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THE OPTIME SYSTEM FOR FITTING THEORETICAI EXPRESSIONS¥

Philippe H. Eberhard and Werner 0. Koellner

“Lawrence Radiation Laboratory
University of California
Berkeley, California 94720

October 1970

* ABSTRACT
This paper describes the OPTIME System, designed to help a user

fit theoretical expressions to statistical distributions of events.

'The_systém_makes available several types of estimators relying orl maxi-

-mization techniques to adjust variable parameters. The maximizing

?rocesses involve special stepping procedures, some of/them using
approximations for the second derivative matrix.

-Thé system also pfovides the possibilities to calculate error
matrices, to perfOrﬁ.iﬁtégrations, and to mak§ histograms. Much
flexibility within the framewofk of.FORTRAN gllows an easy gandling of
all these features. |

The mathematical.expréssions used and some Jjustification for them

are given.
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I. INTRODUCTION

1. Goal of OPTIME

The esﬁimation of parameéers from'étgtiétical data is a common
.problem;, Many techniques are used{l]. When the data are available
as a large number of events, computer programs have been written to
help solve the prdblem[Q}. The usual approachvfelies on the use of a
maximizihg ér minimizing program seeking thé maximum or minimﬁm of
a function giveﬁ'by a subroutine programmed by the user. Parameters
caﬁ be esfimated by programming a likelihood or a )fg function?} .

The OPTIME System has also Eeen designed to estimaté parameters.
'by-méximizing a function w(a); however, it is especially intended to
be used with data given as distribution of events to.be "fitted" by
a mathematical function. .Advantgge is taken of the structure of the
function w(a) to provide efficieﬁt stepping procedures either by
approximating second derivative maﬁrices or'by using the statistical
character of the data.

Moreover, the system pfovides faciiitieé to help solve problems
often associated ﬂith-fi£ting distributions: means for supplying
infégfati@ns?points and handling of integrals, for computing errors,
and for-displaying hisﬁograms with fitted curves superposed to event
distributions. All are available as FORTRAN éubroutines to provide

much flexibility in their use. The method used to designate which
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oafameters-have to be varied in a given fit.while the others are kept
constant was ohosen to allow for successive fits with diffe?ent
variabloAparameters With'little complication in programming. The user
can choose from several functions and stepplng procedures.

Flttlng of statlstlcal dlstrlbutlons is the only use of OPTIME

_descrlbed here, although all or part of OPTIME can help solve different

problems.

‘2. Definition of the Problem

There are Vv experimental events. Each event is given an ordinal

number k(1 § k < v). Its'specification is represented by Ni quantities

(1<i Sfo> that we consider as components of a vector |§|k. For

. instance, if event k is an interaction of particles, the NX components

of |§|k may contain the masses, azimuths, dips, lifetimes, etc.

- of all the particles involved. We supposé that the event k has been

givon-a statisticalvwéight My > introduced toroorrect for eventual
inhOmogeneities>in deteotion efficiencies. Whonever wéighting'is not
necessary, however, all the weights nk'afe assumed to be equal to 1.0
in the'formulae to come.

| If {x| is a particular valﬁe-that any {&| K CaP take, the content

of a hypervolume dx centered around (x| (i.e., the sum of the weights

© of the events whose vector [€l, falls in that hypervolume) is a ran-

dom variable y(|x|, dx). The contents y (|x}, dx) and y({x|”, dx) of
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differenf hypervolumeé are assumed to be independent random variables.
The expectetion vaiue for‘fhe.content y (x|, ax ) is
<y (%], dx) > = Y (1xl) dx. . | | o (1.2.1)
%{(lx\) is the tnue dietribution, fhe one that represents the
average of the distributions of an infinite nnmber of identical ex-
periments and‘is not known. However,‘there isvafknown function
y (|x|), la]) of Ii] and of N; pa;rameters'aj that are eomponents of
a vector Jal, end there are assumed te be Na unknown veluee LQijOf
the ﬁarametere lal Such‘fhat B
YUxh) =y U= LAD, - ae
Where the &ectorlJ{l with'cemponents .}Lj is called the true
value ef the pafemeters lal. The_purnose of the fit ie to find an
estimate Idl‘fori h}lJ; so that v (x|, |di§ approximates the true -
 distribution "g(lxl) of (1.2.2), i.e. | | -
¥ Gl fal) & Y x). - (1.2.3)
Even after the_eétimate has been made, EQP(I.2;3) may not be
_ksatisfied eitherkbecause the fifting rentine has been unable to
determine the set of'paremeters |a| that meke y (x, a)'fit.beet or
beeeuee the model is wrong [i.e.,‘y (|x|,.|al ) can never .equal .
1} (x) for any valuesAef the parameters |a|] .: Regardless of what
is censidefed suspect in tne result of the fit, it is useful_fp check
the result by histogramming the distribution y (1x], lal) and com-

paring it to the distribution of the experimental events.

»
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3. General Deécription of the System

The OPTIME System oonsists.of a set of subroutines that the user
calls from a main program of his own.  With appropriate calls to those

subroutineé, he can fit'fUnctions'y'(|xl, lal) to distributions of

“events, obtain an estlmate of the errors, or perform checks by dis-

v playlng hlstograms of the events along with the fitted curve.

The main subroutlne MAXIME performs the fit of the mathematlcal
dlstrlbutlon v (1xl, |al) to the experlmental data. The functlon
v (1x) ,Ial) is glven to MAXIME by a secondary routine HUME written
by the user.. For a given set of parameters |al and some set of values
of |x|, both given in:the transfer Vector, the secOndaryvroutine'HUME
must return the value of the function y (x|, Jal) thet the user wants
to fif._ MAXIME is caiied fromvthe main program with a transfervvector

filled with some initial values of the parameters Ial'and_it returns

the same.vector filled with values |al corresponding to the fit. The

values Ix| , in a transfer vector during the call to HUME, are the

values |§|k that .represent the kﬁh'experimental event or, eventually,

some integration point lel ‘whenever integrations are necessary for

the fit.
.Actually, the parameters |a} in the trahsfer vector to MAXIME

are contained in a vector |p| longer than laj. In addition to those

. variable farameters_}al to be edjusted, |p| may contain some or all
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the conéﬁants that determine the.fuhction vy (x;a). Another wvector,
ILocl,bis used for indicating to MAXIME the parameters‘to be varied.
The jth-component, (L©C)j, has the location of 2 ih |p|:

Proe), % o (1.3.1)

A tranéfer vector to HUME is also |pl, containihg the variable
parameférs aj'whichzare changed as the fit progreéses, but with all
the 6ther components held constant atvthe valués-they had in the call
to MAXIME, Difféfent sets of components of |p] may be adjusted in
differénf fits with the same HUME routine by just éhanging the vector
|Locl [4]. | |

Prior to the fit, to introduce the experimental data‘into the
system.sb that.théy.can be handled‘by MAXIME and other main subroutines,
vthe roufine‘IMME éan be célled; IMME will write the vectors |g|k in
the proper format for -OPTIME, IMME calls two secondary roﬁtines. One
of theﬁ is GETUMl; which reads the tape, where.the user has his infor-
mation étored, and returns after each event. The other one is DQME,
whichvthe_user has to wrife, so that; for eaéh event k, a transfer
vectbr D is filled with the values ]g|k. Léfér on during the fit that
!glk is a transfer vector in calls to HUME, when y (Ig|k, lal) has
to be returned. DOME must also supply the weight M for the event k
if‘the user wishes it to be different from 1.0, o

For most types of fit, integrations must be performed over the
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spade of |x}. Prior to the fit the routine INTIME will introduce

1ntegrat10n p01nts 1nto the system in the same manner as the routine
IMME does for the experlmental events, A secondary routine, GETUMZ,

Cis éalled‘to genérate'ihtegration points with some preliminary weights

al®) (o).

