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THE OPTIME SYSTEM FOR FITTING THEORETICAL EXPRESSIONS* 

Philippe H. Eberhard and Werner O. Koellner 

Lawrence Radiation Laboratory 
University of California 

Berkeley, CaHfornia 94720 

October 1970 

ABSTRACT 

This paper describes the OPTIME System, designed to help a user 

fit theoretical~xpressions to statistical distributions of events. 

The system makes available several types of estimators relying on maxi-

mization techniques to adjust variable parameters. The maximizing 

processes involve special stepping procedures, some of them usi.ng 

approximations for the second derivative matrix. 

The system also provides the possibilities ,to calculate error 

matrices, to perform integrations, and to makfi histograms. Much 
~! 

flexibility within the framework of FORTRAN allows an easy handling of 
I 

all these features. 

The mathematical expressions used and some justification for them 

are given. 
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I. INTRODUCTION 

1. Goal of OPrIME 

The estimation of parameters from statistical data is a common 

problem. Many techniques are used[l] • When the data are available 

as a large number of events, computer programs have been written to 

help solve the problem[2]. The usual approach relies on the use of a 

maximizing or minimizing program seeking the maximum or minimum of 

a function given by a subroutine programmed by the user. Parameters 

can be estimated by programming a likelihood or a X 2 function [ 3]. ' 
The OPTIME System has also been designed to estimate parameters 

by maximizing a function w(a), however, it is especially intended to 

be used with data given as distribution of events to be "fitted" by 

a mathematical function. Advantage is taken of the structure of the 

functionw(a) to provide efficient stepping procedures either by 

approximating second derivative matrices or by using the statistical 

character of the data. 

Moreover, the system provides facilities to help solve problems 

often associated with fitting distributions: means for supplying 

integrations points and handling of integrals, for computing errors, 

and for displaying histograms with fitted curves superposed to event 

distributions. All are available as FORTRAN subroutines to provide 

much flexibility in their use. The method used to designate which 

• 

• 

~, 
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parameters have to be varied in a given fit while the others are kept 

constant was chosen to allow for successive fits with different 

variable parameters with little complication in programming. The user 

can choose from several functions and stepping procedures. 

Fitting of statistical distributions is the only use of OPTIME 

described here, although all or part of OPTIME can help solve different 

problems. 

2. Definition of the Problem 

There are v experimental events. Each event is given an ordinal 

number k(l < k < v). Its specification is represented by Nx quantities 

~k,i(l ~ i ~Nx) that we consider as components of a vector 1~lk. For 

instance, if event k is an interaction of particles, the N components 
x 

of I~'k may contain the masses, azimuths, dips, lifetimes, etc. 

of all the particles involved. We suppose that the event k has been 

given a statistical weight ~k' introduced to correct for eventual 

inhomogeneities in detection efficiencies. Whenever weighting is not 

necessary, however, all the weights ~k are assumed to be equal to 1.0 

in the formulae to come. 

If Ix I is a particular value that any I ~ I k can take,the content 

" 
of a hypervolume dx centered around Ixl (i.e., the sum of the weights 

of the events whose vector 1~lk falls in that hypervolume) is a ran­

dom variable y( lx" dx). The contents y (Ix I, dx) and y (f xl', dx) of 
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different hypervolumes are assumed to be independent random variables. 

The expectation value for the content )' (Ix I, dx) is 

< )' (lxi, dx) > = y (Ixl) dx. (1.2.1) 

~ (Ixl) is the true distribution, the one that represents the 

average of the distributions of an infinite number of identical ex-

periments and is not known. However, there is a known function 

y (Ixl), lal) of Ixland ofN parameters ao that are components of 
a J 

a vector I a I, and there are assumed to be N unknown values \.JL JO of 
·a 

the parameters I a I such that 

~ U x I) = y (Ix I, I Jt, I ), 

where the vector IJU with components A ° is called the true 
. J 

(1.2.2) 

value of the parameters lal. The purpose of the fit is te' find an 

estimate I al for· 1~I,so that y( I x I, lex I) approximates the true 

distribution 1i(lxl) of (1.2.2), i.e. 

y (I x 1 ,I ex I) ~ 11 ( I x I ) . ( 1. 2 . 3 ) 

Even after the estimate has been made, Eq. (1.2:3) may not be 

satisfied either because the fitting routine has been unable to 

determine the set of parameters lal that make y(x, a) fit best or 

because the model is wrong [i.e., y (lxi, lal ) can never equal 

] (x) for any values of the parameters I al]. Regardless of what 

is considered suspect in the result of the fit, it is useful t~ check 

the result by histogramming the distribution y (I x I, I a I) and com-

paring it to the distribution of the experi~ental events. 

. 
\ 

i 

.' 
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3. General Description of the System 

The OPTIME System consists of a set of subroutines that the user 

calls from a main program of his own. With appropriate calls to those 

subroutines, he can fit functions y (I xl, I al) to distributions of 

events, obtain an estimate of the errors, or perform checks by dis-

pJ,.aying histograms of the events along with the fitted curve. 

