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Abstract of the Dissertation

FINDING OPTIMAL EXPERIMENTAL

DESIGNS FOR MODELS IN BIOMEDICAL

STUDIES VIA PARTICLE SWARM

OPTIMIZATION

by

Jiaheng Qiu

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2014

Professor Weng Kee Wong, Chair

The theory of optimal experimental design provides insightful guidance on re-

source allocation for many dose-response studies and clinical trials. However, as

more and more complicated models are developed, �nding optimal designs has

become an increasingly di�cult task; therefore, the availability of an e�cient and

easy-to-use algorithm to �nd optimal designs is important for both researchers

and practitioners. In recent years, nature-inspired algorithms, like Particle Swarm

Optimization(PSO), have been successfully applied to many non-statistical disci-

plines, such as computer science and engineering, even though there is no uni�ed

theory to explain why PSO works so well. To date, there is only limited work in the

mainstream statistical literature that applies PSO to solve statistical problems.

In my dissertation, I review PSO methodology and show it is an easy and ef-

fective algorithm to generate locally D- and c-optimal designs for a variety of non-

linear statistical models commonly used in biomedical studies (Qiu et al. [2014]).

I develop a new version of PSO called Ultra-dimensional PSO (UPSO) to �nd D-

optimal designs for multi-variable exponential and Poisson regression models with

up to �ve variables and all pairwise interactions. I use the proposed novel search
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strategy to �nd minimally supported D-optimal designs and ascertain conditions

under which such optimal designs exist for such models. A remarkable discovery

in my work is that locally D-optimal designs for such models can have many more

support points than the number of parameters in the model. This result is both

new and interesting because almost all D-optimal designs have equal or just one

or two more number of points than the the number of parameters in the mean re-

sponse function, see the examples in monographs by Fedorov [1972], Atkinson and

Donev [1992], and recent papers by Yang and Stufken [2009], Yang [2010]. This

discovery also disproves the conjecture by Wang et al. [2006] that for M-variable

interaction models (M > 2), D-optimal designs are also minimally and equally

supported and have a similar structure as D-optimal designs for 2-variable model.

In addition to single objective optimal designs, I apply PSO to �nd optimal

designs for estimating parameters and interesting characteristics in continuation-

ratio (CR) model with non-constant slopes. Such a model has a great potential in

dose �nding studies because it takes both e�cacy and toxicity into consideration.

The optimal design I am interested in constructing is a three-objective optimal

design, which provides e�cient estimates for e�cacy, adverse e�ect and all pa-

rameters in the CR model. This work is quite new because there are virtually no

three-objective designs for a trinomial model reported in the literature. Through

multiple objective e�ciency plots, practitioners can construct the desired com-

pound optimal design by selecting appropriate weighted average of three optimal

criteria in a more �exible and informative way.

I also conduct simulation studies for parameters selection in PSO, and com-

pare the performance of PSO with other popular deterministic and metaheuristic

algorithms in terms of the CPU time and the closeness of the generated designs

to the optimal designs. I show that PSO outperforms its competitors in �nding

D- and c-optimal designs for di�erent models I consider in my dissertation.
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Glossary of important symbols

A a matrix

|A| the determinant of a matrix A

AT the transpose of a matrix A

ceff c-e�ciency

Deff D-e�ciency

E the identity matrix

f(x) the vector of regression functions

I(ξ) Fisher information matrix

K the number of distinct support points in design ξ

M the number of variables in the multivariable Poisson and exponential

model

N the number of the total sample size

n the number of common support points in all candidate designs searching

for the optimum in a deterministic algorithm

n+ the number of support points with positive weight in all candidate

designs searching for the optimum in a deterministic algorithm

nflock �ock size or population size used in a metaheuristic algorithm

P number of unknown parameters in the mean function of a model

t iteration number

u a random variable with uniform distribution on [0,1]

χ the design space; dose range

xi the ith distinct support point ∈ χ. In a dose response study, xi is

the ith dosage applied

iv



wi the weight for the ith distinctive support point

Ω the set of all possible w on a discretized space

ξ a design de�ned on χ

Ξ the set of all designs de�ned on χ

δx the one-point design putting unit mass at x

θ the parameter vector in a regression model

Ψ the concave optimality criterion function

ψ the directional derivative of Ψ

η(x, θ) the mean function of a nonlinear regression model

v



The dissertation of Jiaheng Qiu is approved.

Hongquan Xu

Gang Li

Elliot M. Landaw

Thomas R. Belin

Weng Kee Wong, Committee Chair

University of California, Los Angeles

2014

vi



To my parents

who

always support me pursuing my dream.

vii



Table of Contents

1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Design theory for approximate designs . . . . . . . . . . . . . . . 4

1.2.1 Approximate design . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Information matrix . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Design criteria . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 General equivalence theorem . . . . . . . . . . . . . . . . . 6

1.3 Search algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Deterministic algorithms . . . . . . . . . . . . . . . . . . . 17

1.3.1.1 Vertex direction method (VDM) . . . . . . . . . 17

1.3.1.2 Cocktail algorithm (CA) . . . . . . . . . . . . . . 18

1.3.2 Stochastic algorithms . . . . . . . . . . . . . . . . . . . . . 20

1.3.2.1 Genetic algorithm (GA) . . . . . . . . . . . . . . 21

1.3.2.2 Simulated Annealing (SA) . . . . . . . . . . . . . 22

1.3.2.3 Di�erential Evolution (DE) . . . . . . . . . . . . 23

1.3.2.4 Particle Swarm Optimization (PSO) . . . . . . . 25

2 Optimal Designs for Univariable Biomedical Models . . . . . . 29

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Implementation of Particle Swarm Optimization to �nd locally op-

timal designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Locally D-optimal designs for compartmental models . . . . . . . 32

viii



2.4 Locally c-optimal designs for estimating the time to maximum con-

centration in compartmental models . . . . . . . . . . . . . . . . . 34

2.5 Locally c-optimal designs for estimating the area under the curve

(AUC) in compartmental models . . . . . . . . . . . . . . . . . . 35

2.6 Locally D-optimal Designs for quadratic logistic models . . . . . . 36

2.7 Locally D-optimal designs for a double exponential model . . . . . 39

2.8 Locally D-optimal designs for an inverse polynomial model . . . . 40

2.9 Locally c-optimal designs for a survival model . . . . . . . . . . . 41

2.10 Locally D-optimal design for a 4-parameter heteroscedastic Hill model 43

2.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Locally Optimal Designs for Multivariable Biomedical Models 47

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Statistical background . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Locally D-optimal approximate design and D-e�ciency lower

bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Ultra-dimensional Particle Swarm Optimization (UPSO) . . . . . 53

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Minimally supported D-optimal designs . . . . . . . . . . . 60

3.4.2 Non-minimally supported conditional D-optimal designs for

Exponential and Poisson regression models . . . . . . . . . 62

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.1 Robustness of the conditional D-optimal designs . . . . . . 65

3.5.2 Verify optimality via PSO . . . . . . . . . . . . . . . . . . 67

3.6 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

ix



3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Multi-objective Optimal Design for a Multivariate Model . . . 73

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Continuation-ratio (CR) models . . . . . . . . . . . . . . . . . . . 75

4.3 Information matrix I(ξ, θ) of the CR model with b1 6= b2 . . . . . 77

4.3.1 Equivalence theorem for locally D-optimal design for CR

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Locally c-optimal designs for estimating the MED and MTD of

the CR model with b1 6= b2 . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Equivalence theorem of the locally c-optimal design for estimating

the MED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Equivalence of compound and constrained optimal designs . . . . 83

4.7 Three-objective locally optimal design for the CR model via PSO 85

4.8 Di�erent e�ciencies of the compound optimal design ξλ . . . . . 87

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Comparison of Repair Mechanisms in PSO and Comparisons of

Competitive Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Repair mechanisms comparison in PSO . . . . . . . . . . . . . . . 96

5.2 Comparisons of algorithms . . . . . . . . . . . . . . . . . . . . . . 100

5.2.1 Comparison between PSO and DE . . . . . . . . . . . . . 109

5.2.2 Comparison between PSO and CA . . . . . . . . . . . . . 110

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Program Development of PSO . . . . . . . . . . . . . . . . . . . . 118

x



6.1 Ultra-dimensional PSO (UPSO) for �nding locally D-optimal de-

signs for a Poisson model or an Exponential model . . . . . . . . 120

6.2 PSO for �nding three-objective compound optimal designs for the

non-constant slope CR model . . . . . . . . . . . . . . . . . . . . 125

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xi



List of Figures

1.1 The equivalence plot of ψ(x, ξ) for the D-optimal design for the

homoscedastic quadratic regression on [-1,1]. . . . . . . . . . . . 12

1.2 The equivalence plot of ψ(x, ξ) for the A-optimal design for the

homoscedastic quadratic regression on [-1,1]. . . . . . . . . . . . 13

2.1 Equivalence plot of the D-optimal criterion for the PSO-generated

4-point design for the quadratic logistic model when (α, β, µ) =

(3,−5, 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 In�uence of changing parameters on the shape of the Hill model. The

�gure is taken from Khinkis et al. [2003]. . . . . . . . . . . . . . . . 44

3.1 The probabilities of UPSO generating the conditional D-optimal design in 40

replicates for a 3-variable Exponential or Poisson model. The number of par-

ticles varies from 20 to 200 and the number of design points in each particle of

the �ock varies from 8 to 16. . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 D-e�ciencies of the conditional D-optimal design for the 3-variable Exponential

or the Poisson model using di�erent sets of nominal values. The two plots in

the �rst row are for the Exponential model and the two in the second row are

for the Poisson model. The two plots in the �rst column are for models with

one interaction term misspeci�ed, and the plots in the second column are for

models with three interaction terms mis-speci�ed. . . . . . . . . . . . . . 66

4.1 CR model with nominal values: (a1 = −3.3, b1 = 0.5, a2 = 3.4, b2 =

1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 CR model with nominal values: (a1 = −1, b1 = 0.5, a2 = 2, b2 = 1). 88

4.3 CR model with nominal values: (a1 = 0.4, b1 = 0.2, a2 = 2, b2 = 1). 88

xii



4.4 Di�erent e�ciency plots of compound optimal designs for the CR

model with nominal values: (a1 = −3.3, b1 = 0.5, a2 = 3.4, b2 = 1). 92

4.5 Di�erent e�ciency plots of compound optimal designs for the CR

model with nominal values: (a1 = −1, b1 = 0.5, a2 = 2, b2 = 1). . . 93

4.6 Di�erent e�ciency plots of compound optimal designs for the CR

model with nominal values: (a1 = 0.4, b1 = 0.2, a2 = 2, b2 = 1). . . 94

5.1 Repair mechanisms comparison of the locally D-optimal design for

the compartmental model with a = 4.298, b = 0.05884, c = 21.8 on

χ = [0, 20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Repair mechanisms comparison of the locally D-optimal design for

the logistic quadratic model with α = 3, β = −5, µ = 0 on χ = [−1, 1].101

5.3 Repair mechanisms comparison of the locally D-optimal design

for the 4-parameter Hill model with Ec = 1.7, b = 0.137, IC =

0.453,m = −0.825, λ = 3 on χ = [0, 453]. . . . . . . . . . . . . . . 102

5.4 Repair mechanisms comparison of the locally D-optimal design for

the 2-variable linear model on χ = [−1, 1]× [0, 1]. . . . . . . . . . 103

5.5 Repair mechanisms comparison of the locally D-optimal design for

the 3-variable Poisson model with r = 0 on IED space [0.01, 1]3. . 103

5.6 Repair mechanisms comparison of the locally D-optimal design for

the 3-variable Poisson model with r = −5 on IED space [0.01, 1]3. 104

5.7 Repair mechanisms comparison of the locally D-optimal design for

the CR model with a1 = 0, b1 = 1, a2 = 5, b2 = 1 on χ = [−10, 10]. 104

5.8 Repair mechanisms comparison of the locally D-optimal design for

the CR model with a1 = −3.3, b1 = 0.5, a2 = 3.8, b2 = 1 on χ =

[−10, 10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xiii



5.9 Repair mechanisms comparison of the locally c-optimal design for

estimating theAUC in the compartmental model with a = 4.298, b =

0.05884, c = 21.8 on χ = [0, 20]. . . . . . . . . . . . . . . . . . . . 106

5.10 Repair mechanisms comparison of the locally c-optimal design for

estimating the tmax in the compartmental model with a = 4.298, b =

0.05884, c = 21.8 on χ = [0, 20]. . . . . . . . . . . . . . . . . . . . 107

5.11 Repair mechanisms comparison of the locally c-optimal design for

estimating the MED in the CR model with a1 = −3.3, b1 =

0.5, a2 = 3.8, b2 = 1 on χ = [−10, 10]. . . . . . . . . . . . . . . . . 108

6.1 Snapshot of PSO website at UCLA. . . . . . . . . . . . . . . . . 119

6.2 User interface of UPSO for �nding locally D-optimal designs for

the Poisson model with 3-variable and pairwise interactions. . . . 121

6.3 Equivalence plot con�rming the optimality of the locally D-optimal

design for the 2-variable Poisson model with nominal values of in-

teraction terms rmm′ = 0 on IED design space [0.01, 1]2. . . . . . . 123

6.4 Modi�ed equivalence plot against aN2 + bN + c con�rming the

optimality of the locally D-optimal design for the 3-variable Poisson

model with nominal values of interaction terms rmm′ = 0 on IED

design space [0.01, 1]3. . . . . . . . . . . . . . . . . . . . . . . . . 124

6.5 User interface of PSO for �nding compound optimal designs for the

CR model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xiv



List of Tables

2.1 Locally D-optimal designs for estimating the three parameters in

the quadratic logistic model for di�erent nominal values and di�er-

ent design intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Weights of selected locally c-optimal designs for the Survival Model. 43

2.3 Locally D-optimal designs found by PSO for Hill model with com-

mon nominal values: Econ = 1.7, B = 0.137, λ = 0.794. By varying

IC50 and m. Seven D-optimal designs are obtained with equally

weighted support points. . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Values of d and the threshold C that produces the minimally sup-

ported D-optimal design for 3, 4 and 5-variable Exponential and

Poisson regression models with all 2-way interactions. . . . . . . . 62

3.2 Constants bi's that determine whether additional points are re-

quired by the locally D-optimal designs for the Poisson and Ex-

ponential models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Number( yi) of binucleated cells that show one or more micronuclei

per 1000 binucleated cells using di�erent dose (µM) combinations

of MMS, MNU and GEN with 2 replications at each of the dose

combination levels. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Parameter estimates and estimated lower bounds of the induced

design space for the Exponential and Poisson models. . . . . . . . 71

3.5 D-optimal designs for Exponential and Poisson model . . . . . . 71

4.1 Three-objective compound optimal designs for estimating theMTD,MED

and all parameters with ρ = 0.3, λ1 =λ2 = 1/3 on the unrestricted

designs space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xv



4.2 Three-objective compound optimal designs for estimating theMTD,MED

and all parameters with ρ = 0.3, λ1 =λ2 = 1/3 on χ = [−2, 7]. . . 89

4.3 E�ciencies of ξλ as measured by ξD,ξMTD and ξMED . . . . . . . . 91

5.1 CPU time of locally D-optimal designs by PSO and DE. . . . . . 111

5.2 CPU time of locally c-optimal designs by PSO and DE. . . . . . . 111

5.3 PSO and CA generated locally D-optimal designs for d) bivariable

linear model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Comparisons of the locally D-optimal design for univariable models

between PSO and CA. . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Comparisons of the locally D-optimal design of the 3-variable Pois-

son models with all nominal values of interactions rmm′ = r between

PSO and CA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.6 Comparisons of the locally D-optimal design of the 4-variable Pois-

son models with all nominal values of interactions rmm′ = r between

PSO and CA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.7 Comparisons of the locally D-optimal design of the CR model with

constant or non-constant slopes on χ = [−10, 10] between PSO and

CA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xvi



Acknowledgments

I would like to thank my advisor Dr. Weng Kee Wong for his inspiring and

constructive advice to my projects. I sincerely appreciate his countless hours of

re�ecting, reading, encouraging, and most of all his patience throughout the entire

process.

I'm very grateful to Dr. Beate Ritz and Dr. Michelle Wilhelm for hiring me as

a graduate student researcher in the Department of Epidemiology at UCLA since

2009. I appreciate their generous �nancial support and giving me the opportunity

to apply what I learned in class to numerous projects.

Finally, I would thank my beloved family and friends for supporting me and

encouraging me as always. Their willingness and excitement made the completion

of this long journey an enjoyable experience.

xvii



Vita

2005 B.S. (Statistics), Nankai University, Tianjin, China.

2008 M.S. (Bioinformatics), Nankai University, Tianjin, China.

2010 M.S. (Biostatistics), UCLA.

2012�2013 Graduate student instructor, Department of Biostatistics,

UCLA.

2009�2014 Graduate student researcher, Department of Epidemiology,

UCLA.

xviii



CHAPTER 1

Introduction and Background

This chapter provides the introductory part for my dissertation, and background

material for constructing an optimal design using di�erent design criteria. I also

review several search algorithms commonly used for �nding optimal designs, in-

cluding deterministic algorithms and metaheuristic algorithms.

1.1 Introduction

Optimal experimental designs have been gaining attention in the past few decades

(Atkinson [1996]). A main reason is the rising cost in conducting experiments and

the increasing realization in more applied �elds that optimal design ideas can save

costs substantially without sacri�ce in statistical e�ciency. Some real examples

are given in Dette and Beidermann [2003], Dette et al. [2011], Woods et al. [2006],

Lopez-Fidalgo et al. [2009] and Gilmour and Trinca [2011], where the applications

range from designing reaction kinetics studies to estimating maximum tolerated

dose (MTD) or most e�ective dose (MED) in dose �nding studies in phase I and

II clinical trials. Berger and Wong [2009] also provided a collection of concrete

applications of optimal designs to real problems that ranges from biomedicine to

social science researches.

Nonlinear models are widely used to study outcomes or responses in biomed-

ical experiments. This means that we assume a known nonlinear functional re-

lationship between the mean response and the independent variables, apart from

1



unknown parameters that determine the shape and properties of the mean re-

sponse. One common goal in the study is to estimate some or all parameters in

the mean function. Typical dose-response models usually involves the drug dosage

as the only explanatory variable in the model. I call them univariable models in

my dissertation. When there are multiple factors in the mean function of the

model, I call them multivariable models. Such models are often used to study

the joint e�ects of multiple drugs or agents on the response variable. In the case

of modeling multiple response variables, I call them multivariate models. Exam-

ples of such models are in drug studies when both e�cacy and adverse outcomes

are simultaneously modeled. This model classi�cation terminology will be used

throughout my dissertation.

Given a study objective or an optimality criterion and a model, the design

problem is to select the right number of combination levels of independent vari-

ables to observe the outcome and what these levels are. The design optimality

criterion for nonlinear models depends on the values of a subset or all the model

parameters, and therefore nominal values (or best guesses for these parameters)

are required before the optimal design can be implemented. Because they depend

on these nominal values, the optimal designs are called locally optimal, a term

coined by Cherno� [1953]. Such optimal designs usually represent the �st step in

an optimal design �nding strategy and is the simplest to construct and study.

Analytical descriptions of the locally optimal design for a nonlinear model are

rarely available unless the model is very simple. When they do exist, they are

usually complicated; see for example, the analytical description for the locally

D-optimal design for estimating the two parameters in the logistic model (Silvey

[1980]). Further, the formula or analytical description of the optimal design in

a nonlinear model is invariably derived under a set of mathematical assumptions

that may or may not apply in practice. As more and more complicated models are

developed, �nding optimal designs has become an increasingly challenging task
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for researchers. When the analytical description of an optimal design is di�cult or

even impossible to derive, it is desirable to have a �exible and e�ective algorithm

that can �nd a variety of optimal designs quickly and reliably.

There are algorithms for �nding optimal designs. A few of them can be proven

to converge to the optimal designs, and prominent ones include Fedorov's and

Wynn's algorithms for generating D- and c-optimal designs (Fedorov [1972], Wynn

[1972]). D-optimal designs are useful for estimating all parameters in the mean

function, and c-optimality targets minimizing the asymptotic variance of the func-

tion of parameters estimates of interest. For the few algorithms that can be shown

to converge mathematically, problems may still exist including (i) they take too

long to converge, (ii) they may fail to converge for more complicated setups that

they are not designed for, such as nonlinear mixed e�ects models, and (iii) nu-

merical issues due to rounding problems or the intrinsic nature of the sequential

process. For example, many algorithms produce clusters of support points as the

algorithm proceeds and these clusters require periodic and judicious collapsing

into the correct number of support points, which is usually unknown.

Recently, nature-inspired metaheuristic algorithms have been successfully ap-

plied to solve many tough engineering and computer science problems (see exam-

ples in Whitacre [2011a,b]). These algorithms do not guarantee that the global

optimum can always be found, but frequently get to (or close to) the optimum af-

ter several iterations. Among them, Particle Swarm Optimization (PSO) seems to

be the most promising one in recent years due to its repeated successes in solving

a large class of applied problems. PSO gains popularity from its �exibility, ease of

implementation, and general applicability to solve (or nearly solve) complex opti-

mization problems without having to make speci�c assumptions on the objective

function. The main goal of my dissertation is to investigate the capability and

performance of PSO in �nding D- and c-optimal designs for a variety of models

commonly used in biomedical studies.
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1.2 Design theory for approximate designs

In this section I brie�y introduce fundamental theory for constructing an optimal

design and provide several simple examples.

1.2.1 Approximate design

Here and throughout, my focus is on a approximate design ξ, which is a probability

measure de�ned on a given compact (i.e. closed and bounded) design space χ

(Kiefer [1974]). Clearly,
∫
χ
ξdx = 1. If ξ has K points, we denote it by x1 x2 ... xK

w1 w2 ... wK

 ,

where wi is the proportion of the total observations to be taken at the distinct

point xi, i = 1, 2, ..., K. A special and important case is the one-point design

putting unit mass at the point x. I denote this design by δx throughout my

dissertation.

The total number N of observations for the study is predetermined by cost

or practical considerations. When N is known, the design ξ allocates Nwi obser-

vations to points xi, i = 1, ..., K. Note that these observation numbers may not

be integers. In practice, each Nwi in an approximate design is rounded to the

nearest integer subject to that they sum to N . The general problem in the search

for an optimal design is that once an optimality criterion and a statistical model

are given, we need to determine a) K the number of support points required, b)

where the points xi's are, and c) their corresponding weights wi's.

1.2.2 Information matrix

Following convention, the criterion function is formulated in terms of the design ξ

through the information matrix. To �x ideas, consider a linear regression model
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with N independent observations y1, ..., yN ,

yi = fT (xi)β + εi, (1.1)

where f(xi) is a P × 1 vector of regression functions, β is a P × 1 vector of

unknown parameters, and εi is an unobserved measurement error. De�ne F =[
f(x1) f(x2) .... f(xN)

]T
as the N × P design matrix. Suppose εi's are

i.i.d normally distributed random variables, each with mean 0 and variance σ2.

Clearly, the maximum likelihood estimator (MLE) of β is β̂ = (F TF )−1F Ty, and

the covariance matrix of β̂ is given by V ar(β̂) = σ2(F TF )−1.

The Fisher information matrix is de�ned by the expectation of the square of

the �rst derivative of the total log likelihood function with respect to β. For

independent observations taken at x1, . . . , xN , the total information matrix under

model (1.1) is proportional to

IN =
N∑
i=1

f(xi)f
T (xi)

= F TF.

For a K−point approximate design ξ, its normalized information matrix is pro-

portional to

I(ξ) = Eξf(x)fT (x) =
K∑
i=1

wif(x)fT (x).

We note that K ≥ P for I(ξ) to be non-singular.

Example: Quadratic regression model As a speci�c example, consider the

regression model given by

yi = β0 + β1xi + β2x
2
i + εi,

where εi's are i.i.d normally distributed random variables, each with mean 0 and

variance σ2. The regression function at point xi is f(xi) = ( 1, xi, x2
i

)T . For
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a K−point design ξ, the normalized information matrix is

I(ξ) =
K∑
i=1

wif(xi)f
T (xi) =

K∑
i=1

wi


1 xi x2

i

xi x2
i x3

i

x2
i x3

i x4
i

 ,
apart from a multiplicative constant.

1.2.3 Design criteria

Let ξ be a design de�ned on the space χ, and Ξ be the set of all possible designs

on χ. Here are some optimality design criteria frequently used for linear models.

