, . 1is the usual integrand for the (N + 1)-point function for

all scalars. Following Fubini and Veneziano15 we represent the integral

eru Iy, by bracketts (« }N+l)'
One can easily verify?that B" is conserved for all q2. We
now generalize this result.

qp(u'j Y

. " |
(1) ‘N+L

(él[\fé qe a(l)“ + qg]v(pl)D(Rv+ j,kie)"’D(R + J:RN,zg)V(PN;1)|O>
= <0IS(q) V(pli D(R + 3,k %) *D(R + 3,k 5°) Vlpy_1)[0) |
= (IV(yB(R + 3+ 1,1y®)+D(R + 3+ Ligy P Wloy )
X f?"PN>' “w -l
+ 3(0|v(p, DR + 3,%°)-+D(R . j,kﬁ_gg)v(pN;l>|o>

j+l)

Nl ? (A.1k)

T L S ¢ P DIC"
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‘where 0= ul 2 Uy ot We have used (A l) and (A 2) and allowed pN
to be arbltrary for later appllcatlons. For-g' O and ‘pN -=_m2
. this reduces to q B“(q)

In IT we also introduced the amplltude (II 5 l)

Hv '

n

-OILVE 2" + @ W DRk D) DR D)
Ve iy et )

whqse epin?oﬁe parts on the mass shell (q12'= mo o+ 1+ £) are amplitudes
for adjacent universal vector mesons. The corresponding integral

representation is

'Bp_l?(gl’qe) = '<0y(1) 4”(1) N+2'2g <>N+2

" (A.16)
= -8"(a,9) )pn 5
where ‘yv " is given by an expression s_imilarv to (A.10), _
YRR u u e b 2o Pl e ).
VU~ = w ey +eeyy vyt oo 2e (e ey ) (A7)

'Using the operator formalism we easily Verify and generalize

(11.3.9),
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. ’ . j ipV ‘ ) |
_ qlu<'u ﬁ ) >1\I+2

(Qlt\ﬁ?a(l)v+fqéﬁV(pl)D(R + 3,06%) DR + 3,k P)v(p)s"(a)]0)

(OILVE 2(g) + 0,716 (-a,) - 1 - DV DR + 3 + 1,157)- -
CD(R +j + l,kN_ie)v(pﬁ)|0>
S 3011V agy+a, 1V (DGR + 3,k ) DR + 3,k 4PV (ey) |0)
. j(uj.fyzlSV>N+2 , (A.18)
and similarly, o |
<uj .BHV >I\T+2 9y
=  ' “q]_u<uj+l>1\r+2 + '(q12 -u® -1 - j‘)<uj+l-(27“>l\l+2 * ‘j<uj QTM>N+2

From (A.18) and (A.14) we obtain the generalization of (II.3.11):

J v -
| q1u<u-_15, ez 2y

2, 2 2 C N2 2 2 G4
= 3Ty F li(e" +ap7) - (25 + 1m” - (5 +1)7 - 51T T

(gt a1 -9, - m - W) (aa9)

The identities (A.14), (A.18), and (A.19) are used extensively in
construéting the current algebra parameterizations of Appendices B

and C.
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(1iii) Current Algebra Identity
We_nOW‘rederiVe the identity used here and_in IT tO’introduce
the currént algebra fixed pole. “First consider
WV /. : Y u u v VoA vy
By " (a1,9,) = <[7f(l) + (" + 20,V ()7 + (0" + 29 uddp

(A.20)

(B e -

. 'From (ALlS),for j =0 and (A.14) for an (W+2)-point function, we

have

o]

. wy

B I R O R L T N

To obtain:the current algebra identity we examine (A.21) as a function

' £ =_t - m2. As a, — 1 only the pole at._ogG =1 in the quantity
in brackets contributes. Its residue is an (N+l)-point-function and
is essentially the required right-hand side of (2.5). A straightforward

computation using the integral representation gives

e ..Bcw(qll’qe) > <‘Zf(l)v(ql )y -9 Dy .

Ctt—-> 1 \ .

'We have explicitly indicated that the momentum of Z/V is (ql + qg).