. From the temporary weights Q, ", the deflnltlve weights of the
integration points ére éomputed accordiqg to thg procedure described
in seétions IIT.2 and ITI.3. The secondary routine DOME is also
called_ahd; for each integ#atioh point, it must £ill a transfer vector
D with-tﬁe guantities |X|é‘that the user wants td_have available‘ih
HUME tb compute y (lez,*lal).v |

A call from the main program to AROME immediately after fhe
gorrespénding call to MAXIME will print an estimate of the errors
corresponding to the fit., This matrix (ERR) is an estimate of the
error matrix and is defined as: | . |

(BRR) & < (Ja - MY (&) s, B  @3.2)
However, (1.3.2) is valid only if (I.2.3) is trﬁe..

‘Calling FAME with the paraméters-lal in the tfansfer vector
foliowéd_by a call to COCHIS will cause histograms to be’plotﬁed of
both the experiméntal pointé.and'fhe curve y (x, a) for the parameters
EY ﬁéed for the call tb FAME. The cheék.of a fit‘requires caliing'
FAME with‘lal (the’values for |a| returned bvaAXIME for that fit) in

the transfer vector, followed by a call to COCHIS.
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The primary subroutine; COCHIS, will disblay’the histqgrams of
the;quaniiuies that the user has decided to plot when he wrobe DOME.
There,‘he.ealls HIST from his subroufine HISTME 'with a histogram
number and the quantity to be nistogrammed in the transfer vector.
The calls to HIST from DOME when itideals with the experimental events
gives the content of the histograms. The calls to.HIST when‘DOME deals
with integfation‘poinfs will be used for-plefting the curve. Inte-
gration points are, therefore, necesseryvfor ﬁhe display of uhe curves.

integrals of the function y (| x{, }a])rfer any value of |a| can
be obtained by calling NORME with.ihe ualues of |a} in a tfansfer
vector.: Of course this’is possible-only.if integration points have
been intfodueed into the system previously. |

4. Documentation on OPTIME

' The mathematics usedlin the-main.reutines are discussed in this
paper asithey apply to thevproblem described above, i.e., the fit of a
random distribution of events.‘ The significance of various eptions
are explaine& whenever fhey affect the mathematical development. . The
object of this papen is to provide a generai understanding of what is
done inside the main subroutines of the system. Part IT deals with
the routine MAXIME and Part III with the other major subroutines. Some
of this Samevinformation ean'alsoibe found elsewhere[5].

Information concerning the programming is given in a separate
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paper[6]: Thaf péper géhtéins élprecise description of how to use 0P-
TIME'and should be céﬁéideféd the user's ménual.‘ It wili also provide
information'ﬁseful;in hunting fbr troubies_geherated by using a com-’
puter. Preliﬁinary writéups‘exiét also for this_éspect éf OPTIME[?].

Addifional facilities-héve been_provided for OPTIME. In particular,
Jerry_Friédmanvhaé Wfitteﬁ a quife efficient routine, SAGE, which gen-
erateé.fake evenﬁézthatlsimulafe'ihtéraction'and production of particles{8}
This facility can be uséd‘tovprovidevintegratioﬁ points for MAXIME and
COCHIS. o | |

Muéh of CbcHIS‘and’aésociated subroutines wagvboxroﬁed from the
KTOWA Sysﬁem, Mbie'inférmation gbout it may be found in Reference[g].
A1l aVéiiable docuﬁentationvméntiéned here applies té the '"official"

version of OPTIME as of November 1970[10].

‘5. Notation
A symbol insertéd.ﬁetween fwo vértiqal bars is a vector. TIts
‘components are'represehtéd by the same symbol affected by én index,
e.g., |x| aﬁd |a] aré.vectgrs, X, and aj are their compongntsﬁ Nx
-is the number of componénts of |x[, Na is the pumbér of components of~
laj. In order to lighten the notation, the two vertical bars may
sométimes be omitted when we think it will nét create confusion. For
.instanée, Yy (‘Xi?jal) may sometimes be written'just.as y (i, é)..
A‘matrik_ﬁill be repfesented by a capital letter, as for instance

E, or by a group of capital letters in parentheses, -as in (ERR). Its
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componénts will be capital letters affected by two indices, as in
Ej,j' or (ERR)j’j,. Avtilde ~ over a matrix Qf a vector represents
the transposed matrix or the transposed vector.

Integrals willsalso be represented by a 6apital letter, as in
Y =¢[§'dx.' Whenever integrations are performed numerically, the

integrals in the formulae'Will often represent a summation over the

.integration points such that

Y =j'y (x) ax =%,y (1x 1) ) (I.5.1)
where Qg stands for the.weight of the Bth ihtegration point and |x|£

for its coordinates. An integral without limits implies that the
iﬁtegral is over all possible'valueé of x| that ‘E'k éan‘take;

As often as possible a randdmyvariable_whose values depend on
the random distribution of the experimental data will be represented
by a Greek symboi, as in nk’|§|k’ gk,i' So does the estimation |a|
of the parameters |A.| , whose value depends on the random distribution
of the experimental events. Thét rule canﬁot be always respected,
howeVef; ' | |

Two pointed brackets < > aiound_a random variable will always
répreseht the expectation value for the random variable inside,
whether it is represented by a Greek letter or not. Thus <y(x), dx)>
‘is the expectation value for y (x, dx) and < w(a) > is the expectation

for the function w(a).

2
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_"Whénever possible we will réfer to a tfue‘buf‘unknowﬁ qﬁanfity by
a script,sympol. For instance"zj(x) ié the true distribution and
IA! are théitrue values of the parameters.
theh, to shprteh the.tefﬁinology, we ﬁse ﬁhe Word transfer
vector ‘td‘ggsignate the vector that is transferred by way of the
‘céliing seqéénce of a.subfoufine.
:_ii; “THE FITTING ROUTINE

. 1. The Function to be Maximiied, w_(a)

The:fiééing rdutihé, MAXIME,.bperates by maximizing a function
w (|a|.)_ of the parameters |av| and of the experir‘né_’ntal data. ‘The
estimate_la[ is the falue of lal.that corresponds to the maximum found
for w (a); : N |
Theré are:differeptytypes'éf fif that thé ﬁser may éelect by
setting 4 flag KTYPE. Those types éorrespohd to different functions
w (a) or to different_stépping précedures.to gef to the meximum.
Seven types have beén programmed éo far; they are types 3, b4, 11, 12,
13, 1k, and 20,

For types 3 and 4, the function w (a) that gets maximized is

wie) =2 molmy(g,a) —Y(), (L)

v (a).f.jry (%, a):dX- | o o .(II-1-2)
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. The estimation of {a| by maximizing w (a) of (II.1.1) can be

Justified by considering fhe expectation value of the function w:

<w(a) >= Jrln.y (%, a) 2} (x) dx — Y (a). o (II.1.3)
Therefore, '
<'w |é; ——w(LQ,) > = | (IT.1.4)

ey - HEgy ] vmare
The funétibn In z - z_+ 1 is negative for all values of z £ 1.
Theréfbre (IT.1.4) is negative for all valﬁes of |al ekcept the ones
| that make y (x, a) =y (x, R) everywhere. If the function w (a)
were equal to its expectation value, its value for |a| ¥1fli'wou1d
be ﬁaﬁimum.‘ | |

For types 11 and 12 the function to be maximized is
n 1ny (6, a). S ' (TI.1.5)

These types should be used-oniy when the integral Y (a) of (II.1.2)
is a éonstant,'independent of |al. Under this_condition the maximum
of w (a) of (II.1.5) oédurs for the same values of |a| as the one of
w (a) of (11.1.1).-_Therefore,'the estimation by.(II.l.S) is valid
also if there are |AU such that (I.2.2) is sabisfied. However, bhe
| valués.of |al that maximize w (a) of (II.1.5) will not be modified if

the function y (x, a) ié'multiplied by a constant,independent of lal.

~
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Therefore, the fit by (iI.l.5) concerns the shape of y (x, a) only,

independent of its normalization. At the fit, one may expect

Ng (Xf'a>,§ gy,ZJ (x), | o (I1.1.6)
where Cy does not depend on {x}|.