D-optimality :

This criterion seeks to minimize the volume of the con�dence ellipsoid for all

parameters in the mean function: min
ξ∈Ξ

log|I(ξ)−1|.

A-optimality :

This criterion seeks to minimize the average of the variances of the parameter

estimates: min
ξ∈Ξ

trace[I(ξ)−1].

c-optimality :

Suppose there is interest in estimating c(θ) a linear combination of the param-

eters. This criterion seeks to minimize the asymptotic variance of c(θ̂), which is

∇TV ar(θ̂)∇ ∝ ∇T I−1(ξ)∇, and ∇ is the partial derivative of c(θ̂). The design

criterion is: min
ξ∈Ξ
∇T I−1(ξ)∇.

1.2.4 General equivalence theorem

The above criteria are formulated in terms of the information matrix I(ξ). An

important piece of work by Kiefer and Wolfowitz is the equivalence theorem, which

allows us to verify if an approximate design is optimal among all designs on χ when

the given criterion function Ψ(I(ξ)) is convex or concave (Kiefer and Wolfowitz
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[1960], Kiefer [1974]). First I review the concept of convex/concave functions.

Convex/concave function

A function g : Q→ R1 is convex if Q is a convex set and the following inequality

holds for any x, y ∈ Q and 0 ≤ α ≤ 1:

g((1− α)x+ αy) ≤ (1− α)g(x) + αg(y).

If g is convex, then −g is concave. For example, −x2 is a concave function on

[−∞,∞]. An important property of a convex function is that any local minimum

is necessarily global. This can be seen as follows.

Suppose x is a local optimum; that is, there is an open neighborhood U where

g(x) ≤ g(u) for ∀u ∈ U . For arbitrary y ∈ R1, select (1−α)x+αy close to x such

that

g(x) ≤ g((1− α)x+ αy) for small α > 0

≤ (1− α)g(x) + αg(y) since g is convex

Rearranging terms, we get g(x) ≤ g(y) which indicates that x is also the global

optimum. Similarly, a local maximum in a concave function is necessarily the

global maximum as well.

All optimality criteria given in section 1.2.3 are convex functions of the in-

formation matrix. In my dissertation, I choose to work with concave criterion

functionals, and so the criteria are

D-optimality : Ψ(I(ξ)) = log|I(ξ)|

c-optimality : Ψ(I(ξ)) = −cT I−1(ξ)c

A-optimality : Ψ(I(ξ)) = −trace[I(ξ)−1]

As an illustration, to prove D-optimality Ψ(ξ) = log|I(ξ)| is a concave function

of I(ξ), it is enough to show that for any information matrices I(ξ1) and I(ξ2)

7



and all 0 ≤ α ≤ 1,

log|(1− α)I(ξ1) + αI(ξ2)| ≥ (1− α)log|I(ξ1)|+ αlog|I(ξ2)|. (1.2)

For this purpose, I use the Simultaneous Diagonalization Theorem: Let A be a

symmetric and positive de�nite matrix, and B be a symmetric matrix. There

exists a non-singular matrix U such that UAUT = E (the identity matrix), and

UBUT = D (a diagonal matrix with diagonal entries di's). Assuming I(ξ) is a

P × P matrix, apply the Simultaneous Diagonalization Theorem to the left-hand

side of inequality (1.2)

LHS = log|(1− α)I(ξ1) + αI(ξ2)|+ log|UUT | − log|UUT |

= log|(1− α)UI(ξ1)UT + αUI(ξ2)UT | − log|UUT |

= log|(1− α)E + αD| − log|UUT |

= log
P∏
i=1

(1− α + αdi)− log|UUT |

=
P∑
i=1

log(1− α + αdi)− log|UUT |

≥
P∑
i=1

((1− α)log(1) + αlogdi)− log|UUT |

= (1− α)log|E|+ α
P∑
i=1

logdi − log|UUT |

= (1− α)log|E|+ αlog|D| − log|UUT |

= (1− α)log|UI(ξ1)UT |+ αlog|UI(ξ2)UT | − log|UUT |

= (1− α)log|I(ξ1)|+ αlog|I(ξ2)|

General equivalence theorem

Let ξ be a design de�ned on the space χ, and let Ψ denote a concave functional

of I(ξ). The general equivalence theorem states the following three conditions are

equivalent (Atkinson and Donev [1992]).
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1. the design ξ∗ maximizes Ψ(I(ξ)).

2. the design ξ∗ minimizes max
x∈χ

ψ(x, ξ∗), where

ψ(x, ξ) = lim
α→0+

∂

∂α
Ψ{I((1− α)ξ + αδx)} −Ψ{I(ξ)} (1.3)

is the directional derivative of Ψ at ξ in the direction of δx, and δx is a measure

putting unit mass at x.

3. ψ(x, ξ∗) ≤ 0 for all x ∈ χ with equality at the support points of the design

ξ. The inequality is frequently referred as the checking condition for whether ξ∗

is optimal or not.

We also note from 3) that for any non-optimal design ξ, max
x∈χ

ψ(x, ξ) > 0.

Checking conditions for optimality criteria

We use the equivalence theorem above to verify whether a design ξ is optimal

by checking the directional derivative ψ(x, ξ) ≤ 0 for any x ∈ χ. Because the

criterion is a continuous concave function, the limit in (1.3) exists, and each

concave criterion results in a di�erent checking condition as follows.

D-optimality:

ψ(x, ξ) = fT (x)I−1(ξ)f(x)− P ; (1.4)

A-optimality :

ψ(x, ξ) = fT (x)I−2(ξ)f(x)− trace[I−1(ξ)]; (1.5)

c-optimality :

ψ(x, ξ) = (fT (x)I−1(ξ)∇)2 −∇T I−1(ξ)∇. (1.6)

As an illustrative example, I show how the directional derivative ψ(x, ξ) is de-

rived for D-optimality. Since the objective function of D-optimality is Ψ(I(ξ))=log|I(ξ)|,
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and

Ψ((1− α)I(ξ) + αI(δx))−Ψ(I(ξ)) = log|(1− α)I(ξ) + αI(δx)| − log|I(ξ)|

= log|(1− α)I(ξ)I(ξ)−1 + αI(δx)I(ξ)−1|

= log|(1− α)E + αI(δx)I(ξ)−1|

= log|E + α(I(δx)I(ξ)−1 − E)|

= g(α)

= g(0) + g′(α)|α=0 + ...

= g′(α)|α=0 + ...

By the fact that for an arbitrary matrix A,

∂|E + αA|
∂α

= trace[A],

The inequality (1.3) in the equivalence theorem leads to the checking condition

for D-optimality by

ψ(x, ξ) = lim
α→0+

1

α
(Ψ((1− α)I(ξ) + αI(δx))−Ψ(I(ξ)))

=
∂|E + α(I(δx)I(ξ)−1 − E)|

∂α

= trace[I(δx)I(ξ)−1 − E]

= trace[I(δx)I(ξ)−1]− P,

and (1.4) follows because I(δx) = f(x)fT (x).

For a low-dimensional design space, such as when we have only a single agent

in the study, the optimality of a design ξ can be easily veri�ed by plotting the

graph of ψ(x, ξ) versus x ∈ χ and visually examining if ψ(x, ξ) is bounded above

by 0 with equality at the support points. Such a graph is called the equivalence

plot.
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Examples of optimal designs

In this subsection, I show how to use the general equivalence theorem to verify

optimality of a few types of design criteria. Assume observations are independent

in the following homoscedastic quadratic regression model

yi = fT (xi)β + εi = β0 + β1xi + β2x
2
i + εi,

where εi ∼ Normal(0, 1), i = 1, 2, ..., N .

a) D-optimal design for quadratic regression on design space [-1, 1]

Consider the design

ξ =

 −1 0 1

1/3 1/3 1/3

 ,

which has equal weight at -1,0 and 1. Its normalized information matrix is

I(ξ) =
1

3


1 −1 1

−1 1 −1

1 −1 1

+
1

3


1 0 0

0 0 0

0 0 0

+
1

3


1 1 1

1 1 1

1 1 1



=
1

3


3 0 2

0 2 0

2 0 2

 .
To verify whether ξ is D-optimal, we calculate

ψ(x, ξ) =
[

1 x x2

]
I−1(ξ)

[
1 x x2

]T
− 3

= 3
[

1 x x2

]
1 0 −1

0 0.5 0

−1 0 1.5




1

x

x2

− 3

= 4.5x4 − 4.5x2.

Figure 1.1 shows that ξ is D-optimal because ψ(x, ξ) is bounded above by 0 with

equality at its support points -1,0 and 1.
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Figure 1.1: The equivalence plot of ψ(x, ξ) for the D-optimal design for the ho-

moscedastic quadratic regression on [-1,1].

b) A-optimal design for quadratic regression on design space [-1, 1]

Consider the design

ξ =

 −1 0 1

1/4 1/2 1/4


which has 1/4 weight at points -1 and 1, and puts the rest of the weight at 0. The

normalized information matrix for the design is

I(ξ) =
1

4


1 −1 1

−1 1 −1

1 −1 1

+
1

2


1 0 0

0 0 0

0 0 0

+
1

4


1 1 1

1 1 1

1 1 1



=
1

2


2 0 1

0 1 0

1 0 1

 .
It is easy to verify that the checking condition (1.5) of A-optimality for the

quadratic model is given by

ψ(x, ξ) =
[

1 x x2

]
I−2(ξ)

[
1 x x2

]T
− trace[I−1(ξ)]

=
[

1 x x2

]
8 0 −12

0 4 0

−12 0 20




1

x

x2

− 8

= 20x4 − 20x2.
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Figure 1.2: The equivalence plot of ψ(x, ξ) for the A-optimal design for the ho-

moscedastic quadratic regression on [-1,1].

The plot of ψ(x, ξ) for the A-optimal design for quadratic regression is shown in

Figure 1.2, which con�rms ξ is A-optimal since ψ(x, ξ) is bounded above by 0

with equality at the set of support points {-1,0,1}.

E�ciency and e�ciency lower bound

When the optimal design is known, we can measure the quality of an arbitrary

design ξ by comparing it to the optimal design. For example, assume the D-

optimal design is ξD for a model with P unknown parameters in the mean function.

For an arbitrary design ξ, its D-e�ciency is de�ned by

Deff = (
|I(ξ)|
|I(ξD)|

)1/P .

When comparing to the c-optimal design ξc for estimating c(θ), its c-e�ciency is

de�ned by

ceff =
∇T I−1(ξc)∇
∇T I−1(ξ)∇

,

where ∇ is the partial derivative of c(θ). Note that if a design ξ has an e�ciency

of 1
k
, it means we need k replicates of the design ξ to achieve the same criterion

value as one replicate of the optimal design.

Working with approximate designs has many advantages. One of them is that

if a design is not optimal, one can also use convex analysis results to ascertain
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how close the design is to the optimum without knowing the latter by means of

the e�ciency lower bound. Details can be found in standard design monographs

such as Fedorov [1972], Silvey [1980] and Berger and Wong [2009]. De�ne Ξ the

set of all designs for a regression model on χ. For an arbitrary design ξ ∈ Ξ, let

Ψ(I(ξ)) be the user-selected concave functional, δx be the one-point design at x,

and ψ(x, ξ) be the directional derivative of Ψ(I(ξ)) at ξ in the direction of δx.

Proposition IV. 28 in Pazman [1986] (page 118) shows that if Ψ(I(ξ)) > −∞ and

max
x∈χ

ψ(x, ξ) = ζ for some ζ > 0, then

Ψ(I(ξ)) ≥ sup{Ψ(I(ξ)) : ξ ∈ Ξ} − ζ.

When a design ξ is not optimal, its closeness to the optimal design can be readily

assessed. For example, recall that for D-optimality, the directional derivative at ξ

in the direction of δx is

ψ(x, ξ) = fT (x)I−1(ξ)f(x)− P,

where P is the number of unknown parameters in the mean function. By Proposi-

tion IV. 28, since D-optimal design ξD satis�es Ψ(I(ξD)) = sup{Ψ(I(ξ)) : ξ ∈ Ξ},

for any design ξ, we have log|I(ξ)| ≥ log|I(ξD)| − logeζ and it follows that

Deff (ξ) ≥ e−
ζ
P = Dlb(ξ),

where ζ = max
x∈χ

trace[I(δx)I
−1(ξ)] − P . This D-e�ciency lower bound Dlb(ξ)

attains unity if and only if ζ = 0, whereupon ξ is D-optimal.

Local optimality

In all previous sections, I review the concepts and fundamental theory of optimal

designs for linear models. All the results can be readily extended to nonlinear

models. The main di�erence is that in a nonlinear model, the information matrix

depends on the values of P unknown parameters θ = (θ1, ..., θP )T in the mean
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function η(x, θ). The usual and simplest approach is to assume nominal values

θ0 for θ are available. Nominal values are typically obtained from pilot studies or

data from similar experiments. Then η(x, θ) is linearized approximately by a �rst

order Taylor's expansion at θ0 as follows,

E(y) = η(x, θ)
.
= η(x, θ0) +

∂η

∂θ
|θ0(θ − θ0).

Note that throughout my dissertation, I adopt the numerator layout notation in

the derivative of η with respect to θ, which means ∂η
∂θ

= ( ∂η
∂θ1
, ..., ∂η

∂θP
) is a row

vector. With β = θ − θ0, an optimal design ξ for estimating β, or equivalently, θ

can be constructed using the following linear model

E(y)− η(x, θ0)
.
= fT (x, θ0)β,

where fT (x, θ0) = ∂η
∂θ
|θ0 . The normalized information matrix from the design ξ for

η(x, θ) becomes

I(ξ, θ0) = Eξ f(x, θ0)fT (x, θ0),

and so depends on the nominal values θ0. Therefore the desired optimal design for

nonlinear models can be found using the same method as if we have a linear model

after we replace θ in the gradient of η(x, θ) by θ0. Because such optimal designs

depend on the nominal values θ0, they are termed locally optimal by Cherno�

[1953]. All design criteria and checking conditions apply to nonlinear models after

replacing the mean function in the nonlinear model by its gradient.

Example: Compartmental model Compartmental models are commonly

used to study the drug movement through the body. For a single observation

x, a one-compartment open model is represented by

η(x, θ) = θ3(exp(−θ2x)− exp(−θ1x)), x > 0.

with θ1 > θ2 > 0 and θ3 > 0.
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Let θ = (θ1, θ2, θ3)T be the vector of model parameters, and let θ0 = (θ0
1, θ

0
2, θ

0
3)T

be the nominal values for θ. A direct calculation shows the gradient of the ap-

proximated mean function at the point x is

fT (x, θ0) = (
∂η(x, θ)

∂θ1

,
∂η(x, θ)

∂θ2

,
∂η(x, θ)

∂θ3

)|θ0 ,

with

∂η(x, θ)

∂θ1

=xθ3exp(−θ1x)

∂η(x, θ)

∂θ2

=− xθ3exp(−θ2x)

∂η(x, θ)

∂θ3

=exp(−θ2x)− exp(−θ1x).

For a K-point design ξ with weights w1, . . . , wK as the proportions of observations

taken at support points x1, ..., xK , its normalized information matrix is I(ξ, θ) =∑K
i=1wif(xi, θ

0)fT (xi, θ
0), apart from an unimportant multiplicative constant.

Note that in the rest of my dissertation, I will write θ instead of θ0 as nominal

values when there is no possible confusion.

1.3 Search algorithms

Optimization algorithms have been developed for several decades. A detailed

early history of optimization algorithms was discussed in Yang [2010c]. In the

dissertation, I brie�y discuss two main categories of optimization algorithms: de-

terministic and stochastic algorithms. For all algorithms I discussed here, the

common stopping criteria include the maximal number of iterations is reached, or

the generated solution is close enough to the optimum. Speci�cally, when �nding

a D-optimal design, I set the stopping criterion as the D-e�ciency lower bound

Dlb(ξ) > 0.999 for a generated design ξ. For c-optimality, I set the stopping cri-

terion as ζ ≤ 10−4 for the generated design ξ, where ζ = max
x∈χ

(fT (x)I−1(ξ)∇)2 −

∇T I−1(ξ)∇, and ∇ is the gradient of the combination of parameters of interest.
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1.3.1 Deterministic algorithms

An algorithm is said to be deterministic if �at any point of execution there is, at

most, one possible way to proceed� (Ueberhuber [1997]). In other words, a deter-

ministic algorithm is rigorous and speci�c in the sense that the algorithm always

goes through the same path given a particular input; thus all the states and values

of the functions are repeatable. Deterministic algorithms include many conven-

tional algorithms such as linear programming, nonlinear programming, gradient-

based and gradient-free algorithms (Parsopoulos and Vrahatis [2010]). Typically,

the deterministic algorithm for �nding optimal designs works with a �nite design

space χ = {x1, x1, ..., xn} with the n points discretized in some way from the orig-

inal continuous design space. The goal of the algorithm is to optimize a vector of

weights w ∈ Ω = {w = (w1, w2, ..., wn) :
∑n

i=1wi = 1, wi ≥ 0}. The value wi is

the proportion of observations taken at xi. It is worth noting that the number of

design points n is user-speci�ed depending on the complexity of the design crite-

rion and the model. Speci�cally in describing deterministic algorithms, I use w(t)

to denote the weights vector of an approximate design on the discretized design

space χ at the tth iteration.

1.3.1.1 Vertex direction method (VDM)

This deterministic algorithm was proposed by Fedorov [1972] and Wynn [1972],

and later named vertex direction method by Wu [1978]. For a linear regression

model (1.1) with P unknown parameters, the steps of the algorithm are as follows

(Tsay [1976]):

1) Choose a starting design w(0) = (w
(0)
1 , w

(0)
2 , ..., w

(0)
n ) with n > P points such

that I(w(0)) is nonsingular. A common choice of w0 is to have equal weight at all

the n design points, and all weights add up to 1.
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2) For the current design w(t) = (w
(t)
1 , w

(t)
2 , ..., w

t)
n ), t = 0, 1, 2..., �nd

imax = argmax
i
d(i, i, w(t)), 1 ≤ i ≤ n

where d(i, j, w(t)) = fT (xi)I
−1(w(t))f(xj). Then the new design at the t + 1th

iteration is given by

w
(t+1)
i =


(1− κ(t))w

(t)
i i 6= imax,

κ(t) + (1− κ(t))w
(t)
i i = imax,

where κ(t) = d(imax,imax,w(t))/P−1

d(imax,imax,w(t))−1
.

3) Repeating step 2) when the stopping criterion is not met, we obtain a

sequence of designs {w(t)}. Fedorov [1972] proved |I(w(t))| → supw∈Ω|I(w)|. By

the equivalence theorem, limt→∞ d(i, i, w(t)) = P for arbitrary 1 ≤ i ≤ n and this

means we can stop iterations when d(i, i, w(t)) gets close enough to P .

This algorithm shares the same idea with steepest-ascent method, because

κ(t) moves w(t) towards �the direction corresponding to the largest derivative in

any direction�. A drawback of this algorithm is w(t) may end up with too many

support points as iterations progress, and they need to be carefully collapsed to

fewer points and restart the algorithm.

1.3.1.2 Cocktail algorithm (CA)

The cocktail algorithm was proposed by Yu [2011] for �nding D-optimal designs.

The name cocktail originates from the hybrid of three algorithms that have been

mostly used for �nding D-optimal designs: Multiplicative algorithm(MA), Vertex

direction method (VDM) and Vertex exchange method (VEM). All three algo-

rithms search for D-optimal designs on a discretized design space χ = {x1, ..., xn}.

Yu [2011] showed that CA performs much faster than each of its component algo-

rithms for several univariable model. CA also inherits the monotonic convergence
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property from three algorithms, i.e. as t → ∞, |I(w(t))| → supw∈Ω|I(w)|. Below

is the description of three algorithms.

• Vertex direction method (VDM)

As described in section 1.3.1.2, for the current design w = (w1, w2, ..., wn), I de�ne

wnew = V DM(w) by

wnewi =


(1− κ)wi i 6= imax,

κ+ (1− κ)wi i = imax,

where κ = d(imax,imax,w)/P−1
d(imax,imax,w)−1

, and imax = argmax
i

d(i, i, w(t)), 1 ≤ i ≤ n.

• Nearest neighbor exchange (NNE)

The NNE algorithm is similar to the Vertex exchange method (VEM) developed

by Bohning (1986). It aims to reallocate weights of nearby points in the neigh-

borhood. Note that it operates on support points with positive weight only. For

univariable models, there is a natural order in the �nite design space

χ = {xi, i = 1, ..., n}.

For the jth point, we �nd its adjacent point j∗ ∈ {1, ..., n}, such that their L1-

norm ||xj − xj∗|| is minimized. For the current design w = (w1, w2, ..., wn), NNE

is to perform weight exchange between jth and j∗th support points by

wnewi =


wi i 6= {j, j∗},

wi − τ i = j,

wi + τ i = j∗,

where τ = min{wj,max{−wj∗ , τ ∗(j, j∗)}}, and

τ ∗(j, j∗) =
d(j∗, j∗, w)− d(j, j, w)

2(d(j, j, w)d(j∗, j∗, w)− d2(j, j∗, w))
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where d(j, j∗, w) = fT (xj)I
−1(w)f(xj∗). After iterating j from 1 to n design

points in w, the new design wnew is generated. I denote the entire procedure as

wnew = NNE(w) .

• Multiplicative algorithm (MA)

The MA was proposed by Silvey et al. [1978]. Its updating rule for the current

design w = (w1, w2, ..., wn), denoted by wnew = MA(w), is

wnewi =
d(i, i, w)

P
wi, i = 1, ..., n

The CA algorithm consists of the following steps.

1) Choose a starting n > P points design w(0) such that I(w(0)) is non-singular.

A common choice of w0 is to assign equal weight to the n distinct design points,

and all the weights add up to 1.

2) In the tth iteration, there are three sub-steps, denoted by t+ 1
3
, t+ 2

3
, t+ 1

(t = 0, 1, 2...) as follows

2.1) Generate w(t+ 1
3

) = V DM(w(t));

2.2) Exclude non-support points in w(t+ 1
3

), and re-index the n+ design points

with positive weight w(t+ 1
3

) from (1) to (n+). Generate w(t+ 2
3

) = NNE(w(t+ 1
3

));

2.3) Exclude non-support points in w(t+ 2
3

), and re-index the n+ design points

with positive weight w(t+ 2
3

) from (1) to (n+). Generate w(t+1) = MA(w(t+ 2
3

)).

3) Repeat 2) until maxi∈{1,...,n+}d((i), (i), w(t)) gets close enough to P , or the

maximal number of iterations is reached.

1.3.2 Stochastic algorithms

Stochastic algorithms have random components in their search for the optimum

using a heuristic (or metaheuristic). They are di�erent from deterministic al-

gorithms because randomization, a key feature of stochastic algorithms, makes
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each step of a stochastic algorithm unrepeatable. There are two types of stochas-

tic algorithms: heuristic and metaheuristic, though their di�erence is minor and

some literature has used these two terms interchangeably. �Heuristic is a solution

strategy by trial-and-error to produce acceptable solutions to a problem in a rea-

sonably practical time� (Yang [2010c]). Recently, metaheuristic algorithms refer

to all stochastic algorithms with randomization and local search.

As early as 1940, heuristic algorithm was �rst used by Alan Turing in the Sec-

ond World War to break the German Enigma ciphers (Yang [2010c]). Since 1960s,

there have been an explosive development in stochastic algorithms. In my disser-

tation, I use these metaheuristic algorithms to maximize an objective function

h(·). Unlike deterministic algorithms I have described early on, metaheuristic al-

gorithms usually do not require h(·) to be convex/concave nor di�erentiable (Storn

and Price [1997]). Such an advantage enables them to cope with much broader

types of optimization problems. In the following sections, I introduce a couple of

important metaheuristic algorithms in their chronological order.

1.3.2.1 Genetic algorithm (GA)

The Genetic algorithm was proposed by John Holland and his students in 1960s

and �rst summarized in his book: Adaptation in Natural and Arti�cial systems

(Holland [1975]). Based on Charles Darwin's theory of natural selection, it mimics

the biological evolution by employing the idea of �crossover and recombination,

mutation, and selection� to arti�cial systems. Over the years, researchers have pro-

posed many variations based on the canonical GA, and successfully applied them

to solve problems such as graph coloring, pattern recognition, traveling salesman

problem and multi-objective engineering optimization, etc. An advantage of GA

is its multiple o�spring enables parallelism, which enhances the search speed enor-

mously. However, GA is sensitive to the selection of important parameters and

an improper choice of parameters may lead to non-convergence or unreasonable
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results. GA can be summarized in the following steps (Yang [2010c]):

1) De�ne a �tness function or selection criterion h(·).