The main subroutine MAXIME performs the fit of the mathematical 

distribution y (I xl, I al) to the experimental data. The function 

y (Ix I, I al) is given to MAXIME by a secondary routine HUME written 

by the user. For a given set of parameters lal and some set of values 

of lxi, both given in the transfer vector, the secondary routine HUME 

must return the value of the function y (lxi, I al) that the user wants 

to fit. MAXIME is called from the main program with a transfer vector 

filled with some initial values of the parameters lalandit returns 

the same vector filled with values lexl corresponding to the fit. The 

values lxi, in a transfer vector during the call to HUME, are the 

values 1~lk that represent the kth experimental event or, eventually, 

some integration point Ixlce whenever integrations are necessary for 

the fit. 

Actually, the parameters lal in the transfer vector to MAXIME 

are contained in a vector Ipl longer than lal. In addition to those 

variable parameters I a I to be adjusted, I p I may contain some or all 



, -6- UCRL-20159 

the constants that determine the function y (x;a). Another vector, 

I Loc I, is used for indicating to MAXlME the parameters to be vari ed. 

The jthcomponent, (Lac)., has the location of a. in Ipl: 
J J 

.P(L ) == a .• oc. J . J (1. 3.1) 

A transfer vector to HUME is also I pi, containing the variable 

parameters a. which are changed as the fit progresses, but with all 
. J 

the other components held constant at the values they had in the call 

to MAXlME. Different sets of components of Ipl may be adjusted in 

different fits with the same HUME routine by just changing the vector 

Priar to the fit, to introduce the experimental data into the 

system so that they can be handled by MAXlME and other main subroutines, 

the routine IMME can be called. IMME will write the vectors Islk in 

the proper format forOPTlME. IMME calls two secondary routines. One 

of them is GETUMl, which reads the tape, where the user has his infor-

mation stored, and returns after each event. The other one is DOME, 

which the user has to write, so that, for each event k, a transfer 

vector D is filled with the valueslUk. Later on during the fit that 

Isl k is a transfer vector in calls to HUME, when y (Isl
k

, lal) has 

to be returned. DOME must also supply the weight ~k for the event k 

if the user wishes it to be different from 1.0. 

For most types of fit, integrations must be performed over the 

.... 

.. , 

f' 
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space of I x I. Prior to the fit the routine INT1ME will introduce 

integration points into the system in the same manner as the routine 

1MME does for the experimental events. A secondary routine, GETUM2, 

is called to generate integration points with some preliminary weights 

n~o). From the temporary weights n~o), the definitive weights of the 

integration points are computed accordi~ to the procedure described 

in sections 111.2 and 1I1.3. The secondary routine DOME is also 

called and, for each integration point, it must fill a transfer vector 

D with.the quantities IXI£ ·tha.t the user wants to have available in 

HUME: to computey (Ix '.e' I al). 

A call from the main program to AROME innnediately after the 

corresponding call to MAX1ME will print an estimate of the errors 

corresponding to the fit. This matrix (ERR) is an estimate of the 

error matrix and is defined as: 
"V 

(ERR) % < (Ial - I..AI) (Ial -IAl ». (1.3.2) 

However, (1.3.2) is valid only if (1.2.3) is true. 

Calling FAME with the parameters lal in the transfer vector 

followed by a call to COCHIS will cause histograms to be plotted of 

both the experimental points and the curve y (x, a) for the parameters 

lal used for the call to FAME. The check of a fit requires calling 

FAME with I a 1 (the values for I a I returned byMAXlME for that fit) in 

the transfer vect.or, followed by a call to COCH1S. 
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The primary subroutine, COCHIS, will display the histograms of 

the quantities that the user has decided to plot when he wrote DOME. 

There, he calls HIST from his subroutine HISTME ·with a histogram 

number and the quantity to be histogrammed in the transfer vector. 

The calls to HIST from DOME when it deals with the experimental events 

gives the content of the hist.ograms. The calls to HIST when DOME deals 

with integration points will be used for plotting the curve. Inte­

gration points are, therefore, necessary for the display of the curves. 

Integrals of the function y (I x I ,I a I) for any value of I a I can 

be obtained by calling NORME with the values of lal in a transfer 

vector. Of course this is possible only if integration points have 

been introduced into the system previously. 

4. Documentation on OPTIME 

The mathematics used in the main routines are discussed in this 

paper as they apply to the problem described above, i.e., the fit of a 

random distribution of events. The significance of various options 

are explained whenever they affect the mathematical development. The 

object of this paper is to provide a general understanding of what is 

done inside the main subroutines of the system. Part II deals with 

the routine MAXIME and Part III with the other major subroutines. Some 

of this same information can also be found elsewhere [5]. ~ .. 
Information concerning the programming is given in a separate 
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paper [61 That paper contains a precise description of how to. use OP­

TIME and should be considered the user's manual. It will also provide 

information useful in hunting for troubles generated by using a com­

puter. Preliminary writeups exist also for this aspect of OPTIME[7]. 

