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 ABSTRACT 
Background: Metabolic processes form the basis of the development, functioning and maintenance of the brain. Despite 
accumulating evidence of the vital role of metabolism in brain health, no study to date has comprehensively investigated the 
link between circulating markers of metabolic activity and in vivo brain morphology in the general population. 
Methods: We performed uni- and multivariate regression on metabolomics and MRI data from 24,940 UK Biobank 
participants, to estimate the individual and combined associations of 249 circulating metabolic markers with 91 measures of 
global and regional cortical thickness, surface area and subcortical volume. We investigated similarity of the identified spatial 
patterns with brain maps of neurotransmitters, and used Mendelian randomization to uncover causal relationships between 
metabolites and the brain. 
Results: Intracranial volume and total surface area were highly significantly associated with circulating lipoproteins and 
glycoprotein acetyls, with correlations up to .15. There were strong regional associations of individual markers with mixed 
effect directions, with distinct patterns involving frontal and temporal cortical thickness, brainstem and ventricular volume. 
Mendelian randomization provided evidence of bidirectional causal effects, with the majority of markers affecting frontal 
and temporal regions.  
Discussion: The results indicate strong bidirectional causal relationships between circulating metabolic markers and distinct 
patterns of global and regional brain morphology. The generated atlas of associations provides a better understanding of the 
role of metabolic pathways in structural brain development and maintenance, in both health and disease.    

Keywords: metabolomics; brain morphology. Word count: 3120.  
 

 

Metabolic processes form the basis of the 
development, functioning and maintenance of the 
brain.1 Accordingly, there is increasing evidence that 
metabolic dysregulation plays a central role in the 
etiology of neurodevelopmental and 
neurodegenerative disorders. Broadly, these disorders 
are associated with abnormal metabolic activity and 
heightened levels of cardiometabolic disease.2,3 
Markers of metabolic activity, such as lipoproteins, 
cholesterol, fatty acids, and glucose, are now well-
captured in plasma by high-throughput nuclear 
magnetic resonance (NMR) spectroscopy,4 explaining 
more variance in metabolic dysfunction than 
traditional measurements.5 As the world’s population 
is becoming progressively older and the prevalence of 
obesity is rising,6 a better understanding of the 
connection between metabolic markers and the brain 
will help to develop more specific interventions to 
combat the these global public health challenges. 

Metabolism is tightly intertwined with neuronal 
processes. The brain uses 25% of the body’s energy 
derived from glucose, primarily to maintain proper ion 
gradients and neurotransmitter levels at the synapses.7 
Further, amino acids act as precursors for 
neurotransmitters, to maintain essential  synaptic 
functioning and plasticity.8 Lipids constitute 50% of 
the brain dry weight;9 they are essential components 
of the structure and function of the brain,10 as they 
facilitate signal conductance and synaptic 
throughput.11,12 The brain is involved in controlling 
metabolic activity, by both cortical and subcortical 
circuitry, controlling food intake and energy 
expenditure.13 This is evidenced by extensive 
molecular crosstalk between the brain and somatic 
metabolic systems.14 

We and others have mapped widespread associations 
of measures of cardiometabolic risk factors, such as 
body mass index (BMI), with macro-scale brain 
structure.15 In line with these results, several small-
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scale studies have found that plasma levels of specific 
markers are associated with regional brain structure, 
especially prefrontal volume. This includes high- and 
low-density lipoproteins (HDL, LDL),16–18 glutamate 
and glutamine,19 and inflammatory markers.20 Studies 
of post-mortem brain tissue of individuals with 
psychiatric disorders have also reported abnormal 
metabolic marker levels in the prefrontal cortex, 
striatum and thalamus.21–23 These results have been 
complemented by two-sample Mendelian 
randomization studies, finding evidence of causal 
effects of circulating lipids on cortical 
morphology.24,25 
Despite accumulating evidence of the important 
connection between metabolic processes and brain 
health, no study to date has comprehensively 
investigated the link between circulating metabolic 
markers and in vivo brain morphology in the general 
population. Here, we examine the associations of 249 
NMR-derived measures of plasma metabolite 
concentrations with MRI-derived measures of cortical 
thickness, surface area and subcortical volume, using 
data from nearly twenty five thousand UK Biobank 
(UKB) participants. In addition to uncovering strong, 
widespread associations between a range of metabolic 
markers and brain morphology, we identify specific 
spatial patterns with functional implications and 
provide evidence of bidirectional causal relationships. 
This work offers novel insights into the metabolic 
underpinnings of brain development and maintenance, 
identifying potential targets for therapeutic 
intervention common to metabolic and brain 
disorders. 
 