2) Initialize a population of individuals z
(0)
1 , ..., z

(0)
nflock . Each individual repre-

sents a chromosome, which is a potential solution to the optimization problem.

3) For the current tth population, t = 0, 1, ...., evaluate the �tness of all the

individuals in the population h(z
(t)
1 ), ..., h(z

(t)
nflock),

4) Create a new population z
(t+1)
1 , ..., z

(t+1)
nflock by performing crossover, and mu-

tation, �tness proportionate reproduction, etc.;

5) Repeat step 3) and 4) and evolve the population until the stopping criterion

is met.

1.3.2.2 Simulated Annealing (SA)

Simulated Annealing (SA) algorithm was developed by Kirkpatrick et al. [1983].

As the name implies, SA was inspired by the annealing process when cooling a

metal into a crystalline state with minimum energy. The law of thermodynamics

states that at temperature Υ the probability of a decrease in energy level ∆h is

given by

Pr(∆h)=exp(− ∆h

kBΥ
),

where kB is a constant known as Boltzmann's constant, Υ is the temperature

for controlling the annealing process, and ∆h represents the change of energy

levels. By introducing Pr(∆h) into the algorithm, SA re�ects the idea of Metroplis

algorithm (details of the algorithm can be found in Metropolis et al. [1953]),

which not only allows improvement of the objective function but also accepts

non-ideal changes with some probability. An attractive feature of SA is that the

convergence to its global optimal solution is guaranteed if enough randomness is

used in combination with very slow cooling (Yang [2010c]). SA has been widely

used for solving di�erent areas of optimization problems. For example, Haines
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[1987] applied SA to �nd exact optimal designs for linear models. Selima and

Alsultanb [1991] showed SA outperforms K−means algorithms for solving the

clustering problem.

The procedure of SA to maximize an objective function h(·) is de�ned as

follows.

1) Initialize temperature Υ0 and starting point z
(0) at time 0, which represents

a candidate solution. Evaluate the �tness h(z(0)).

2) De�ne annealing schedule i.e how temperature Υ(t) decreases as a function

of time t = 0, 1, 2...

3) Move z(t) to a new location z(t+1) randomly, calculate h(z(t+1)) and the

energy level change ∆h(t+1) = h(z(t)) − h(z(t+1)). In my dissertation, the goal

is to maximize the objective function h(·) , therefore if ∆h(t+1) < 0 then z(t+1)

is better and we accept it. If ∆h(t+1) > 0 then accept z(t+1) with probability

exp(−∆h(t+1)

Υ
). Note that in SA, Boltzmann's constant kB is usually dropped

since it was introduced to cope with di�erent materials.

4) Repeat step 3) to update z(t) and h(z(t)) until Υ→ 0.

In SA, it is crucial to choose an appropriate decreasing mode for Υ. The higher

the temperature, the larger the probability of accepting a worse position. Two

commonly used annealing schedules (or cooling schedules) are:

linear: Υ(t) = Υ0 − βt

geometric: Υ(t) = Υ0α
t, 0 < α < 1

1.3.2.3 Di�erential Evolution (DE)

The di�erential evolution algorithm was developed by Storn and Price [1997].

It searches global optimum in a continuous space by utilizing a population of

J-dimensional vectors z1, ..., znflock . The theoretical framework of DE is rela-
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tively simple and requires only a few tuning parameters, but it performs well

in convergence in many applications (Kachitvichyanukul [2012]). Storn and Price

[1997] claimed that DE, based on simulation results using multiple testing func-

tions, outperforms other popular metaheuristic algorithms including Adaptive

Simulated Annealing (ASA), the Annealed Nelder and Mead approach (ANM),

the Breeder Genetic Algorithm (BGA), the EASY Evolution Strategy and the

method of Stochastic Di�erential Equations. Other researchers have also shown

DE outperforms GA in solving many engineering problems such as the design of

scannable circular antenna arrays (Panduro et al. [2009]), enhancement of total

transfer capability (Chandrasekar and Ramana [2012]), etc. The DE algorithm

codes and some applications are available in various programming platforms at

http://www1.icsi.berkeley.edu/~storn/code.html.

The algorithm consists of the following steps.

1) Initialize a population of J-dimensional candidate vectors z
(0)
i = (z

(0)
i1 , z

(0)
i2 ..., z

(0)
iJ ),

and evaluate the �tness h(z
(0)
i ), i = 1, 2, ..., nflock.

2) At tth iteration (t = 0, 1, 2, ...), update the current generation z
(t)
i ,i =

1, 2, ..., nflock by the following three sub-steps:

• Mutation

For each vector z
(t)
i , i = 1, 2, ..., nflock, generate a mutant vector by

m
(t+1)
i = z(t)

ra + CF × (z(t)
rb
− z(t)

rc )

where ra, rb, rc are integers randomly drawn without replacement from {1, 2, ..., nflock},

and CF ∈ [0, 2] is a constant factor controlling the ampli�cation of the di�erential

variation z
(t)
rb − z

(t)
rc . A large CR often speeds up convergence, but a smaller CR

enables DE to search the space in a more detailed manner.

• Crossover
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To increase the diversity of vectors, the crossover trial vector is introduced as:

c
(t+1)
i = (c

(t+1)
i1 , c

(t+1)
i2 , ..., c

(t+1)
iJ ), where

c
(t+1)
ij =


m

(t+1)
ij if uj ≤ CR or j = ri

z
(t)
ij if uj > CR and j 6= ri

,

j = 1, 2, ..., D. Here uj is a random number which follows uniform distribution in

[0,1], and CR is the user determined crossover constant∈ [0, 1]. For the ith vector,

a number ri is randomly chosen from 1, 2, ..., J which ensures that c
(t+1)
i gets at

least one element from m
(t+1)
ij .

• Selection

Assuming h(·) is the objective function to be maximized, the ith vector at t+ 1th

generation is de�ned by

z
(t+1)
i =


c

(t+1)
i if h(z

(t)
i ) < h(c

(t+1)
i )

z
(t)
i if h(z

(t)
i ) ≥ h(c

(t+1)
i )

3) Repeat step 2) until stopping criteria are satis�ed.

The only two tuning parameters in DE is CF and CR. Through simulation

studies of a number of testing functions, Storn and Price [1997] suggested that

CF=0.5 is usually a good initial choice, and a relatively large CR, say 0.9, is

appropriate as a �rst try in order to see if a quick solution is possible. In terms

of the total population size, Storn and Price [1997] recommended a reasonable

choice for nflock is between 5D and 10D according to their experience.

1.3.2.4 Particle Swarm Optimization (PSO)

Nature-inspired metaheuristic algorithms have been gaining popularity in the last

two decades and recently have gained dominant status both in academia and in-

dustrial applications (Whitacre [2011a,b]). One of the most prominent examples
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of a nature-inspired algorithms is Particle Swarm Optimization (PSO) proposed

by Kennedy and Eberhart [1995]. A main appeal is its simplicity, ease of imple-

mentation and its ability to provide quality solution to an optimization problem

very fast. Another appeal is that it makes no assumption on the function to be

optimized and researchers from a widening range of disciplines report high success

rates of �nding an optimal or nearly optimal solution to a complex optimization

problem. An attempt to explain its success from a biological viewpoint is given

in Garnier et al. [2007], and an overview of PSO is available in Poli et al. [2007].

The concept of particle swarm optimization stems from studying interactions

in a simpli�ed social system (Eberhart and Shi [2001]). Particles in PSO are

usually described as mimicking the social behavior of a �ock of birds in search

of food. The PSO algorithm begins after the user inputs two key starting values

including (i) the �ock size and (ii) maximum number of iterations. An initial �ock

of particles is randomly generated and they represent candidate designs for the

optimum, each with the same user-speci�ed number of points.

There are two basic equations that drive movement for the each particle in

the PSO search to optimize an objective function h(·). The ith particle at time

t is determined by its position through the vector z
(t)
i and its movement by the

velocity vector v
(t)
i . At time t+1, its position z

(t+1)
i and velocity v

(t+1)
i are evolved

by the following two equations:

v
(t+1)
i = ω(t)v

(t)
i + γ1u

(t)
1i � (p

(t)
i − z

(t)
i ) + γ2u

(t)
2i � (p(t)

g − z
(t)
i ), (1.7)

and

z
(t+1)
i = z

(t)
i + v

(t)
i . (1.8)

The initial velocity for each particle is randomly assigned from U(0, 1). The

inertia weight ω(t) modulates the in�uence of the former velocity. Throughout

the dissertation, I follow the suggestion in Eberhart and Shi [2000] and set ω(t)

to be a linear function that decreases from 0.9 to 0.4 during an optimization run.
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Such setting helps particles to explore the entire space during the early part of

the search and exchange information before converging to the global optimum.

Particles therefore have less chance to converge prematurely or get trapped in the

local optimum. In (1.7) the personal best position p
(t)
i is the best position found

by the ith particle up to time t, which conceptualizes self-knowledge. The global

best position p
(t)
g is the overall best position determined by the whole �ock after

sharing information up to time t, which is referred to as social knowledge. This

means that up to time t, the personal best for particle i is pbesti = h(p
(t)
i ) and the

population best for the entire �ock is gbest = h(p
(t)
g ). The two random vectors in

the PSO algorithm are u
(t)
1i and u

(t)
2i , and usually their components are taken to be

independent random variables from U(0, 1). The constant γ1 and γ2 are constants

that determine how each particle moves toward its own personal best position p
(t)
i

and in the direction of the global best position p
(t)
g . The default values for these

two constants in the PSO codes are γ1 = γ2 = 2 and they really seem to work

well in practice for all univariable problems that I have investigated so far. Note

that in (1.7) the product in the last two terms is Hadamard product.

The PSO generic code is available on many websites such as http://www.

swarmintelligence.org and in books on metaheuristic methods like Yang [2010b].

MATLAB also has a toolbox for running the PSO code (http://www.mathworks.

com/matlabcentral/fileexchange/7506). The pseudo code for the PSO proce-

dure for a �ock of size nflock is as follows.
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(1) Initialize particles

(1.1) Initiate positions zi and velocities vi for i = 1, . . . , nflock.

(1.2) Calculate the �tness values h(zi) for i = 1, . . . , nflock.

(1.3) Determine the personal best positions pi = zi and the global position pg.

(2) Repeat until the stopping criterion is satis�ed.

(2.1) Calculate particle velocity according to Equation (1.7).

(2.2) Update particle position according to Equation (1.8).

(2.3) Calculate the �tness values h(zi).

(2.4) Update personal and global best positions pi and pg.

(3) Output pg = argmaxh(z) with gbest = h(pg).
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CHAPTER 2

Optimal Designs for Univariable Biomedical

Models

In this chapter, I discuss the statistical background and apply PSO to �nd D-

and c-optimal designs for common univariable models in the biomedical studies.

By univariable I mean there is only one dependent variable (response variable)

and one independent variable (explanatory variable) in the model. These models

may appear small in terms of the number of parameters that they have. However,

as noted in Konstantinou et al. [2011], �nding optimal designs for such models

can still be problematic using traditional numerical methods or analytically. The

statistical models have a known mean response function η(x, θ) apart from the

values of the parameter vector θ.

In what follows, I present D- and c-optimal designs found by PSO for the

following model: (i) an one-compartment model used in pharmacokinetics, (ii)

2 and 3-parameter logistic models for studying binary responses, (iii) a double

exponential model for studying tumor regrowth rate, (iv) a 2-parameter survival

model, (v) an inverse polynomial model and (vi) a 4-parameter heteroscedastic

Hill model. These models are selected to facilitate comparisons with known results

from the literature. Other than the 4-parameter heteroscedastic Hill model, all

have independent normal errors, each with mean zero and constant variance.
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2.1 Motivation

Sheiner et al. [1989] pointed out that �a dose-ranging study must begin with a

parametric model for patient-speci�c dose-response curves�. In biomedical re-

search such as dose-response studies, nonlinear univariable models, including the

compartmental model and the Hill model, are widely used. By postulating these

models, practitioners try to answer fundamental questions such as what is the

nature of the dose-response relationship? What is the optimal dose (Ruberg

[1995])? The answers to these questions usually rely on the precise estimation

of the unknown parameters in the model. As the cost of biomedical researches

rises nowadays, it is crucial to e�ciently estimate these quantities by choosing

multiple dose levels via D- or c-optimal designs.

Optimal experimental design theory has been developed extensively for almost

a century, and they can provide insightful guidance on how to allocate multiple

dose levels. As more and more complicated models are developed, �nding op-

timal designs has become an increasingly di�cult task for researchers, therefore

the availability of an e�cient and easy-to-use algorithm to �nd di�erent types

of optimal design is both useful and timely. Recently, metaheuristic algorithms

including Particle swarm optimization (PSO) have been successfully applied to

solve many tough engineering and computer science problems. These algorithms

do not guarantee that the global optimum can be always found, but frequently

converge to the optimum or near optimum after a few iterations. In the context

of my work, all the objectives are concave functionals and so I can easily verify

if the PSO-generated design is global optimum using the equivalence theorem. In

what is to follow, much of the work is on applications of PSO to �nd a variety of

optimal designs for models commonly used in biomedical science.
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2.2 Implementation of Particle Swarm Optimization to �nd

locally optimal designs

I have described of PSO in Chapter 1. When applying PSO to �nd a K-point

optimal design

ξ =

 x1 x2 ... xK

w1 w2 ... wK

 ,

the user �rst selects the �ock size, the maximal number of iterations and param-

eters for the design problem. The latter includes the lower bound lb and upper

bound ub of the design space and nominal values of model parameters for the par-

ticular problem at hand. PSO begins searching by randomly generating a �ock

with each particle representing a candidate design ξ. These candidate designs all

have the same �xed number of points, K is equal to or greater than the number

of parameters in the mean response function.

For the ith particle, its position at time t , i.e. a candidate design, is z
(t)
i =

(x1, x2, ..., xK , w1, w2, ..., wK−1)T . There are two constraints imposed on each par-

ticle: xi ∈ [lb, ub] and
∑K−1

i=1 wi ≤ 1. If a candidate design doesn't satisfy the

two constraints, we punish this position z
(t)
i by assigning an extremely small value

−1010 to its �tness value h(z
(t)
i ), eliminating such an infeasible solution. For parti-

cles that �y outside of the design space, some repair mechanisms will be applied. I

elaborate on them in Chapter 5, where I compare how di�erent repair mechanisms

impact the performance of PSO.

The rest of the PSO parameters like the inertia weight, cognitive and social

learning parameters are all set to their default values. Consequently, we only

have to fuss with the �ock size and the number of iterations. This simpli�es the

process and is an appealing feature of PSO. Since in our examples, the design

optimality criterion is concave, the generated design can be veri�ed using the

general equivalence theorem derived from the directional derivative of the criterion
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functional. We therefore check the quality of the PSO generated design either by

the equivalence plot or calculating its e�ciency lower bound.

The number of support points required by an optimal design is unknown. It

is possible that repeated searches by PSO with di�erent number of iterations and

di�erent �ock sizes generate a K-point design that does not meet the equivalence

theorem conditions. That means the optimal design is supported at more than

K points and so we continue the search to all designs with K + 1 points. My

experience is that such a strategy always produce a locally optimal design and I

only need to search among designs with K+j points where j is usually 1 or 2. On

the other hand, if the number of support points required by the optimal design is

over-speci�ed, then PSO will report an optimal design with some identical points

or some points with extremely small weights. The weights at these identical points

are then summed to obtain the optimal design. Such situations arise when the

optimal design has a singular information matrix and an example of such a case

is provided below when we want to �nd the locally optimal design for estimating

the area under curve (AUC) in the 3-parameter compartmental model.

In my dissertation, All PSO codes are programmed in MATLAB 2013a, and

run on a workstation with Intel i7-4770 and 16GB ram.

2.3 Locally D-optimal designs for compartmental models

Compartmental models are widely used to model transport of material in biolog-

ical systems. Teorell [1937] was one of the �rst researchers to use compartmental

models to investigate �in vivo absorption, distribution, metabolism, and excretion�

of a drug. Dominguez and Pomerene [1945] used a one-compartment open model

to describe the time course of absorption rate of creatinine from both plasma and

urinary excretion data. Such model was also applied by Borzelleca and Lowenthal.

[1966] in a pharmacokinetic study for the rectal administration of a drug. Com-
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partmental models are not limited to pharmaceutical applications. In veterinary

science, for example, Fresen [1984] used a 3-paramter compartmental model to

study the e�ect of theophylline on horses.

To illustrate how to �nd a locally D-optimal design via PSO, I focus on the

one-compartment open model with �rst-order absorption input, as described by

Atkinson et al. [1993]

η(x, θ) = θ3(exp(−θ2x)− exp(−θ1x)), x > 0.

with θ1 > θ2 > 0 and θ3 > 0. As shown in section 1.2.4.7, the gradient of η(x, θ)

is

fT (x, θ) = (xθ3exp(−θ1x),−xθ3exp(−θ2x),exp(−θ2x)− exp(−θ1x)).

Hereby the normalized information matrix is I(ξ, θ) =
∑K

i=1 wif(xi, θ)f
T (xi, θ),

which depends on nominal values of θ = (θ1, θ2, θ3)T . To implement PSO to

�nd locally D- and c-optimal design for the 3-parameter compartmental model,

I assume for comparison purposes the same dose interval and the same set of

nominal parameters used in Atkinson and Donev [1992] with θ1 = 4.298, θ2 =

0.05884 and θ3 = 21.8. These values were obtained from the least square estimates

of the parameters from Fresen's data set (Fresen [1984]).

As a �rst attempt, I use 100 iterations and a �ock size of 100 particles each

with 3 support points in the PSO algorithm to �nd the locally D-optimal design

for this compartmental model. This is a �ve-dimension optimization problem

where we want to �nd the best choices of x1, x2, x3, w1, w2 to maximize |I(ξ, θ)|.

The constraints I put on each particle are 0 < x1 < x2 < x3 < 30, 0 < w1 < 1, 0 <

w2 < 1, 0 < w3 = 1−w1−w2. The PSO generated design is equally supported at

0.2288, 1.3886 and 18.4168, which coincides with the locally D-optimal design to

four decimal places in Atkinson and Donev [1992] on page 264. The equivalence

plot con�rms the optimality of the design over all designs on the designated dose
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interval and I do not need to search further. The CPU time required was 0.408

seconds. If I have used just 50 particles and 50 iterations, the same design would

also have been obtained in 0.381 seconds.

2.4 Locally c-optimal designs for estimating the time to

maximum concentration in compartmental models

Three common study features of a drug are its time to maximum concentration

in the targeted compartment, time to maximum concentration in the compart-

ment and the average time it spends inside the compartment. I discuss only the

latter two objectives for space consideration because �nding optimal design for

the �rst objective can be carried out in a similar way. The locally c-optimal de-

sign for estimating the time to maximum concentration of a drug can be found

by di�erentiation directly from the model. This time as a function of the model

parameters is

tmax(θ) =
logθ1 − logθ2

θ1 − θ2

.

The goal then is to choose a design to minimize the asymptotic variance of the

estimated time given by

∇T I(ξ, θ)−∇.

Here ∇T = ∂tmax(θ)
∂θT

= (a/θ1−b)/a2, (b−a/θ2)/a2, 0), a = θ1−θ2, b = logθ1− logθ2,

and I(ξ, θ)− is a generalized inverse of the information matrix. Using the same

set of nominal values of the parameters, I use PSO to minimize the variance of

g(θ̂) by choice of (x1, x2, w1), 0 < x1 < x2 < 30, 0 < w1 < 1, w2 = 1− w1.

The locally optimal design for estimating the time to maximum concentration

is a c-optimal design with only 2 support points, which means that its information

matrix is singular because the matrix is now a sum of two rank-one matrices. To

get around having to �nd the inverse of singular information matrix I(ξ, θ), I
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follow the convention and add a small multiple ι to the 3× 3 identity matrix E3

and work with the invertible matrix

Iι(ξ, θ) = I(ξ, θ) + ιE3.

I implement PSO to �nd the optimal values of x1, x2, w1 subject to 0 < x1 < x2 <

10 and 0 < w1 < 1 with w2 = 1 − w1. The PSO parameters I use are ι = 10−6

and 200 particles all with K = 2 points. Expecting a singular information matrix

for the optimal design, I allow for a larger number of iterations and after 1000

iterations, PSO generates a two-point design supported at 0.1793 and 3.5658 with

weight 0.3938 at the latter point.

2.5 Locally c-optimal designs for estimating the area under

the curve (AUC) in compartmental models

A similar procedure is used to �nd the locally c-optimal design for estimating the

total exposure of the drug inside the compartment. By its de�nition, the function

is

AUC =

∫ ∞
0

η(x, θ)dx

= θ3(
1

θ1

− 1

θ2

).

Proceeding as before, I apply PSO to minimize the asymptotic variance of the

estimated AUC. Setting K = 2 and using 100 particles and 1000 iterations,

PSO takes 6.185 seconds to generate a two-point design supported at 0.2326 and

17.6339 with weight 0.0135 at the smaller point, which coincides with the locally

c-optimal design to four decimal places in Atkinson and Donev [1992] on page

264.

It is interesting to observe what happens if I have used starting designs all with

K = 3 points. The PSO generated design obtained using 200 particles and 500
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iterations is supported at 0.2337, 17.6269 and 17.7176 with weight distribution at

these points equal to 0.0135, 0.8983 and 0.0882. Increasing the number of itera-

tions to 1000 results in a design supported at 0.2332, 17.6336 and 17.6626 with

weight distribution at these points equal to 0.0135, 0.9535 and 0.03296, respec-

tively. These results are consistent with the expectation that a longer iteration

and/or more particles usually produces a higher quality solution. It also shows

a very nice feature of PSO in that when I over-specify the number of support

points the optimal design has, PSO can also automatically �nd the optimal de-

sign directly; in the above case, the 3 points found above get increasingly closer

to 2 points as more iterations are used, leaving the weight at the smaller point

unchanged.

2.6 Locally D-optimal Designs for quadratic logistic models

For modeling binary responses, logistic models are among the most popular ones

because of their simplicity and ease of interpretation. Frequently, we have sim-

ple logistic models with two parameters and sometimes quadratic logistic models

with three parameters. In this section I consider locally D-optimal designs for

estimating all model parameters. Probably the �rst description of the locally

D-optimal design for the simple logistic model was given in a doctoral thesis of

Ford [1976] for the prototype interval [−1, 1] and reported in Silvey [1980]. The

formula is complicated for a relatively simple model. When I ran PSO to verify

Ford's design, I was unable to produce the same result. A corrected formula for

the locally D-optimal design on an arbitrary interval was given in Sebastiani and

Settimi [1997] and I was able to verify their results using PSO.

Quadratic logistic models are sometimes employed to explore possible curva-

ture in the model or to estimate an interesting characteristic of an agent in a

dose-response study. For example, in radiology and radiotherapy, there is often
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interest in estimating the ratio of the coe�cients associated with the linear and

quadratic terms in the quadratic logistic model (Taylor [1990]). Selected locally c-

optimal designs for the quadratic logistic model were found theoretically in Fornius

and Nyquist [2010] after re-parameterizing the model in the following way using

their notation:

log(
Ey

1− Ey
) = α + β(x− µ)2.

Here y is the binary response taking on values 0 or 1 with certain probabilities at

dose x. By a �rst order Taylor's expansion, I get the gradient vector of the mean

function as

fT (x, θ) = (1, (x− µ)2,−2β(x− µ))

and the normalized information matrix of a K−point design ξ is

I(ξ, θ) =
K∑
i=1

wiλ(xi, θ)f(xi, θ)f
T (xi, θ)

where λ(x, θ) =
exp(−α−β(x−µ)2)

(1+exp(−α−β(x−µ)2))2
.

As usual, I begin the search for the locally D-optimal design among all 3-point

designs �rst. As an example, suppose the design interval is [−3, 1] and the nominal

values for the 3 parameters are α = 2, β = 3 and µ = 0. With 128 particles and

150 iterations, PSO takes 6.623 seconds to �nd a design equally supported at

-0.7270, 0 and 0.7270. The equivalence plot con�rms the D-optimality of this

design. If fewer number of iterations were used, say 50 iterations, the pattern of

the optimal design will also emerge quickly and clearly, except that the weights

are only approximately equal and the extreme support points are less symmetric

about 0. PSO took 3.104 seconds to produce the design and also reports the

design has an e�ciency of 99.98%.