In the integral representation, setting .at = 1 1s equivalent to
. : ' ' a, -1
- multiplying the usual integrand IN+2 by (1 - u) t . Hence,

defining



q
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a, -1

wv, = (LB v - b Hy
we have
o mv o v
and similarly | (A.23)

Bpp  (d7,95)d, = -(‘?f(l)u(ql +a5) ) -
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APPENDTX B. CURRENT AIGEBRA PARAMETERIZATION
| WITH ARBITRARY FORM FACTORS B

The current algebra parameterization of. II is expressed in

compact notatlon and then generallzed to arbltrary form factors,
F(q ) = E: £, 000, o (B.1)

where -

1/[1 - ¢ /(n° + 1.+ £))

o

,fz<q2)_

',As'discussed in-Sec. II.C, the two-current amplitude is written

as

MY (ay,a5) = M (ay,a,) + MG (ega,) MFP“V(ql,qo)

From II, we have for a single pole form factor .(fO =1),
VRV _ 2 v p'v! v 2
2 v novqyy 2
+ [2(m” + 1)g™" + q;7a, 1w g s

M (ey59) = Folt) B (a),9;) (B.2)

Moo (9),9,) = Fo(t) Bpp'V(ay,9,)

¥
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where

Y

B (q) ¢ - ' (B.3)

< ' £ow K 'mg +1 + 4

One easily verifies,using (A.18) and (A.19) that

SNRY :_b _ Hv
q, My (9,a) = -ay, My (ay,9,)

= G D qf(l)v>N+2 + (e + quv)(u2>N+2] ’

and observes from (A.23) that MFPHV gives the required current algebra
divergence so that MY has the required propefties.
For arbitrary form factors it is convenient to introduce a

vector meson "propagator"

AL@= ) 5@ Pr @, (B.4)
‘ 2
which safisfies
_%4 pr(@) = 9 - (B.5)

Our genefalization éan then be written gs
MH“V<ql,q2> | ”<ql) - (ql,q2>m CRIE S
Z fz[F (a )70 <ql>g et B, (3) Fylep))]
X @ a-wh,,

Z fﬂ([ﬁuv + qlquvu2 + 2(m2 + 1+ 2)g" 11'2](1 _ u)z>N+2 . (B.6)
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S o ‘ . fz(m2 +'i‘+ z)l ? :}> ‘ z'-
 _Mb”V(ql,q2) = - 2: CRES (fé?CHY(l - ) e s (Be7)

o :
~ £ (m™ + 1+ 2) o, -1
£ : t
E G -1 -7 (@C“V(l:-_ u) >N+2

£

MFPEV(di,qg)

+ F(t) guv<l>

N+1. _
(B.8)

t Hv .

.Thé third term clearly has the desired current algebra divergence
with the correct form factor, F(t). The divergences of the other two

terms caﬁcel as fequired,
MV, o VR
U, My (959p) = -ay, M (a;,9,)

, ) | , - Vo .
= E:V £,(m” + 1+ z)<[“,€y?1), +(ap" + 20 Ju I - W),
£ . S IR
: v (8.9)
In obtaining this result we have first used (A.14) and (A.18) along with

the trivial identity

j i_(-l)j_ (g);uj - s u(lk-u)z'l
i N | |

to obtain
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0, (B0 -0,

S w (g el e e Y1 - Wy, (8a0)

and

qlu{u {7(1)“(1 - u)z'>i\r+2

= (lu+ (g - n° -1 - 2710 - ),

Tbis amplitude MY factorizes fof leading trajgctories, since
it'differs from the factorizablelfunction A“u;'Buv’ Avv,> by ferms of
ordér \ul or higher; such terms give no contribution to leading tra-
jectqries.in kiz (channels dual to the t éhannei).

We remark that this parameterizatibn has a structure éimilar
to thevafbitrary form factor parameterization of Brower and Halperngo

for the'double—flip amplitude for N = 2, although'it does not reduce

exactly to their result.
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. APPENDIX C. CURRENT ALGEERA PARAMETERTZATTON = -
FACTGRIZING ON M . LEADING TIRAJEC;T_ORIES.' 1
Tﬁere)we generalize.fhe conStructionrof Ii ﬁb'pbféin amplitudes‘
sdtisf&ihé'éﬁrrent algebra aﬁdvfactdrizing (without épﬁriqus states)

19

on the M"leading.trajectories. The parameteriiation giQen”here has

form factors with the.specific form

B - a() M) gy

but we conjecture that the asymptotic condition F(qg) ~'(q2)_M' is
sufficient to allow the éonstruction of more general parameterizations
with M-trajectory factorization.