For types 13 and 1k4 thé function w is given by

. v . .
W (a) = ?"'nk in y (gk,_a) — th ln Y_(a), : . (II.;.7)

k=1

BV
W, = 2 n,’
t k=1 K

and where Y (a) is again being given by the expression (II.1.2).

(I1.1.8)

Obviously, (II.1.7) is obtained from (IT.1.5), with y (x, a) replaced
by the nérmalizéd function ‘[y (x, a)]/ = v (x, a) / Y (a) so that
the norméiizati@n-condiﬁioh of '[y (x, a)]/ is'automatié. For types
13 -and 14 the conditiph that.the‘integrale éf,y (x, a) be constant
is not néées;ary.- The fit with (II.1.7) will also be a fit of the

shape only, expected to lead to equation (II.1.6) because.(II.l.7)

" does not depend on a change in normalization.

For type 20 the function w (a) is’

W) =2 n v (g8 — ¥, (a), (I.1.9)

where

Y, (a) = jﬁye (x, a) dx..v - S (I1.1.10)

<. L o ZF
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To demonstrate its validity we consider the expectation value of
w (a) of (I1.1.9): _
<w@>=[ [y oY —3 ¥ o)

= %f ‘y (x) ax — —;-f[ y (x) — ¥ (%, a)Jgdx. (I1.1.11)
(IT.1.11) is meximum when y (x, a) = 2{ (x) everywhere. Type 20
is a fit of the whole distribution, including normalization, just like

type 3 or k.

2. Basic Steppiﬁg Procedure -- the E Matrix

Ih MAXIME, the parameteré.are adjusted by successive épproxima—
tions. .At a point defined by some values |a§| Qf the parameters, the
routine computes a better approximation la]. Ifw(a) >w (ao),
the new approximation is considefed to be a good‘stép toward the
maximum and it isvaccepted. The values of‘|a0| are then replaced by
thg vélﬁes storéd in | a| and a new approximation is computed. If
w (a) <w (ao), the attempted step is not accepted and MAXIME computes
& new one according to a given emergency procedure (see Section II.8).

There are different ﬁodés of computation of the step. The basic

mode is Mode 1. The corresponding approximation is given by:

lal = la_l + Ivl, (II.2.1)
. _l . ' . ' o
vl = E™ jul, , (I1.2.2)
vy = %Y (a) at the point la ! S ‘ : (11.2.3)
: a . .

J .

Whereuj is the jth component of the
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vectar |u|, gradient of the function w (a) and E is a positive
definite covariant matrix computed from the gradient |h| of the function

v ¥ in the space of |a|. More precisely, |hl is defined by ‘
“ _ 2y (x,3) - '
| hj (x) e at |a| = ENP | _ (IT.2.4)

and its integral is defined as

H, = QY—(—@- f (x, a) ax. | , (II.2.5)
The precise expressibn of E depends on the type .of fit. Two types

that make uée of the same funétion w (a) in the preceding section

will differ by their expression for E. For types 3 and 11, E is given

by a- summatlon overr the experimental p01nts

V - qk
E=2 ———— |h] (g) It (g, ) ' (11.2.6)
k:l y (gk’ a0>
For type 13,
v il _ ~
B=X —— Inl(g) Inl(r) —
k:l y (§k> aO)
lal (H) + 1HD N1 _ o dmlI¥ (11.2.7)
- t 2, N
Y (ao) Y (ao)

The E matrix of (II.2.6) or of (II.2.7) is positive definite if
all the weights Ty ére positive. It is equal and opposite to the
second derivative matrix (DD) of the corresponding function w (a) for

types 3 and 11 when y is a linear function of the.parameters |aj and,
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for type 13? when y/Y is é linearvfunction of the parameters |al.
Therefore, =-E should be cohsidered as an approximation for the matrix
" (DD) for types 3, ll; and 13. This stepping procedﬁre résembles the
Newton method for sdlviﬁg an équafionﬁtq.

Fér type L4, 12, lh,.and 20, the exéfessioq fof E involves inte-

gration over the space of jxj. For type I,

[ Il (o) inl (x)

E . ax. . A T1.2.8
- y (x5 a)) | ( )
for type 12,
. - ~ . :
W o] (o) Ind (%) ax. (I1.2.9)
S TG) y (6 a) - :
e > %o
For type»lh we define v _ (1T.2.10)
W : ~ W =
% lnl (x) Inl (%) _ t. 1Hl .(a ) 1H] (a_),
By = faoi v (x, ao) X =g Zaoj © -
~ -1,
CE1'= |4 EQ _|H| L : . _ (11.2.11)
} T , | ) S .2.11)
, - ' 1
. 1 Cpp if Cpy <3 . ,
Cy = o s » | (I1.2.12)
1 ) 1 ) '
o,  ‘m >
T VEL :
and finally
E=C, E . | " o (1IT.2.13)

E2 o)
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For type. 20, E is '
E ij]ku (x) Il (x) ax. | | (IT.2.1%)
The E matrices of (I1.2.8), (11.2.9); (II;2.13>, and (IT.2.14)
are positive définite. If integrations are computéd by a numerical
approximation, the results are still positive definite as long as the
weightsof the integratidn points are all positive. For typés 4, 12,
and 20, if y is a linear function of |a|, we have, for |u| and E com-

puted at the point |ao',

<> =8 (IR = la)) + i - (1r.2.15)

Under such . assumptions the step computed by (II.2.2) should then
bring the parameters near the true valueélJll, if Jul is not too

different from < fu|> .

For type 1, (II.2,15) and its consequences are still true as long

as the coefficient C_, < 1/2. The procedure introduced when

El

C 1/2 is a result of considerations about ensuring the positive

£l =
definite property and the continuity of E.

Since, for every type, the matrix E is positive definite, there
are matrices R such that

KER=I. | S | (11.2.16)
MAXIME computes a matrix R that satisfies (11.2.16)’with the addi-

.

tional property that every element R,/ . of R is zero for j/> j. R
3 .

is a "triangular" matrix. The step (II.2.2) can be expressed as
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~ ) . .
Ilvi = RR lu]. _ o (I1.2.17)
The'positive definite property of E ensu:es’that |vl defines a
direction inm which w (a) can be increased.

3. Derivatives

The user may.chooéé not to program all derivatives hj ofby(in the
secondaiy routine HUME. Then; MAXIMEvgives increménts to the parameters
|a0| and calls HUME, The variations of v corresponding to the incre-
ments are linear combinations of the hj's.

Theré are N_ linearly indebendent vectors IDAIj used to compute
derivatives numerically. The jlth component (DA)j,,j 6f the vector
IDA|j is ﬁot zero only if j, £ j. Therefore, the‘matrix_(DA) whose
elgments are DAj/ B is triangular, but not diagonal in general. We

b

define

Inf” = (DA [nj. ' -  ' | (II.3.1)

*
If h 3 is computed numerically, its computation is performed in

general according to the following expression:

h*j (x) = Y‘(x,|ao|+|DA‘j) - (x,|ao|—-|DA!J) . (I1.3.2)
‘ EE

If the user considers that increments in one direction only are
good enough for the computation of someuderivatives; he can give the
corresponding parameters a'j a flag instructing MAXIME to call HUME with