Interestingly, when the maximum probability of response is high, there are 4-

point locally D-optimal designs. For instance suppose the design interval is [−1, 1]

and the nominal values for the 3 parameters are α = 3, β = −5 and µ = 0. With a
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Table 2.1: Locally D-optimal designs for estimating the three parameters in the

quadratic logistic model for di�erent nominal values and di�erent design intervals.

(α, β, µ) Design space Locally D-optimal designs

(0,−1, 0) [−1, 1]

 −1.0000 0.0000 1.0000

0.3333 0.3333 0.3333


(0,−1, 0) [−2, 2]

 −1.4073 0.0000 1.4073

0.3333 0.3333 0.3333


(3,−1, 0) [−1, 1]

 −1.0000 0.0000 1.0000

0.3333 0.3333 0.3333


(3,−1, 0) [−2, 2]

 −2.0000 −1.2506 1.2506 2.0000

0.3061 0.1939 0.1939 0.3061


(3,−1, 0) [−4, 4]

 −2.0609 −1.3239 1.3239 2.0609

0.2966 0.2034 0.2034 0.2966


�ock size of 256 and the number of iterations set at 200, PSO takes 18.317 seconds

to �nd a design symmetrically supported at −0.9217,−0.5921, 0.5921 and 0.92170.

The weights at−0.9217 and at−0.5921 are 0.2966 and 0.2034, respectively. Figure

2.1 is generated from the P-code from our websites and shows the equivalence plot

of this PSO generated 4-point design for the quadratic logistic model. The plot

is bounded above by 0 throughout the scaled design interval [−1, 1] with equality

at the support points of the PSO generated design and so the �gure con�rms its

D-optimality. Table 2.1 displays locally D-optimal designs for estimating the three

parameters in the quadratic logistic regression model for various nominal values

of the parameters and on di�erent design intervals.

As always here and elsewhere, in order to ensure a higher chance that PSO will

generate the optimal design, I set the �ock size and the maximal number of itera-

tions larger than are usually necessary. Frequently, smaller �ock size and smaller

number of iterations will su�ce, which means shorter CPU time can usually also
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Figure 2.1: Equivalence plot of the D-optimal criterion for the PSO-generated

4-point design for the quadratic logistic model when (α, β, µ) = (3,−5, 0).

produce the optimal design.

2.7 Locally D-optimal designs for a double exponential model

Double exponential regrowth model was developed by Demidenko [2004] to de-

scribe the dynamics of post-irradiated tumors based on the two-compartment

model. Tumor cells may be categorized to two states as proliferating or quiescent.

Assuming proliferating cells divide with constant rate ν, and quiescent cells die

with a constant rate γ, the natural logarithm of the tumor volume of the two

kinds of cells is expressed by

y = α + ln[βeνx + (1− β)e−γx] + ε,

where ε ∼ N(0, σ2).

After linearizing the mean function by a Taylor's �rst order expansion of the

mean function, the gradient vector is

fT (x, θ) = (1,
eνx − eγx

βeνx + (1− β)e−γx
,

βxeνx

βeνx + (1− β)e−γx
,
−(1− β)xe−γx

βeνx + (1− β)e−γx
)
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and θ = (α, β, ν, γ)T is the vector of model parameters.

Li and Balakrishnan [2011] have shown that |I(ξ, θ)| depends only on β and

ν + γ, which implies that only two nominal values are required to generate the

locally D-optimal design, i.e. a nominal value for β and a nominal value for the

sum of the two parameters ν and γ. Proceeding as before and using codes from

our websites, one can verify that PSO readily generates locally D-optimal designs

that match those in Li and Balakrishnan [2011]. For instance, suppose I use the

default input values for this example in the code, namely set β = ν + γ = 0.2 and

the interval is [0, 10]. Then PSO with 100 particles and 100 iterations produces

in 1.041 seconds the locally D-optimal design equally supported at 0, 2.660, 6.707

and 10 reported in Table 2.2 in Li and Balakrishnan [2011]. Likewise, PSO with

the same �ock size and same number of iterations, taking 1.085 seconds, produces

the optimal design as shown in the last row of their Table where β = 0.8 and

ν + γ = 1. Other cases including the case for verifying the c-optimal designs

reported in their paper can be similarly veri�ed.

2.8 Locally D-optimal designs for an inverse polynomial

model

The inverse polynomial model has been frequently applied to describe the response

to various stimuli in biological and agricultural studies (Cobby et al. [1986]). For

example, Sparrow [1979] claimed that the inverse quadratic was the curve that

best described the relationship between crop yield and fertilizer input. Here I

focus on the inverse quartic polynomial below taken from Cobby et al. [1986]:

E(yi) = η(xi; θ) =
xi + α

β0 + β1(xi + α) + β2(xi + α)2
,
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where θT = (β0, β1, β2, α), with 0 ≤ α < (β0β2)1/2,β2 ≥ 0 and |β1| < 2(β0β2)1/2.

By a Taylor's �rst order expansion of the mean function, the gradient vector is

fT (x, θ) = (
∂η

∂β0

,
∂η

∂β1

,
∂η

∂β2

,
∂η

∂α
),

with

∂η

∂βj
=− zj+1

i /p2
i (j = 0, 1, 2),

∂η

∂α
=(β0 − β2z

2
i )/p

2
i ,

where zi = xi + α and pi = β0 + β1zi + β2z
2
i .

PSO is able to �nd the same locally D-optimal designs reported in the paper.

However, di�erent set of parameters requires di�erent number of iterations. For

example, if α = 0.1 ,β1 = −0.8, PSO takes only 100 iterations to �nd the optimum,

but with α = 0.1, β1 = 0.8 PSO requires 200 iterations.

2.9 Locally c-optimal designs for a survival model

Konstantinou et al. [2011] investigated a two-parameter exponential model with

type I right censored data, where all individuals entered the study at the same

time and stayed until a user-speci�ed time c or until failure, whichever was earlier.

Right-censoring occurs when survival times are greater than c. Let t1, ..., tn be

the observed values for n subjects, and each is assigned experiment condition xi.

We consider an approximate design ξ of the form as follows

ξ =

 1 2 ... K

w1 w2 ... wK


Here the design space χ = {1, ..., k, ..., K}, and wk is the proportion of observations

corresponding to condition k. The exponential regression model with probability

density function g(ti) and a survival function S(ti) are given respectively by

g(ti) = eα+βxi exp(−tieα+βxi)
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and

S(ti) = exp(−tieα+βxi).

Without loss of generality, we assume that the �rst m observations are failure

times and rest n−m observations are right censored. A direct calculation shows

that if all observation pairs (ti, xi), i = 1, . . . , n are independent, the log-likelihood

is

l(θ;x1, ..., xn) = log(
m∏
i=1

g(ti)
n∏

i=m+1

S(ti)) =
m∑
i=1

(α + βxi)−
n∑
i=1

ti exp(α + βxi).

It follows that the information matrix of design ξ is

I(ξ, θ) =
n∑
i=1

(1− exp(−ceα+βxi))

 1 xi

xi x2
i


= n

K∑
k=1

wk(1− exp(−ceα+βk))

 1 k

k k2

 .
The information matrix I(ξ, θ) depends on unknown parameters θ = (α, β)T be-

cause the model is nonlinear.

In the study by Konstantinou et al. [2011], the design space χ is {1, 0} rep-

resenting two treatment conditions, i.e. treated or not. The maximum time for

observing outcomes in the study is c = 30 so that all observations are right cen-

sored if the outcome is not observed by that time. Using only 20 particles and

50 iterations, PSO is able to �nd the locally D-optimal designs as claimed in

Konstantinou et al. [2011], all of which are equally supported at two points.

In practice, the parameter β in the model always has a clear biological inter-

pretations and so it is often of interest. If we have a randomized control trial, β

represents the e�ect on the hazard of death when the new treatment is compared

with the placebo condition. An appropriate design to use here for estimating

β is the locally c-optimal design that gives the smallest asymptotic variance of

the estimate. This design is the same as the optimal design for minimizing the
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Table 2.2: Weights of selected locally c-optimal designs for the Survival Model.

Nominal values w1 w2

α = −2.163, β = −0.1 0.498 0.502

α = −2.163, β = −0.405 0.491 0.509

α = −2.163, β = −1.526 0.425 0.575

α = −2.163, β = −2.623 0.324 0.676

criterion [
0 1

]
I−(ξ, θ)

 0

1

 .
For this two-parameter model, it can be shown that the c-optimal design is

always supported at 1 and 0 but with unequal weights that depend on the nominal

values. Using 20 particles and 50 iterations, PSO is able to �nd and verify all the

c-optimal designs for the four sets of nominal values in Konstantinou et al. [2011]

and these weights are shown in Table 2.2.

2.10 Locally D-optimal design for a 4-parameter heteroscedas-

tic Hill model

The Hill model is a commonly used nonlinear sigmoid model in pharmacodynam-

ics studies (Khinkis et al. [2003]). In its original form (Hill [1910]), the model

describes the drug concentration-e�ect relationship between an independently ob-

served response yij and ith concentration xi as

yij =
(Econ −B)( xi

IC50
)m

1 + ( xi
IC50

)m
+B + εij = η(xi, θ) + εij.

The control e�ect at zero drug concentration is Econ , and B denotes the back-

ground e�ect at in�nite drug concentration. The IC50 is the dose inducing a

50% decrease in the maximal e�ect (Econ − B), and it is a measurement of the

drug potency. The slope of the curve is controlled by m (Levasseur et al. [1998]).
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Figure 2.2: In�uence of changing parameters on the shape of the Hill model. The �gure

is taken from Khinkis et al. [2003].

Figure 2.2 and its title is taken from Khinkis et al. [2003], which shows di�erent

shapes of Hill model under di�erent parameters. Note that if m is negative, the

curve decreases with rising concentrations, indicating an inhibitory e�ect of the

drug (Khinkis et al. [2003]). Hill model assumes there are no systematic errors

among the independent observations yij's such that E(yij) = η(xi, θ). It is also

assumed εij ∼ Normal(0, σ0η(xi, θ)
2λ) , which means that the variance of the

response is proportional to the mean response raised to power 2λ. Note that un-

like other parameters in the Hill model, λ is a user-speci�ed parameter. Khinkis

et al. [2003] claimed that their experiments con�rmed the appropriateness of this

heteroscedastic model.

To �nd the locally D-optimal design for the Hill model, the information matrix
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for an observation at xi is calculated as follows, assuming the nominal value of

the vector of parameters is, say θ = (Econ, B, IC50,m)T . Let

fT (xi, θ) = (
∂η(xi, θ)

∂Econ
,
∂η(xi, θ)

∂B
,
∂η(xi, θ)

∂IC50

,
∂η(xi, θ)

∂m
),

where

∂η(xi, θ)

∂Econ
=

(xi/IC50)m

(1 + xi/IC50)m

∂η(xi, θ)

∂B
=

1

1 + (xi/IC50)m

∂η(xi, θ)

∂IC50

=− (B − Econ)(xi/IC50)mlog(xi/IC50)

(1 + (xi/IC50)m)2

∂η(xi, θ)

∂m
=

(B − Econ)m(xi/IC50)m

IC50(1 + (xi/IC50)m)2
.

Hence for independent observations x1, ..., xn, we have F =
[
f(x1) f(x2) ... f(xn)

]T
and the total information matrix is proportional to

I(ξ, θ) = F TWF

where W = diag(η(x1, θ)
−2λ, ..., η(xn, θ)

−2λ).

Khinkis et al. [2003] showed that locally D-optimal design for the Hill model

has 4 support points. Accordingly a seven-dimension PSO is built with particles

(x1, x2, x3, x4, p1, p2, p3), where 0 < x1 < x2 < x3 < x4,0 < p1 < 1, 0 < p2 <

1,0 < p3 < 1, 0 < p4 = 1 − p1 − p2 − p3. Keeping the same nominal parameters

Econ = 1.7, B = 0.137, λ = 0.794, and changing values of IC50 and m for each

drug as did in Khinkis et al. [2003], PSO is able to �nd the locally D-optimal

designs in Table 2.3 which agree with the results in Khinkis et al. [2003] to three

decimal places. The numbers of iterations and particles of PSO I use here are

small. For example, PSO �nds the four support points for drug �AG2034� using

only 300 iterations and 100 particles.
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Table 2.3: Locally D-optimal designs found by PSO for Hill model with common

nominal values: Econ = 1.7, B = 0.137, λ = 0.794. By varying IC50 and m. Seven

D-optimal designs are obtained with equally weighted support points.

Drug IC50 m Support points

TMTX 0.00875 -1.79 0 0.00773 0.02965 8.95

MTX 0.0223 -2.74 0 0.02056 0.04950 22.3

AG2034 0.453 -0.825 0 0.32042 5.56703 453

AG2032 0.0774 -3.49 0 0.07263 0.144756 77.4

AG2009 111 -1.03 0 53.9007 377.2057 1500

AG337 0.468 -1.54 0 0.40495 1.93184 468

ZD1694 0.0429 -1.69 0 0.03761 0.15624 42.9

2.11 Summary

Particle Swarm Optimization algorithm seems like a very powerful, interesting

but under-utilized tool for solving optimization problems in the pharmaceutical

industry and more so in general statistical research work. I have shown in this

chapter that PSO is an e�cient and �exible method for �nding optimal experi-

mental designs for several biomedical studies, but clearly the applications are not

restricted to biomedicine. A further strong point for PSO is that, as a meta-

heuristic algorithm, it does not respect the technical requirements imposed on the

problem to obtain the locally optimal designs. For example, Konstantinou et al.

[2011] and Li and Balakrishnan [2011] assumed technical conditions to arrive at

the theoretical descriptions of the optimal designs. PSO does not have to incor-

porate the technical conditions in its search, suggesting that PSO can generate

optimal designs for a wider class of problems, including optimal design problems

in Marschner [2007], Ogungbenro et al. [2009], Biswas and Lopez-Fidalgo [2013].
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CHAPTER 3

Locally Optimal Designs for Multivariable

Biomedical Models

In this chapter, I focus on �nding locally D-optimal designs for multivariable Ex-

ponential and Poisson regression models of up to �ve variables with all two way

interactions in a user-selected restricted design space. Such models are useful

to investigate the joint and interaction e�ects of multiple agents in biomedical

studies. The context is in toxicology but techniques developed here can be ap-

plied to other models and �nd optimal designs for user-speci�ed study goals or

objectives. A main aim of my work is to show that a modi�ed version of the

Particle Swarm Optimization (PSO) algorithm can �nd locally D-optimal designs

for estimating all model parameters in a generalized linear model with all pairwise

interaction terms accurately and at minimal cost. Additionally, I use the proposed

novel search strategy to �nd minimally supported D-optimal designs and ascertain

conditions under which such optimal designs exist for such models.

A remarkable discovery in my work is that locally D-optimal designs for such

models can have many more support points than the number of parameters in

the model. This result is both new and interesting because almost all locally D-

optimal designs have equal or just one or two more number of points than the the

number of parameters in the mean response function; see the examples in Yang

and Stufken [2009], Yang [2010a], and many examples in design monographs in

Silvey [1980], Pazman [1986] and Berger and Wong [2009].

The remainder of the chapter is organized as follows. Section 3.1 provides the
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motivation of the project. In section 3.2, I brie�y review locally D-optimal design

for Exponential and Poisson regression models in the literature. In section 3.3, I

propose a new algorithm called Ultra-dimensional Particle Swarm Optimization

(UPSO) to �nd locally D-optimal designs for these models to jointly study e�ects

of up to �ve toxicants and all pairwise interaction e�ects and provide guidelines

for choice of tuning parameters in the UPSO algorithm, including �ock size and

number of iterations. Section 3.4 presents locally D-optimal designs found from

the algorithm and conditions under which minimally-supported D-optimal designs

exist for the Exponential and Poisson regression models. In Section 3.5, I con-

sider conditional D-optimal designs found by setting all nominal values for all

coe�cients in the interaction terms equal to zero and investigate their robustness

properties to mis-speci�cation in the nominal values. Section 3.6 contains a real

application in toxicology where I show the implemented design can be substan-

tially improved using a locally D-optimal design generated by UPSO. Section 3.7

concludes with a summary and discussion of recent applications of particle swarm

optimization techniques to search for other types of optimal designs.

3.1 Motivation

Over the past few decades, multiple drug therapies have been used extensively

to treat various diseases such as cancers, AIDS and rheumatoid arthritis. Com-

binatorial drugs approach enjoys several therapeutic bene�ts, including increased

e�cacy, reduction in drug toxicity, delay the development of resistant organisms

or cells by enhancing e�cacy synergism or toxicity antagonism beyond the capa-

bility of a single drug dose (Chou [2006]). However, studying the joint e�cacy

or toxicity e�ects from several agents is complicated and while advances in esti-

mating their joint e�ects have been made, research in developing informed design

strategies has lagged.
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There are only a handful of papers that address optimal design issues for gen-

eralized linear models with multiple regressors. Locally D-optimal design for the

additive logistic regression model with two variables was given in Haines et al.

[2007] and explicit formulas for D, A, and E-optimal designs for additive multi-

factor logistic and probit models were provided in Yang et al. [2011]. Others

focused on constructing minimally supported designs, which are designs with the

same number of points as the number of parameters in the mean function of the

response variable. Russell et al. [2009] established a su�cient condition for the

existence of a minimally supported locally D-optimal design for the additive Pois-

son regression model with several agents. Li and Majumdar [2009] provided a

su�cient condition for the existence of a minimally supported locally D-optimal

design for a generalized linear model with several independent variables. How-

ever their results were complicated and their examples were con�ned to Poisson

models with a polynomial predictor of a single variable up to degree 2. Minimally

supported optimal designs are useful when it is expensive to take observations at

a new site or a new combination of dosages from the agents. A disadvantage of

such designs is that they cannot provide a lack of �t test to assess adequacy of

the model.

The above literature review suggests that work in this area is limited and an

analytic approach to �nd the optimal design for a generalized linear model is

di�cult and becomes increasingly more so as the model gets more complex with

more variables. Numerical searches seem to be the only practical way to �nd

optimal designs for such models with several variables. D-optimality is the easiest

to study analytically, and some algorithms to search for locally D-optimal designs

with several variables have been developed recently. For example, Sitter and

Wu [1993a] studied locally D- and c-optimal designs for a two-variable additive

model using a geometric approach and later extended the results to �nd locally D-

optimal designs when there are more than two variables in an additive generalized
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linear model (Sitter and Wu [1993b]). Another notable example is Wang et al.

[2006] who applied the Nelder-Mead algorithm to �nd minimally supported D-

optimal designs for the Poisson model with one or two toxicants with an interaction

term. Yu [2011] proposed a Cocktail algorithm that quickly �nds a D-optimal

design for a bivariate polynomial model with second order term and interactions.

The latest advance in algorithm development came from Yang et al. [2013] who

claimed their algorithm can �nd locally D-optimal designs for nonlinear models

with any number of variables faster than current algorithms, such as Fedorov's

V-algorithm described in Chapter 4 of Silvey [1980]. They supported their claim

with four examples using models with a single response and one or two variables.

Three models have a single independent variable and the fourth has two variables

including their interaction term. Their algorithm is promising but it has not been

tested how well it works for �nding locally D-optimal designs in high dimensional

problems or other types of optimal designs.

In general, there is still a dire lack of e�ective and general purpose algorithms

for �nding optimal designs in high dimensions. A main reason is that the dimen-

sion of the constrained optimization problem becomes increasingly large very fast

as more variables are included in the model. In the following sections, I show PSO

o�ers exciting promise to tackle high dimensional design problems.

3.2 Statistical background

Our interest is in constructing locally optimal designs for studying e�ects of M

toxicants and their interactions and we have resources to observe independent

responses from K distinct dose combinations of the toxicants. One common type

of outcome is the number of organisms or cells that survive when we apply the kth

dose combination xk = (xk1, ..., xkM)T , and xkm is the dose of the mth toxicant,

k = 1, ..., K. In the Exponential model, the number of surviving cells is assumed
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to follow a normal distribution with mean λk. Alternatively, the outcome can

be modeled as a count variable yk of organism or cells that survive when the

kth combination dose is applied using a Poisson regression with mean λk. Both

Exponential and Poisson regression models have the same mean λk but di�erent

variances. The Exponential model assumes V ar(yk|xk) = σ2 and the Poisson

model assumes V ar(yk|xk) = λkσ
2. In practice, the latter is more commonly

used. I include corresponding results for the Exponential model because I wish

to compare relative merits of the implemented design by toxicologists in their

study using an Exponential model in section 6, and (ii) I want to demonstrate our

method can be directly applied to �nd optimal designs for other types of models.

A model with an additive mean structure is appropriate if it is believed that

there are no interactions among the di�erent agents. When there are multiple

agents, low order interactions often exist among di�erent toxicants and high order

interactions are usually negligible relative to low order interactions. Accordingly,

we consider a M -variable model with a mean structure given by

λk = exp(β0 +
M∑
m=1

βmxkm +
M−1∑
m=1

M∑
m′>m

βmm′xkmxkm′)

= exp(βTf(xk)) k = 1, ..., K,

where fT (xk) = (1, xk1, .., xkM , xk1xk2, ..., xkM−1xkM). The zero dose corresponds

to exp(βTf(0)) = exp(β0) = λ0. We assume that βm < 0 (m = 1, ...,M) because

we expect the e�ect of each agent is such that fewer cells will survive when the

dose of the agent is increased. Klaassen [1980] proposed the concepts of synergism

and antagonism, which have been well accepted in toxicology. When the joint

e�ects of two toxicants are larger than their additive e�ects, i.e. βmm′ < 0, we

have synergism. On the other hand, we have antagonism when the combined

e�ects are smaller than the additive e�ects in which case βmm′ > 0. In what

is to follow, the ratios rmm′ = βmm′/(βmβm′), 1 ≤ m < m′ ≤ M will play an

important role in the study of locally optimal designs. In the mean function,
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the number of parameters P increases as M increases. More speci�cally, P =

MC0 + MC1 + MC2 = 0.5M2 + 0.5M + 1.

Throughout, my focus is on �nding locally D-optimal designs and so nominal

values are required to construct them. An assumption is that any combination of

toxicants should do some harm to the cells, and so this translates to

λk
λ0

= exp(
M∑
m=1

βmxkm +
M−1∑
m=1

M∑
m′>m

βmm′xkmxkm′) ≤ 1. (3.1)

The assumption (3.1) places a restriction on the range of valid values for the

parameters as will be shown in the next section.

3.2.1 Locally D-optimal approximate design and D-e�ciency lower

bound

In this chapter, I consider �nding approximate designs proposed by Kiefer [1974].

Designs are viewed as probability measures de�ned on a user-selected compact

space χ. We represent such a design with K points by ξ = {x1, ..., xK ;w1, ..., wK},

where wk is the proportion of observations to be taken at the support point xk,

0 < wk ≤ 1 and
∑K

k=1wk = 1. For a pre-determined total sample size N ,

the implemented design takes roughly nk = Nwk at the kth support point, k =

1, 2, ..., K subject to Nw1 +Nw2 + · · ·+NwK = N .

D-optimality is the most commonly used design criterion. It seeks to maximize

the determinant of Fisher information matrix I(ξ, β) by choice of the design so that

the volume of joint con�dence ellipsoid of all parameters in the mean function is

minimized. The Fisher information matrix from the design ξ for the above model

with mean λk has the form

I(ξ, β) = F TWF,

where F = (f(x1), ..., f(xK))T and W is the matrix of second derivatives of the

log-likelihood. For the Exponential model, W = diag{w1λ
2
1, ..., wKλ

2
K} and for
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the Poisson model, W = diag{w1λ1, ..., wKλK}. Because |I(ξ, β)| depends on the

unknown parameters β's, we assume nominal values for the β's are available to

construct locally optimal designs (Cherno� [1953]). In practice, nominal values

for β's are �rst elicited from experts or found from similar or pilot studies and

then used to �nd the locally D-optimal design by maximizing |I(ξ, β)|. Data from

the implemented locally optimal design is then used to estimate the β's again and

they then serve as nominal values for the construction of the next locally optimal

design. This procedure is usually repeated a few times before the estimated β's

are stable.