Additional facilities have been provided for OPTIME. In particular, 

Jerry Friedman has written a quite efficient routine, SAGE, which gen­

erates fake events that simulate interaction and production of particles[S]. 

This facility can be used to provide integration points for MAXIME and 

COCHIS. 

Much of COCHIS and associated subroutines was borrowed from the 

KIOWA System. More information about it may be found in Reference[9]. 

All available documentation mentioned here applies to the "official". 

version of OPTIME as of November 1970[10] • 

5 •. Notation 

A symbol inserted between two vertical bars is a vector. Its 

components are represented by the same symbol affected by an index, 

e.g., Ix\ and \ a\ are vectors, Xi and aj are their components. Nx 

is the number of components of lxi, Na is the number of components 

lal. In order to lighten the notation, the two vertical bars may 

sometimes be omitted ",hen we think it will not create confusion. For 

instance, y (Ixl ,Ial) may sometimes be written just as y (x, a). 

A matrix will be represented bya capital letter, as for instance 

E, or by a group of· capital letters in parentheses, as in (ERR). Its 
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components will be capital letters affected by two indices, as in 

E .. , or (ERR) .. ,. A tilde ~ over a matrix or a vector represents 
J,J J,J 

the transposed matrix or the transposed vector. 

Integrals will also be represented by a capital letter, as in 

y =~y dx. Whenever integrations are performed numerically, the 

integrals in the formulae will often represent a sUmmation over the 

integration points such that 

y = ~ y (x) dx = 1 n£ y (Ix I.e) (1. 5.1) 

where n£ stands for the weight of the £th integration point and Ixl; 

for its coordinates. An integral without limits implies that the 

integral is over all possible values of I x I that I ~ Ik can take. 

As often as possible a random variable whose values depend on 

the random di stribution of the experiment.al data will be represented 

by a Greek symbol, as in ~k' 1~lk' Sk,i. So does the estimation lal 

of" the parameter~ IJtI , whose value depends on the random distribution 

of the experimental events. That rule cannot be always respected, 

however. 

Two pointed brackets < > around a random variable will always 

represent the expectation value for the random variable inside, 

whether it is represented by a Greek letter or not. Thus <y(x), dx» 

is the expectation value for y (x, dx) and < w(a) > is the expectation 

for the function w(a). 

• 

l:;ji 

., 
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Whenever possible we will refer to a true but unknown quantity by 

a script sywpol. For instance 21 (x) is the true distribution and 

IJU are the true values of the parameters. 

Often, to shorten the terminology, we use the word transfer 

vector to designate the vector that is transferred by way of the 
,>.. '\." 

calling seq-qence of a subroutine. 

II. THE FITTING ROUTINE 

1. The Function to be Maximiz~d, w (a) 

The fitting routine, MAXI ME , operates by maximizing a function 

w (' a I) of the parameters I a I and of the experimental data. The 

estimate 10:1, is the value of la I that corresponds to the maximum found 

for w (a).~ 

There are different types of fit that the user may select by 

setting a flag KTYPE. Those types correspond to different functions 

w (a) or to different stepping procedures to get to the maximum. 

Seven types have been programmed so far; they are types 3, 4, 11, 12, 

13, 14, and 20. 

For types 3 and 4, the function w (a) that gets maximized is 

where 

v 
w (a) = i:: 

k=l 
T)k lny (~k' a) -Y (a), 

Y (a) .. ~. J y (x, a) dx. 

(1101.1) 

(ILL 2) 
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The estimation of lal by maximizing w (a) of (II.1.1) can be 

justified by considering the 

< w (a) > = J In y (x, 

Therefore, 

<wla\ -w(Jl,»= 

=J [In y ~x, a) 
y x,.A) 

expectation value of the function w: 

a) ~ (x) dx - Y (a). (I1.1.3) 

(II.1.4) 

+ 1 1 y (x, Jt) dx. 

The function In z - z~+ 1 is negative for all values of z ~ 1. 

Therefore (II.1.4) is negative for all values of I a I except the ones 

that make y (x, a) = y (x, A) everywhere. If the function w (a) 

were equal to its expectation value, its value for I al =l~l would 

be maximum. 

For types 11 and 12 the fUnction to be maximized is 

v 
w (a) = L: 

k=l 
(11.1.5) 

These types should be used only when the integral Y (a \ of (I1.1.2) 

is a constant, independent of I al. Under this condition the maximum 

of w (a) of (11.1.5) occurs for the same values of lal as the one of 

w (al of (11.1.1). Therefore, the estimation by (11.1.5) is valid 

also if there are IAI such that (1.2.2) is satisfied. However, the 

values. of lal that maximize w (a) of (11.1.5) will not be modified if 

the function y (x, a) is multiplied by a constant, independent of lal. 