Results 
Our study sample consisted of 24,940 UK Biobank 
participants (mean age at scan 64.0 years, 52.5% 
female) that had both T1 brain MRI and NMR 
metabolomics data. The T1 data was processed through 

Freesurfer, from which we extracted the cortical 
thickness and surface area of 34 cortical regions, 
following the Desikan-Killiany parcellation,26 as well 
as the volume of 20 subcortical regions, and 3 global 
brain measures.27 The NMR data consisted of the 
Nightingale panel of metabolic markers,4 
encompassing 228 lipids, lipoproteins or fatty acids and 
21 non-lipid traits, namely amino acids, ketone bodies, 
fluid balance, glycolysis-, and inflammation-related 
metabolic markers,28 see Supplementary Table 1 and 2 
for an overview of all included brain measures and 
metabolic markers, with abbreviations and 
categorizations. Where applicable, we adjusted p-
values with the Benjamini-Hochberg method to correct 
for comparisons across the 249 markers and 91 brain 
measures, and set significance thresholds at a=.05. All 
analyses were corrected for age, sex, scanner, and scan 
quality. Regional brain measures were additionally 
corrected for a metric-specific global measure (i.e., 
mean thickness, total surface area, or intracranial 
volume (ICV)).  
 
Associations between brain morphology and metabolic 
markers 
We first used partial least squares (PLS) regression to 
aggregate across all markers, identifying their joint 
correlation with each brain measure. The strongest 
correlations were seen with ICV and total surface area, 
followed by regional volume of ventricles and the 
brainstem, see Figure 1a. This aligned with our 
findings obtained using linear regression. Specifically, 
the majority of the 249 markers had a highly significant 
association with ICV (n=192) and total surface area 
(n=183) and, to a lesser extent, mean cortical thickness 
(n=139). Regionally, the most significant effects were 
on thickness of the temporal lobe and, subcortically, on 
the brainstem, ventricles and ventral diencephalon, see 
Figure 1b. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Association with global and regional brain morphology across all metabolic markers. a) Results of partial least 
squares regression, depicting the top 10 highest correlations (x-axis) found between all markers as a set and specific brain 
measures (y-axis). Color coding indicates the brain metric, with global in blue), subcortical in red and thickness in green. b) 
brain maps depicting the number of significant associations (color-coded) between the markers and the different regional 
brain measures. 
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Figure 2a highlights the strongest associations of 
individual markers with ICV, total surface area and 
mean cortical thickness. The corresponding regression 
coefficients were highly correlated between ICV and 
surface area (r=.94), while the correlations between 
mean thickness and ICV and surface area were 
markedly lower (r=.19 and .30 resp.). Glycoprotein 
acetyls stood out as the individual marker with the 
strongest association, explaining 1% variance in both 
ICV and surface area. Many markers showed strong, 
spatially varying associations with mixed effect 
directions, as evident from the example of glycoprotein 
acetyls shown in Figure 2b. We provide brain maps for 
each of the 249 markers that capture the spatial 
distributions of the identified associations across all 
cortical and subcortical regions in Supplementary 
Figure 1. Full inferential statistics are provided in 
Supplementary Table 3.  

Given the strong correlation between subsets of 
markers, we ran least absolute shrinkage and selection 
operator (LASSO) regression on each brain measure to 
identify individual markers that drive the associations. 
This revealed that the amino acids have particularly 
widespread independent contributions, with glutamine 
influencing 32 brain measures. Global and subcortical 
brain measures were found to have the highest number 
of independent metabolites influencing them (up to 42), 
while regional surface area measures were all near the 
bottom of this ranking. The full list of markers with 
non-zero influences, per brain measure, is provided in 
Supplementary Table 4.  