"'In Sec. III, we considered the amplitude

/\uv A

= -0ITVZ aggy” + 0" V() DR,k ®) V(p,) DR,y 4 ) Tmy)

(V2 &7y + q,"1]0) . (c.2)

We observe that the unphysical singularities inv‘t can be aVoided if
we replace G(p) by

Y sT(-x) - me .-/ 8(k + p) -f_me
- .

- -m - lj) v £ ‘ o S 4
“’( ) _

i.e., we consider

VM(,p )

(c.3)

[
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units or more. We also observe that B Hv is conserved only if 9
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glMuv'(qiv,qé)' = -(ol[_.\/'é’ a(l)‘f - q?v]V(pl)D(R;klg)"'D(R’k_N-lg){]\M(pN)
X [V?2 a‘(‘_{) +q,"110)
(c.k)

: ( - l> olrve 1)’ %]

S(-qz)—m?
X L o V(pl)D(R+zk)

o S( ql) - n°
)( D(R + z,kN 1 %) V(pN

[WVE-a%I) + QIle¢> .

- One immediately observes that (C.k4) differs from (C.2) by terms with

the propagators shifted by M+ l units or more. Such terms contribute

only to traJectorles displaced below the leadlng traJectory by M+ 1

2
M

or q22 equals m> + 1 +n for n<M~-1, i.e., only for the first

M vector mesons. In fact,

. 2 . -
A MV, o fm” + D)oo (m” + M) -1, 2 -1, 2
9, By (9,9) = i Fy (9;7) By ()

B T R A (R %" e - (09)
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To obtaih'this result we have used (A.9) and the identity

s RN H G K (R SHRC f o o)

M:(m~ + 1)ee-(m” + N)

which follows from (A.8).

We follow the decomposition (2.10) and define '

Hv( ‘ 2y o uy ' 2
M (ay59,) = Fpla)®) By (d759p) Fylay™)

+ (m +1) (m + M) <M ﬁpv Mg uM;l)

‘N2 3 (c.6)
e %2(@?'+ Ix 0
Mg (a095) - "E: o, -1 - ¢ <185W“u"u)>we 3 (c.7)

) Tt

£ (m . l . z) , : S N l-l
Z - l _ [ | 'g MV (]_ b2 u o >N+2

+ F(t) guv(l>

M)

N+l

CF(t) B V(agsap)
The third term clearly has fhévréQuirédfdurfénﬁAalgébrajf

divergence. The divergences of the othér .two terms carcel’as required,

e o, "
qlu MH (9)59,) = -q;, My "(a3,9,)

gm + 1) (m2 + M) <uM ﬁyf v

= M+l )
- 1): (1)

v
+ (q2 + 2ql u N+2

8y

Nt
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The divergence of Mﬁ”v' is calculated by using (C.5) and (A.18) for

J = M.Z'The divergence of Mb”v' is calculamedjaé in Appendix B to

obtain (B.9). The sum over £ is then done by using the éum rule -

M-1 - .
: :E: ‘fz(mg +1+2)e" =0, for n<M-1 (c.9)
and .the- expres31on and the definition of fz (B.l).
L M-l (m° + 1)+--(m° + M - 1)
e = (D) o= 17

- "M=-1

p (B.1).

. ‘This amplitude factorizes on all trajectories lying' M units

which follow from (C.1) and the definition of f

B MY

M by terms

or less below the leading one because it differs ‘from
that = do not contribute to these trajectories. 'This is clear for Mﬁ“v,

(C.6):since it differs from ﬁMHV by terms with at least M powers

of u. The sum Mb“v + MfP“V is proportional to

f (m +1 + z) o, -1-2

2: —— 1 - Q- A (61 ?'u)z )

whichvby (C.9)-also has at least M powers of ;u. 
We remark that for M = 1, this parameterization reduces to the

result of II (see Eq.v B.2).
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The subscrlpts indlcate the permutation P of the hadronic momenta
and the position(s) of the current(s) jJust before P(i).. From now
on we restrict ourselves to the permutations shown in the figures.
The'explicit internal symmetry factors for no exotic resonances
aré?given by (II.2.15) and (II.3.20). -

Thefefore, we are treating only thé nQndiffraétive contributionf

» ; 0 and large q2 the pomeranchon contributlion may be

For It

-very important. For an example of a model for this contribution

éee IT, Sec. IV, and Ref. 9, Sec. IV.