., : 

I ,., ; 
! 

• 
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Therefore, the fit by (II.1.5) concerns the shape of y_ (x, a) only, 

independent of its normalization. At the fit, one may expect 

y (x, a) % c -1/ (x), 
- .y (j 

where c does not depend on Ixl. 
y 

For types 13 and 14 the function w is given by 

where 

v 
w (a) = L: 

k=l 

v-

In Y (a), 

(II.1.6 ) 

(II. 1. 7) 

Wt = L: 'Ilk' (II.i.8) 
k=l 

and where Y (a) is again being given by the expression (11.1.2). 

Obviously, (II. 1. 7) is obtained from (ILL 5) , with Y (x, a) replaced 

by the normalized function [y (x, a)]' := y (x, a) / Y (a) so that 
, , 

the normalization condition of [Y (x, a)J is automatic. For types 

13 land 14 the condition that the integral Y of y ex, a) be constant 

is not necessary. The fit with (II.1.7) will also be a fit of the 

shape only, expected to lead to equation (II.1.6) because (ILL 7) 

does not depend on a change in normalization. 

For type 20 the function w (a) is 

where 

w (a) = L: 
k 

'Ilk Y (Sk' a) 

Y
2 

(a) = Jy 2 (x, a) dx. 

t Y (a), 
2 

(II.1.9) 

(II.1.10) 

c _ -=-_-....:.....:-) 
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To demonstrate its validity we consider the expectation value of 

w (a) of (II.l.9): 

<w (a) > =J [y (x, a)Y(x) _.1. 2 (~, a) ] dx 2 Y 

= tJy 2 (x) dx - t f[ y (x) - y (x, J2 a) dx. (11.1.11 ) 

(II.l.ll) is maximum when y (x, a) = ~ (x) everywhere. Type 20 

is a fit of the whole distribution, including normalization, just like 

type 3 or 4. 

2. Basic Stepping Procedure -- the E Matrix 

In MAXlME, the parameters are adjusted by successive approxima-

tions. At a point defined by some values laol of the parameters, the 

routine computes a better approximation I a I. If w (a) > w (ao)' 

the new approximation is considered to be a good step toward the 

maximum and it is accepted. The values ofla I are then replaced by o 

the values stored in I al and a new approximation is computed. If 

w (a) < w (a ), the attempted step is not accepted and MAXlME computes o 

a new one according to a given emergency procedure (see ~ection 11.8). 

There are different modes of computation of the step. The basic 

mode is Mode 1. The corresponding approximation is given by; 

lal = la I + Iv I o 

I -1 I Iv = E I u , 

U j = 9w (a) 
() a. 

J 
where u. is the j th component of the 

J 

(II. 2.1) 

(II. 2.2) 

(II. 2.3) 

.. 

;., 
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vector I u I, gradient of the function w (a) and E is a positive 

definite covariant matrix computed from the gradient Ihl of the function 

y in the space of I a I. More precisely, Ihl is defined by 

h. (x) 'ay (x,a) at I a\ I aol , = -
J ~ a j 

(II. 2.4) 

and its integral is defined as 

H. = aY ~a~ 
= J h j 

(x, a) dx. 
J 3a. 

J 

(II. 2.5) 

The precise expression of E depends on the type -of fit. Two types 

that' make use of the same function w (a) in the preceding section 

will differ by their expression for E. For types 3 and 11, E is given 

by a summation over the experimental points: 

v T]k 
E = 2: Ih I (~k) Ihl (Sk) • 2· 

k=l Y (~k' ao) 
(II. 2.6) 

v T]k 
E = 2: -2..,..-----

k=l Y (Sk' ao ) 

'V 

I hi. (Sk) I h I (Sk) 

lui IHI + IHI I~I (11.2.7) 

Y (a ) 
o 

The E matrix of (11.2.6) or of (II.2.1; is positive definite if 

all the weights T]k are positive. It is equal and opposite to the 

second derivative matrix (DD) of the corresponding function w (a) for 

types 3 and 11 when y is a linear function of the parameters I al and, 
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for type 13, when y/Y is a linear function of the parameters lal. ' 

Therefore, -E should be considered as an approximation for the matrix 

(DD) for types 3, ll~ and 13. This stepping procedure resembles the 

Newton method for solving an equation [11] . 