, x _
one sign for the increment only; then h 3 is computed according to
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h*j"(x)-= y (x,|a0|'}'|pA|j ) - y.(x,laol). (II.3.3)
In some caées involving the definifion of an]Pnallowed region for
the fit; the use of one-sided increments may be forced upon MAXIME
(seé Section‘II.9). Then, depending on which sideﬁis forbidden;
(II.3.3) will be used or
h*j =y (x,[a 1) — y (x,[a [— IDA].). . \ (I1.3.4)
The 1ncrements (DA) are computed in the secondary routine DAME
from the matrlx R computed at the prev1ous step and a diagonal matrix
(WGT) constant durlng the fit. The matrix (DA) is the product of the
matrices R éﬁd (WGT): .. _ |
(DA) = R (WGT). R - | (II.3.5)
The diégonél elemenﬁsAQf'(WGT);'called weights for derivative
incremeﬁtsP are given by the user in his call tb MAXIME, in fhe transfer
veCtor [Wwgt] . They may be set all equal to 1.0 in general. This pro-
éedure has been iﬁtroduced to avoid too much correlation effect between

parameters in the numerical computation of the derivatives. If the

.jth derivative, however, is programmed in HUME, the jth'increment IDA[j

has 1.0 for its jth component and O everywhere else. For that
parameter then, h 3 = hj'
Even if the jth derivative is'computed numerically, the increment

|DA] may differ from the expression derived from (II.3.5) by an over-

all factor 1/2, 1/4, or 1/8, in some cases involving the unallowed
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region (as_will be seen in Secfion II.9).

| Atistep O there are ﬁo previéﬁs steps, thefefofe no R is available.
The userbhés to provide‘a‘vector ludal in his call to MAXIME. Then the
- elements of |Udal gb'into a diagonal matrix. (UDA) and the increments.
 for defivative‘computation at step O will be |
| (DA) = (UDA). ' _' S ‘ - (II1.3.6)

‘i, Computations for Mode 1

At a givenliteration"aol, the function w, the vector ]u|%,'and
£he'matrix:E* are computed; where Iul* and E are defined, like |ul]
_and E, by (11.2.3)‘ana (II.2.6) through (I1.2.14) but in the system
_of axes formed bylthe‘vectors lﬁalj{K . »

bal™ = (DAY Jul, . o : (IT.L.1)

g = (k) ® (oA). | o (IT.4.2)

For each experimental point and for each.integration point, the
function‘HUMEzis célled with laolin a tfansfer vector. From the re-
tufned.value & (x,laJ), the factors Wfac, Ufac énd Matfac are computed.
Table T éhoWs their expressions for different types, with an index r
aor i to diffefentiate the éxpression to be used: r when dealing with
the experimental e&enté and.i'for-the intégrati@n points. From those
factors and from the vector lhl*(x), whose computatign isIQesqribed

in the preceding section, MAXTME computes .-
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, v ' , -
W, = ii (Wfac)r , R - | (IT.4.3)
‘wi =Jkafac)i dx , v' ’ (II{u.u)

* v '*
lulr =k§1 (UfaC)r lh (&k), (II.M.S)
jaf, :f(Ufac)i 11" (x) ax. | (T1.4.6)

When one of those summations is not performed because it is not
needed, the corresponding factor is indicated byva dash in Table I.
For types 3, il, and 13, the following additional summation is per-

formed:

, Sy ,
(MAT) = = (Matfac)r in
k=1

*j
I

(&) |ﬁ]*=(gk). (IT.4%.7)

For types 4, 12, 14 and 20, the following integrations are performed

instead: -

v * ~ ¥ : :
(MAT) = J[(Matfac)i Ih| (x) |n| (x) ax. . (IT.4.8)
From the result of these summations, the function w, the vector

. * ' * : : ’
lul , and the matrix E are ccmputed according to their expression

, ‘ o % .
shown in Table I. The triangular matrices R and R, then |vl|**
and |vl|

, are computed:.
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~ X % : S
R ER =1I, . : . e (IT1.4.9)
with -
B 20 for g s
J .3 °r;J >3
R= (DAY R, ' . A (IT.4.10)
lvir*;= R juj , ) : (IT.k.11)
*% ) "
vyl = R byl - _ ‘ , (Ir.u.12)

If Mode 1 is used, then
Ivi = vyl - S (IT.h.13)

5. _Computations for Mode 2 -- State of the Fit

When some or all derivatives are computed numerically, MAXIME may

use the values y (lx|, |a0|-i IDA{j) to compute the function

p. =w (la |+ IDA}.) or wm
WP (lagh+ IDAL) 3=
that make MAXIME perform the computation of ij or wm'j are: _(l) the

=W (lao[e—lDAlj)jor both. The cohditions

jth derivétive is computed numerically, (2) the increment +|DA}j in the
case ofiij and -—IDA[j in the case of wmj is used for that numerical
computation and does not drive the parameters into the unallowed
region.

MAXIME will always remembér the largest value of the function
w found so far. As éoon as new:values of wp, wm; 6rfw are computed,
they'are compared with the old besf value. If one of the néw'valuesvis

found to be larger, that value will replace the old best and the
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parametérs ﬁhat cofrespond to the new best value are stored in a vector
|blcalled best values of the parameters.

Whenever a step |V| turns out to be so émall that
E W < ow () —w () (17.5.1)
MAXIME uses Iﬁl as the new iteration boint instead of Ja | + |v]|.
This mode of stepping is called Mode 2. Tt can be justified by cbh—
sidering thaf fhe expected improvément bf‘w,-when taking step [v ],
is £ 19} |§|. : |

If, at a given'stép, there is a parametef aj for whicﬁ MAXIME has
,computed ij énd wmj and such that | |

W (ao) < %—(ij f wmj), | | (I1.5.2)
the fit is considered to be in State 1. This means that the current
point is so far from the makiﬁum.that.thé second deri#ative'matrix
(DD) is not even negative definite. When the State is 1, it is not
valid‘to approximate w by a quadratic function. It should be remarked
that in State 1, Eq. (II.5.2) for any one of the parameters implies
that‘there is a valﬁe Wp or wm superior'to W (ao);

When ﬁhe condition for State 1l is not fulfilied, put a value of
wp or wm computed. at the current step or at any step befofe is gresater
than the vaiue w (ao) of the current step, the statevis called gtate 2.

State 3 is defined as,the state where w (ao) is the best value

found so far. Then |b| = la l. State =3 is one of the conditions
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that the parameters |aol have to fulfill so that.the fit can stop at
Iao] and be called a good fit. |
Mode 2 can be used only in State 1 or 2.

6. Corrections to the Step -- Modes 3 and 4

To ayoid having the parameters bounCerback and forth when over-
shooting the maximum, the step computed with Mode 1 (I1.%.12) mgy’be
submitted to corrections if theré is a sympton of bvershoofing.- That
correction is actuélly an interpolation of the values determined at
two successive steps.

We refer to the old values of la| as laob]. They.are the vaiues
vdf EY at-tﬁe previous iteration, just before the last accepted step.

" We define

vl = Jal = lao1 5 (IT.6.1)
(v tev_) = 1$;| E v ] | S (11.6.2)
(Ut&é) = Rl o | (11.6.3)
(Uét voj =_1Blo Vol > _ S _ - (1I1.6.%)

wheré_luoi is the gradient of W'ét |aool éﬁd By its gradignt.at

Iaot.‘ If‘(Utvo) is hégafive, there must be a higher value of w (a)

aiong‘the segmentvlaoi'to laool;.this.is'ﬁhe sympton of overshooting.
Mode~3 and Mode U4 correspond to two different estimations of.

where the maximum of w (a) is on the segment Iéol to {aool in case of
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overshooting. We define t such that—laol—— tlvolis the location of
that maximum. Mode 3 is a computation of t, téking into account the
derivatives at both ‘ends of the segment and the difference

W (ao) — w (a and assuming w to be a cubic function of |a|. Mode

00

4 uses the'derivativés at both ends only and assumes w quadratic. We

VY :
define £t , t ; and tm:

, f—(UtVO$ (11.6.5)
1t = R IT.6.5

o —=(Otv ) + (U tv) :

- , IT.6.

to= (ay) — v () — (Utv_) ( i )
13 1 (1 | 142 1 vl BT
o A o BRI A | By

m .