 
Figure 2. Associations of individual metabolic markers with global and regional brain morphology. a) Summary of the 
strength of associations between global brain measures with each individual metabolic markers (dots), expressed as 
correlation on the x-axis and -log10(p-value) on the y-axis. The color of the dots indicate the marker category, as specified 
in the legend, and the strongest associations are annotated with the marker name. b) Brain maps depicting the strength of 
association (z-values, color-coded) between one example marker (glycoprotein acetyls) and the different regional brain 
measures, to showcase individual spatial patterns. 
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Molecular and functional pathways 
We used the ‘neuromaps’ toolbox to estimate the 
similarity of our identified cortical spatial patterns to 
previously generated cortical maps of neurotransmission 
and brain metabolic activity. The analysis of the 
glycoprotein acetyls cortical thickness map, as an 
example of an individual marker, showed greatest 
similarity to maps generated through positron emission 
tomography (PET) studies of tracer binding to 
monoaminergic neurotransmission, most prominently 
the serotonin transporter (r=-.54, p=2.3x10-6) and the 5-
HT1a receptor (r=-.45, p=1.1x10-4), as well as glucose 
metabolism (r=.48, p=2.9x10-5), see Figure 4.  
We further analyzed the cortical maps of CCA loadings 
for both cortical thickness and surface area, and found 
that the same maps of monoaminergic neurotransmitters 
were among the most significantly correlated with the 
thickness maps of component 1 and 2. Component 1 
thereby generally showed opposing directions to that of 
glycoprotein acetyls and component 2. For the surface 
area maps, we additionally found similarity with opioid 
receptors as well as glutamate and cannabinoid receptors. 
See Supplementary Table 6 for the full results. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Shared underlying structure across all metabolic markers and brain measures. This reflects the results of the 
canonical correlation analysis, with an overview of loadings for component 1 and 2. a) on the y-axis are the ten brain 
measures (left panels) and metabolic markers (right panels) with the highest absolute loadings (x-axis). The colors of the 
dots distinguish between the brain metrics (blue for global, pink for subcortical, green for thickness, and yellow for surface 
area), and for marker category (grey for lipoprotein subclasses, green for relative lipoprotein concentrations, mustard for 
inflammation, yellow for particle concentrations, and purple for cholesteryl esters). b) brain maps show the spatial 
distributions of the loadings across cortical thickness, surface area, and subcortical volume, with loading color-coded as 
indicated in the legend. For both a) and b) the top row visualizes the results for component 1, and the bottom row shows 
component 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4. Coupling of the markers’ regional cortical patterns to molecular and structural features of the cortex. These 
circular barplots show the eight highest absolute correlations between the regional cortical patterns identified in this study to 
previously published cortical maps, using the neuromaps repository. The top row is for the regression coefficients of 
glycoprotein acetyls, the middle for the loadings of the canonical correlation analysis component 1, and the bottom row for 
component 2. The left column shows the comparisons for the generated cortical thickness maps, and the right column for the 
surface area maps. The bar color coding reflects categories of neuromaps, with blue for monoaminergic neurotransmission, 
green for endorphins, red for amino acids, purple for endocannabinoids, and black for other. 
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Causal relationships 
We ran a series of bidirectional Mendelian 
randomization (MR) analyses to determine the causal 
directions of the identified relationships. This generally 
confirmed the expected direction whereby many of the 
markers have a causal effect on brain morphology, 
most prominently on frontal and temporal cortical 
thickness (Figure 5a and 5b). However, there were 
also significant influences in the opposite direction, i.e. 

brain morphology measures had a causal effect on 
metabolic marker concentrations (Figure 5c and 5d). 
Especially medial frontal regions together with volume 
of the ventral diencephalon, amygdala, and 
hippocampus had causal effects on markers, suggesting 
top down control of metabolic activity by the brain 
through either behavior or regulation of physiological 
processes.

 

Discussion 
Here, we performed the first large-scale study of the 
relationship between circulating metabolic markers 
and in vivo brain morphology. We found strong 
evidence of widespread causal influences with 
spatial patterns that implicate these markers in 
neurodevelopmental and neurodegenerative 
processes. The current findings underscore the 
important relationship between metabolic processes 
and brain morphology, and indicate that markers 
measured in plasma can be leveraged to better 
understand and detect brain health. 
The strongest associations, for both individual 
markers and as a set, were found with ICV and total 
cortical surface area, suggesting metabolic processes 