For type 4,12, 14,and 20, the expression for E involves inte-

gration ov;er the space of Ixl. For type 4, 

'V 

E =J" Ihl (x) Ih I (x) 
y (x, a )" dx. " 

. 0 
(II. 2.8) 

for type 12, 

Wt J Ihl ~x~ Ihl ~x~ dx. 
E = Y(a ) y (x, ao ) 

0 

For type 14 we define (II. 2.10) 
Wt J Ih~ 'V 

Wt " 
E ~x) Ihl (x) 

dx = Y (a ) a ) 
.-...-

Y (ao) 0 
0 

x, 
0 

"-

IHI (a ) IHI (a ), o 0 

(II.2.11) 

1 eEl" if eEl <! 
GE2 = (II.2.12) 

and finally 

1 if CEl" ~! 4 eEl 

E 
o (110 2 .13) '., 
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For type 20, E is 

E =j I hi (x) lhl (x) dx. (II. 2 .14) 

The E matrices of (11.2.8), (11.2.9), (11.2.13), and (11.2.14) 

are positive definite. If integrations are computed bya numerical 

approximation, the results are still positive definite as long as the 

weights of the integration points are all positive. For types l}, 12, 

and 20, if y is a linear function of lal, we have, for lui and E com-

puted at the point laol' 

(II. 2 .15) 

Under such assumptions the step computed by (11.2.2) should then 

bring the parameters near the true values IJiI, if lui is not too 

different from <lui> . 

For type 14, (11.2.15) and its consequences are still true as long 

as the coefficient CEl < 1/2. The procedure introduced when 

CEI ~ 1/2 is a result of considerations about ensuring the positive 

definite property and the continuity of E. 

Since, for every type, the matrix E is positive definite, there 

are matrices R such that 

'V 

RER=1. (II. 2.16) 

MAXlME computes a matrix R that satisfies (11.2.16) with the addi-. 
. I . 

ti onal property that every element R.' . of R is zero for j > j. R 
J ,J 

is a "triangular" matrix. The step (11.2.2) can be expressed as 
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"-' 

Ivl = R R lui. (II.2.17) 

The positive definite property of E ensures that Ivl defines a 

direction in which w (a) can be increased. 

3. Deri vati ves 

The user may choose not to program all derivatives h. of y in the 
J 

secondary routine H1.J}.1E. Then, MAXIME gives increments to the parameters 

laol and calls HUME.. The variations of y corresponding to the incre-

ments are linear combinations of the h.'s. 
J 

There are N linearly independent vectors IDA I. used to compute a J . 

derivatives numerically. The j'th component (DA).' . of the vector 
J ,J , 

IDA I. is not zero only. if j ~ j. Therefore, the matrix (DA) whose 
J 

elements are DA.' . is triangular, but not .diagonal in general. We 
J ,J 

define 

* "-' Ihl = (DA) Ihl. (II. 3.1) 

* If h . is computed numerically, its computation is performed in 
J 

general according to the following expression: 

(II.3.2) 

If the user considers that increments in one direction only are 

good enough for the computation of some derivatives, he can give the 

corresponding parameters a. a flag instructing MAXIME to call HUME with 
J 

* one sign for the increment only; then h . is computed according to 
J 
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h*. (x) == y (x,la I+·IDAI· ) - y (x,la I). 
J.. o. J 0 

(II.3.3) 

In some cases involving the definition of an unallowed region for 
L 

the fit, the use of one-sided increments may be forced upon MAXIME 

(see Section II.9). Then, depending on which side is forbidden, 

(11.3.3) will be used or 

* h . == y (x, la I) 
J 0 

y (x, I a 1- I DA I . ). -
o J 

(II.3.4 ) 

The increments (DA) are computed in the secondary routine DAME 

from the matrix R computed at the previous step and a diagonal matrix 

(WGT) constant during the fit.· The matrix (DA) is the product of the 

matrices R and (WGT): 

(DA) == R (WGT). (II.3.5) 

The diagonal elements .of (WGT), called weights for derivative 

increments, are given by the user in-his call to MAXIME, in the transfer 

vector IWgtl. They may be set all equal to 1.0 in general. This pro-
) 

cedure has been introduced to avoid too much correlation effect between 

parameters in the numerical computation of the derivatives. If the 

.jth derivative, hOi-leVer, is programmed in HUME, the jth increment 

has 1.0 for its jth component and 0 everywhere else. For that 

* h . = h .• 
J J 

parameter then, 

Even if the .th d . t· J er~va ~ve is computed numerically, the increment 

IDAlj may differ from the expression derived from (11.305) by an over­

all factor 1/2, 1/4, or 1/8, in some cases involving the unalloi-led 



-20- UCRL-20I59 

region (as wi"ll b~ seen in Section 11.9)~ 

At step 0 there are no previ ous steps, therefore no R is available. 

The user has to provide a vector IUdal in his call to MAX1ME. Then the 

elements of IUdal go into a diagonal matrix (UDA) and the increments 

for derivative "computation at step 0 will be 

(DA) ~ (UDA). (11.3.6) 

4. computations for Mode 1 

* At a given iteration' I at, the function w, the vector lu I , and 
, 0 

. * . * * thematrixE are computed; where lui and E are defined, like lu I 

and E, by (11.2.3) and (11.2.6) through (11.2.14) but in the system 

of axes formed by the vectors IDal.: 
J 

lu 1* = (DA) lui, 

* 'V E = (DA) E (DA). 

