
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Holistic Processing Develops Because it is Good

Permalink
https://escholarship.org/uc/item/1cj064kz

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 27(27)

ISSN
1069-7977

Authors
Cottrell, Garrison W.
Zhang, Lingyun

Publication Date
2005
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1cj064kz
https://escholarship.org
http://www.cdlib.org/


Holistic Processing Develops Because it is Good

Lingyun Zhang and Garrison W. Cottrell
{lingyun,gary}@cs.ucsd.edu

UCSD Computer Science and Engineering
9500 Gilman Dr., La Jolla, CA 92093-0114 USA

Abstract

In this paper, we investigate the question, “what are
the best features for face identification?” Ullman et al.
used mutual information as measurement of how good
a feature is for a class [Ullman et al., 2002]. Their ex-
periments suggested that features of intermediate com-
plexity are best in tasks of face vs. non-face and cars
vs. non-cars. We are interested in the tasks of face
identification and expression classification. We applied
Ullman’s technique of finding features with high mu-
tual information with category labels to the tasks. We
found that features of large sizes convey the most in-
formation about face identity. Local features such as
eyes and mouth are informative for identity in the con-
text of large face areas. Yet they are not very infor-
mative by themselves, especially for an image set with
high variability of facial expressions. On the other hand,
small sized features around the eyes and mouth contain
relatively high information for expression classification.
This suggests that the appropriate feature sizes are task
dependent. We suggest that holistic processing of faces
has developed because these features are optimal for face
identification.

Introduction
In this paper, we investigated what the best features
are for face identification. Face identification is a sub-
ordinate level task [Diamond and Carey, 1986] and is
known to be holistic or configural. Holistic process-
ing is typically taken to mean that the context of the
whole face has an important contribution to process-
ing the parts, and suggests that subjects use some
kind of whole-face representation when processing faces:
they have difficulty recognizing parts of the face in
isolation, and they have difficulty ignoring parts of
the face when making judgments about another part
[Carey and Diamond, 1977, Carey and Diamond, 1994,
Farah et al., 1995, Tanaka and Farah, 1993]. Configural
processing means that subjects are sensitive to the re-
lationships between the parts, e.g., the spacing between
the eyes.

Ullman et al. proposed using a measure of the mu-
tual information between features and categories to find
the features that provide the most information relevant
to classification problems [Ullman et al., 2002]. Their
experiments showed that features of intermediate com-
plexity in size and resolution were best for classification
(faces vs. non-faces, cars vs. non-cars). Figure 1 shows
the combination of features they found for faces and cars.
The intuition is that small, simple features are likely

to be found in both targets and non-targets (high false
alarms) and large, specific features are unlikely to gen-
eralize to more than the image they are found in (high
misses). Intermediate complexity gives a good balance
between the trade-offs of misses and false alarms. They
suggested that these features are represented after the
encoding of simple features in V1 but before the encod-
ing of complex object views in anterior IT cortex, and
that the features of intermediate complexity are the nat-
ural result of being selected for visual classification.

Figure 1: The set of fragments extracted by maximizing the
amount of information delivered. (a) The features found for
faces. (b) Examples of images in the training set. (c) The
features found for cars. (adapted from [Ullman et al., 2002]
with author’s permission).

Will features that are good for telling faces from ob-
jects be good for identification? We expect more specific
features would be needed for face identification. Our re-
sults show that features of large size are best for face
identity classification. Local features are not as infor-
mative as global ones because the variances of local fea-
tures such as eyes and mouth across different images
of the same person due to expressions and other fac-
tors are comparable to those across individuals. We also
show that the features optimal for expression classifica-
tion are of small sizes. The result suggests that holistic
processing for faces has been developed simply because
it is good or even necessary for accurate identification.

Methods

Data Set

36 frontal images of 6 individuals (6 images each) from
the FERET database were used [Phillips et al., 1998].
The images were aligned by rotating, scaling and crop-
ping [Zhang and Cottrell, 2004]. Figure 2 shows the nor-
malized face images, where each row is an individual.
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Figure 2: The 6 individual by 6 images from FERET. Each
row is an individual.