Fdr Mode 3, t:tm;vfor Mode h; t=t"'. However,'in either mode, if
t.turns out to be < 0.1 by these formulae, it will be made 0.1 to pre-
vent its being ridiculously small. Tt is reducéd to 0.9 if it is
larger than 0.9. Once t and v, of (IT.4.12) have been determined, the
step according to Mode 3 or Mode L, is determined as

| —(Utv_)

vl = (l-t)‘|v1| ~ v (1-t) —t | (v | . (I1.6.8)

Using the E matrix és a metric, this step means that the part of
|v,| that is orthogqnal to 1&0‘ is reduced by the factor (1-t) and its

longitudinal part adjusted to be equal to —t |vO|.
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7. Choice of the Mode ~~ Different Cases

At each iteration the routine DECIME decides either to stop
fitting or go'bn stepping.  In the latter case, DECIME decides which
mode to uée. ‘

**
l

Once the vector | of (II.4.11) is computed, the first test

A6
is for adjusted parameters. There is a constant (Chilim), which
presently is set arbitrarily to 10-2, Parameter aj is called adjusted
if

*%, D
)i

(v < (Chilim). - o _ (IT.7.1)

1
“If w is a quadratic functibn, with -E its second derivative matrix,

: *¥
and if R and {v

ll ‘are as defined above, then the difference between

the value of w (ao) and the maximum value attainable when varying only

the j first parameters is

)

(w) = 5 2 (v A ' (I1.7.2)

j= 0
The jth.parameter is-therefofe called adjusted if, when you vary it to-
gether with fhe»jel.precéding parameters or when you vary only the j-1
preceding parameters, it is not estimated to make a difference in the

| value of the function w greater than O.S b d 10—2.

If all parametefs are adjusted and the Stéte is 3, ii;e., w (ao)

larger than any other known value of-w] ; the flag KEND is set equal

to 1, meaning that the fit is good enough at ]aol. An extra step is
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goiﬁg to_fe computed, however, to bé added to laol for the parameters
in the transfer vector to MAXIME‘when it returné. But the stepping .
procesé Stops.here; and a neﬁ value of w (a) for the last step is not
even calculated. o

Whether éll parameters - are adjustedkor nof, the next proposed
step depends on different circumstances. Case 1 exists if no stép has
bgen accepted yet, or if the prévious step or the present step'is‘state
1, or if the mode used at the preﬁious iteration was Mode 2,‘d£ if the
new E matrix is so small tﬁatv(VOtevO) of (I1.6.2) turns outvto‘be
smaller than the constant (Chilim). This means.ﬂhat the function w
is still too wild to permit a meaningfﬁl interpolation like Mode 3 or
k. In Case 1, Mode 1 is used, unless the State is 1 or 2 and (II.5.1)
is satisfied, then Mode 2 is used instead. Cése 2 .is defined by none
of the éonditions that satiSfy Case 1 and by

(ﬁtvo) > - {(Chilim) ,(Votevo) } 2 . . (11.7.3)

It means that the function has a good behavior énd that there has
.beeﬁ no overshooting._ Either the derivative of w is negative in the
direction or small enough that it cannot be increased by more than
1/2 of (Chilim) in that direction. Case 2 is treated like Case 1,
i.e., Mode 1 is ﬁsed unlesév(iI.B.l) is true and forces Mode 2 to be
used instead. |

Cases 3 and 4 are the cases of overshooting defined by none of the

conditions that satisfy Case 1 and by (II.7.3) not being satisfied. Then
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+’/ and t/{ are éomputed according to (II.6.5) and (II.6.6). Case 3 is
the case where 7> t’, then t is computed accordihg to Mode 3. If
t//< t’ we have Case I and t is computed according to Mode 4. A sub-
sequen£ test |

' -—~(Utvo) .

t < W ' E o (IT.7.4)
has to be satisfied so that Mode 3 in Case 3 and Mode 4 in Case b can
be used. If (II.7.4) is not satisfiéd, Mode 1 is preferred. In any
case, if the step |vi satisfies (IT.5.%), Mode é.is used instead.

There is a Case 5 defined, regardless Qf‘any other circumstances,
by all parameters being adjusted, i.e., satisfying (II.7.1), but with
the state not equal to 3. That case also triggers the use of Mode 1
unless (II.S.l)bisrsatisfied, forcing use of Mode 2 instead.

8. Emergencies ~-- Modes 5 and 6

theﬂ a step vl has.beeﬁ computed according to Modes 1, 3, or U4
and when | |
wlla ) + D) <w (12, 1) L (T1.8.1)
théré is a case of emergency. The secondary routine'bRiME adjusts

the size of the step by using Mode 5. Computation of t is such that

b - 3 15l vl .
: -w(aoj — w(ao +v) — (¥ vl

(11.8.2)

When t is given by (II.8.2), Iao[+ t {v| is the location of the

maximum of w along the segment lv| if w is quadratic; t is set to 0.1

[es
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if (I1.8.2) gives it a value less than.O.l to prevent its béing
ridiculousiy smgll., In any case Mode 5 consisté of replacing |vl by
t |v| as the new step to be attempfed;

of course the new.steb computed by Mode 5 may also satisfy
(IT.8.1). If it does and if it satisfies (TL.5.1), Mode 2 is used |
then. Ifbﬁot, CRIME‘tests for the condition

RIS T | (11.8.3)

where _

i =V(DA)-1 IQI- | (T1.8.4)

If (II.8.3) istsatiéfied and soﬁe»derivatives are_coﬂputed
numerically, CRIME considers fhat the step |v] is émaller than the
increments to computé the derivétives. The numericai estimate of the
derivatiﬁe is considered suspectvahd fhe_étep is then completely re-
calculated with~all the increments IDAIj cut by one-half.  This is
called Mode 6.

If (I1.8.3) is not satisfied, Mode 5 is used again to cut the step
some more. Mode > and Mode 6 can be usedbseveral times in the same
iteraﬁion‘iﬁ some pathological cases.

Earlier in thé step calculatién; anothef kind of emergency may
occur. The solﬁtion R of (II.h.9)“does not ‘exist if E has zero

eigenvalues. This fact is recognized by the secondary routine DIAME

which uses a Gram-Schmidt orthonormalization method.@2} to compute
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* . »
the triangular matrix R that satisfies (IT.4.9). If a diagonal
' t ¥ . : -200 A
element E-j j s zero or near zero ( <10 %) the parameter j is
b X -

\

called insensitive, because that element corresponds to a sum of
squares of a derivative element and it is zero only if the function is
not sensifive to the parameter in each of the terms of the sum. If

% _
E . 18 not zero or near zero, but if the singularity appears when

Jsd
the jth'parameter is added to the.j-l previous parameters, the jth
parameter is cailedvcorrelated.

Whéther.the‘jth parameter ié insensitive or correlated, DIAME
makes Rj/,j =0 for'j,¥j and Rjj =1, If all.parameters are.insensi—
tive, MAXIME exits with an emergency comment and the flag KEND is set
to 8. :

Tﬁeré are other_cases of emergencies that may iﬁterrupt the fit.

A comment_gets printed to indicate the cause of the emergency.

9. The Unallowed Region -- Derivative Indices

When the user wants to restrict the possible values of the
parameters to a domain inside of some boundaries, he should express

each’ of his conditions by a relation of the typé
¢ .
g, (a) > 0. . o | _ (I1.9.1)
Then, g, (a) < O when the mC? conditién is not satisfied. The

user should write a routine ATARME that returns the values lg] (a)

in a transfer vector when it is called with the values |a| in another
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transfer vector,,and he should indicate the nﬁmber Ng of ‘conditiocns

in ﬁhe calling sequence of MAXiME. Then MAXIME will refréin from
Stepping into the unallowed region.

In the unallowed regioh there might be values of ja| for which

thé analytic ekpréssion of y (i, a) pfdgfammed in HUME would be
mathematical nbnsense (sQuare root of a‘negative number, poles, etc.).
For suéh values of Jlal, ALARME should return the flag Talarme = true

in addition to some negatiVé.houndary functidns. A value of lal cor-
responding to Talarme = frue;will not be used for the numerical compu-
tation of the.derivatives, while.it is ﬁsed if Talarme is false re-
gardless of the sigﬁ of the boundary function. The secondary routine
DAME tests if the incfeméﬁtlDAlj computed according to (II.3.5) would
generate valués of* laj in the region where Talarme is tfueo If an
inerement lDAlj does it, DAME will cut it by 1/2 and test again. After
three unsuccessful cutbacks by a factor 1/2 eéch time, DAME tries a one-
sided increment only, by setting the flag poj‘or Tdmj false if increment .
.+|DA|j or -IDAIj is the cause of the trouble. Then those flags will be
recognized when-h*j has to be computed. In such a case (II.3.3) or
(I1.3.4) will be used instead of (TT.3.2).