As shown in Chapter 1, I can use D-e�ciency Deff (ξ) or its lower bound Dlb(ξ)

to evaluate the quality of the PSO generated design ξ. My experience is that for

high-dimensional problems such as the ones I am about to report, the lower bound

Dlb(ξ) can be very conservative. This means thatDlb(ξ) can grossly underestimate

the true e�ciency of the design ξ. For example, a design ξ for the 5-variable

Poisson model may show a lower bound of 31% even though its D-e�ciency is 93%.

One can use the equivalence plot to verify optimality of the design graphically but

its utility may become increasingly limited as the number of toxicants increases

and we have a high-dimensional plot to interpret. An alternative way, which I

adopt here, is to use Dlb(ξ) as the criterion to conservatively judge the quality of

a design and regard it as numerically D-optimal design for all practical purposes if

Dlb(ξ) > 0.999. All PSO generated designs reported here satisfy this lower bound

and so are D-optimal.

3.3 Ultra-dimensional Particle Swarm Optimization (UPSO)

To �nd a K-point optimal design ξ, we choose vectors (xk1, ..., xkM ,wk), k =

1, ..., K to optimize the determinant of the Fisher information matrix. Because

the weights wk's sum to unity, the dimension of the search space for the locally
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D-optimal design ξD is (M + 1)K− 1. Even for minimally supported design when

K = P , the dimension of the search space is 95 for a 5-variable model with main

e�ects and all pairwise interactions. Such high dimensional optimization problems

pose a challenge for current optimal design algorithms, which include the Nelder-

Mead simplex algorithm or Fedorov's algorithm and its several modi�ed versions.

For example, Wang [2002] searched for the locally D-optimal design using the

Nelder-Mead simplex algorithm and reported that he could only produce results

for the Poisson model with two main e�ects and interaction. Encouraged by

the successful experience of applying PSO to univariable models in Chapter 2, I

further extend PSO to �nd locally D-optimal designs for Exponential and Poisson

model that allows the interaction terms. To enable PSO �nd the optima in a high

dimensional constrained search space, I incorporate the following modi�cations in

the algorithm and name the modi�ed version as "Ultra-dimensional PSO".

Time-varying acceleration coe�cients γ1 and γ2. In the standard PSO, γ1 and

γ2 are two constants that determine how each particle moves toward its own per-

sonal best position pi or the global best position pg. Their user-selected values can

a�ect PSO performance in high dimensional optimization problems (Ratnaweera

et al. [2004]). Since �nding locally D-optimal designs for Poisson or Exponential

models with multiple toxicants is a high dimensional optimization problem, I ap-

ply their recommended modi�cation in PSO and allow these two parameters to

vary as the iteration progresses. Speci�cally, following their recommendations, I

let γ1 be a linearly decreasing function from 2.5 to 0.5 and let γ2 be a linearly

increasing function from 0.5 to 2.5 over the full range of the search iterations. This

variation also allows high diversity in the early stage of the search and prevents

premature convergence of particles.

Repair mechanism. Our problem is to �nd a locally optimal design in a con-

strained design space, but particles can wander outside the design space and gen-

erate infeasible solutions. The repair strategy in UPSO is to pull such particles
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back to the nearest boundary of the design space:

z
(t)
i,d =


ubd if z

(t)
i,d > ubd

lbd if z
(t)
i,d < lbd

z
(t)
i,d otherwise

where z
(t)
i,d is the d

th component of the particle i's position at time t, and ubd and

lbd are the upper and lower bounds of the dth component. The rationale for our

strategy is that locally D-optimal designs frequently have support points at the

boundary of the design space, see Li and Majumdar [2009], for example.

Ultra-dimensional search space. PSO is a metaheuristic algorithm, which

means that it is not guaranteed to �nd the optimum. For high dimensional design

problems, such as the ones discussed here, I �nd that the probability of �nding

the locally optimal design increases when each particle of the �ock has many more

points than the number of parameters in the mean function. This is a new, in-

teresting and highly unusual search technique for �nding optimal designs in the

literature but it works well for our problems. Typically, the extra design points

used in the search would end up as either points with a zero weight or coincide

with other support points, in which case we combine their weights.

As an illustration, consider the problem of �nding the locally D-optimal design

for the 3-variable Poisson and Exponential models when all coe�cients of the

interaction terms are zero. This is the same as having nominal values for all

rij = 0. Figure 3.3 shows simulated probabilities of �nding the conditional D-

optimal design for the 3-variable Exponential and Poisson models, which I have

earlier on veri�ed to have 8 support points. In the simulation study, I changed the

search using di�erent �ocks where each �ock may all have 8 to 16 points and the

number of particles in each �ock varies from 20 to 200. For each set of parameter

combinations, I repeated the simulation 40 times and calculated the probability

of generating the locally D-optimal design for both the Exponential and Poisson
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Figure 3.1: The probabilities of UPSO generating the conditional D-optimal design in 40

replicates for a 3-variable Exponential or Poisson model. The number of particles varies from

20 to 200 and the number of design points in each particle of the �ock varies from 8 to 16.

models via UPSO. These probabilities are shown in Figure 3.3 and the results

show that as each particle in the �ock has increasingly more design points (from 8

to 16) and number of particles increases from 20 to 200, the probability of �nding

the conditional D-optimal design increases from less than 10% to over 90%.

Similar patterns have also been observed for �nding the locally D-optimal

designs for the 4 and 5-variable Exponential and Poisson models when not all

rij = 0. For space consideration, I omit details and the results. My overall

recommendation for UPSO to work well is that if the number of support points

in the locally D-optimal design is K, I propose the rule of thumb of choosing the

number of design points for each particle in the �ock is 2K and the number of

particles is roughly 20K. In practice, K is unknown and I suggest having a �ock

with number of design points about twice the number of parameters in the mean

function. Clearly, when each particle has more design points, more iterations are

required for UPSO to converge to optimum. I recommend using 2000 iterations
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to search for the optimum for 3-variable, 5000 for 4-variable model and 10,000

for 5-variable models. This rough rule of thumb is likely to ensure that UPSO

generate the locally D-optimal design with high probability.

3.4 Results

In toxicity study with multiple toxicants, I follow the de�nition in Wang et al.

[2006] and de�ne the individual e�ective dose (IED) as expected survival rate at

the dose xkm from the mth toxicant alone by

qkm =
exp(β0 + βmxkm)

exp(β0)
= exp(βmxkm) ∈ (0, 1].

Clearly, if cm is the user-speci�ed lower bound of the IED for the mth toxicant,

m = 1, ...,M , I have cm ≤ qkm ≤ 1. Further, I derive information matrix for the

models in terms of IED levels q′s de�ned on the induced design space
∏M

m=1[cm, 1]

for qkm's rather than the design space for the doses xkm's. Doing so can simplify

the calculation of the optimal designs and provide insight into their properties as

the following result shows.

THEOREM 1. For a M-variable Exponential or Poisson model with 2-way

interactions,

a) the locally D-optimal design on the induced space depends on the model

parameters only through the interaction terms rmm′ = βmm′/(βmβm′), 1 ≤ m <

m′ ≤M and c1, . . . , cM ;

b) the Deff of an arbitrary design on the induced space depends on the model

parameters only through the interaction terms rmm′ = βmm′/(βmβm′), 1 ≤ m <

m′ ≤M and c1, . . . , cM .

Proof of THEOREM 1a:

I provide here justi�cations for the technical results for the Poisson model; cor-
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responding results for the Exponential model can be proved similarly and are

omitted. For the M -variable Poisson model with all two-way interactions, the

number of parameters in the mean function is P =M C0 +M C1 +M C2 = 1 +

M + M(M − 1)/2 and the regression vector at the kth dose combination is

f(xk) = {1, xk1, . . . , xkM , xk1xk2, . . . , xkM−1xkM}T . If the design ξ assigns wi pro-

portion of the total number of doses at xi, i = 1, . . . , K, the Fisher information

matrix is

I(ξ, β) =
K∑
k=1

wkλkf(xk)f(xk)
T

=
K∑
k=1

wkexp(β0)(
M∏
m=1

exp(βmxkm))(
M−1∏
m=1

M∏
m′>m

exp(βmm′xkmxkm′))f(xk)f(xk)
T

= exp(β0){
K∑
k=1

wk(
M∏
m=1

qkm)(
M−1∏
m=1

M∏
m′>m

exp(rmm′ lnqkm)lnqkm′)))f(xk)f(xk)
T},

where the last equation follows from the de�nition of rmm′ and βmxkm = lnqkm,m =

1, 2, . . . ,M. Let Q(ξ) be the quantity inside the curly brackets; and let

f(lnqk) = {1, lnqk1, . . . , lnqkM , lnqk1lnqk2, . . . , lnqkM−1lnqkM}T ,

and let P × P diagonal matrix

τ = diag{1, β−1
1 , . . . , β−1

M , (β1β2)−1, . . . , (βM−1βM)−1}.

Clearly, f(xk) = τf(lnqk), I(ξ, β) = exp(β0)τQ(ξ)τT and if SP is the set of all

permutations on the set {1, .., P}, by Leibniz's formula for the determinant of a
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matrix, we have

|I(ξ, β)| =
∑
σ∈SP

sgn(σ)
P∏
i=1

I(ξ, β)i,σ(i)

= (exp(β0))P
∑
σ∈SP

sgn(σ)
P∏
i=1

(τiτσ(i)Q(ξ)i,σ(i))

= (exp(β0))P
∑
σ∈SP

sgn(σ)(
M∏
m=1

βm)−2M

P∏
i=1

Q(ξ)i,σ(i)

=
(exp(β0))P

(
∏M

m=1 βm)2M

∑
σ∈SP

sgn(σ)
P∏
i=1

Q(ξ)i,σ(i)

=
(exp(β0))P

(
∏M

m=1 βm)2M
|Q(ξ)|.

Consequently, maximizing |I(ξ, β)| is equivalent to maximizing |Q(ξ)|, which only

depends on rmm′ and the induced design space lower bounds c1, ..., cM .

Proof of THEOREM 1b:

From the proof of Theorem 1a, the determinant of any design is proportional to

the determinant of Q(ξ). If we let Q(ξD) denote the corresponding expression for

the locally D-optimal design ξD, we have

Deff (ξ) = (
|I(ξ, β)|
|I(ξD, β)|

)
1
P = (

|Q(ξ)|
|Q(ξD)|

)
1
P ,

which only depends on rmm′ and the induced design space lower bounds c1, ..., cM .

The induced design space is predicated on having good prior knowledge for

each toxicant from pilot experiments or experiences with similar toxicants. Good

estimates of the range of IEDs and the lower bounds cm,m = 1, 2, · · · ,M are re-

quired; otherwise, mis-speci�cation in the nominal values can result in ine�ciency

of the implemented design. Theorem 1 shows that when the locally optimal de-

signs are described in terms of qkm's, they depend on the nominal values of βm's

only through the ratios rmm′s. This implies that we may without loss of generality

set βm = −0.1, m = 0, ...,M for simplicity in the search for the optimal design.
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In the rest of this section, I discuss conditions under which a minimally sup-

ported D-optimal designs exist for our models and show a conjecture by Wang

et al. [2006] is wrong. I also describe general structure of the locally D-optimal

designs when it is feasible.

3.4.1 Minimally supported D-optimal designs

For many linear models, such as the polynomial models, the locally D-optimal

design is usually minimally supported i.e. the number of support points in the

optimal design is equal to the number of unknown parameters in the model. Such

optimal designs are ubiquitous and easier to study since they require equal repli-

cate at each design point. Locally D-optimal designs for the Poisson models with

up to two variables were also found to be minimally supported by Minkin [1987]

and Wang et al. [2006], regardless of the design space or the nominal values of

the interaction term. I implemented UPSO and was able to verify their results,

including their reported locally D-optimal designs for both the Exponential and

Poisson models up to two variables with an interaction term.

Theorem 1 shows locally D-optimal designs for the Exponential and Poisson

models depend on the model parameters only through rmm′ . It is not clear how

these values a�ect whether a minimally supported locally D-optimal design exists

for our models. Similarly, it is interesting to ask the same question for the selected

values of c1, . . . , cM . For simplicity, I assume that rmm′ = r and the lower bound

of the induced design space for each ith IED is equal, i.e. cm = c,m = 1, ...,M , for

some user-selected value c. I start �nding locally D-optimal design for c = 0.01

which is a practically unrestricted design space, and gradually increase c by step

of 0.01 to investigate the e�ect of c on the structure of locally D-optimal designs

for the Exponential and Poisson models. By assumption (3.1) an upper bound

can be derived for the interaction term r. Clearly, when r < 0, the inequality

(3.1) always holds. When r > 0 the left-hand side of (3.1) is a convex function of
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qkm's and so it attains its maximum value when qkm = cm or 1. As an example, if

we have a 3-variable model, (3.1) holds if and only if (cm)3exp(r(log(cm))2)3 < 1,

which implies r < 0.22 if cm = c = 0.01. Similarly, the upper bound for r is 0.14

for a 4-variable model and is 0.11 for a 5-variable model.

I �nd minimally supported D-optimal designs for several possible values of

rmm′ = r = 0.05, 0,−0.1,−0.5,−1,−5,−10. By studying the UPSO generated

minimally supported D-optimal designs in the design space [c, 1]M , I discover that

locally D-optimal designs have the same structure for the Exponential and Poisson

model with M variables and M = 3, 4 and 5. There is 1 control point (1, ..., 1),

MC1 pure component design points at dose combinations of the form (s, 1, ..., 1)

and s = max{c, 0.368} for the Exponential model and s = max{c, 0.135} for the

Poisson model. Additionally, there are MC2 binary blend points at dose combina-

tions of the form (u, u, 1, ...1), where u = max{c, d} and the value of d depends

on r and the model. Table 3.1 lists the values of d for various setups.

Wang et al. [2006] conjectured that forM -variable interaction model (M > 2),

locally D-optimal designs are also minimally and equally supported and have a

similar structure as D-optimal designs for 2-variable model. However, using UPSO

I �nd that locally D-optimal designs are not necessarily minimally supported

when there are 3 or more toxicants in the Poisson or Exponential models. UPSO

suggests D-optimal design becomes non-minimally supported when c surpasses a

threshold C. For di�erent r's, I determine the threshold C on the induced design

space that produces a minimally supported D-optimal design for Exponential

and Poisson regression models (Table 3.1). One notable property is that these

C's depend on r only but not on the number of variables in the Poisson and

Exponential model.

In practice, it is unlikely that the toxicants under investigation all have the

same degree of potency or lethality (same c's) and interactive ability (same rmm′ 's).

When the toxicants have unequal cm's and unequal rmm′ 's, UPSO can be applied
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Table 3.1: Values of d and the threshold C that produces the minimally supported

D-optimal design for 3, 4 and 5-variable Exponential and Poisson regression mod-

els with all 2-way interactions.

r 0.05 0 -0.1 -0.5 -1 -5 -10

dexpoential
1 0.348 0.368 0.400 0.481 0.539 0.699 0.763

dPoisson
2 0.105 0.135 0.181 0.291 0.368 0.583 0.670

Cexpoential
3 0.48 0.51 0.54 0.62 0.67 0.79 0.84

CPoisson
4 0.20 0.26 0.32 0.45 0.53 0.71 0.77

1 d value for Exponential models;

2 d value for Poisson models ;

3 Threshold C for Exponential models;

4 Threshold C for Poisson models.

to ascertain the threshold level for each set of user-speci�ed parameters in the

design problem and determine the locally optimal design. For example, if we have

a 3-variable Poisson model with nominal values βmm′ = 0, the lower bounds are

[c1 = 0.1; c2 = 0.3; c3 = 0.3], UPSO generated a D-optimal design equally and

minimally supported at 7 points. However, when the lower bounds are [c1 =

0.1; c2 = 0.3; c3 = 0.4], the locally D-optimal design has 8 points and so is no

longer minimally supported.

3.4.2 Non-minimally supported conditional D-optimal designs for Ex-

ponential and Poisson regression models

Yang and Stufken [2009], Yang [2010a], Dette et al. [2011] showed that for univari-

ate nonlinear models, D-optimal designs usually have the same or just one or two

more support points than the number of parameters in the mean function. How-

ever this is not the case for multivariate Exponential and Poisson models when the

assumed common lower bound c for each toxicant exceeds a threshold value and

all rmm′s have the same value r. Table 3.1 lists the threshold values for selected
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values of r and show that they do not depend on the number of toxicants in the

model but that the threshold values depend on whether the model is Exponential

or Poisson.

We are particularly interested in the locally non-minimally supported D-optimal

designs because the extra support points are appealing to practitioners and allow

tests for model adequacy to be conducted. I focus on the case when all rmm′ = 0

for the reason that in practice, although we believe that there are some interac-

tions among toxicants, we may not have prior knowledge about the direction or

the magnitude of the interactions before carrying out the experiment. A practical

way is to �nd the locally D-optimal design for the model assuming the nominal

values of the coe�cients of the interaction terms are all 0. Wang et al. [2006]

called such optimal designs "conditional D-optimal designs" - a term I use in the

rest of the paper as well. I use UPSO to �nd them on induced design spaces [c, 1],

and �nd that the structure of these non-minimally supported D-optimal designs

depend on the magnitude of the common assumed value of c and whether we have

a Poisson or an Exponential model. In particular, there are model dependent

constants bi's that place limits on c resulting in di�erent structures for the locally

D-optimal designs. Table 3.2 below shows some of these bis' values.

I now describe the various structures of the locally D-optimal designs for the

Poisson model with 3, 4 and 5 variables. Remarkably, the same structures hold

for the corresponding Exponential models as well.

3-variable model. When b1 ≤ c, there are 8 support points including 1 control

point located at (1,1,1) with weight w0;
3C1 points at dose combinations of the

form (c, 1, 1) each with weight w1;
3C2 points at dose combinations of the form

(c, c, 1) each with weight w2; and an additional point at dose (c, c, c) with weight

w3, and w0 > w1 > w2 > w3.

4-variable model. When b1 ≤ c < b2, there are 15 support points including

1 control point with weight w0;
4C1 points at dose combinations of the form
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(c, 1, 1, 1) each with weight w1;
4C2 points at dose combinations of the form

(c, c, 1, 1) each with weight w2,
4C3 points at dose combinations of the form

(c, c, c, 1) each with weight w3, and w0 > w1 > w2 > w3. When c ≥ b2 there

is an additional point at (c, c, c, c) with weight w4 < w3.

5-variable model. When b1 ≤ c < b2, there are 26 support points including 1

control with weight w0;
5C1 points at dose combinations of the form (c, 1, 1, 1, 1)

each with weight w1;
5C2 points at dose combinations of the form (c, c, 1, 1, 1)

each with weight w2,
5C3 points at dose combinations of the form (c, c, c, 1, 1)

each with weight w3 and w0 > w1 > w2 > w3. When c ≥ b2, there are
5C4 more

points at dose combinations of the form (c, c, c, c, 1) each with weight w4 < w3.

When b2 > c ≥ b3 an additional point at (c, c, c, c, c) with weight w5 < w4.

Table 3.2: Constants bi's that determine whether additional points are required

by the locally D-optimal designs for the Poisson and Exponential models.

b1 b2 b3

Exponential 0.52 0.69 0.88

Poisson 0.27 0.47 0.69

3.5 Discussion

In this section I discuss the robustness properties of the conditional D-optimal

design. The latter is a practical concern because mis-speci�cation of the nominal

values can a�ect the quality of inference from the implemented design. I also

comment on the performance of PSO and some of the recent algorithms proposed

for �nding optimal designs.
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3.5.1 Robustness of the conditional D-optimal designs

Practitioners may be concerned with the robustness of the conditional D-optimal

designs when the interaction terms r′ijs deviate from zero. To investigate the ef-

fect of mis-speci�cation of nominal values in the interaction terms, I calculate the

e�ciency of conditional D-optimal designs for 3-variable Exponential and Pois-

son models for di�erent nominal values of rij's. There are 3 interaction terms

r12, r13, r23 in the models and I consider two situations. The �rst scenario assumes

that only one interaction is not 0 but the conditional D-optimal design is mis-

takenly used. The second scenario has all non-zero three interactions terms with

a common value equal to r. Figure 3.5.1 shows how D-e�ciencies of conditional

D-optimal design change when one or three interactions are mis-speci�ed from -5

to 0.4, and the common lower bound of design space c varies from 0.1 to 0.9. The

two plots on the �rst row show the D-e�ciencies for the Exponential models, and

the second row are the corresponding plots for the Poisson model. The two plots

on the left hand side are for both models with one interaction mis-speci�ed, and

the right hand side are for models with three interaction terms mis-speci�ed.

For both models, I observe that when c has a small value, the conditional D-

optimal design is very ine�cient if rij is far from 0. However, as the lower bound

increases, such design becomes more robust to deviation from the condition that

rij = 0. For the Poisson model, my �nding is consistent with results from Wang

et al. [2006]'s results for 2 variables. Comparing the two models, I �nd that the

conditional D-optimal designs for the Poisson model is more robust than that for

the Exponential model. For example, when c = 0.5, the conditional D-optimal

design for the 3 variable Poisson model with one interaction mis-speci�ed has an

e�ciency of 0.93 even when the true value of r is as low as -5. The corresponding

result for the Exponential model is only 0.73. In addition, the two plots show the

conditional D-optimal design is more robust when fewer number of interactions

are mis-speci�ed, which is expected.
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Figure 3.2: D-e�ciencies of the conditional D-optimal design for the 3-variable Exponential

or the Poisson model using di�erent sets of nominal values. The two plots in the �rst row are

for the Exponential model and the two in the second row are for the Poisson model. The two

plots in the �rst column are for models with one interaction term misspeci�ed, and the plots in

the second column are for models with three interaction terms mis-speci�ed.
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3.5.2 Verify optimality via PSO

In UPSO, all design points and their weights are rounded to four decimal places.

This is equivalent to having UPSO search on a discretized space with a grid size

of 10,000. Such �ne grid size incurs a huge computational burden to verify the

optimality of the generated design ξ for any algorithm. In the numerical work,

optimality of a design can be con�rmed by applying the standard PSO to �nd

the maximum violation in the equivalence theorem by determining the maximum

positive value in the checking condition ζ = maxx∈χtrace[I(δx, β)I−1(ξD, β)] − P

as shown in Chapter 1. This value is then used to compute the Dlb for the current

design. If the lower bound has a value of unity, this indicates the current design is

D-optimal. Verifying a design optimality is a relatively easy task using PSO since

the optimization problem now has dimension only M , the number of variables.

In practice, we repeat the search for the maximum violation several times since

PSO, while e�ective, does not guarantee that the global optimum is always found.

3.6 Application

Lutz et al. [2005] explored 2-way interaction e�ects for the induction of Mi-

cronuclei in Mouse Lymphoma Cells among three genotoxic agents. Two of

them are methylating agents: methyl methanesulfonate (MMS) and N-methyl-N-

nitrosourea (MNU) and the third is a topoisomerase-II inhibitor genistein (GEN).

They conducted three experiments using two agents at a time and �tted the num-

ber yi of cells containing one or more micornuclei per 1000 binucleated cells using

a 2-variable Exponential model with interaction to study the combination e�ects

of any two agents mixture. Table 3.3 shows the 36 dose combinations used in their

study, each with 2 replicates resulting total 72 runs (denoted as Lutz design).

I model the number cells containing zero micornuclei per 1000 binucleated cells

instead since the negative e�ects of these toxicants are of interest here. I re�t the

67



data from their experiments by 3-variable Poisson and Exponential models with

the same mean given by

E(1000− yi) = exp(β0 + β1MMS + β2MNU + β3GEN

+ β12MMS*MNU + β13MMS*GEN + β23MNU*GEN).

Judging by the value of the �tted full log likelihood function and the AIC criteria,

both Exponential and Poisson models provide a better �t to all the experimental

data than the two-agent models used by Lutz et al. [2005]. Therefore in the

application I show how experiment can be e�ciently designed based on 3-variable

Exponential and Poisson regression model with pairwise interactions, especially

when there is only limited prior information available.