influence global brain scaling. ICV and surface area 
are determined primarily early in life, followed by a 
decline throughout adulthood,29 with an etiology that 
is distinct from cortical thickness.30,31 Specific 
metabolic pathways are implicated in 
neurodevelopmental conditions that accompany 
micro- or macrocephaly.32 These pathways have 
played a crucial role in the evolutionary expansion 
of the neocortex through their influence on neural 
progenitor cells,33 which may partly explain the 
distinction between the identified associations for 
surface area and thickness.34  
Regionally, we found widespread associations, 
primarily with cortical thickness, with mixed effect 
directions, highlighting the complex nature of the 
relationship between the markers and brain 
morphology. The most prominently implicated 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. Causal relationships between the metabolic markers and regional brain morphology. Using Mendelian 
randomization, we found significant causal effects of the markers on brain morphology (a, b) and of brain morphology on 
the markers (c, d). The color coding of the brain maps at the top row indicates the number of significant causal relationships 
out of the 249 included metabolites, as indicated in the legend. The forest plots at the bottom row show the coefficients of 
the MR analyses on the x-axis and illustrative brain-metabolite pairs on the y-axis. The MR approach used is indicated by 
the coloring, as indicated in the legend. 
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regions were the superior temporal and frontal lobe. 
These regions are among the most metabolically 
active and have the greatest decrease in glucose 
metabolism with ageing,35 as well as being the most 
affected by age-related atrophy.36 Thickness has 
thereby been shown to be a more sensitive metric of 
regional neurodegeneration than surface area.37 Our 
findings therefore suggest that metabolomics data 
measured in plasma corresponds to regional 
differences that reflect changes in metabolic activity 
with age, and as such may facilitate the identification 
of mechanisms underlying neurodegeneration. 
We found two distinct, complementary components 
that together explained over half of the correlation 
structure between the metabolites and brain 
morphology. The first component captured primarily 
global and cortical brain measures, coupled to 
glycoprotein acetyls and HDL. Glycoprotein acetyls, 
a marker of inflammation, was found to have the 
strongest individual associations throughout our 
analyses. Cardiometabolic and brain disorders are 
commonly characterized by low-grade 
inflammation,38–40 which has been shown to have 
detrimental effects on brain morphology, 
particularly in temporal and frontal regions,41 in 
accordance with our findings. The effect direction 
was thereby opposite to that of HDL markers, fitting 
with a large body of research that defects in brain 
HDL metabolism play a role in all major 
neurodegenerative disorders.42 Indeed, our findings 
on the bidirectional causal effects involving these 
markers dovetail with promising reports of HDL-
based therapies for brain disorders.42 The second 
component was associated with larger ventricles and 
smaller subcortical volumes, which are typical 
regional patterns of neurodegeneration, coupled to 
low LDL. This direction of the loadings thereby 
matches a previous study on the relation between 
LDL and brain volume.18 Notably, this study found 
that these associations were driven by elderly 
individuals and hypothesized that the lower LDL 
levels reflected disruption of cholesterol production 
due to neurodegeneration.18,43 This also agrees with 
our MR findings, indicating that these subcortical 
volumes have a causal effect on metabolite 
concentrations.  
Coupling the identified cortical patterns to 
previously published brain maps enabled us to 
identify brain systems that are likely to interplay 
with the metabolic markers, based on similarity of 
their spatial distribution. While the same general 
systems were identified across the cortical maps, the 
directionality of their correlations and the specific 
receptors identified were different. Most notable was 
the identification of monoaminergic transporters and 
receptors, which play differential roles in regulating 
satiety and energy expenditure.44 These systems are 
known to interact with inflammatory processes45 and 

lipoprotein levels, as well as influence neuron 
proliferation, explaining the identified patterns. Such 
analyses thus provide further indications of the 
biological pathways involved in the relationship 
between metabolic processes and brain morphology 
that fit well with known functions of the identified 
molecular correlates. We note that the set of maps 
available for comparison is limited at this time; 
expansion may provide further opportunities to 
identify important pathways. 
We found robust indications of causal effects of the 
metabolites on brain morphology and vice versa. The 
majority of effects were found for metabolites on 
brain morphology, particularly in temporal and 
frontal regions, in line with the notion that metabolic 
processes are essential regulators of the development 
and maintenance of cortical morphology. Notably, in 
the other direction, the analyses indicated that 
specific medial frontal and subcortical regions have 
a causal effect on metabolite concentrations. This fits 
well with the known functions of these regions, 
broadly making up the central autonomic network, in 
top-down control of energy expenditure through 
goal-directed behaviour and physiological 
processes.46 The hypothalamus (encompassed by the 
ventral diencephalon) and the brainstem are the 
brain’s control centers of metabolic activity, yet we 
found few causal effects here. These regions consist 
of subnuclei that interact with each other and other 
brain regions through intricate negative feedback 
loops that stimulate or inhibit feeding and regulate 
many physiological processes.13 As such, mixed 
effect directions across the nuclei are likely to 
obscure the full extent of effects in these regions; 
future studies may take advantage of more fine-
grained parcellation47,48 to delve deeper into this.  
Strengths of this study consist of a sample size an 
order of magnitude larger than any previous study of 
human neurometabolomics, and the use of 
comprehensive, accurately measured targeted 
metabolomics data. We further combined a range of 
statistical approaches to provide insight into shared 
and specific causal relationships between 
metabolites and well-established measures of brain 
morphology. The resulting summary statistics 
provide an atlas of associations, per metabolite and 
per brain region, that can drive targeted follow-up 
research. We were limited by measurement of 
metabolite concentrations in plasma, rather than in 
brain tissue, and the two have been shown to have a 
relatively low correlation.49 However, the easy 
accessibility of plasma measures makes them much 
more feasible as biomarkers, and this data likely 
more directly reflects current metabolic state. We 
further did not look into age-related effects across 
the lifespan, which may obscure interesting effects, 
given the known dynamic nature of metabolic 
activity in the brain, e.g. from animal models.50 
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In conclusion, we have shown that plasma markers 
of metabolic processes can be leveraged to better 
understand biological pathways underlying brain 
morphology. The identified causal relationships 
strongly indicate the crucial role of tagged metabolic 
processes in brain development and maintenance. 
We have generated an atlas of associations and 
causal relationships that enable a range of follow-up 
research into specific subsets of markers and 
biological pathways. We have provided insights into 
the role of metabolic processes in brain health, which 
is likely to be essential to better understand both 
neurodevelopment and neurodegeneration. 