If both increments'ilDA!j still make Talarﬁé = true, poj and

Tdmj are both set false and the‘jth derivati&e won't be compuﬁed at
thaf_step° Then h*j will be equal to 0, thereforé aj will be con-

sidered as insensitive. However, at the following step, DAME will try
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to give it some incremenﬁs’again sO a derivative can be compﬁted.
fdpj'and de_nj are false also if Wgtj = 0; that is, if hj is pro-
grammed in HUME. If none of the Na derivatives can be computed
numerically and none are programmed, MAXIME. quits with an error
comment. |
When an inqreﬁent_+lDA|j or ——lDAlj is accépted for numerical
computation of the derivative, the flag Tij or Twmj is set true 1if
that incremenf leads to values of Ial sﬁch that the routine ALARME
returns with all tﬁe boundary functions |g| ppsitive. If not, the
corresponding flag Tij or Twmj is seﬁﬂfalse and the function ij or
wm, will not be computed. That procedure prevents Mode 2. from ever |
steppiﬂg into the ﬁnalloWed region. |

10. Fits Against Boundary -- Modes 7, 8, and 9

CQRME is the routine in charge of correcting steps into the
unallowed region. It first tries_to’cut thevstep so that it fits
inside the allowed region, bﬁt if the parameters are already at the
limit it tries to maximize w (a) while staying against the boundary.

CORME makes -use of.a subroutine LIME sevegal times. Given two
vectors |a|/ and |%a| such that the point_laf/ is inside the boundaries
but Ia]/ + |dal is outside of them, LIME fiﬁds a point [a1/ + t116a|
on the segment |%a| just at the boundary. Actually, LIME finds. two

p
coefficients tl and t,. such that Ja| 4--tl |5al is inside the boundary,

2
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/ . '
lal -+ t, |8al is outside of it, and such that t, - t, is very small:

Chilim

R o] (11.10.1)

t, - ) <
Tf LIME is used MAXTME will consider the next approximation
ial = Ia|/ + oy Iﬁa]. , | | | | (IT.10.2)
’Whatevér‘mode has been gsed to.compute a étep v} according fo thé
prescriﬁtion of Sections (II.?) or (II.8), a check is made to see if
laol + |v| is in the unallowed fegion. If‘it is,.CORME will first use
the routine LIME to cut it so that the next approximation |aO|+-tl|v|
is just inside the boundary. That stepping procedure is called Mode T;
it is illustrated in Figure 1.

. If Mode 7 doés not resuit in a sﬁep of appreciable size (i.e., if

LIME finds a solution of (II.lO.l) with t, = O, then CORME willl try a

1

step |vl| according Mode 1 unless'such'a‘step has already.been tried
before from the same iteration point. If Mode 1 has been tried already

or if }vll still leads into the unallowed region, CORME then embarks
upon a search for the largest value of w (a) against the boundary.'
(Modes 8 and 9).

A.list is made of the relevant boundary functions gm(a) that are

notvsatisfied at the point |ao|+1vlf. Those functions are placed in

the vector |jgrel| of length N}e .. The derivatives of jgrel| with

1

respect to Ja| form a matrix S with Nre x'Na elements:

1
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g(grel)n :
Sa5 = B - | | o  (11.10.3)

Additionally, at the point |ao|, CORME computes |gfell(éo) and the

N, XN matrix,:
s = sR, - o (17.10.4)
where R is defined by (IT.4.10),
The derivatives S** are always»computéd numerically. The increment-
IRIj used to compute S*%n;j is the vector that forms the jth column of

the triangular matrix R. This increment is always used in both

' *¥
directions, and S . i1s defined as:

>

S** = 1 lgrél (ja | +IR},) — grel (la_ | —IR| )] (11 lé 5)

n,j = 2 (87 BT R 8¢ 1% i’l- B

Then CORME computes “ '
' *% Vxx ' ' .
Q=858 8 -, - (11.10.6)
- *% ' ' A
{Lambdal = -— Q 1 (s R llvl|+|grel|), _ (I1.10.7)
: Ny x . : v

‘ V2 =R S | Lambda|. _ " (I1.10.8)

If: |grel| were composed of linear functions of |al, if w(a)were a
quadratic function of jal, and if E were its second derivative matrix,
the point

|ac| = Jagl *+ vyl + Iv,| _ - (II.lOf9)
would be the location of the maximum of w (&) with the constraints

lerel] = O. o © (II1.10.10)
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‘|Lambda] for negative components. If (Lambda) is negative, the n
o n

defines a direction of improvement for w(a). It is near 1.0, so |v
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However, our constraints are expressed by an inequality of the

type (I1.10.1) not by an equality of type ‘II.10.10). Among the

‘relevant inequalities |grel] violated at |a0|+|vl| there might be

some that would become satisfied as soon as the others are satisfied.

To.take that phenomenon into éccount, CORME inspects the vector
th

boundary condition is dropped from the list of relevant conditions.

Then (II.10.6) and (II.10.7) are recomputed and jLambda| reinspected

til1l all the components of |Lembdal are positive. Only then (II.10.8)
is calculated.

A trial step is made, equal to

B AL B C) NP L Y B | - . (II.10.11)
where
A, v
P =] 171 |
C..=0.9 — 0,1 =rg—t, - (IT.10.12)
ve fay jvsi : _
C,p from (I1.10.12) is such that lﬁl|v3l is positive and therefore

3!
takes the parametersAclose to the point']aél of‘(II.lO.9). See Figure 2.
It is gfeater than 1.0 in order to be on ‘the safe side of the inequality
if fhéré are small non linearitieé,in the constraints.

If the point |aO|+|v3[ is still in the allowed region,lthe bouﬁdary

is approached again on the segmenf 'ao‘+|v to |a0|+|vl|, using LIME.

5l
The resulting point is the point proposed for fhe next iteration.
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This mode of computing.a.step is called Mode 8.

If ﬁhe'point ]ao|f|v3| is s?ill in the unaliowed region, it means
that either jgrel| is not linear enough or that a.new bouﬁdary function
not in the list of relevant boundary functions has become relevant now,
In such a case, LIME is used to cutrthe step so that lao|+ tl'v3] falls
inside.the:gllbwed region, This mode of étep computation‘is called
Mode 9.

If Mode 8 produces such a small step that [E1ivl< chilim, the-
routine:MAXIME declares Iaol a good fit against the boundary. If Mgde
9 pfoduces‘too small a step, the case is too complicated for MAXIME to
handle énd the iteration process is stopped. The comment.FIT MAY BE
GOOD is printed. It is necessary for thé user to understand the
mathematical complexity of the situation to appreciate the value of
his fit.

ITIT. OTHER ROUTINES

1. The Error Routine AROME
AROME computes an estimation of (ERR), the error matrix of (I.3.2),
for the parameters fitted iﬁ the previous call to MAXIME. AROME uses
some quantities computed by MAXIME in its last step.. It uses the
matrices R, R of (II.4.10) and (IT.4.9), and sometimes the vector
]uil* of (Ii.h.6) ana w; of (IT.4.4). Therefore AROME.should be

called just after MAXIME, at least before those quantities get over-
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written in'the computer,

Fof AROME, the values |a | are those for which Iuil*, R, and R
have beénbcomputed, the ones for which all parameters have been de~-
clared adjusted before the last domputed stepvlvl is added. MAXIME
returns |a6|+|v| as the fitted parameters, but AROME uses ]aol for
its own computation unless, of course, special intervention of the
user occurred between his call to MAXIME and his call to AROME.