I look for the conditional D-optimal design assuming there is zero prior knowl-

edge about the magnitude or direction of drug-drug interactions. Since the con-

ditional D-optimal design is independent of nominal values of βm's (-0.1 was ar-

bitrarily chosen here), the only quantities needed here are lower bounds ci's of

the IED design space of three agents, according to THEOREM 1. Unfortunately

the authors didn't provide the exact values for ci's in their paper though they

have conducted pilot experiments for each single agent. From observing the num-

ber of uninduced cells out of 1000 by di�erent dose combinations of three agents,

and according to the paper description that �the concentration range used for the

three chemicals was de�ned by similar e�ect magnitude based on their pilot ex-

periments�, I have to roughly guess IED lower bounds c1 = c2 = c3 = 0.7 for doses

of MMS, MNU and GEN range in intervals [0, 0.3], [0, 2.1], [0,0.045]. It is worth

noting that the generated conditional D-optimal design may lose e�ciency, since

these IED lower bound guesses are very possible to deviate from the truth.

Using UPSO, I obtain the conditional D-optimal designs for Exponential and

Poisson model, which are non-minimally supported (Table 3.5). This indicates the

lower bound of dose range for each agents should be used in the drug combinations.
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The conditional D-optimal design for Exponential model puts more weight on

control point and less weight on blend point (c1, c2, c3) than does design for Poisson

model.

To fairly evaluate the e�ciencies of Lutz design and the proposed conditional

D-optimal design, I compare them to the locally D-optimal design using parameter

estimates from our �tted model as nominal values (denoted as post-hoc D-optimal

design), which is surely the most e�cient design for the current available data.

For Exponential and Poisson models, Table 3.4 shows the �tted β̂m's, pairwise

interactions β̂mm′ 's and lower bounds ĉi's of IED design space.

By examining the structure of the generated designs, I �nd the conditional

and post-hoc D-optimal designs have the same support points but with di�erent

weights (Table 3.5). Assuming total 72 runs, we would implement a design with

the number of runs at each support point shown in parentheses in the table.

Comparing to post-hoc D-optimal design, the proposed design has a relative D-

e�ciency of 99.38% for the Exponential model and a D-e�ciency of 99.90% for

the Poisson model. In contrast, Lutz design has a D-e�ciency of 25.57% for

the Exponential model and a D-e�ciency of 24.13% for the Poisson model. This

shows substantial e�ciencies and improved inference can be had using an informed

optimal design for estimating the model parameters, even when there is only

limited prior information available. This application also con�rms my �nding in

section 5.1 that the conditional D-optimal design is more robust to deviation from

the condition of rmm′ = 0 when IED lower bounds ci's are large.

3.7 Summary

Encouraged by the successes of applying PSO to �nd locally D- and c-optimal

designs for univariable models in Chapter 2, I tackle high-dimensional design

problems described herein. My research shows that the proposed UPSO is a
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Table 3.3: Number( yi) of binucleated cells that show one or more micronuclei

per 1000 binucleated cells using di�erent dose (µM) combinations of MMS, MNU

and GEN with 2 replications at each of the dose combination levels.
MMS MNU GEN Replicate 1 Replicate 2

0 0 0 16 11

0 0 0 16 13

0.1 0 0 29 26

0.2 0 0 52 88

0.3 0 0 160 210

0 0.7 0 51 50

0 1.4 0 93 125

0 2.1 0 172 279

0.1 0.7 0 79 141

0.1 1.4 0 131 256

0.2 0.7 0 200 230

0.2 1.4 0 235 253

0 0 0 16 21

0 0 0 20 23

0.1 0 0 36 31

0.2 0 0 65 57

0.3 0 0 140 135

0 0 0.015 37 32

0 0 0.03 69 79

0 0 0.045 168 175

0.1 0 0.015 61 47

0.1 0 0.03 91 89

0.2 0 0.015 106 85

0.2 0 0.03 145 152

0 0 0 24 25

0 0 0 24 27

0 0.7 0 82 73

0 1.4 0 165 175

0 2.1 0 279 302

0 0 0.015 77 76

0 0 0.03 120 131

0 0 0.045 209 261

0 0.7 0.015 74 114

0 0.7 0.03 138 112

0 1.4 0.015 206 187

0 1.4 0.03 224 258
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Table 3.4: Parameter estimates and estimated lower bounds of the induced design

space for the Exponential and Poisson models.

β̂0 β̂1 β̂2 β̂3 β̂12 β̂13 β̂23 ĉ1 ĉ2 ĉ3

Exponential 6.909 -0.492 -0.125 -4.200 -0.0649 15.782 1.398 0.863 0.769 0.828

Poisson 6.911 -0.506 -0.128 -4.288 -0.0472 16.308 1.458 0.859 0.765 0.825

Table 3.5: D-optimal designs for Exponential and Poisson model

MMS-qk1 1 1 1 ĉ1 ĉ1 ĉ1 1 ĉ1

MNU-qk2 1 1 ĉ2 1 ĉ2 1 ĉ2 ĉ2

GEN-qk3 1 ĉ3 1 1 1 ĉ3 ĉ3 ĉ3

MMS-xk1 0 0 0 0.3 0.3 0.3 0 0.3

MNU-xk2 0 0 2.1 0 2.1 0 2.1 2.1

GEN-xk3 0 0.045 0 0 0 0.045 0.045 0.045

wi
a 0.139 (10) 0.134 (10) 0.134 (10) 0.134(10) 0.124 (9) 0.124 (9) 0.124 (9) 0.088 (5)

wi
b 0.133 0.127 0.124 0.129 0.113 0.130 0.122 0.123

wi
c 0.131 (10) 0.128 (9) 0.128 (9) 0.128 (9) 0.123 (9) 0.123 (9) 0.123 (9) 0.117 (8)

wi
d 0.129 0.126 0.124 0.127 0.120 0.127 0.123 0.124

aWeight of the support point of conditional D-optimal design for Exponential model. Values in

the parentheses are rounded number of runs assuming 72 runs.

bWeight of the support point of post-hoc D-optimal design for Exponential model at nominal

values �tted by data.

cWeight of the support point of the conditional D-optimal design for Poisson model.

dWeight of the support point of post-hoc D-optimal design for Poisson model at nominal values

�tted by data.
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powerful and �exible tool for �nding locally D-optimal designs to estimate main

e�ects of multiple agents and their interactions in an Exponential and Poisson

model. The algorithm is metaheuristic and so I expect that it be applicable to

�nd other optimal designs for di�erent types of models with a more complicated

mean structure as well. Our search strategy is new and unique in that it requires

searches among candidate designs with many points than the anticipated number

of support points in the optimal design. Interestingly, unlike typical optimal

designs in low dimensional problems, the resulting locally D-optimal designs for

our models have many more points than the number of parameters in the mean

function.

Algorithms are key tools for �nding optimal designs for more complex models

in an increasingly high dimensional world. The traditional expectation is that

algorithms have to be shown to converge theoretically. We argue that this is a de-

sirable feature to have in the algorithm but can be limiting in applications. Silvey

et al. [1978] rightly pointed out that "What is important about an algorithm is

not whether it converges, but whether it is e�ective in the sense that it guarantees

arbitrarily closeness to the optimum and how fast this approach is". I show here

that the UPSO algorithm seems to meet this requirement quite well for designing

the studies considered in the paper. I hope my work motivates others to further

explore alternative optimization strategies developed and widely used in computer

science and engineering �elds to bear on solving statistical problems.
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CHAPTER 4

Multi-objective Optimal Design for a Multivariate

Model

In this chapter, I extend my work to �nd optimal designs for the continuation-ratio

(CR) model. Such a model has great potential in dose �nding studies because it

considers both the e�cacy and toxicity. Unlike other multivariate models, the CR

model simultaneously models both probabilities of observing e�cacy and adverse

e�ect without having to assume the correlation between them.

The optimal design I am interested in constructing is a three-objective com-

pound optimal design that provides e�cient estimates for the most e�ective dose

(MED), the maximum tolerated dose (MTD) for a user speci�ed toxicity rate,

and for all parameters in the CR model. I show that PSO can successfully �nd

multi-objective compound optimal designs for the CR model. Further, I inves-

tigate the proper choice of weights for three optimal criteria in multi-objective

designs under di�erent parameters settings. By using e�ciency plots, researchers

and practitioners can construct the desired compound optimal design through

appropriate weights combination of three optimal criteria in a more �exible and

informative way.

4.1 Motivation

In the process of a drug discovery, e�cacy and toxicity of the drug are the two

most important endpoints. In phase I clinical trials, one of the main goals is to
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describe the dose-limiting toxicities (DLT ) and estimate the maximum tolerated

dose (MTD). Phase II clinical trials focus on providing more information about

the e�cacy of the drug in addition to evaluating the safety of the drug. For

example, the most e�ective dose (MED) that produces the maximum e�cacy is

a common quantity of interest. For both economical and ethical reason, it is ideal

to design a study which takes both e�cacy and toxicity into consideration.

As shown in Cook and Wong [1994], we may �nd a multi-objective optimal

design that incorporates various practical goals in an experiment, so that e�cient

estimates of multiple quantities of interest can be obtained simultaneously. Of

course, multi-objective design does not imply equal interests on di�erent objec-

tives. In practice researcher may give more emphasize on one or two objectives

as the primary, and treat the rest as the secondary objective. Such interest can

be quanti�ed as the e�ciency of the multi-objective design for estimating the

corresponding quantity. For example in a model based dose response study, a

researcher wishes to �nd a three-objective optimal design such that the e�cien-

cies for its two primary objectives, estimating MTD and MED, are both equal

to or greater than 0.9. Under the condition that the two primary objectives are

satis�ed, the researcher also wants the design to maximize the precision for es-

timating all parameters in the model, which serves as the secondary objective.

The question is, does such a design exist? If yes, how do we �nd it? For simple

cases such as �nding two-objective optimal designs for linear and quadratic poly-

nomial regression models, Cook and Wong [1994] gave the analytical solution of

such designs. However, there is no explicit solution of multi-objective designs for

complicate models such as multivariate models. In addition, it seems that there

is no algorithm can �nd a multi-objective optimal design for any user-speci�ed

weights combination of objective criteria.

Encouraged by the successes in �nding locally D- and c-optimal designs for uni-

variable and multivariable models in Chapter 2 and 3, I now apply PSO to �nd the
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multi-objective optimal design for a multivariate model. More importantly, I show

PSO generated e�ciencies plot can help researchers and practitioners construct

the desired multi-objective optimal design in a more �exible and informative way.

4.2 Continuation-ratio (CR) models

There is a sizable literature that tried to simultaneously study e�cacy and toxi-

city by postulating multivariate parametric models. For example, to model dose-

response curves, Heise and Myers [1996] proposed a binary logistic model which

simultaneously measures toxicity (yes/no), and e�cacy (yes/no), assuming these

two outcomes are correlated. A similar idea was presented by Fedorov and Wu

[2007] who proposed a dichotomized outcome pair (y1, y2)T from a bivariate nor-

mal model, where y1 is the e�cacy response and y2 is the toxicity response. It

follows that, there are four possible outcomes and the utility function of interest

is π(x) = Pr(y1 = 1, y2 = 0|x). This model is complicated and di�cult to use in

practice because it requires user to specify the correlation structure between toxi-

city and e�cacy. Alternatively, we may combine the two outcomes corresponding

to the presence of toxicity together and reduce the four types of responses into

three. Doing so greatly simpli�es the model by eliminating the correlation be-

tween toxicity and e�cacy. In the resulting trinomial models, the responses of

patients are now exclusively and exhaustively classi�ed into three categories: �no

e�ect� (neither toxicity or e�cacy found); �e�cacy� with no toxicity; and �adverse

reaction� for toxicity regardless of whether e�cacy is presented or not.

To model the trinomial responses above, Thall and Russell [1998] proposed the

following constant slope proportional odds (PO) model for a patient's response
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given dose x.

log(π3(x)/(1− π3(x))) =a1 + bx

log((π2(x) + π3(x))/π1(x)) =a2 + bx,

where π1(x), π2(x) and π3(x) correspond to, respectively, probabilities of observing

�no reaction�, �e�cacy without toxicity� and �toxicity� at dose x. For any dose

x,
∑3

i=1 πi(x) = 1. The model assumes a constant e�ect of dose exists across the

cumulative logits. Such assumption may be violated for a trinomial model, and

is unlikely to be valid when there are more than three types of responses.

The continuation-ratio (CR) model is a more �exible alternative because it

does not have the same assumption as the PO model does (Agresti, 1990, Chapter

9). In the CR model, slopes of the two equations b1 and b2 can be constant or

not. Assuming b1, b2 > 0, the CR model is

log(π3(x)/(1− π3(x))) =a1 + b1x

log(π2(x)/π1(x)) =a2 + b2x. (4.1)

It is straightforward to show for this model, probability of �no reaction� is

π1(x) =
1

(1 + ea1+b1x)(1 + ea2+b2x)
;

probability of �e�cacy without toxicity� is

π2(x) =
ea2+b2x

(1 + ea1+b1x)(1 + ea2+b2x)
;

and probability of �toxicity� is

π3(x) =
ea1+b1x

1 + ea1+b1x
.

Fan and Chaloner [2004] were only interested in �nding the dose x that maxi-

mizes probability of �e�cacy without toxicity� π2(x), which is selected as the most

e�ective dose (MED). If b1 = b2 then MED has a closed form given by

MED = −(a1 + a2)/2b1,
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but if b1 6= b2, there is no closed form solution of MED. In their paper, several

locally c-optimal designs were provided for estimating the MED under several

nominal parameter settings.

In dose-response studies, side e�ects and drug toxicity may be very serious

and need to be well controlled. One of the main targets in clinical trials is to �nd

out the �dose that is closest to an acceptable level of toxicity� (Richards et al.

[1997]). The target dose is de�ned as Maximum Tolerated Dose (MTD), which

is the highest dose of a treatment agent that produces the dose limiting toxicity

(DLT ) in a proportion ρ of patients. In the CR model, it follows that

π3(MTD, a1, b1) = ρ.

Here the probability ρ is user-speci�ed and varies depending on what types of

adverse e�ect is of interest. For life threatening side e�ects, ρ should be a small

value. To �nd theMTD, practitioners usually start from a safe dose that produces

a small ρ and gradually increase the dose to its highest acceptable level. The dose

level at ρ is called lethal dose LD100ρ (Zhu and Wong [2000]). For example,

a commonly used one is the "median lethal dose" denoted by LD50. For both

economical and ethical reason, it is necessary to take both MED and MTD (or

LD100ρ) into consideration at the design stage.

4.3 Information matrix I(ξ, θ) of the CR model with b1 6= b2

Consider a unit design δx which puts all weights on a dose x. Without loss of

generality assume there is one subject assigned with the dose x, and the observed

trinomial outcome for the subject is y = (y1, y2, y3)T with
∑3

i=1 yi = 1. Its

expected value is E(y) = π(x)T = (π1(x), π2(x), π3(x))T as previously de�ned.

Denote the parameters in the CR model by θ = (a1, b1, a2, b2)T . To �nd the

information matrix I(δx, θ) of δx for the CR model, I use the method developed

by Zocchi and Atkinson [1999] for multinomial logistic models. Denote the left
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hand side of (4.1) by

η(x) =


log(π3(x)/(π1(x) + π2(x)))

log(π2(x)/π1(x))

log(π1(x) + π2(x) + π3(x))


and its right hand side by

Xθ =


1 x 0 0

0 0 1 x

0 0 0 0



a1

b1

a2

b2

 .

By the numerator-layout notation, we have

∂η(x)

∂π(x)
=

[
∂η(x)
∂π1(x)

∂η(x)
∂π2(x)

∂η(x)
∂π3(x)

]

=


−(π1(x) + π2(x))−1 −(π1(x) + π2(x))−1 π3(x)−1

−π1(x)−1 π2(x)−1 0

1 1 1

 .
Therefore the derivative of π(x) with respect to θ is derived by the chain rule

G(x) =
∂π(x)

∂θ
=
∂π(x)

∂η(x)

∂η(x)

∂θ
= (

∂η(x)

∂π(x)
)−1X

=


−π1(x)π3(x) − π1(x)π2(x)

π1(x)+π2(x)
π1(x)

−π2(x)π3(x) π1(x)π2(x)
π1(x)+π2(x)

π2(x)

(π1(x) + π2(x))π3(x) 0 π3(x)




1 x 0 0

0 0 1 x

0 0 0 0

 .
For the dose x, since observation yT ∼ Multinomial(1, π(x)T ), we get the likeli-

hood function as

L(θ;x) =
3∏
j=1

π
yj
j (x),
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and so the log-likelihood is l(θ;x) = yT logπ(x), which leads to the score vector

for x by the chain rule

∂l(θ;x)

∂θ
=

∂l(θ;x)

∂logπ(x)

∂logπ(x)

∂π(x)

∂π(x)

∂θ

= yT


π−1

1 (x) 0 0

0 π−1
2 (x) 0

0 0 π−1
3 (x)

G(x),

and the unit information matrix I(δx, θ) for the observation y at dose x is given

by

I(δx, θ) = E(
∂l(θ;x)

∂θ
)T (

∂l(θ;x)

∂θ
)

= GT (x)


π−1

1 (x) 0 0

0 π−1
2 (x) 0

0 0 π−1
3 (x)

 (EyyT )


π−1

1 (x) 0 0

0 π−1
2 (x) 0

0 0 π−1
3 (x)

G(x).

Since yT ∼Multinomial(1, π(x)T ), we have

EyyT = EyEyT + V ar(y) =


π1(x) 0 0

0 π2(x) 0

0 0 π3(x)

 ,
and so,
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I(δx, θ) = GT (x)


π−1

1 (x) 0 0

0 π−1
2 (x) 0

0 0 π−1
3 (x)

G(x)

=


1 x 0 0

0 0 1 x

0 0 0 0


T 

(π1(x) + π2(x))π3(x) 0 0

0 π1(x)π2(x)
π1(x)+π2(x)

0

0 0 1




1 x 0 0

0 0 1 x

0 0 0 0



= (π1(x) + π2(x))π3(x)


1 x 0 0

x x2 0 0

0 0 0 0

0 0 0 0



+
π1(x)π2(x)

π1(x) + π2(x)


0 0 0 0

0 0 0 0

0 0 1 x

0 0 x x2

).

For a K−point approximate design ξ as de�ned in Chapter 1, assume there are wi

proportion of subjects assigned with the dose xi, i = 1, 2, ..., K. The normalized

information matrix for the design ξ is

I(ξ, θ) =
K∑
i=1

wiI(δxi , θ)

4.3.1 Equivalence theorem for locally D-optimal design for CR models

Similarly as the univariate case, for multivariate models the directional derivative

of Ψ(I(ξ, θ)) = log|I(ξ, θ)| at ξ in the direction of δx is

ψ(x, ξ, θ) = trace[I(δx, θ)I
−1(ξ, θ)]− P

where P is the number of parameters. In the CR model with b1 6= b2, P = 4.
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The multivariate version of equivalence theorem states that the following state-

ments are equivalent (Fedorov et al. [2002]):

1. The design ξ∗ maximizes Ψ(I(ξ, θ));

2. The design ξ∗ minimizes max
x∈χ

ψ(x, ξ, θ);

3. max
x∈χ

ψ(x, ξ∗, θ) = 0, and it achieves its maximum at the support points of

the design.

4.4 Locally c-optimal designs for estimating the MED and

MTD of the CR model with b1 6= b2

Recall MED is the dose which maximizes π2 the probability of having e�cacy

without toxicity. We derive MED by solving dπ2(x)
dx

= 0. After a few steps of

simpli�cation, we get MED as the implicit solution of the following equation

g(x, θ) = b2(1 + exp(−a1 − b1x))− b1(1 + exp(a2 + b2x)) = 0.

To �nd the locally c-optimal design for estimating the MED, we need to get its

gradient ∇MED �rst. I follow Atkinson and Haines [1996]'s way to handle such

equation g(x, θ) without an explicit solution for MED as follows.

By the implicit function theorem, if the function g(x, θ) has continuous �rst

derivatives, and MED(θ) is continuous, then

∂g(x, θ)

∂θ
|MED =

∂g(x, θ)

∂x
|MED

∂x

∂θ
|MED

and so,

∇T
MED =

∂x

∂θ
|MED

=

[
∂g(x, θ)

∂x
|MED

]−1
∂g(x, θ)

∂θ
|MED

where

∂g(x, θ)

∂x
|MED = −b1b2(exp(−a1 − b1MED) + exp(a2 + b2MED)),
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and

∂g(x, θ)

∂θ
|MED =


−b2exp(−a1 − b1MED)

−b2MED exp(−a1 − b1MED)− (1 + exp(a2 + b2MED))

−b1exp(a2 + b2MED)

1 + exp(−a1 − b1MED)− b1MED exp(a2 + b2MED)



T

.

It follows that, the locally c-optimal design for estimating theMED is to maximize

the following quantity

−∇T
MEDI

−1(ξ, θ)∇MED.

In the CR model, since

log(π3(x)/(1− π3(x))) = a1 + b1x,

a simple calculation shows MTD = 1
b1
(logit(ρ) − a1). Similarly, the locally c-

optimal design for �nding MTD is to maximize

−∇T
MTDI

−1(ξ, θ)∇MTD,

where ∇T
MTD = ∂MTD

∂θ
= (− 1

b1
,
a1−logit(ρ)

b21
, 0, 0). In the traditional dose �nding

designs, MTD is usually set as the dose level at which two of six patients expe-

rienced toxicity, see Fumoleau et al. [2013] for example. Therefore in the rest of

the chapter, I set ρ = 0.3, but other values can be directly used as well.

4.5 Equivalence theorem of the locally c-optimal design for

estimating the MED

Fedorov et al. [2002] established the equivalence theorem to verify the optimality of

a design for a multivariate model under the criterion Ψ(I(ξ, θ)) = trace[AI−1(ξ, θ)].

I apply it here to �nd the locally c-optimal design for estimating the MED. The
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directional derivative of Ψ(I(ξ, θ)) = −∇T
MEDI

−1(ξ, θ)∇MED = -trace[∇MED∇T
MEDI

−1(ξ, θ)]

at ξ in the direction of δx is

ψ(x, ξ, θ) = trace[I(δx, θ)I
−1(ξ, θ)(∇MED∇T

MED)I−1(ξ, θ)]

−trace[(∇MED∇T
MED)I−1(ξ, θ)].

When ξ is optimal, ψ(x, ξ, θ) is bounded above by 0 with equality at the support

points. Similarly we can derive the equivalence theorem for locally c-optimal

design to estimate other quantities such as MTD.

4.6 Equivalence of compound and constrained optimal de-

signs

In practice, there are a few objectives in a study and it is desirable to incorpo-

rate them at the design stage. There are two typical approaches to construct a

multiple-objective design: the compound and constrained optimal design (Cook

and Wong [1994]). Because di�erent objectives Ψi(I(ξ, θ)) (i = 1, ...,m) may have

di�erent magnitude in their values, we de�ne each Ψi(I(ξ, θ)) in terms of the de-

sign e�ciency ei(ξ) as did in Cook and Wong [1994]. For example, the D-e�ciency

for an arbitrary design ξ is de�ned by e1(ξ) = ( |I(ξ,θ)||I(ξD,θ)|
)1/P , and its c-e�ciency is

e2(ξ) = ∇Tc I−1(ξc,θ)∇c
∇Tc I−1(ξ,θ)∇c , where ξD is the locally D-optimal design and ξc is the locally

c-optimal design, ∇c is the gradient of c(θ) with respect to θ. To �nd a multi-

objective compound optimal designs, we consider a concave functional of these

e�ciencies and maximize each of them.

Suppose there are two competing objectives Ψ1 and Ψ2 of interest. Denote

∆s the set of designs ξ that maximize Ψ2(I(ξ, θ)) subject to the constraint that

Ψ1(I(ξ, θ)) ≥ s, where s is a user-selected constant. The constrained optimal

design is de�ned by

ξs = arg max
ξ∈∆s

Ψ1(I(ξ, θ)),
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where the maximum is taken over the entire ∆s.

The two-objective compound optimal design, for any user-selected constant

λ ∈ [0, 1], is to �nd a design ξλ that maximizes the weighted average of two

concave functionals

Ψ(ξ|λ) = λΨ1(I(ξ, θ)) + (1− λ)Ψ2(I(ξ, θ)).

Comparing to the constrained optimal design, the compound optimal design is

easier to determine. This is because a concave combination of concave functionals

is still concave for a �xed λ, and the equivalence theorem is just a weighted mean

of the checking conditions for the optimal design for each objective. However, the

weighting parameter λ may be hard to interpret in practice. Question is posed

like if we set λ = 0.5, does it mean we put an equal emphasize on two objectives

Ψ1(ξ) and Ψ2(ξ)?