 

References 
1. Camandola, S. & Mattson, M. P. Brain metabolism 

in health, aging, and neurodegeneration. EMBO J. 
36, 1474–1492 (2017). 

2. Vancampfort, D. et al. Risk of metabolic syndrome 
and its components in people with schizophrenia and 
related psychotic disorders, bipolar disorder and 
major depressive disorder: a systematic review and 
meta-analysis. World Psychiatry 14, 339–347 
(2015). 

3. Santiago, J. A. & Potashkin, J. A. The impact of 
disease comorbidities in Alzheimer’s disease. Front. 
Aging Neurosci. 13, 631770 (2021). 

4. Julkunen, H. et al. Atlas of plasma NMR biomarkers 
for health and disease in 118,461 individuals from the 
UK Biobank. Nat. Commun. 14, 604 (2023). 

5. Buergel, T. et al. Metabolomic profiles predict 
individual multidisease outcomes. Nat. Med. 28, 
2309–2320 (2022). 

6. Saklayen, M. G. The global epidemic of the 
metabolic syndrome. Curr. Hypertens. Rep. 20, 1–8 
(2018). 

7. Bélanger, M., Allaman, I. & Magistretti, P. J. Brain 
Energy Metabolism: Focus on Astrocyte-Neuron 
Metabolic Cooperation. Cell Metab. 14, 724–738 
(2011). 

8. Teleanu, R. I. et al. Neurotransmitters—key factors 
in neurological and neurodegenerative disorders of 
the central nervous system. Int. J. Mol. Sci. 23, 5954 
(2022). 

9. Bruce, K. D., Zsombok, A. & Eckel, R. H. Lipid 
processing in the brain: a key regulator of systemic 
metabolism. Front. Endocrinol. 8, 60 (2017). 

10. Yoon, J. H. et al. Brain lipidomics: From functional 
landscape to clinical significance. Sci. Adv. 8, 
eadc9317 (2022). 

11. Müller, C. P. et al. Brain membrane lipids in major 
depression and anxiety disorders. Biochim. Biophys. 
Acta BBA-Mol. Cell Biol. Lipids 1851, 1052–1065 
(2015). 

12. Bazinet, R. P. & Layé, S. Polyunsaturated fatty acids 
and their metabolites in brain function and disease. 
Nat. Rev. Neurosci. 15, 771–785 (2014). 

13. Gao, Q. & Horvath, T. L. Neurobiology of feeding 
and energy expenditure. Annu Rev Neurosci 30, 367–
398 (2007). 

14. Delezie, J. & Handschin, C. Endocrine crosstalk 
between skeletal muscle and the brain. Front. Neurol. 
9, 698 (2018). 

15. Gurholt, T. P. et al. Population-based body–brain 
mapping links brain morphology with 
anthropometrics and body composition. Transl. 
Psychiatry 11, 1–12 (2021). 

16. Kennedy, K. G. et al. Elevated lipids are associated 
with reduced regional brain structure in youth with 
bipolar disorder. Acta Psychiatr. Scand. 143, 513–
525 (2021). 

17. Ward, M. A. et al. Low HDL cholesterol is associated 
with lower gray matter volume in cognitively healthy 
adults. Front. Aging Neurosci. 2, 29 (2010). 

18. Moazzami, K. et al. Association of mid-life serum 
lipid levels with late-life brain volumes: The 
atherosclerosis risk in communities neurocognitive 
study (ARICNCS). Neuroimage 223, 117324 (2020). 