For all types, AROME pefforms swnrnatioris over the _experimental
)*

events, For types 3, 4, 11, and 12, the matrix (U2) is defined as

2 .

: v n ) ~
(2)" = % =2 () Inl’(e,), (ITI.1.1)

o3
k”‘l y (gk: ao)'
.X. ‘ . . ; .
where |h| (gk) is the gradient of y(gk,a) in the space of |a} at |aol,
as in (II.3.1).

For ﬁypes 13 and 1k,

v N 2 : . A
' * Kk * ~o¥
(v2) = = — In} (e )inl (g,) —
k=1 y= (¢, »a_) 8 8
k’%o
) * V'\z v ~ ¥ ,
il 17eeirrree] ) W2 | ¢~ -
Wi + ;\]——2_ |uii |ui| (I1I.1.2)

i .

‘where _ é
. v 1 :
k * - -

Vec| = Z h ITT.1.
| Vec| 0 ml l (§k) , ‘ ( 3)
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and where

(Wtg) = Z : . (ITT.1.4) .

ly| and w; of (IT.h.6) end (TI.L.L) still represent the integral |H|

* : o
ofinl (x) and Y(ao) of y(x,ao).
For type 20,

- v : >y : .
)" = = g2l (g) T (g). - (1ID..5)

Then, for all types, the error matrix (ERR) of (I.3.i),is given by
(ERR) = R R % w) R R. | | (111.1.6)
These formulae cén be jusﬁified if.thevvalues ja| bf [é[ that

maximize w(a) énd.thé true vélués JA| are not too far apart. Then,

|a|ucould be réached'in oné'step in the maximizatlon process, using

Mode.i, if one_wOuid happen to stéft the iterations in [A|. .From

(I1.2.2) br (IT.4.13), using |ﬁ|* computed in IRI , we have the relation
vl = ja| —bAl= 8 = R RS )t (T1.1.7)

vFOr lul* computed in JA|, <'|u|* > = 0 but the random Qaiiables)
lu|*_are not zero.in general. There is a correlation matrix (UZ)*:
w2)" = < 180> | | (TII.1.8)
va (U2)* is an estimation for <|u|*|u|* > then (III.1.7) justifies

(ITI.1.6), but we still have to justify (III.1.1), (III.1.2), and

(TITT.1.5).
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TO'justify'(III.l.l) fof types 3, L4, 11, 'and 12, it should be noticed
’ ¥ * o x
~that the random part of jul  is \url of (II.M.5);_(ur|‘ is a summation
over the contents y(x, dx) of different hypervolumes dx (see Section
T.2): . )
' * 1. ¥ '
0" = [y @0 gyl IRC: RS
The different hypervolumes have uncorrelated contents; therefore, the

o *
correlation matrix for |ur|< Is the sum of the contribution of each

hypervolume.
UEI)* ' * o K ¥ ~ ¥ ( 0)
( = <fu, | fu | > — <Ju | ’> <lw, | > IIr.1.1
2 o 2 1 o * et
- [l Poan > ~ <t gt " ) " .
: . ' y (Xainﬂ‘) .

However < y(x, dx) 52 =3{2(x) dxg-—ao,‘as (dx)2 when ax 0. Therefore
R . . e e
(ve) =f< Py ax) > —=— jul* () 1Y ()
S C .S R
-%[72 (%, ax) ——— 121" () 1B (x)
y (Xa o
n § '
. 'S * ¥
=5 ————— |h} (&) 1B} (&). (ITT.1.11)
K y° (g, 5 ) . . | |

'.(III.l‘l) is an approximation for (III.1.11), where the values of
% v S
v (%, a) and {h| are taken for la} = Jo} instead of jaj 1Al

The justification of (III.l.Z) for'types 13 and 14 is straight-
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forward once (ITI.1.1) is justified for.types'll and 12, and once
oy (ic, a) and [l/y(x, _a)] i hl*(xl) are replaced by.p. _ 7 _
| y.‘/(x-; a) = %:'aﬂd '—;—l—'— /1 %) = ﬁ%;&)‘ |h|*(x)*ﬂlo75-lHl*-
vy (x, @)

(ITI.1.5) for type 20 can be justifiéd just as (IIT.1.1) can be
.for types 3kand 4 by replacing the factor [l/y(i,a)} bybl.O in (III.1.9)
and déveioping thé same arguments as above.

Waihing! If integrals are performed numeriéally, the errors
printéd by AROME aﬁd déscribed here do not inclﬁde the uncertainties
associéted with thg evaiuétioﬁ of integrals.

2. Integrations in OPTIME -- NORME

‘Fits with type 11 do_not-require any integration. Fér the other
types, hOwever, the fitsvin MAXTME involve expreséions with iﬁtégrals
over the space of |x|.- The structure of the'pr§gram is such that each
integral of the type _v v

F=_[% (x) ax ! . .: (ITI.2.1)
is acbually computed as a summation over Niht integration points. Let
Qz be the weight and.|x12 the EOordinates_of the ﬂth integration point.

For F of (IIT.2.1), the program uses the quantity & instead:

:¢ = i o, f (xﬂ). o ‘ (IIT.2.2)

'For_types 3 and 13, exact expressions can be used for integrals.

The user has to make Nint = 1, give the single integration point the
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weight Q =’l.O, and , when HUME is called with that integration point,

)/
return féy y (xz,‘a) the value of the integral Y(a). If sbme défivatives
hj(x) are not cdmputed numefically bﬁt are programmed-in HUME, the user
should also‘return'for.hj(xz),‘the value of the inteéral Hj’ Then all
integralé are exact in MAXIME becapée, for typés 3 and 13, the only
integrals'used are thé intégrals of y and Ihl*. Of.course, this
technique ofvusing é single.point of integration may'also be useful with
ﬁype 3 or 13 if'integrals_cannot be programmed exactly for y (x, a)
but only approximated with sufficient accuracy.

For types 4, 12, and 1l, the matrix B also is determined‘by
using integrations, but its expression (II.h.S and Table I) is unlikely
to be a iinear combinaﬁion of simple"referencé functions''because
v (x,aj appears ih'a dencminator. Therefore,lthere is néed Tor many
integration points to get a reasonable estimate of E*. However,

E* is used only to compute the step. For typé 12 fhe locatioﬁ of the
maximum of w (a) does not depend on any integrated_value. For types
% and 14 that location depends on the integrated value of y and |hl
only. If y and |h]| are_alwﬁys linear combinations of some functions
v(fr)n (x) whose integrals (Fr)n‘are known, the integrals Y and |H]|

will be computed exactly if the (ff)n(x) are used as reference functions

in INTIME (sée‘Secfioh IIT.3). The use of referencevanctions can also

reduce the error on all integrals anyway.
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For type 20, if y2, % ihly and |hi | are always the linear com-
bination of the functions (fr)n(x) used as reference functions in
INTIME, all integrals performed in MAXIME will be exact. If not,
errors: on integrations are just reduced by the'u5e of reference
functions,

To obtain the'intégral'Y(a) of the function y(x,a), the routine
NORME can be called with the parameters in a transfer vector. NORME
will perform summations of the type given by (III;2.2). The result
- will be ekact for all linear combinations of ‘the reference functions,
l.e., .

r Nint
Y(a) = § y(x,a) &x = Z @,y (x, ,a) (ITI.2.3)
&= = y;
J =1
if |a| happens to be such that for all |x|'s

Y(xa) =2 e (fr) (x). | (1TL.2.8)
o n : '

If (ITI.2.4) is not saﬁisfied? the output of NORME by (ITI.2.3)
is still an estimation for the integral Y.