(11.4.1) 

(11.4.2) 

For each experimental point and for each integration point, the 

function HUME is called with la lin a transfer vector. From the re-
i 0 

turned value y (x, la I), the factors Wfac, Ufac and Matfac are computed. o " 

Table I shows their expressions for different types, with an index r 

or i to differentiate the expression to be used: r when dealing with 

the experimental events and i for the integration points. From those 

* factors and from the vector Ihl (x), whose computation is described 

in the preceding section, MAXlME computes 



" 

* v 
lulr = L:. 

k=l 

(Wfac) , 
r 

(Ufac) 
r 
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(I 1. 4. 3) 

(11.4.4) 

(11.4.5) 

(11.4.6) 

When one of those summations is not performed because it is not 

needed, the corresponding factor is indicated by a dash in Table I. 

For types 3, il, and 13, the following additional summation is per-

formed: 

(11.4.7) 

For types 4, 12, 14 and 20, the following integrations are performed 

instead: 

(11.4.8 ) 

From the result of these summations, the function w, the vector 

.* * lui , and the matrix E are computed according to their expression 

* shown in Table 1. The triangular matrices R and R, then I vll-H 

and IV11 , are computed: 



with 

"* * * R E R == I, 

* I R . I • == 0 forj > j 
J ,J 

R == (DA) R*, 

i* "* * IVI ~ R lui , 

If Mode I is used, then 

-22- UCRL-20159 

(II.4.10) 

(II.4.11) 

(IL4.12) 

Ivl == IVII . (II.4.13) 

5. Computations for Mode 2 -- State of the Fit 

When some or all derivatives are computed numerically, l1AXIME may 

use the values y (I x I, I a I ± IDAI.) to compute the function 
,oJ 

wp. == w (la 1+ IDAI.) or WIn
j 

== w CIa 1-IDAI.)'or both. The conditions 
J 0 J 0 J 

that make MAXD1E perform the computation of wp. or WIn. are: (1) the 
J J 

jth derivative is computed numerically, (2) the increment +IDAlj in the 

case ofwpj and -IDAlj in the case of w.mj is used for that numerical 

computation and does not drive the parameters into the unallowed 

region. 

MAXIME will always remember the largest value of., the function 

w found so far. As soon as new values of wp, WIn, orw are computed, 

they are compared with the old best value. If one of the new values is 

found to be larger, that value will replace the old best and the 
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parameters that correspond to the new best value are stored in a vector 

Ibl called best values of the parameters. 

Whenever a step Ivl turns out to be so small that 

~ llillvl < w (Ibl) -w (Ian, (II. 5.1) 

MAXIME uses Ibl as the new iteration point instead of laol + Ivl. 

This mode of stepping is called Mode 2. It can be justified by con-

sidering that the expected improvement of w, when taking step lvi, 

is ~ Illl Ivl. 

If, at a gi venstep, there is a parameter aj for which MAXIMF. has 

computedwp. and Will. and such that 
J J 

w (a ) < ~ (wp. + Will.) , (II. 5.2! 
o J J 

the fit is considered to be in state 1. This means that the current 

point is so far from the maximum that the second derivative matrix 

(DD) is not even negative definite. When the state is 1, it is not 

valid to approximate w by a quadratic function. It should be remarked 

that in state 1, Eq. (11.5.2) for anyone of the parameters implies 

that there is a value wp or Will superior to w (ao ) . 
. , 

When the condition for state 1 is not fulfilled, but a value of 

wp or Will computed at the current step or at any step before is greater 

than the value w (ao) of the current step, the state is called state 2. 

state 3 is defined as the state where w (a ) is the best value 
o 

found so far. Then Ibl = I a I. state = 3 is one of the conditions 
o 
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that the parameters 1801 have to fulfill so that the fit can stop at o 

la I and be called a good fit. o 

Mode 2 can be used only in State 1 or 2. 

6. Corrections to the Step -- Modes 3 and 4 

To avoid having the parameters bounce back and forth when over-

shooting the maximum, the step computed with Mode 1 (II.~.12) may be 

submitted to corrections if there is a syrnpton of overshooting. That 

correction is actually an interpolation of the values determined at 

two successive steps. 

We refer to the old values of 1801 as I a I· 00 They are the values 

of 180\ at the previous iteration, just before the last accepted step. 

We define 

(II.6.1) 

'" (V tev ) = Iv I E Ivo I , 000 (II.6.2) 

(utv ) = Ilr I Iv 1 , o 0 
(II.6.3) 

(u tv) = Ilr I Iv I , o 0 0 0 (:tI. 6.4) 

where IUol is the gradient of wat 180001 and ~I its gradient at 

I a I. If (utv ) is negative, there must be a higher value of vI (a) o 0 

along the segment la I to la I; this is the syrnpton of overshooting. 
o 00 . 