For linear models, Cook and Wong [1994] pointed out that for a two-objective

compound optimal design ξλ that maximizes λΨ1(I(ξ, θ)) + (1− λ)Ψ2(I(ξ, θ)), it

is equivalent that ξλ maximizes Ψ2(I(ξ, θ)) subject to Ψ1(I(ξ, θ)) ≥ Ψ1(I(ξλ, θ))

which is the primary objective. Therefore the process of �nding a multi-objective

optimal design is to �rst formulate the optimal design problem as a constrained

design ξs, as then �nd out the λ such that its compound optimal design ξλ is

equivalent to the constrained optimal design ξs.

Clyde and Chaloner [1996] further extended the work to nonlinear models for

three or more objective criteria. Consider a three objective compound optimal

designs ξλ maximizing

Ψ(ξ|λ) = λ1Ψ1(I(ξ, θ)) + λ2Ψ2(I(ξ, θ)) + λ3Ψ3(I(ξ, θ)),

where λ = (λ1, λ2, λ3)T , λi's ∈ [0, 1] and
∑3

i=1 λi = 1. It is equivalent that ξλ

maximizes Ψ3(I(ξ, θ)) subject to Ψ1(I(ξ, θ)) ≥ Ψ1(I(ξλ, θ)) and Ψ2(I(ξ, θ)) ≥

Ψ2(I(ξλ, θ)) .
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4.7 Three-objective locally optimal design for the CRmodel

via PSO

In Fan and Chaloner [2004], only MED was of interest and the authors focused

on �nding locally c-optimal design for estimating the MED. This study extends

their work to construct a design that e�ciently estimates MED and MTD si-

multaneously. Other parameters such as b1 and b2 determine the slopes of three

possible curves and so it is important to make sure the generated optimal design

provides good estimates for all parameters in the CR model. Accordingly, in ad-

dition to estimating MED and MTD, I incorporate D-optimality as well. For

a given λ, I construct a three-objective compound optimal design by maximizing

the weighted sum of three concave functionals

Ψ(ξ|λ) = λ1Ψ1(I(ξ, θ)) + λ2Ψ2(I(ξ, θ)) + λ2Ψ3(I(ξ, θ))

where λ = (λ1, λ2, λ3)T , λi's ∈ [0, 1] and
∑3

i=1 λi = 1. Here Ψ1(I(ξ, θ)) is the log

c-e�ciency of the design ξ for estimating the MTD

Ψ1(I(ξ, θ)) = log(
∇T
MTDI

−1(ξMTD, θ)∇MTD

∇T
MTDI

−1(ξ, θ)∇MTD

)

= log(e1),

Ψ2(I(ξ, θ)) is log c-e�ciency of the design ξ for estimating the MED

Ψ2(I(ξ, θ)) = log(
∇T
MEDI

−1(ξMED, θ)∇MED

∇T
MEDI

−1(ξ, θ)∇MED

)

= log(e2),

and Ψ3(I(ξ, θ)) is log D-e�ciency of the design ξ for estimating all parameters in

the CR model

Ψ3(I(ξ, θ)) = log(
|I(ξ, θ)|
|I(ξD, θ)|

)
1
P

= log(e3).
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The checking condition for three-objective compound optimal design is just a

weighted sum of the checking conditions for the optimal design for each objective,

i.e. we have ξ is optimal for the three-objective problem if and only if for all x ∈ χ

λ1
trace[I(δx, θ)I

−1(ξ, θ)(∇MTD∇T
MTD)I−1(ξ, θ)]

trace[(∇MTD∇T
MTD)I−1(ξ, θ)]

+λ2
trace[I(δx, θ)I

−1(ξ, θ)(∇MED∇T
MED)I−1(ξ, θ)]

trace[(∇MED∇T
MED)I−1(ξ, θ)]

+λ3
trace[I(δx, θ)I

−1(ξ, θ)]

P
≤ 1,

with equality at support points.

Fox each �xed λ in [0,1], I use the default parameter settings in the standard

PSO as described in Chapter 1 to �nd the three-objective compound optimal

design ξλ for the CR model. Particles that wander outside of the design space are

pulled back to its nearest boundary [lb, ub]:

z
(t)
i =


ub if z

(t)
i, > ub

lb if z
(t)
i < lb

z
(t)
i otherwise

where z
(t)
i is the particle i's position at time t. The rationale for our strategy is

that optimal designs frequently have support points at the boundary of the design

space, see Li and Majumdar [2009] for example. PSO successfully veri�es all

locally D-optimal and c-optimal designs for the CR model with di�erent nominal

values in Fan and Chaloner [2004].

Furthermore, as mentioned by Zhu and Wong [2000], the locally c-optimal

design for �nding LD100ρ is a single point design supported at LD100ρ. Consider

the c-optimal design for estimating the LD30 in the CR model with nominal

values (a1 = −3.3, b1 = 0.5). PSO uses 100 particles and 1000 iterations to �nd

the one point design located at point 4.905, which can be veri�ed by LD30 =

1
0.5
(logit(0.3) + 3.3) = 4.9054. Encouraged by these successes, I don't use the
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Ultra-dimensional PSO that I developed for multivariable Poisson and exponential

models. Using the standard PSO, I �nd that all compound optimal designs for

the CR model are supported at four or fewer points.

Three-objective compound optimal designs are successfully generated by PSO

for several sets of nominal values of parameters and objective weights λi's. The

three sets of nominal values I choose as examples here represent typical types of

dose response curves, i.e. the maximum e�cacy varies from 0.3 to 0.9, see Figure

4.1, 4.2 and 4.3. In each �gure, probability curves are shown in the left plot,

and the middle one is the equivalence plot for compound optimal designs in the

unrestricted design space. Table 4.1 shows some results of compound optimal

designs with equal weights λi's=1/3 for all criteria on the unrestricted designs

space. We can see that generated optimal designs are supported at three or four

points, and the weights of these support points are not equal.

To further investigate the in�uence of design space to the compound optimal

design, I shrink the design space of these three cases to a smaller asymmetric space

[-2,7]. PSO is still able to �nd the compound optimal designs for all three cases,

as shown in Table 4.2. Interestingly, the previous four point optimal designs

become three points, with one or two points located on the boundaries of the

restricted design space. Also the middle support point is not the same as the

ones in optimal designs on unrestricted design space. All the equivalence plots

of generated compound optimal designs on the restricted space are shown in the

right plots of Figure 4.1, 4.2 and 4.3, which prove that all the PSO generated

three-objective designs are optimal among all designs on [-2,7].

4.8 Di�erent e�ciencies of the compound optimal design ξλ

Let us revisit the question posed at the beginning of the chapter. Can we �nd a

three-objective optimal design ξ for the CR model such that its D-e�ciency e3(ξ)
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Figure 4.1: CR model with nominal values: (a1 = −3.3, b1 = 0.5, a2 = 3.4, b2 = 1).

Figure 4.2: CR model with nominal values: (a1 = −1, b1 = 0.5, a2 = 2, b2 = 1).

Figure 4.3: CR model with nominal values: (a1 = 0.4, b1 = 0.2, a2 = 2, b2 = 1).

Mean Responses from the CR model with corresponding nominal values (left);

directional derivatives of the compound criterion evaluated at the PSO-generated

multiple-objective design on the unrestricted design space (middle); and direc-

tional derivatives of the compound criterion evaluated at the PSO-generated

multiple-objective design on the design space [-2,7] (right).
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Table 4.1: Three-objective compound optimal designs for estimating the

MTD,MED and all parameters with ρ = 0.3, λ1 =λ2 = 1/3 on the unrestricted

designs space.

(a1, b1, a2, b2) x1(w1) x2(w2) x3(w3) x4(w4)

(-3.3, 0.5, 3.4, 1) -4.875 (0.102) -1.139 (0.464) 5.016 (0.322) 7.874 (0.112)

(-1, 0.5, 2, 1) -2.790 (0.202) -0.637 (0.513) 3.683 (0.284) -

(0.4, 0.2, 2, 1) -12.610 (0.366) -3.918 (0.158) -0.942 (0.470) 8.727 (0.006)

Table 4.2: Three-objective compound optimal designs for estimating the

MTD,MED and all parameters with ρ = 0.3, λ1 =λ2 = 1/3 on χ = [−2, 7].

(a1, b1, a2, b2) x1(w1) x2(w2) x3(w3)

(-3.3, 0.5, 3.4, 1) -2.000 (0.152) 0.1045 (0.502) 6.328 (0.345)

(-1, 0.5, 2, 1) -2.000 (0.330) -0.156 (0.403) 3.820 (0.267)

(0.4, 0.2, 2, 1) -2.000 (0.356) -0.438 (0.319) 7.000 (0.325)

is maximized subject to both its c-e�ciencies e1(ξ), e2(ξ) for MTD and MED

are equal to or great than 0.9? Such a design may or may not exist depending

on how competitive the criteria are and also the e�ciency requirements in the

constraints. If it exists, what weighting parameter λi's should be chosen in the

compound optimal design?

To answer the question we need to investigate the impact of di�erent combi-

nations of λ1 and λ2 on the e�ciencies of the compound optimal design ξλ relative

to the three criteria. I �rst discretize λ1 and λ2 using a grid size of 0.05, and

�nd the corresponding compound optimal design ξλ for each pair of λ1 and λ2

combination subject to λ1 +λ2 ≤ 1. The e�ciencies ei(ξλ) under the ith criterion

are displayed in Figure 4.4, 4.5 and 4.6 for di�erent nominal values sets. In these

�gures, the upper left plot shows the c-e�ciencies of e1(ξλ) as measured by the

locally c-optimal design ξMTD for MTD; the upper right plot shows c-e�ciencies
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of e2(ξλ) relative to the locally c-optimal design ξMED for MED; the bottom left

plot shows D-e�ciencies of e3(ξλ) ; bottom right shows minimal e�ciencies of all

three e�ciencies.

These e�ciency plots provide an answer to the question posed at the beginning

of the section. The answer is no, at least for the three sets of nominal values I

show here; there is no compound optimal design ξλ that maximizes D-optimality

with subject to e1(ξλ) ≥ 0.9 and e2(ξλ) ≥ 0.9 no matter what combination of

λi's we choose. By observing the e�ciency plots of three criteria under di�erent

nominal values sets, I �nd e1(ξλ) and e2(ξλ) seem to be very competitive with

each other (See Figure 4.4 for example). When one criterion gains, the other loses

substantially, and vice versa.

For each set of the nominal values, I �nd out the combination of λi's that

produces the maximum of the minimum e�ciencies, as shown in Table 4.3. For

example, λ1 = 0.55, λ2 = 0.35, λ3 = 0.1 is the weights combination that produces

the maximum of the minimum e�ciency as 0.63 for all three criteria. That means

with this choice for λ, we can �nd a compound optimal design ξλ maximizes the

precision for estimating all parameters and at the same time has at least 63%

e�ciency for estimating the MED and MTD.

In addition, I �nd that for all the three nominal values sets, the compound

optimal designs maintain high D-e�ciency for most of the combinations of λi's.

This indicates for those nominal values that consistently produce high D-e�ciency

for di�erent criteria weight λ′is, we may reduce the three-objective compound

optimal design to two-objective for estimating the MTD and MED only so that

the optimal design problem is simpli�ed.
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Table 4.3: E�ciencies of ξλ as measured by ξD,ξMTD and ξMED .

(a1, b1, a2, b2) λ1 λ2 λ3 e1(ξλ) e2(ξλ) e3(ξλ)

(-3.3, 0.5, 3.4, 1) 0.55 0.35 0.1 0.63 0.63 0.87

(-1, 0.5, 2, 1) 0.7 0.3 0 0.82 0.85 0.88

(0.4, 0.2, 2, 1) 0.6 0.4 0 0.75 0.75 0.81

4.9 Summary

In this chapter, I generalize the work of Fan and Chaloner [2004] and Zhu and

Wong [2000] to �nd the three-objective design for the CR model. I show PSO is a

powerful and �exible tool to �nd a three-objective compound optimal design for

simultaneously estimating MED that produces maximal e�cacy, the maximum

tolerated dose (MTD) and all parameters in the CR model with non-constant

slope b1 6= b2. I am able to �nd the compound optimal designs under di�erent

combinations of weights λ, and investigate the impact of λ on e�ciencies rel-

ative to di�erent criteria. Such technique enables researchers and practitioners

to construct the desired compound optimal design through appropriate weights

combination of three optimal criteria in a more �exible and informative way.

Of course, the techniques developed here are broadly applicable to other cri-

teria and other nonlinear models. The PSO codes that I provided can be directly

amended to �nd other multiple-objective optimal design problems.
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Figure 4.4: Di�erent e�ciency plots of compound optimal designs for the CR

model with nominal values: (a1 = −3.3, b1 = 0.5, a2 = 3.4, b2 = 1).
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Figure 4.5: Di�erent e�ciency plots of compound optimal designs for the CR

model with nominal values: (a1 = −1, b1 = 0.5, a2 = 2, b2 = 1).
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Figure 4.6: Di�erent e�ciency plots of compound optimal designs for the CR

model with nominal values: (a1 = 0.4, b1 = 0.2, a2 = 2, b2 = 1).
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CHAPTER 5

Comparison of Repair Mechanisms in PSO and

Comparisons of Competitive Algorithms

In previous chapters, I discussed using PSO to �nd locally D- and c-optimal

designs for univariate models, multivariable models, and a multivariate model with

di�erent nominal values of parameters. The computational experience I have with

these problems are similar to what is reported in the literature. Many parameters

such as γ1,γ2, and inertia weight ω in the PSO do not seem to matter much in

terms of searching e�ciency. Following convention, I use default parameters of

the standard PSO algorithm in all the examples. The two parameters that I

change from problem to problem are the number of iterations and the �ock size.

For complicated problems such as multivariable Poisson and Exponential models,

large �ock size and iteration numbers are required to ensure the generated design

has a high e�ciency. In addition to these two parameters, I �nd another factor

that may in�uence the searching e�ciency of PSO in the optimal design problems

we are working with here, is the repair mechanism. This refers to how PSO handles

particles that wander outside the design space and prevent generating infeasible

solutions. In the next section, I discuss two main types of repair mechanisms in

detail and compare the performance of PSO using these two mechanisms to �nd

the locally D- and c-optimal designs for a variety of models.

There is a famous impossibility theorem in the optimization area called No

Free Lunch (NFL) Theorem, proposed by Wolpert and Macready [1997]. It states

that there is no algorithm that performs universally better than any other algo-
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rithms. In other words, any algorithm's average performance on the space of all

possible problems is equivalent to or no better than a random search, despite some

algorithms do perform better on some speci�c problems. In the second part of this

chapter, I compare the performance of PSO with other competing algorithms. I

am particularly interested in two popular algorithms: the Cocktail algorithm (CA)

by Yu [2011] and the Di�erential Evolution (DE) algorithm by Storn and Price

[1997]. CA is a deterministic algorithm while DE is a metaheuristic algorithm like

PSO. CA works fast except that it can only �nd locally D-optimal designs. Yu

[2011] showed CA performs much faster than each of its component algorithms for

several univariable models and also for a bivariable linear model. DE is typically

viewed as a competitor to PSO, and seems to be a popular optimization tool for

solving engineering problems. I compare the performance of three algorithms in

terms of CPU time to �nd locally D- and c-optimal designs for di�erent models.

Moreover, since CA works on a discretized design space, rather than a continuous

space that PSO and DE work on, the number n of discretized points (grid size)

also plays an important role in the quality of CA generated design and the CPU

times. Therefore I also compare the performance of CA using di�erent grid sizes

to see if we obtain better designs by using larger grid sizes.

I remind readers that all algorithms are coded in MATLAB 2013a, and all are

implemented on a workstation with Intel i7-4770 and 16GB ram.

5.1 Repair mechanisms comparison in PSO

Conventionally, there are two types of repair mechanisms employed in literature:

random repair and boundary repair (Zhang et al. [2004]). Assume PSO searches

a J-dimensional design space
∏J

j=1[lbj, ubj], where ubj and lbj are the upper and

lower bounds of the jth dimension. The ith particle's position at time t is a

vector z
(t)
i = ( z

(t)
i,1 z

(t)
i,2 ... z

(t)
i,J

)T . The random repair, as the name indicates,
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randomly assigns a position within the design space when a particle wanders

outside of the design space,

z
(t)
i,j =


rand(lbj, ubj) if z

(t)
i,j > ubj

rand(lbj, ubj) if z
(t)
i,j < lbj

z
(t)
i,j otherwise

where z
(t)
i,j is the jth component of the ith particle's position at time t, and

rand(lbj, ubj) is a random variable from a uniform distribution on [lbj, ubj]. This

repair mechanism has two direct e�ects on the swarm movements: a) increas-

ing the ith particle's velocity v
(t)
i at time t; and b) increasing |pi,j − z

(t)
i,j | and

|pg,j − z(t)
i,j |. Both e�ects increase the energy of swarm, and �disturb the swarm

into chaos state�, thereby slow down the convergence speed to the global optimum

(Zhang et al. [2004]).

Another type of repair strategy in PSO is boundary repair. This strategy pulls

errant particles back to the nearest boundary of the design space,

z
(t)
i,j =


ubj if z

(t)
i,j > ubj

lbj if z
(t)
i,j < lbj

z
(t)
i,j otherwise

The e�ects of boundary repair on swarm movements are opposite to what random

repair does: a) decreasing the velocity v
(t)
i ; and b) decreasing |pi,j − z

(t)
i,j | and

|pg,j − z
(t)
i,j |. Both e�ects directly decrease the energy of swarm. The boundary

of the design space acts as a quasi-gravity center that attracts particles current

and following positions until the population best position is no longer at the

boundary. Such repair mechanism �accelerates the swarm into equilibrium state

and may lead to the premature convergence.� (Zhang et al. [2004]). In our speci�c

optimal design problems such as �nding locally D- and c-optimal designs, optimal

designs frequently have support points at or near the boundary of the design
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space, see examples in Li and Majumdar [2009] and my dissertation. Thereby

boundary repair may provide desirable e�ects on swarm movements in �nding

optimal designs.

To compare the performance of the two repair mechanisms, I conduct simula-

tion studies to �nd locally D-optimal designs for the following models.

Univariable models:

a) Compartmental model

Ey = θ3(exp(−θ2x)− exp(−θ1x)), x ∈ χ = [0, 20]

with nominal values of θ1 = 4.298, θ2 = 0.05884, θ3 = 21.8.

b) Logistic quadratic model

log(
Ey

1− Ey
) = α + β(x− µ)2, x ∈ χ = [−1, 1]

with nominal values of α = 3, β = −5, µ = 0.

c) Heteroscedastic 4-parameter Hill model

Ey =
(Econ −B)( x

IC50
)m

1 + ( x
IC50

)m
+B + ε, ε ∼ N(0, σ0y

2λ) and x ∈ χ = [0, 453]

with nominal values of Econ = 1.7, B = 0.137, IC50 = 0.453,m = −0.825, λ = 3.

Without loss of generality, I set σ0 = 1.

Multivariable models:

d) Bivariable linear model

Ey = β0 + β1x1 + β2x2 + β11x
2
1 + β12x1x2, x ∈ χ = [−1, 1]× [0, 1]

with nominal values of βi's =1 on χ = [−1, 1] × [0, 1]. Note this model is linear

therefore locally D-optimal design is independent of β's.

e) 3-variable Poisson model

Eyk = exp(β0 +
3∑

m=1

βmxkm +
2∑

m=1

3∑
m′>m

βmm′xkmxkm′)
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with all nominal values of rmm′ =
βmβm′
βmm′

= r = 0 or rmm′ = r = −5 on IED space

where qkm = exp(βmxkm) ∈[0.01, 1] or [0.1, 1].

Multivariate model:

f) CR model

log(π3(x)/(1− π3(x))) =a1 + b1x

log(π2(x)/π1(x)) =a2 + b2x, x ∈ χ = [−10, 10]

with constant slope a1 = 0, b1 = 1, a2 = 5, b2 = 1; or non-constant slopes a1 =

−3.3, b1 = 0.5, a2 = 3.8, b2 = 1.

I also compare the performance of the two repair mechanisms for �nding c-optimal

designs for the following quantities:

g) Most e�ective dose (MED) of non-constant slope CR model in f) where

MED is the solution of the following equation

b2(1 + exp(−a1 − b1x))− b1(1 + exp(a2 + b2x)) = 0.

h) Area under the curve (AUC) of compartmental model in a), where

AUC =
1

θ1

− 1

θ2

.

i) Time to maximum concentration tmax of compartmental model in a), where

tmax(θ) =
logθ1 − logθ2

θ1 − θ2

.

In the simulation studies, for locally D-optimal designs I set the �tness value as

log(I(ξ, θ));and for c-optimal designs, the �tness value is −log(−∇T I−1(ξ, θ)∇).

For PSO with random or boundary repair, I repeat their searching for locally D-

and c-optimal designs for models a) to i) for 20 times. In each replicate, I record

the best �tness values found by the entire �ock in every iteration. The average

best �tness values over 20 replicates are plotted against the number of iterations
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for the two repair mechanisms. In all the �gures in this section, the solid curves

are generated by PSO with boundary repair and the dotted curves are generated

by PSO with random repair.

For �nding locally D-optimal designs for univariable models, Figures 5.1, 5.2

and 5.3 show that PSO with boundary repair consistently coverages to the opti-

mum faster than PSO with random repair. For multivariable models including

bivariable linear model d) and 3-variable Poisson model e), the di�erence of per-

formance of the two types of PSO is even greater than that in univariable models

(Figure 5.4, 5.5 and 5.6). For these complicated multivariable models, my expe-

rience is that PSO with random repair is even unable to �nd the optimal design

regardless how many iterations and �ock size I choose.

When searching for c-optimal designs for estimating the AUC and tmax in com-

partmental model in a), both Figures 5.9 and 5.10 show that PSO with boundary

repair consistently �nds better �tness values faster than PSO with random repair.

For CR models, by the comparisons of locally D-optimal designs for constant

(Figure 5.7) and non-constant slope model (Figure 5.8), and c-optimal design

for MED (Figure 5.11), I observe that although PSO with boundary repair still

outperforms the other, the di�erence in their performance seems to be increasing

smaller as PSO progresses.

5.2 Comparisons of algorithms

Our results in the previous section suggests generally PSO with boundary repair

performs better than PSO with random repair in searching for locally D- and c-

optimal designs. In the following subsections, I compare the performance between

PSO with boundary repair with two of its main competitors: DE and CA. DE

is a metaheuristic algorithm like PSO, which is able to �nd both locally D- and

c-optimal designs. Therefore, in section 5.2.1 I compare PSO with DE for �nding
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Figure 5.1: Repair mechanisms comparison of the locally D-optimal design for the

compartmental model with a = 4.298, b = 0.05884, c = 21.8 on χ = [0, 20].

Figure 5.2: Repair mechanisms comparison of the locally D-optimal design for the

logistic quadratic model with α = 3, β = −5, µ = 0 on χ = [−1, 1].
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Figure 5.3: Repair mechanisms comparison of the locally D-optimal design for the

4-parameter Hill model with Ec = 1.7, b = 0.137, IC = 0.453,m = −0.825, λ = 3

on χ = [0, 453].
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Figure 5.4: Repair mechanisms comparison of the locally D-optimal design for the

2-variable linear model on χ = [−1, 1]× [0, 1].

Figure 5.5: Repair mechanisms comparison of the locally D-optimal design for the

3-variable Poisson model with r = 0 on IED space [0.01, 1]3.
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Figure 5.6: Repair mechanisms comparison of the locally D-optimal design for the

3-variable Poisson model with r = −5 on IED space [0.01, 1]3.

Figure 5.7: Repair mechanisms comparison of the locally D-optimal design for the

CR model with a1 = 0, b1 = 1, a2 = 5, b2 = 1 on χ = [−10, 10].
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Figure 5.8: Repair mechanisms comparison of the locally D-optimal design for the

CR model with a1 = −3.3, b1 = 0.5, a2 = 3.8, b2 = 1 on χ = [−10, 10].

locally D-optimal design for models a) to f) in section 5.1, and c-optimal designs

for three quantities g) to i). Here the generated design is considered to be optimal

when all its design points and their weights are the same as the known optimal

design rounded to the 4 decimal places.