19. Gordon, S. et al. Metabolites and MRI-Derived 
Markers of AD/ADRD Risk in a Puerto Rican 
Cohort. Res. Sq. (2024). 

20. Kindler, J. et al. Dysregulation of kynurenine 
metabolism is related to proinflammatory cytokines, 
attention, and prefrontal cortex volume in 
schizophrenia. Mol. Psychiatry 25, 2860–2872 
(2020). 

21. Henkel, N. D. et al. Schizophrenia: A disorder of 
broken brain bioenergetics. Mol. Psychiatry 27, 
2393–2404 (2022). 

22. Prabakaran, S. et al. Mitochondrial dysfunction in 
schizophrenia: evidence for compromised brain 
metabolism and oxidative stress. Mol. Psychiatry 9, 
684–697 (2004). 

23. Du, F. et al. In Vivo Evidence for Cerebral 
Bioenergetic Abnormalities in Schizophrenia 
Measured Using 31P Magnetization Transfer 
Spectroscopy. JAMA Psychiatry 71, 19–27 (2014). 

24. Zeng, Y., Guo, R., Cao, S. & Yang, H. Causal 
associations between blood lipids and brain 
structures: a Mendelian randomization study. Cereb. 
Cortex 33, 10901–10908 (2023). 

25. Lin, B. D. et al. Dissecting causal relationships 
between cortical morphology and neuropsychiatric 
disorders: a bidirectional Mendelian randomization 
study. medRxiv 2024–09 (2024). 

26. Desikan, R. S. et al. An automated labeling system 
for subdividing the human cerebral cortex on MRI 
scans into gyral based regions of interest. 
NeuroImage 31, 968–980 (2006). 

27. Fischl, B. et al. Whole brain segmentation: 
automated labeling of neuroanatomical structures in 
the human brain. Neuron 33, 341–355 (2002). 

28. van der Meer, D. et al. Pleiotropic and sex-specific 
genetic architecture of circulating metabolic markers. 
medRxiv 2024.07. 30.24311254 (2024). 

29. Bethlehem, R. A. I. et al. Brain charts for the human 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 14, 2025. ; https://doi.org/10.1101/2025.01.12.632645doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.12.632645
http://creativecommons.org/licenses/by-nc/4.0/


VAN DER MEER ET AL.                                                                                                                   8 
 

lifespan. Nature (2022) doi:10.1038/s41586-022-
04554-y. 

30. Winkler, A. M. et al. Cortical thickness or grey 
matter volume? The importance of selecting the 
phenotype for imaging genetics studies. NeuroImage 
53, 1135–1146 (2010). 

31. Grasby, K. L. et al. The genetic architecture of the 
human cerebral cortex. bioRxiv 399402–399402 
(2018) doi:10.1101/399402. 

32. Xing, L., Huttner, W. B. & Namba, T. Role of cell 
metabolism in the pathophysiology of brain size-
associated neurodevelopmental disorders. Neurobiol. 
Dis. 199, 106607 (2024). 

33. Xing, L. et al. Functional synergy of a human-
specific and an ape-specific metabolic regulator in 
human neocortex development. Nat. Commun. 15, 
3468 (2024). 

34. Rakic, P. Evolution of the neocortex: a perspective 
from developmental biology. Nat. Rev. Neurosci. 10, 
724–735 (2009). 

35. Deery, H. A., Di Paolo, R., Moran, C., Egan, G. F. & 
Jamadar, S. D. Lower brain glucose metabolism in 
normal ageing is predominantly frontal and temporal: 
A systematic review and pooled effect size and 
activation likelihood estimates meta-analyses. Hum. 
Brain Mapp. 44, 1251–1277 (2023). 

36. Zanto, T. P. & Gazzaley, A. Aging of the frontal lobe. 
Handb. Clin. Neurol. 163, 369–389 (2019). 

37. Choi, M. et al. Comparison of neurodegenerative 
types using different brain MRI analysis metrics in 
older adults with normal cognition, mild cognitive 
impairment, and Alzheimer’s dementia. PloS One 
14, e0220739 (2019). 

38. Silveira Rossi, J. L. et al. Metabolic syndrome and 
cardiovascular diseases: Going beyond traditional 
risk factors. Diabetes Metab. Res. Rev. 38, e3502 
(2022). 

39. Upthegrove, R. & Khandaker, G. M. Cytokines, 
oxidative stress and cellular markers of inflammation 
in schizophrenia. Neuroinflammation Schizophr. 49–
66 (2020). 