Mode J and t40de 4 correspond to two different estimations of 

where the maximum of w (a) is on the segment la 1 to la 1 in case of o 00 



-25- UCRL-20159 

overshooting. We define t such that la 1-- tlv I is the location of 
o 0 

that maximum. Mode 3 is a computation of t, taking into account the 

derivatives at both ends of the segment and the difference 

w (a) -- w (a ) and assuming w to be a cubic function of lal. Mode 
o 00 

4 uses the derivatives at both ends only and assumes w quadratic. We 

I /I 
define t t, and t : 

m 

I --(utv ) 
o 

t 
--(utv ~ + (u tv ) 

000 

II ~ (utv ) o 
t = w-(~a~) ----w--,(...;.a--.:)----,(=U,.,-tv-...-) 

o 00 0 

1 3 
t 2t;r 

m 

1 [(' I , 1) 2 _J II} 2 }] ~ [I + p- 2-f7T ~[7 -- til (pI -3 " 

(II. 6.5) 

(11.6.6 ) 

(11.6.7) 

For Mode 3, t=t ; for Mode 4, t=t t. However, in either mode, if 
m 

t turns out to be < 0.1 by these formulae, it will be made 0.1 to pre-

vent its being ridiculously small. It is reduced to 0.9 if it is 

larger than 0.9. Once t and VI of (I1.4.12) have been determined, the 

step according to Mode 3 or Mode 4, is determined as 

Ivl = t
--(Utv 0) 

-- (V tev ) (l-t) 
o 0 

(II.6.8) 

Using the E matrix as a metric, this step means that the part of 

Ivll that is orthogonal to tVol is reduced by the factor (l-t) and its 

longitudinal part adjusted to be equal to --t Iv I. 
o 



-26- UCRL-20l59 

7. Choice of the Mode -- Different Cases 

At each iteration the routine DECIME decides either to stop 

fitting or go on stepping. In the latter case, DECIME decides which 

mode to use. 

** Once the vector Ivll of (11.4.11) is computed, the first test 

is "for adjusted parameters. There is a constant (Chilim), which 

-2 presently is set arbitrarily to 10 • 

if 

** 2 (vl )j < (Chilim). 

Parameter a. is called adjusted 
J 

(II. 7.1) 

- If w is a quadratic fUnction, with -E its second derivative matrix, 

** and if R and IV11 are as defined above, then the difference between 

the value of w (aco ) and the maximum value attainable when varying only 

the j first parameters is 

(,6,w) = 
j 

1.. " 2 ,'-' 
j =1 

**2 (v )., 
o J 

(II. 7.2) 

The jth parameter is therefore called adjusted if; when you vary it to-

gether with the j-l preceding parameters or when you vary only the j-l 

preceding parameters, it is not estimated to make a difference in the 

-2 value of the function w greater than 0.5 x 10 • 

If all parameters are adjusted and the state is 3, r i.e., w (a ) L 0 

larger than any other known value of w] , the flag KEND is set equal 

to 1, meaning that the fit is good enough at la I. An extra step is 
o 
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going to be computed, however,to be added to lal for the parameters 
o 

in the transfer vector to MAXIME when it returns. But the stepping' 

process stops here, and a new value of w (a) for the last step is not 

even calculated. 

Whether all parameters are adjusted or not, the next proposed 

step depends on different circumstances. Case 1 exists if no step has 

been accepted yet, or if the previous step or the present step is state 

1, or if the mode used at the previous iteration was Mode 2, or if the 

new E matrix is so small that (V 0 tev 0) of (IL6. 2) turns out to be 

smaller than the constant (Chilim). This means that the function w 

is still too wild to permit a meaningful interpolation like Mode 3 or 

4. In Case 1, Mode 1 is used, unless the State is 1 or 2 and (II.5.1) 

is satisfied, then Mode 2 is used instead. Case 2 is defined by none 

of the conditions that satisfy Case 1 and by 

[( Chilim) . (V 0 tev 0) 1 1 
(utv ) > - "2 (II. 7.3) 

0 

It means that the function has a good behavior and that there has 

been no overshooting. Either the derivative of w is negative in the 

direction or small enough that it cannot be increased by more than 

1/2 of (Chilim) in that direction. Case 2 is treated like Case 1, 

i.e., Mode 1 is used unless (II.5.1) is true and forces Mode 2 to be 

used instead. 

Cases 3 and 4 are the cases of overshooting defined by none of tbe 

conditions that satisfy Case 1 and by (II.7.3) not being satisfied. Then 
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t l and tIl are computed according to (11.6.5) and (11.6.6). Case 3 is 

the case where til> t/, then t is computed according to Mode 3. If 

tll~ t l we have Case 4 and t is computed according to Mode 4. A sub-

sequent test 

-,-(utv ) 
t < 0 

(V tev ) 
o 0 

(II. 7 . 4) 

has to be satisfied so that Mode 3 in Case 3 and Mode 4 in Case 4 can 

be used. If (II. 7 .4) is not satisfied, Mode 1 is preferred. In any 

case, if the step Ivl satisfies (II.5.~), Mode 2 is used instead. 