Preprocessing
Ullman et al. used raw pixel patterns of varying
size and resolution in their study, which is an unre-
alistic cortical representation of an image. Research
suggests that the receptive fields of the striate neu-
rons are restricted to small regions of space, respond-
ing to narrow ranges of stimulus orientation and spa-
tial frequency [Jones and Palmer, 1987]. DeValois et
al. [DeValois and DeValois, 1988] mapped the recep-
tive fields of V1 cells and found evidence for multiple
loci of excitation and inhibition. Two-D Gabor filters
[Daugman, 1985](Figure 3) have been found to fit the
2D spatial response profile of simple cells quite well
[Jones and Palmer, 1987]. The complex cells are found
to approximately compute the magnitudes of the re-
sponses [Pollen and Ronner, 1983]. In the preprocess-
ing, the images were filtered with a set of overlapping
2-D Gabor filters in quadrature pairs at five scales and
eight orientations. Gabor filter responses are sampled at
every grid point on a rigid 23 by 15 grid (Figure 4).
[Dailey et al., 2002]. The magnitudes of the filter re-
sponses were then z-scored across images (subtract mean
and divide by standard deviation so as to be zero mean
and one standard deviation, so that every response is
treated equally).

Patches
Patches of Gabor filter responses were taken from the
images. A patch is a rectangle sample of grid points

Figure 3: A Gabor function is constructed by multiplying
a Gaussian function by sinusoidal function [Daugman, 1985].
We used five scales with eight orientations.

(Figure 4). Gabor filter responses of a certain frequency
with all orientations on these grid points are collected.
Hence, one “patch” is a concatenated vector of 8 Gabor
filter responses at each grid point. Patches were of differ-
ent locations, sizes and frequencies. We collect patches
of size (2n − 1) ∗ (2m − 1) of all possible locations and
frequencies, i.e. size 1 ∗ 1, 1 ∗ 3, 1 ∗ 5, ..., 3 ∗ 1, 3 ∗ 3, ...
at all possible locations and frequencies.

Figure 4: Patches of different centers, sizes and Gabor filter
frequencies were taken from the images.

Because we have normalized our images, we can de-
fine corresponding patches in image coordinates. We de-
fine corresponding patches to be the patches of the same
position, size and Gabor filter frequency across images.
(Figure 5). A patch is said to be present in an image if
the corresponding patch in the images has a correlation
bigger than the threshold (a parameter) with the patch.
Here we did not search across location for patch matches
because the images were all normalized to approximately
the same layout.

Figure 5: Corresponding patches across images.

Measurements by Mutual Information
Following Ullman et al.([Ullman et al., 2002]), the use-
fulness of the patches for face identification was mea-
sured by mutual information:

I(C;F ) = H(C) − H(C|F ) (1)

In the equation, H denotes entropy which measures the
uncertainty of the variable. Thus I(C;F ) measures how
much the uncertainty of variable C is reduced by know-
ing variable F . In other words, it measures how much
information F conveys about C.

In our implementation, C and F are both binary vari-
ables. C denotes the binary variable of “the image is the
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face of the individual or not” for a certain individual. F
denotes the binary variable of “presence of the patch in
the image or not” for a certain patch.

For patch i in image j, C = 1 for the 6 images belong-
ing to the same individual of image j, C = 0 for the rest
30 images; F = 1 for images in which patch i is present,
F = 0 otherwise. The mutual information can thus be
calculated as follows:

I(C;F ) = −p(C) log p(C) − p(C̄) log p(C̄)
+p(F )(p(C|F ) log p(C|F ) + p(C̄|F ) log p(C̄|F ))
+p(F̄ )(p(C|F̄ ) log p(C|F̄ ) + p(C̄|F̄ ) log p(C̄|F̄ ))

Mutual information is calculated between every in-
dividual and the patches from the images of the indi-
vidual. This measures how much the presence of the
patch predicts identity. The best threshold for “pres-
ence of a patch” was found for each patch by brute force
search, from −0.9 to 0.9 by steps of 0.1. The threshold
with the highest mutual information was used for that
patch. This is after the fashion of Ullman et al. Averages
across corresponding patches from images belonging to
the same individual were taken to measure how much a
patch predicts this individual. Averages across individu-
als were taken to measure how much this patch predicts
identity.

Face Identification
The results showed that patches of large sizes had the
most information about identity. The best patches are
not whole face patches, but they do encode at least two
“traditional” features (eyes, nose, mouth). That is, they
encode the eye in the context of the nose and vice versa.
Figure 6 shows several patches with highest mutual in-
formation. Figure 7 displays the mutual information of
all patches centered on the image. Large patches are
usually preferred given same frequency scale and posi-
tion.