40. Więckowska-Gacek, A., Mietelska-Porowska, A., 
Wydrych, M. & Wojda, U. Western diet as a trigger 
of Alzheimer’s disease: From metabolic syndrome 
and systemic inflammation to neuroinflammation 
and neurodegeneration. Ageing Res. Rev. 70, 101397 
(2021). 

41. Williams, J. A. et al. Inflammation and brain 
structure in schizophrenia and other neuropsychiatric 
disorders: a Mendelian randomization study. JAMA 
Psychiatry 79, 498–507 (2022). 

42. Turri, M., Marchi, C., Adorni, M. P., Calabresi, L. & 
Zimetti, F. Emerging role of HDL in brain 
cholesterol metabolism and neurodegenerative 
disorders. Biochim. Biophys. Acta BBA-Mol. Cell 
Biol. Lipids 1867, 159123 (2022). 

43. Solomon, A. et al. Plasma levels of 24S-
hydroxycholesterol reflect brain volumes in patients 
without objective cognitive impairment but not in 

those with Alzheimer’s disease. Neurosci. Lett. 462, 
89–93 (2009). 

44. Voigt, J.-P. & Fink, H. Serotonin controlling feeding 
and satiety. Behav. Brain Res. 277, 14–31 (2015). 

45. Shajib, M. & Khan, W. The role of serotonin and its 
receptors in activation of immune responses and 
inflammation. Acta Physiol. 213, 561–574 (2015). 

46. Benarroch, E. E. The central autonomic network: 
functional organization, dysfunction, and 
perspective. in Mayo clinic proceedings vol. 68 988–
1001 (Elsevier, 1993). 

47. Billot, B. et al. Automated segmentation of the 
hypothalamus and associated subunits in brain MRI. 
Neuroimage 223, 117287 (2020). 

48. Iglesias, J. E. et al. Bayesian segmentation of 
brainstem structures in MRI. Neuroimage 113, 184–
195 (2015). 

49. Huo, Z. et al. Brain and blood metabolome for 
Alzheimer’s dementia: findings from a targeted 
metabolomics analysis. Neurobiol. Aging 86, 123–
133 (2020). 

50. Ding, J. et al. A metabolome atlas of the aging mouse 
brain. Nat. Commun. 12, 6021 (2021). 

51. Sudlow, C. et al. UK biobank: an open access 
resource for identifying the causes of a wide range of 
complex diseases of middle and old age. PLoS Med. 
12, e1001779–e1001779 (2015). 

52. Manichaikul, A. et al. Robust relationship inference 
in genome-wide association studies. Bioinformatics 
26, 2867–2873 (2010). 

53. Ritchie, S. C. et al. Quality control and removal of 
technical variation of NMR metabolic biomarker 
data in ~120,000 UK Biobank participants. Sci. Data 
10, 64–64 (2023). 

54. Beasley, T. M., Erickson, S. & Allison, D. B. Rank-
based inverse normal transformations are 
increasingly used, but are they merited? Behav. 
Genet. 39, 580–595 (2009). 

55. Bowden, J., Davey Smith, G., Haycock, P. C. & 
Burgess, S. Consistent estimation in Mendelian 
randomization with some invalid instruments using a 
weighted median estimator. Genet. Epidemiol. 40, 
304–314 (2016). 

56. Burgess, S. & Thompson, S. G. Interpreting findings 
from Mendelian randomization using the MR-Egger 
method. Eur. J. Epidemiol. 32, 377–389 (2017). 

57. Friedman, J., Hastie, T. & Tibshirani, R. 
Regularization paths for generalized linear models 
via coordinate descent. J. Stat. Softw. 33, 1 (2010). 

58. Markello, R. D. et al. Neuromaps: structural and 
functional interpretation of brain maps. Nat. Methods 
19, 1472–1479 (2022). 

  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 14, 2025. ; https://doi.org/10.1101/2025.01.12.632645doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.12.632645
http://creativecommons.org/licenses/by-nc/4.0/


VAN DER MEER ET AL.                                                                                                                   9 
 

Methods 

Study sample 

We obtained UKB data under accession number 27412. 
The composition, set-up, and data gathering protocols of 
the UKB have been extensively described elsewhere.51 It 
has received ethics approval from the National Health 
Service National Research Ethics Service (ref 
11/NW/0382), and obtained informed consent from its 
participants. We selected unrelated participants (KING 
cut-off 0.0884)52 that had both the Nightingale NMR 
metabolomics data and that underwent the brain MRI 
protocol, as well as complete covariate data available 
(N=24,940, mean age at scan 64.0 years (SD=7.5), 52.5 % 
female).  