Tt should be noticed that NORME, just like MAXIME,'uses the
vectér 1P| of (I.3.1) containing variable and constant parameters and
not {al.: Thefefore, to get integrals of y’wheﬁ the constant parameters
are changed, oné just chénges the éoﬁstant parameter in |p| before
calling NORME. |

Sometimes not only the integral Y(a) is wanted but also its
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derivatives H(a) with fespect’to |a|; as défined by (II.2.5). For this
purposé, the routine ENORME may be éalled, which also performs sum-
mations of thevtype‘(III.2.2) by using for.f(xﬂ) the_values_y(xﬂ,a)
and thekvalues'h*ﬁ(xz) as defihed in Section (iI.3).‘ The éummation
with y(x,a)‘gives Y(a) and the summation ovér h*j<xg> gives

= (Oh) fuy. 3 (1TT.2.5)
After the summation is fihiéhed,vthe routine pérforms'the division of
fui” by fhe matrix 5K‘and returns

o= (o) pul”, | (T1T.2.6)

3. Generétion of Integration.Points by INTIME

The coordinatesvof e&ery iﬁtegration point: are generated by thé
secondéry-routine GETUM2, .Versions of GETUMZ2 exiét that generate
point§ representing interécting partiéles by using a Monte Carlo
technidﬁé. Other versions 6f GETUMZ2 can be préérammed for‘cher appli-
cations or to replace the Monté Carlo technique. We describe here the
action‘bf INTIME only when supplied with a GETUMZ2 using Monte Carlo
technique. |

In addition to the coordinéteé, GETUMZ2 provides a temporary weight
Qﬂ(o> that.is invefsely proportional to the local‘density of points.
DOME is fhen called. There, the user can reject the point to restrict
the domain of integration, If DOME keepsvtherpoint, it must also return

the vector |x|£_in a convenient format for future use in HUME to com-
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pute y (xﬂba).
If no special secondary routine FLAME is programmed,‘all INTIME
does is to store the vector lk’ﬂ and give the event a definitive

weight ©  equal to

2
 ——— (
Qz Tt s (ITT.3.1)
. s g (O>.
=1 F

where Nint is the number of points retained in DOME. The normalizétion
of thevweights expressed by (III.3,1) will maké the functions w inde-
pendent of the number éf fake events produced, except for the fluctua-
tions in the Monte_Carlo generation.-

If reference functions are to be used, however, a routine FLAME
has to be written that returns the valueAbf the N p functions (fr)n(kg)
for each point |x'£. After the generation is over, FLAME must return

the Nr values of their integral Frh. Using vectorial notation,

=

ef
[Fr| _=j|fr| (x) dx. | : (I1I.3.2)
INTTME performs the following computation:
.. » Nint i (O) . ,
lor| = = q,\77 Ifrl (x,), - (II1.3.3)
£ £ _ .
£ =1
Nint’ (0.2 A o ' '
D= X (a,"77)" Ifr| (x,) Ifr| (x,), | - (III.3.%)
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e o7 o
Fry D IFr v
Cow = TAT—T R _ . (I7T.3.5)
l@r’ D |Fr| :
-1 v -1 . ‘ v :
la] = »D S AFr] — Cpon D or]|. _ (111.3.6)

Then INTIME goes over the integration points again and corrects
their weights, giving the Eth point a new weight Qz that will be used

in the future integrations:

T C O (Qﬂ(o)_)'2 |E| Jerf (x,). | (11T.3.7)

£ “fr V2
If a function f(x) is a linear combination of the functions (fr)n(x),

~ L ‘
f(x) = Ifrl(x) le}, - (117.3.8)
where the,cn's are,coefficients independent of x, the result of the

summation (iII.2.2) is the exact integral F of f:

Nint
. (©) . & ‘
¢ = X 9, " cp. 17T (X£> fe| +
2=1 :
o MINE Ly o W Y
Hal 2 (9, )7 Ier) (%) Ier | (x)) fef=Irr) Jof = F (TTIT.3.9)
2=1 '

If f£(x) is not a linear combination of the‘(fr)n's, the result of
(III;2.2) depends on the randomness of the Monte Carlo generation.
However, there is an expectation value <¢ﬁ> for.the gquantity @ and
it is the same whether Qﬂ'is compuﬁed with (III.3,7)‘or with (ITI.3.1)

"because
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<or> = |Fr|. I  (III.3.10)

h. Histograms -- FAME and COCHIS

Histograms involve different categbries of events. Amoﬁg the ex-

‘perimental events, there are the:events of cgtégory 1 whose specifica-
tions fall into the domain_qf the it and there are the events of
category é which fall outside but.thaf the user wants to include in
some histogréms though not in the fit. Those histograms can be éb-
tained by calling COCHIS if prbper preparation has 3een providéd during
the call o IMME [6]

if displayed curves are wahted dﬁ the histograms, the same Monte

’Carlo generation that.provides integration points can bevused to con-
struct fgke events. Actually,wthe Nint integration points are used as
fake events for the histograms.. They are the events of category 3, all
falling inside the doméin accepted for the fit. If the user wants more
fake events for the histogréms then hé has integration points, he can
triggervthé generation‘of events of Category 4:  fake events falling.
in fhe domain of.the fit but not aécepted as integration points.

There is a fifth category of e&ents, the fake events that fall
‘outside the domain of the fit. The events of category 5 are the fake
events that correspond to‘thé experimehtal events §f cétegory 2.

We define Np to_be the number of events éf categofies 3 and 4 only.

They will be used with their preliminary weight Qv<o> and not their

y/
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corrected weight 0, (see Section ITI.3). For types 3, 4, and 20, the

normglization faétor Cp is computed from a summation over the Nint

events of categoryi3 and another summation over the Np events of

categories 3 and L.

Nint
z
Q= e : ‘ o o (IIT.k.1)
p Np (o) - . :
Z Qg
£=1
‘To get the fitted curve displayed on the histpgrams, FAME must
be called with the parameters |a| in the transfer vector. Then, FAME

will.give each event of categories 3, 4, and 5 a new weight
o = q (o) y (lx] jal) ¢ o - (ITT.k.2)
where the value for y (lez,lal) will be obtained by calling HUME with

|x{, and |a| in the transfer vector. If COCHIS is called next, it will

£

/
histogram the points 'X'E with the weights @ , to represent the fitted

£
curve alohg with the experimental events.

For types 11, 12, 13, and 1k, v (Ix1,la]) represents only the
shape of the distribution and was fitted independently of the normali-

zation. Therefore, the factor_Cp used by FAME in (ITI.4.2) is not

(ITI.4.1) but, instead,
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- Nint
2 .
o= ﬁzﬂ;__f15__' o o (III.L.3)
o W, T | -
, ¥ Q . .
£=1 £

.ﬁhereth is the Sﬁm éf the weights of the experimental events as in
(II.i;8) and Y(a) is the integral of y (x,a). For types 12, 13, and
1k, ﬁi at the 1ast‘s£¢p'of the fif is Y(a). FAME will use the value
W stored thefelr For typé 11 thé value of LA must be filled by the
user with the pfope; value of Y. .If the ﬁser does not knéw it he can
call NORME to find out.

‘The.user may want to disblay histograms with curves corresponding
to parémeters lai different from the wvalue la[.of the last fit. Then
.he caﬁ call FAME with those parameters |a| in the transfer vector. If

only the shape of Y(i,a), not its normalizatioh,vis meaningful, he
should set the tyﬁe to 11, 12, 13, or 1k and set w, to the value that
will give him the prépér normalization. However, if the normalization
of vy is meaningful, hevshould set the type to 3, 4, or 20. The co-
efficient then is going to be computed according to (IIL.k.1), and W,
willbﬁe irrelevant.
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Table I. Coefficlents Computed in MAXIME
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LEGAL NOTICE

This. report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission: ‘ v

A. Makes any warranty or representation, expressed or implied, with

respect to the accuracy, completeness, or usefulness of the informa-

tion coritained in this report, or that the use of any information,

apparatus, method, or process disclosed in this report may not in-
~ fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages

resulting from the use of any information, apparatus, method, or
process disclosed in this report. '

As used in the above, 'person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the

- Commission, or employee of such contractor prepares, disseminates, or pro-

vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.




oy o

TECHNICAL INFORMATION DIVISION ™
LAWRENCE RADIATION LABORATORY
UNIVERSITY COF CALIFORNIA
BERKELEY, CALIFORNIA 94720