Figure 6: The best 6 patches. Frequency of 1 to 5 denotes
from the highest Gabor filter frequency to the lowest. These
are the patches with the highest mutual information. Note
that some are similar to others because we do not eliminate
redundancy in the results reported in this paper, i.e., the best
combination was not considered at this stage as in Ullman et
al.’s work.

Generalization
To find out how well the patches we found generalize to
other face images, we extracted another set of 36 images
(6 individual by 6 images each) from FERET (Figure 8).
In the following text, the earlier set will be referred as
“FERET1” and this new set as “FERET2”.

We tested generalization in 2 ways.

Figure 7: The mutual information of all the patches centered
at the image center. The x axis is the width of the patch,
and the y axis is the height of the patch. The big patches are
on the top right while small patches are on the bottom left.
The good patches are of large sizes.

Winner Take All In this experiment, the classifica-
tion was carried out by voting of the patches. The best
100 (this number was arbitrarily used in the experiments
reported in this paper) patches and their thresholds were
calculated from the training set. For the test set, 1 im-
age of each individual was taken as a “known” image.
The other 30 were “novel.” For each novel image, the
identity was decided by calculating how many of the best
100 patches from a “known” image were present in this
image and taking the identity of the image to be the
identity of the individual with the most patches present.

The 36 images of the test set were divided to 6 sets
of “known” images (the columns of Figure 8), and with
each as the “known” image set, the error rate was calcu-
lated. Table 1 shows the results. One issue that arises
is how the Gabor filter responses on the test set are nor-
malized by z-scoring. We consider the z-score to be an
adaptation on an individual neuron level, that is, each
complex cell is adjusting its response to be 0-mean and
unit standard deviation. If this is slow, then the training
set z-scoring should be used. But if this is fast (the sub-
ject adapts to the test set), then the test set should be
used. We report both for completeness. That the test
set is z-scored by the test set means that the test set’s
mean and standard deviation are used, while that the
test set is z-scored by the training set means that the
training set’s are used. Note that there is a decrease in
performance when the test set is z-scored by the training
set’s mean and standard deviation.

Table 1: Error rate in “winner takes all”
Training Test Test set Error rate

set set z-scored by (out of 180)
FERET1 FERET2 Test set 3.3% (6)
FERET1 FERET2 Training set 8.3% (15)
FERET2 FERET1 Test set 6.1%(11)
FERET2 FERET1 Training set 11.1%(20)

Thresholding In this experiment, we set a threshold
for “accepting the identity”, if the count of the patches
(from a “known image”) presented (in a novel one) is
above the threshold, then accept the identity of the
known image as the novel image’s identity. In this formu-
lation, none or more than one identity can be accepted
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Figure 8: The new set 6 individual by 6 images from
FERET. Each row is an individual.

for one image. Note the threshold is the number of the
present patches and is different from the threshold for
deciding whether a patch is present or not.

For the training set, the 100 best patches were
again calculated. Then the evaluation matrix of true
positive, false positive etc. is calculated by thresh-
olding the number of presented patches. The F-
measure[Salton and McGill, 1983] can thus be calcu-
lated:

F − measure =
2 ∗ recall ∗ precision

recall + precision
(2)

where

recall =
true positive

true positive + false negative
(3)

precision =
true positive

true positive + false positive
(4)

Figure 9 plots how the F-measure of FERET1 changes
with the threshold. The F-measure is maximized (0.990)
when the threshold is from range [28,30]. We then ap-
plied the threshold of 29 (the midpoint of [28,30]) to the
test set of FERET. Table 2 shows the results. The first
row shows the results when the test set is z-scored with
its own mean and standard deviation and the second row
with the training set’s.

Table 3 shows the results when using FERET2 as
training set and FERET1 as test set. The F-measure

Figure 9: F-measure of FERET1.

Table 2: Threshold = 29, Training set = FERET1, Test
set = FERET2

Test set Miss False alarm
z-scored by (out of 180) (out of 900)

Test set 2.2% (4) 2.2% (20)
Training set 1.1%(2) 49.6% (446)

for the training set is maximized (0.993) when threshold
is in range [34,42]. The results are calculated by using
threshold of 38 (the midpoint of [34,42]) in the test set.