Data preprocessing 

We used Freesurfer to process the T1-weighted brain MRI 
data, using the default recon-all pipeline. For the main 
analyses, we focused on regions of interest for ease of 
interpretation: from the cortical stream, we extracted 34 
regional cortical thickness and surface area measures 
based on the Desikan-Killiany cortical atlas, together with 
mean cortical thickness and total surface area. From the 
subcortical stream, we selected 21 regional measures of 
interest, together with ICV. For all hemisphere-specific 
measures, we summed the estimates from left and right 
together, in order to improve signal-to-noise and reduce 
the multiple-comparisons correction burden. 

We further excluded all individuals with bad quality 
scans, as determined by an age- and sex-corrected Euler 
number more than three deviations below the scanner 
mean. Next, we pre-residualized each MRI measure for 
sex, age at baseline (the time when the blood sample for 
metabolomics data was taken), age at scan, scanner, and 
Euler number. For the regional measures, we also 
regressed out a metric-specific global measure: mean 
cortical thickness for regional thickness, total surface area 
for regional area, and ICV for the subcortical measures. 

We conducted additional pre-processing through the 
‘ukbnmr’ R package to the NMR data as released by 
UKB, to remove sources of technical noise.53 

We applied rank-based inverse normal transformation to 
both the residualized MRI data and metabolomics data,54 
leading to normally distributed measures. 

Regression analyses 

For the main analyses, we ran simple linear regression 
analyses, regressing each pre-residualized brain measure 
onto each marker, extracting the beta, standard error, p-
value and r2 from the model output. Correlations were 
calculated as the square root of the r2 value, with the sign 
from the beta. Z-values were derived from the p-value and 
the sign of the beta. PLS regression was performed on 
each brain measure through the ‘regression’ mode of the 
‘pls’ R package, including all markers as input terms. We 
extracted the maximum r2 value from the model output. 

Mendelian randomization 

We conducted bidirectional two-sample MR by applying 
the TwoSampleMR R package to GWAS summary 
statistics. For the brain morphology measures, we ran 
GWAS on the full UKB sample of White European 
individuals with T1 MRI data (n=39,098) through 
PLINK2 with default settings, pre-residualizing for the 
same covariates as in the main analyses plus twenty 
genetic principal components. For the metabolic markers, 
we ran GWAS on each metabolic marker in UKB, 
excluding those individuals that were part of the 
neuroimaging GWAS sample (N=197,475, age 57.60 (SD 
8.32), 53.84% female). We selected only genome wide 
significant variants for the analysis. We used the IVW MR 
results as main results, while leveraging weighted 
median55 and MR-Egger56 methods to check for 
robustness of findings. 

LASSO 

To examine the independent contribution of each marker 
on the brain measures we employed LASSO regression.57 
All 249 metabolic markers were included simultaneously 
into a regression model for each of the 91 pre-residualized 
brain measures. For this, we used the R package ‘glmnet’. 
The respective LASSO-specific tuning parameter l 
controlled the overall strength of the penalty term. The 
optimal l, corresponding to minimum deviance, was 
determined by performing 10-fold cross-validation. 

Canonical correlation analysis  

We applied CCA to investigate the multivariate 
associations between metabolic markers and regional 
brain measures. CCA involves finding canonical modes 
that maximize correlation between the linear combination 
of metabolic markers and the linear combination of brain 
measures. We extracted the first two dominant CCA 
modes of variation. These two orthogonal modes 
explained the largest fraction of correlation between 
metabolic and brain measurements. 

Furthermore, we computed CCA loadings to quantify the 
contribution of each metabolic marker and each brain 
measure to the construction of the latent modes. These 
loadings are obtained as Pearson’s correlation between a 
respective subject-wise latent variable and the original 
measurement. 

Neuromaps 

We utilized the Neuromaps resource to contextualize 
brain maps derived from univariate and multivariate 
analyses.58 Specifically, we compared them with 
previously published brain maps of molecular, structural, 
temporal and functional features. We first parcellated the 
curated set of reference maps using the Desikan-Killiany 
cortical atlas to ensure comparability. We then computed 
Pearson’s correlation between parcellated reference maps 
and our metabolic cortical spatial patterns as well as brain 
CCA modes. 
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Statistical analyses 

All pre-processing steps and analyses performed outside 
the above-mentioned tools and software, e.g. formatting 
the data and creating the graphs, were carried out in R, 
v4.4. Where applicable, we adjusted p-values with the 
Benjamini-Hochberg method to correct for comparisons 
across the 249 markers and 91 brain measures, and set 
significance thresholds at a=.05. All analyses were 
corrected for age, sex, scanner, and scan quality. 
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