The 1nvar1ant amplltudes given in IT and Appendices B and C satisfy

USDR with the sole exceptlon of the amplitude multiplying gu

bThe existence of such a right-signature ,J 0 fixed pole in this

-amplitude has also been conjectured by other authors and_there

appears to be some experimental sﬁpport for it--see M. Damashek

and F. C. Gilman, SLAC-PUB-697, 1969.
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C. B. Chiu, S. Matsuda, and C. Rebbi, Phys. Rev. Letters 23, 1526
(1969); F. Gliozzi, Lettera Nuovo Cimento 2, 846 (1969); C. B.

Thorn, Phys. Rev. (to be published); M. A, Virasoro, University of

Wisconsin Report 1969.

R. C. Brower and M. B. Halpern, Phys. Rev. 182, 1779 (1969)._.‘

We remark that in this limit

- 2 2.
P —> Qe m°

. a2 M
The factor (M)? = exp(q2 log M) ~ exp(q2 2: '%) is similar to
o - £=0

the very singular form.factors obtained by S. Fubini and G. Veneziano
(privﬁte éommunication; 1969) and L. Susskind, Yeshiva Unlversity
prepfiﬁt, 1969. | . |

This expreésion really stands for a set of uﬁsubfracted dispersion
relétions, one for eachvinvariant amplitude in.the overcomplete

set used here. See also Ref. 18, . |

Here we label theAstates by the overcomplete occupation number

baéis. '. | |

The easiest way to verify that this is the correct result is to

" note that (a) the residues of poles in kig are -given by (3.h4),

and (b) for t < t, unsubtracted dispersion relations can be

0
written in k12 so the poles completely determine the fuhction.
The anomalous singularity imitates the fixed pole at 9yt 9 = o,
since it is then at an integer. Further we observe'from (3.10)

that, like a fixed pole, it does not contribute to the residues

at the vector-meson poles.
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A ﬁegiﬁniné on this haé récently beenvmade,bj S. Fubini and G.
Veﬁéiiano, Nuovo Cimento (to be publisﬁed), _i

Sémé of these propertles have been touched uﬁon in Ref. 9. They
wiil‘bé discussed in more detail in a forthcoming report: J. H.
Weis, Dual Resondhcé Models‘for Vector Currents, Lawrence Radiation
Laﬁqfatory Report UCRL-19780, May 1970.

D. Z. Freedman (Ref. 10) has given amplituaes of the form of Ref. 7

that SatiSfy the current algebra for one vector current and one

écalar current. The scalar current indeed has good large—q2

. behavior but the vector current is introducéd_by the same techniques

discussed here and in II and therefore has bad ldrge-q2 behavior.
Whaﬁ_we are suggesting here is to combinevthe good features into

a gingle current.

M. Kaku and C. B. Thorn, Phys. Rev. (to be published). .
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FIGURE CAPTIONS
 ‘Fig. 1. Canstfainté on the single-current émpiitude;ﬂ (é) Vector;méson
| 56minanéé€ :(b5 Factorization. The amplitude must be exﬁréssible :.'=F
as a sum over the péles sthn'by the heaﬁy lines'and'these poléé
' musf-correSpbnd to statés in the‘hadronicAsPectfum; | |
‘Fig.125}2¢§hétrdinfs bn the-twd~current-émplitude;v‘(a) Veéﬁbr-meson-
dominance. (b) Linear faétorizationg' (g)‘Quadratic fa¢§6fi—v_ '
. zétiéh..'The amplitude must be expfgssible as é sﬁﬁ over}thé_-
"ﬁoles'bshown_by the heavy lines,aﬁd these poles mﬁst cdfreqund-'
- to states in»thé‘hadronic;spectrﬁm. :
Fig. 3°‘ Divergen¢e édhditidn for_single-current amplitude. -
Fig. hL'.DiVefgencé conditions for tﬁd-cufrent amplifudes. (a) Non%

“adjacent currehts. (b) Adjacent currents.
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Fig. 1 -
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Fig. 2
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‘Fig. 3
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Fig. 4
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Reither the United States, nor the.Commission, nor any person acting on
“behalf of the Commission:

A. Makes any warranty or representation, expressed or 1mp11ed with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”

includes any employee or contractor of the Commission, or employee of

~such contractor, to the extent that such employee or contractor of the

Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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