Table 3: Threshold = 38, Training set = FERET2, Test
set = FERET1

Test set Miss False alarm
z-scored by (out of 180) (out of 900)

Test set 11.1% (20) 1.3% (12)
Training set 3.3%(6) 24.2% (218)

The results generally got worse when z-scored with the
training set’s mean and standard deviation. The effect is
larger in the thresholding method than the voting one.
This may because the training set’s mean is off-center
from the test set to some degree. The patches are thus
distorted and more correlated. In the voting method,
the number of the present patches for the correct iden-
tity goes up with the wrong ones so the maxima are
not affected too much(Table 1), while in the threshold
method, misses decreased but many more false alarms
occurred (Table 2,3) because the counts goes up. We
would expect a larger training set should help because
the center (the mean) would be more general.

The results were far from perfect. Yet it was encourag-
ing because in the tests, classification (or identity accep-
tance/rejection) was based on only one image per person,
and generalized to five.

Expression Classification

The results from last section showed that local features
such as eyes and mouth are informative for identity in
the context of large face areas but not by themselves.
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Why are the main features on the face such as the eyes
and the mouth not good enough? Why features need to
include configural information?

Our hypothesis is that local features vary a lot in dif-
ferent images of the same individual due to expression
and other possible factors. This variability could be com-
parable to that across different individuals, which makes
local features bad predictors for identities. For example,
“happy eyes” from different individuals could be more
similar to each other than “sad eyes” and “happy eyes”
from one individual. Thus, depending on the similarities
of local features, a happy face would be more likely to be
matched to another happy face rather than those of the
same identity. Following this reasoning, we would expect
local features to be good predictors of expressions.

To test our hypothesis, we did similar experiments on
36 images from POFA [Ekman and Friesen, 1976] (6 in-
dividual by 6 expressions, Figure 10). Figure 11 shows
the best patch found for each expression. (We do not
show the best ones for identification here for comparison
because the hairlines are always being chosen. This is
due to the fact that hairstyle of each individual dose not
change in POFA, so it is the most reliable identification
feature.)

Figure 10: The 6 individual by 6 expression face images
from POFA. Each row is an individual. Each column is an
expression.

As expected, local features are good predictors for ex-
pressions, which make them unlikely to be good predic-
tors for identities at the same time. To take a closer look,

Figure 11: The best patches for each expression. The num-
bers in the parentheses are the Gabor filter frequencies, 1 the
highest and 5 the lowest. Note that because the frequency
for the sad one is of low frequency, which means the patch
covers more spatial extent than would be suggested by the
patch size.

we examined how smaller patches are doing for identi-
ties. Figure 12 shows mutual information between 3 by
3 grid sized patches and identity of the POFA set. Note
that patches centered on the eyes or mouth are very bad
for classifying identities although they can be good indi-
cator of expressions. Patches around hairlines are better
because the individuals’ hairstyles do not change in this
image set. Figure 13 shows that of the image set from
FERET1. In this image set, the expressions of individu-
als do not change as dramatically as those in the POFA,
so the patches around local features such as mouth and
eyes do not show a drop in mutual information, but they
are not as informative as the large ones we showed earlier
(Figure 7).

Figure 12: The mutual information of all 3*3 grid size
patches for identity with the 36 images from POFA. The
patches centered on the eyes and the nose are bad indica-
tors of identity because the variability within an individual
is largely due to different expressions.

Figure 13: The mutual information of all 3*3 grid size
patches for identity with the 36 images from FERET.

Discussion
We applied Ullman et al.’s technique of finding features
with high mutual information with category labels to the
tasks of face identification and expression classification.
Our results showed that large areas of faces are informa-
tive for the identity, or rather, individual features need
to be processed in context of larger areas of the face to
be informative. On the other hand, local features are in-
formative for expression classification. This result may
suggest why holistic processing of faces has developed -
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simply because it is good or even necessary for identifi-
cation, given individual features are not very useful by
themselves.

Future Work
A virtue of what we have done is its simplicity, but we
also want to explore other issues. First, we do not search
across images for patch matches, i.e. we assume a loca-
tion as well. We would like to further investigate match-
ing patches at multiple locations. Then the training can
possibly be done without aligning the images. Second, in
the current work, mutual information of patches is calcu-
lated separately. We would like to further looking into
what combinations of features are optimal. Third, as
Ullman et al. did, weights can be associated to patches
depending how much information they provide for the
classification task. Last but not least, the generalization
tests we did are limited. We would like to further test
our method and hypothesis with larger and more varied
data sets.
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