CA searches for locally D-optimal designs only. In section 5.2.2, I compare

PSO with the boundary repair to CA in terms of CPU time for locally D-optimal

design for models a) to f). It is worth noting that CA only works on a �nite design

space, which can be used to approximate a continuous space. This approach

limits the ability of CA to �nd the exact D-optimal design (i.e. design points

and corresponding weights are the same as the known optimal design rounded to

the 4 decimal places), even though the generated designs by CA may be highly

D-e�cient (with D-e�ciency greater than 0.99). In addition to the comparison of

CPU time, I hereby compare the number of support points in the sought designs

by PSO and CA, since practitioners usually prefer a simple design with fewer
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Figure 5.9: Repair mechanisms comparison of the locally c-optimal

design for estimating the AUC in the compartmental model with

a = 4.298, b = 0.05884, c = 21.8 on χ = [0, 20].
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Figure 5.10: Repair mechanisms comparison of the locally c-opti-

mal design for estimating the tmax in the compartmental model with

a = 4.298, b = 0.05884, c = 21.8 on χ = [0, 20].
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Figure 5.11: Repair mechanisms comparison of the locally c-optimal design for

estimating the MED in the CR model with a1 = −3.3, b1 = 0.5, a2 = 3.8, b2 = 1

on χ = [−10, 10].
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support points to a complicated design with a lot of points on the condition that

both designs provide almost the same e�ciency.

5.2.1 Comparison between PSO and DE

In general, comparing algorithms that use di�erent strategies and with di�erent

numbers of tuning parameters can be challenging because one may argue that

tuning parameters in the two algorithms were not properly selected. The key tun-

ing parameters in DE are the crossover constant CR ∈ [0, 1] and the ampli�cation

factor CF ∈ [0, 2]. I use the default values that Storn and Price [1997] provided

i.e. CR = 0.5 and CF = 1, which show the best performance in all the tested

functions in their paper. My experience is that for the types of problems we want

to optimize, only two key variables: �ock size and maximum number of iterations

in the two algorithms seem to matter, a �nding not too unlike others reported

in the literature. For the comparisons here, I did preliminary runs with various

tuning parameters to �rst estimate the minimal �ock size and iteration number

that would generate the optimal design with 90% chance over 10 replicates. I

informally call this the �90% rule�. If a particular tuning parameter setting fails, I

repeat the search by increasing the �ock size by 20 and the iteration numbers by

100 sequentially. Therefore the chosen iteration numbers �ock size are minimum

satisfying the 90% rule. All reported CPU times are averaged over 10 replicates.

In the tables below, the numbers in the parenthesis after PSO and CA are �ock

size and maximal iteration number.

Table 5.1 reports the CPU time of �nding locally D-optimal designs for all the

models I used in section 1 by the two algorithms. For univariable models, PSO

outperforms DE and sometimes by as much as 41(=57.4/1.4) times in terms of

CPU times as in the case for �nding locally D-optimal design for the quadratic

logistic model. For multivariable models, I observe consistently faster performance

of PSO over DE for both the bivariable linear model and the 3-variable Poisson
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regression models with di�erent nominal values of interactions. For example I

consider the locally D-optimal design for Poisson model with 3 variables and

all pairwise interaction terms plus an intercept in IED space [0.01,1] with r =

0. This model has 7 parameters and its locally D-optimal design is minimally

supported at 7 points, which is equivalent to solving a 27 (=3*7+6) dimensional

constrained optimization problem. PSO took 2.8 seconds but DE took 113.7

seconds to converge to the D-optimal design, showing that PSO again outperforms

DE by 40 times. Additionally I �nd that DE cannot �nd locally D-optimal design

for the 4- or 5-variable Poisson and Exponential models under the 90% rule,

regardless what �ock size or iteration numbers I use.

In the comparisons of �nding c-optimal designs to estimate quantities tmax

and AUC of the compartmental model, and MED of the non-constant slope CR

model, PSO and DE provide very close results in terms of CPU time. (Table 5.2).

The biggest di�erence is in the searching for c-optimal design for estimating the

MED of the non-constant slope CR model, in which PSO takes 1.2 seconds and

DE takes 7.4 seconds to converge to the locally D-optimal design.

5.2.2 Comparison between PSO and CA

Cocktail algorithm (CA) is a deterministic algorithm which always produces the

same output given one input. For PSO I still use the same tuning parameters

in section 5.2.1 such that the algorithm produces the locally D-optimal at 90%

chance. My experience with CA is that although its generated designs can be

very e�cient even when the grid size n is as small as 10, they may have many

more support points than the true optimal design does. For example, I compare

the locally D-optimal designs for bivariable linear model d) generated by PSO and

CA in Table 5.3. The numbers in the parenthesis after PSO are �ock size and

maximum iteration number; the numbers in the parenthesis after CA are the grid

size used in di�erent optimization problems. PSO is able to �nd the true optimal
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Table 5.1: CPU time of locally D-optimal designs by PSO and DE.

Model Algorithm CPU time

a) Compartmental model PSO(20,200) 0.4

DE(20,200) 2.9

b) Logistic quadratic model PSO(100,200) 1.4

DE(80,400) 57.4

c) Hill model PSO(20,200) 0.3

DE(20,200) 1.4

d) Bivariable linear model PSO(80,300) 1.2

DE(60,200) 11.0

e) 3-variable Poisson model (r = 0) PSO(60,1500) 8.2

DE(60,500) 113.7

e) 3-variable Poisson model (r = −5) PSO(100,1000) 6.2

DE(60,700) 215.3

f) CR model (b1 = b2) PSO(20,200) 0.1

DE(20,200) 1.4

f) CR model (b1 6= b2) PSO(100,300) 2.5

DE(40,300) 6.5

The numbers in parenthesis are �ocks size and maximal iterations number.

Table 5.2: CPU time of locally c-optimal designs by PSO and DE.

Model Algorithm CPU time

g) tmax PSO(60,100) 4.5

DE(20,200) 2.3

h) AUC PSO(40,1000) 2.8

DE(40,200) 4.6

i) MED in CR(b1 6= b2) PSO(80,200) 1.2

DE(40,200) 7.4
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Table 5.3: PSO and CA generated locally D-optimal designs for d) bivariable

linear model.
Algorithm CPU time Deff x1 x2 x3 x4 x5 x6 x7 x8

PSO(80,300) 1.2 1 -1 -1 0 0 1 1

0 1 0 1 0 1

weight 0.1875 0.1875 0.1275 0.1275 0.1875 0.1875

CA (10) 0.1 0.997 -1 -1 -0.1111 -0.1111 0.1111 0.1111 1 1

0 1 0 1 0 1 0 1

weight 0.1870 0.1870 0.6300 0.6300 0.6300 0.6300 0.1870 0.1870

CA (1000) 94.6 1 -1 -1 -0.0101 -0.0101 0.0101 0.0101 1 1

0 1 0 1 0 1 0 1

weight 0.1875 0.1875 0.6250 0.6250 0.6250 0.6250 0.1875 0.1875

design supported at 6 points with D-e�ciency 1. Both of the CA generated designs

have D-e�ciency greater than 0.99, but they have two more support points near

(0, 0)T and (0, 1)T due to the discretized design space. In biomedical researches

such as a dose response study, practitioners usually prefer a simple design with

fewer support points to a complicated design with a lot of points on the condition

that both designs provide almost the same e�ciency. Therefore in addition to the

average CPU time, I use the number of support points in the generated design as

another comparison criterion to measure the accuracy of CA generated design.

As shown in Table 5.4, for univariable models such as compartmental model,

logistic quadratic model, CA with a grid size of 10000 converges at about the

same speed as PSO with 100 (or less) particles does. For the compartmental

model a), CA �nds the exact same design as PSO does, which means it has no

di�culty allocating weights at adjacent points. For logistic quadratic model with

α = 3, β = −5, µ = 0 on χ = [−1, 1], CA allocates weights in adjacent points

-0.9218 and -0.9216, and the sought design has one more point than the real

optimal design. When I increase the grid size of 100000, CA successfully �nds the

same optimal design as PSO does, but takes much longer CPU time. A similar

situation is observed in the case of Hill model, where CA has problem allocating
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weights at adjacent points even when I increase the grid size to 100000.

For both the 3 and 4-variable Poisson models (Table 5.5, 5.6), PSO consistently

produces the minimally supported D-optimal designs regardless how IED space is

chosen or what nominal values of interaction rmm′ I pick. Note that PSO requires

more iterations and particle numbers to distinguish the boundary 0.1 and the

design point 0.1353. In contrast, CA converges fast, usually less than a second,

when the grid size of each dimension of the design space is as small as 10, but the

generated design usually has support points not close to the true optimal points.

When the grid size is increased, the CPU time increases dramatically, especially

for models with more than 3 variables. Therefore I limit the largest grid size

50 for 4-variable model. For such problems, I observe that when the grid size

increases, the CA generated design structure becomes inconsistent. For example,

when searching for locally D-optimal designs for the 4-variable Poisson model

with r = 0 on IED χ = [0.1, 1]4, the number of support points in CA generated

design varies from 11 to 17 when grid size increases from 10 to 50. The reason

is that when having more points close to each other, CA has di�culty allocating

their weights. Therefore it is impracticable to increase the precision of design

by increasing the grid size in �nding locally D-optimal designs for multivariable

models.

Moreover, because CA �nds locally D-optimal design on the discretized design

space, I am concerned if the boundaries of design space a�ects CA generated de-

sign, especially for multivariable models. To investigate possible impact of chang-

ing design space on the performance of CA, I choose two design spaces [0.01, 1]M

and [0.1, 1]M for 3 and 4-variable Poisson models. I have previously veri�ed in

Chapter 3 that the locally D-optimal design for the 3-variable Poisson model is

minimally supported at 7 points, and for the 4-variable model is minimally sup-

ported at 11 points located at 0.1353 or 1 in each dimension. Therefore, both of

the design spaces should give the same locally D-optimal design since the support

113



Table 5.4: Comparisons of the locally D-optimal design for univariable models

between PSO and CA.

Model Algorithm # of support points CPU time

a) Compartmental model PSO(20,200) 3 0.4

CA(10000) 3 0.3

CA(100000) 3 5.2

b) Logistic quadratic model PSO(100,200) 4 1.4

CA(10000) 5 1.5

CA(100000) 4 17.9

c) Hill model PSO(20,200) 4 0.3

CA(10000) 5 0.7

CA(100000) 6 8.3

points are all located within the design region. However, from Table 5.5 and 5.6

I observe that changing design spaces causes inconsistency of the structure of CA

generated design for both 3 and 4-variable Poisson models. Take the 4-variable

Poisson with nominal value of r = −5 for example. CA with a grid size of 50 �nds

a design with 17 support points on IED space [0.01, 1]4, but 23 support points on

[0.1, 1]4. In contrast, PSO consistently �nds the same locally D-optimal design

minimally supported at 11 points regardless what design space is chosen.

Lastly, for multivariate CR model as shown in Table 5.7 , regardless of constant

or non-constant slope, PSO with 100 particles consistently produce the optimal

design at about the same speed of CA with grid size as small as 100. Similarly as

multivariable Poisson models, the CPU time that CA takes to converge increases

dramatically when the grid size is increased, but the sought design by CA still

have problem allocating weights to adjacent points.
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Table 5.5: Comparisons of the locally D-optimal design of the 3-variable Poisson

models with all nominal values of interactions rmm′ = r between PSO and CA.

Model Algorithm # of support points CPU time

r = 0 on IED χ = [0.01, 1]3 PSO(60,1500) 7 8.2

CA(10) 7 0.1

CA(100) 19 >10000

CA(200) 7 413.3

r = −5 on IED χ = [0.01, 1]3 PSO (100,1000) 7 6.6

CA(10) 7 0.1

CA(100) 10 52.1

CA(200) 7 287.6

r = 0 on IED χ = [0.1, 1]3 PSO (100,1000) 7 6.2

CA(10) 7 0.1

CA(100) 7 33.5

CA(200) 7 315.3

r = −5 on IED χ = [0.1, 1]3 PSO (100,2000) 7 11.1

CA(10) 7 0.1

CA(100) 7 41.2

CA(200) 13 634.2
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Table 5.6: Comparisons of the locally D-optimal design of the 4-variable Poisson

models with all nominal values of interactions rmm′ = r between PSO and CA.

Model Algorithm # of support points CPU time

r = 0 on IED χ = [0.01, 1]4 PSO(100,1500) 11 14.7

CA(10) 11 0.4

CA(20) 33 600.5

CA(50) 11 342.0

r = −5 on IED χ = [0.01, 1]4 PSO(100,2000) 11 20.4

CA(10) 11 0.4

CA(20) 15 10.9

CA(50) 17 456.9

r = 0 on IED χ = [0.1, 1]4 PSO(200,2000) 11 36.1

CA(10) 11 0.4

CA(20) 11 6.8

CA(50) 11 315.8

r = −5 on IED χ = [0.1, 1]4 PSO(100,2000) 11 19.4

CA(10) 11 0.4

CA(20) 11 7.8

CA(50) 23 673.1
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Table 5.7: Comparisons of the locally D-optimal design of the CR model with

constant or non-constant slopes on χ = [−10, 10] between PSO and CA.

Model Algorithm # of support points CPU time

CR model with b1 = b2 = 1 PSO(20,200) 3 0.1

CA(100) 5 1.7

CA(1000) 5 20.8

CA(10000) 4 71.3

CR model with b1 = 0.5, b2 = 1 PSO(100,500) 4 1.5

CA(100) 5 2.9

CA(1000) 6 14.3

CA(10000) 5 122.7

5.3 Summary

In this chapter, I conduct simulation studies to compare searching e�ciencies be-

tween PSO with boundary repair and random repair mechanisms. I �nd that the

boundary repair mechanism greatly expedites PSO in searching for locally D- and

c-optimal designs for a variety of models I investigated in the previous chapters.

Furthermore, PSO with boundary repair is compared to two other popular algo-

rithms: Cocktail algorithm (CA) by Yu [2011] and Di�erential Evolution (DE)

algorithm by Storn and Price [1997]. In the simulations using the same set of

models, I �nd PSO outperforms DE in terms of faster speed to converge to lo-

cally D- and c-optimal designs. In comparisons between PSO and CA, I �nd CA

usually has di�culty in allocating weights for adjacent points when the grid size

is increased, and CA generated designs do not maintain a consistent structure

when the grid size or design space changes. In contrast, PSO consistently �nds

the locally D-optimal designs regardless what design space is chosen. Since I set

PSO to round all the design points and weights to 4 decimal places, such precision

enables us explore the structure of optimal designs at a microscopic level.
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CHAPTER 6

Program Development of PSO

In this chapter, I illustrate some of the PSO codes I developed using MATLAB. To

help researchers and practitioners to verify our results and appreciate how PSO

works in practice, my collaborators in Taiwan have set up a website with MAT-

LAB P-code for generating each of the optimal design in my dissertation. One

mirror site is housed at http://optimal-design.biostat.ucla.edu/podpack/.

Readers can download the P-code of the model of interest and �nd optimal designs

under di�erent sets of nominal values via PSO/UPSO.

Figure 6.1 displays a snapshot of the homepage. Clicking the �Download� link

in the upper-right corner reveals all PSO codes we have developed. The PSO codes

to �nd locally D- and c-optimal designs for univariable models in Chapter 1 are

stored in Part C to Part G. The PSO codes for �nding locally D-optimal designs

for 3, 4 and 5-variable Poisson and Exponential models are stored in Part H. To

download MATLAB P-codes, �rst click the library link of the codes of interest,

and then click download in the "File" menu in the top-left part.

In what follows, I provide exemplary descriptions on how to use the PSO codes

to �nd 1) a locally D-optimal design for 3-variable Poisson regression model with

pairwise interactions; 2) a locally compound optimal design for estimating MTD,

MED and all parameters in the continuation-ratio model. Other PSO codes in

our website have the similar user interface and de�nitions of parameters.
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Figure 6.1: Snapshot of PSO website at UCLA.
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6.1 Ultra-dimensional PSO (UPSO) for �nding locally D-

optimal designs for a Poisson model or an Exponential

model

This is a manual for using MATLAB (R2013) software to �nd a locally D-optimal

design for a Poisson model or an Exponential model using Ultra-dimensional Par-

ticle Swarm Optimization techniques. All regression models have terms for all

main e�ects and all two-factor interaction terms plus an intercept. To �x ideas,

I describe input requirements for a Poisson model with 3 toxicants (or variables)

and all two-factor interaction terms. This model has a total of 7 parameters in

the model including the intercept. The input requirements and explanation for

generating a locally D-optimal design for the Exponential model are similar, and

so are the cases when we have 4 or 5 toxicants with all two-factor interaction

terms and an intercept term in the model.

After downloading the P-code, type run in the MATLAB command window

and a graphical user interface (GUI) opens up. The UPSO program starts by

clicking the Run! button and ends by clicking the Exit button. For example,

if a locally D-optimal design for a Poisson model with 3 toxicants is of interest,

upon activation, one sees the interface window (Figure 6.2). Clicking Run! will

produce the support points and their weights in parentheses of the generated

design in the command window as the iteration progresses. All numbers are

rounded to 4 decimal places, which is equivalent to having a grid mesh containing

as many as 10,000 points. When the UPSO search terminates at the maximum

number of iterations, the equivalence plot by grid size of 10 is automatically

generated and saved in the same folder. A rough D-e�ciency lower bound for the

generated design found using a grid size of 10 is also given.

INPUT PARAMETERS:
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Figure 6.2: User interface of UPSO for �nding locally D-optimal designs for the

Poisson model with 3-variable and pairwise interactions.

Nominal values

Supply b0 in the box provided. This is the nominal value for the intercept β0 in

the model. Similarly for other parameters.

PSO options

particle #: Allows users to specify the number of particles to employ in the

search.

iteration #: Maximum number of iterations allowed.

Dimension: The common number of support points in each particle (design)

used in the search. Usually, the number of design point should be equal or greater

than the number of parameters in the regression model. For example, we select 7

or more design points for 3-variable models; 11 or more design points for 4-variable

models; 16 or more design points for 5-variable models, etc.

Design options
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Allows users to specify the design space in terms of IED qkm for each agent (or

variable). Recall in Chapter 3, we alternatively de�ne the induced design space on

the individual e�ective dose (IED) qkm = exp(βmxkm) ∈ [cm, 1], m = 1, 2, ...,M , or

equivalently, xkm ∈ [0, 1
βm
log(cm)], assuming βm is negative in the background of

toxicology. Note that the value entered in the LowerBound box should always

be positive, and the value entered in the UpperBound box should always be

equal to 1 by de�nition of IEDs for the Poisson and Exponential models.

OUTPUT:

The equivalence plot: At the termination of the search, the equivalence plot

shows the directional derivatives of objective function Ψ(I(ξ))at ξ in the di-

rection of δX in a grid size of 10, where δX is the one-point design at X =

(x1, x2, ..., xM)T ∈ χ. The general equivalence theorem states that the generated

design ξ is locally D-optimal among all designs on χ if and only if the following

checking condition is satis�ed

trace[I(δX , β)I−1(ξ, β)]− P ≤ 0 ∀X ∈ χ, (6.1)

with equality at the support points of ξ. For bivariable Poisson model P = 4, and

for 3-variable Poisson model P = 7.

In bivariable Poisson regression model, the directional derivative (6.1) can be

directly displayed in a 3-D equivalence plot. For example, Figure 6.3 shows the

equivalence plot of the locally D-optimal design for a 2-variable Poisson model

with nominal values of interaction terms equal to 0 on IED design space [0.01, 1]2.

When the number of variables in the model is more than two, however, it

is impossible to directly plot the directional derivatives. Consider the 3-variable

Poisson for instance. First I construct a N3 grid is for the 3-variable design space,
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Figure 6.3: Equivalence plot con�rming the optimality of the locally D-optimal

design for the 2-variable Poisson model with nominal values of interaction terms

rmm′ = 0 on IED design space [0.01, 1]2.
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Figure 6.4: Modi�ed equivalence plot against aN2 + bN + c con�rming the op-

timality of the locally D-optimal design for the 3-variable Poisson model with

nominal values of interaction terms rmm′ = 0 on IED design space [0.01, 1]3.

i.e. xmn = (log(cm)/βm) n
N
, and let

XaN2+bN+c = (x1a, x2b, x3c)
T = (

a

N

log(c1)

β1

,
b

N

log(c2)

β2

,
c

N

log(c3)

β3

)T

where a, b, c = 0...N−1. For example in a coarse gridN = 10,X321 = ( 3
10

log(c1)

β1
, 2

10

log(c2)

β2
, 1

10

log(c3)

β3
)T .

Therefore we can plot the directional derivative against aN2 + bN + c regardless

of how many variables are there in the design space. From such a plot, we can

roughly identify the largest violation of directional derivative upper bounded by

0, and calculate the rough D-e�ciency lower bound accordingly. Figure 6.4 shows

directional derivative of the locally D-optimal design for three-variable Poisson

model with nominal values of interactions as 0 on design space [0.01, 1]3.

Check D-e� lower bound by PSO: Upon clicking this button at the termi-

nation of the run, the lower bound for the D-e�ciency of the generated design

will be displayed. This number is used to check whether the generated design is

locally D-optimal or not. If this number is unity, the generated design is locally
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D-optimal among all designs; otherwise it is not. The closer this number is to

unity, the closer is the generated design to the locally D-optimal design (without

knowing the optimum). This lower bound is obtained using the standard PSO

to �nd the maximum violation in the equivalence theorem by determining the

maximum positive value of the function on the left hand side of (2.2) described

in the our paper. This is a relatively easy task since the optimization problem

now has dimension M , the number of variables. In practice, users need to repeat

the search for the maximum violation several times to ensure that PSO gives the

same numerical result for the maximum value. The lower bound of D-e�ciency is

then obtained as described in Pazman [1986].

6.2 PSO for �nding three-objective compound optimal de-

signs for the non-constant slope CR model

This is a manual for using the MATLAB (R2013) software to �nd a compound

locally D-optimal design for the non-constant slope continuation-ratio model using

PSO. There are three objectives in the study. The �rst objective is locally c-

optimal design for estimating the maximum tolerated dose (MTD), the second

objective is locally c-optimal design for estimating the most e�ective dose (MED),

and the third one is D-optimal design for estimating all parameters in the model.

To activate the GUI, type run in the MATLAB command window as shown

in Figure 6.5. The PSO program starts by clicking on the Run! button and ends

by clicking on the Exit button. Clicking Run! will �rst pause the program and

plot the probability curves of

π1(x) =
1

(1 + ea1+b1x)(1 + ea2+b2x)
(no reaction)

π2(x) =
ea2+b2x

(1 + ea1+b1x)(1 + ea2+b2x)
(e�cacy without toxicity)
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Figure 6.5: User interface of PSO for �nding compound optimal designs for the

CR model.

and

π3(x) =
ea1+b1x

1 + ea1+b1x
(toxicity).

in the user-speci�ed dose range. This plot is constructed based on the input

parameters and so it provides guidance or con�rmation that the input parameters

are reasonable.

Clicking any key resumes the program and generates the support points with

their weights in parentheses of the generated design as the iteration progresses.

All numbers are rounded to 4 decimal places, which is equivalent to having a grid

mesh containing as many as 10,000 points. When the PSO search terminates at

the maximum number of iterations, the equivalence plot constructed from a

grid size of 1000 is automatically generated and saved in the same folder.

INPUT PARAMETERS:

Nominal values

Supply a1 which is the nominal value for the intercept a1 in the model. Similarly
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for other parameters.

PSO options

particle #: Allows users to specify the number of particles to employ in the

search.

iteration #: Maximum number of iterations allowed.

Dimension: The common number of support points in each particle (design) used

in the search. Usually, the number of design points should be equal or greater

than the number of parameters in the CR model.

Design options

Upperbound; Lowerbound: Allows users to specify the design space for the

dose range of interest.

P toxicity: The user-speci�ed proportion ρ of patients that experience dose

limiting toxicity (DLT ) given MTD.

π3(MTD, a1, b1) = ρ.

Lambda1: Weight λ1 for the criterion Ψ1(ξ), the log c-e�ciency of the design ξ

for estimating MTD.

Lambda2: Weight λ2 for the criterion Ψ2(ξ), the log c-e�ciency of the design ξ

for estimating MED.

Note both λ1, λ2 and their sum have to be within [0,1]. This ensures a non-negative

weight λ3 for log D-e�ciency to estimate all parameters in the model.

OUTPUT:

The equivalence plot: At the termination of the search, the equivalence plot

shows the directional derivative of objective function of the compound optimal

design Ψ(ξλ) being evaluated at ξλ in the direction of δx in a grid size of 1000.
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