There is a Case 5 defined, regardless of any other circumstances, 

by all parameters being adjusted, i.e., satisfying (11.7.1), but with 

the state not equal to 3. That case also triggers the use of Mode 1 

unless (11.5.1) is satisfied, forcing use of Mode 2 instead. 

8. Emergencies -- Modes 5 and 6 

When a step Ivl has been computed according to Modes 1, 3, or 4 

and when 

·w (Ia I + Ivl) < w (Ia I) (II.8.1) 
o 0 , 

.' 

there is a case of emergency. The secondary routine CRIME adjusts 

the size of the step by using Mode 5. Computation of t is such that 

~ 1~llvl 
t =w(ao ) - w(ao + v) - ,!ii,lvl (11.8.2) 

When t is given by (11.8.2), I a 1+ t I v I is the location of the o 

maximum of w along the segment Ivl if w is quadratic; t is set to 0.1 
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if (11.8.2) gives it a value less than 0.1 to prevent its being 

ridiculously small. In any case Mode 5 consists of replacing Ivl by 

t Ivl as the new step to be attempted. 

Of course the new step computed by Mode 5 may also satisfy 

(11.8.1). If it-does and if it satisfies (11.5.1), Mode 2 is used 

then. If not, CRIME tests for the .condition 

'V * * Ivl· Ivl ~ 1, 

where 

* -1· I v I = (DA) I v I. (11.8.4 ) 

If (11.8.3) is ·satisfied and somederi vati ves are computed 

numerically, CRIME considers that the step Ivl is smaller than the 

increments to compute the derivatives. The numerical estimate of the 

derivative is considered suspect and the step is then completely re-

calculated with all the increments IDAI. cut by one-half. This is 
J 

called Mode 6. 

If (11.8.3) is not satisfied, Mode 5 is used again to cut the step 

some more. Mode 5 and Mode 6 can be used several times in the same 

iteration in some pathological cases. 

Earlier in the step calculation, another kind of emergency may 

* * occur. The solution R of (11.4.9) does not exist if E has zero 

eigenvalues. This fact is recognized by the secondary routine DIAME 

which uses a Gram-Schmidt orthonormalization method (12) to compute 
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* the triangular matrix R that satisfies (11.4.9). If a diagonal 

* -200 element E. . is zero or near zero ( < 10 .) the parameter j is 
J,J 

called insensitive, because that element corresponds to a sum of 

squares of a derivative element and it is zero only if the function is 

not sensitive to the parameter in each of the terms of the sum. If 

* E . . is not zero or near zero, but if the singularity appears when 
J ,J 

the jthparameter is added to the j-l previous parameters, the jth 

paramet~r is called correlated. 

Whether the jth parameter is insensitive or correlated, DIAME 

I 
makes R. I . = 0 for j fj and R.. == 1. If all parameters are insensi-

J ,J JJ 

tive, MAXIME exits with an emergency comment and the flag KEND is set 

to 8. 

There are other cases of emergencies that may interrupt the fit. 

A comment gets printed to indicate the cause of the emergency. 

9. The Unallowed Region -- Derivative Indices 

When the user wants to restrict the possible values of the 

parameters to a dOmain inside of some boundaries, he should express 

each of his conditions by a relation of the type 

g ( a ) ~ O. ( II. 9 .1 ) 
m 

th Then, g (a) < 0 when the m condition is not satisfied. The . m 

user should write a routine ALARME that returns the values \gl (a) ~/ I 

in a transfer vector when it is called with the valueslal in another 
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transfer vector,and he should indicate the number N of conditions . g 

in the calling sequence of MAX1ME. Then MAX1ME will refrain from 

stepping into the unallowed region. 

In the unallowed region there might be values of lal for which 

the analytic expression of y (x, a) programmed in HUME wbu.ld be 

mathematical nonsense (square root of a negative number, poles, etc. i. 

For such values of lal, ALARME should return the flag Talarme = true 

in addition to some negative boundary functions. A value of lal cor-

responding to Talarme = true will not be used for the numerical compu-

tation of the derivatives, while it is used if Talarme is false re-

gardless of the sign of the boundary function. The secondary routine 

DAME tests if the increment IDAI. computed according to (11.3.5) would 
J 

generate values of lal in the region where Talarme is trueo If an 

increment IDAI. does it, DAME will cut it by 1/2 and test again. After 
J 

three unsuccessful cutbacks by a factor 1/2 each time, DAME tries a one-

sided increment only, by setting the flag Tdp. or Tdm. false if increment 
J J 

+ IDA I. or -IDAI. is the cause of the trouble. Then those flags .. rill be 
J J 

* recognized when h . has to be computed. In such a case (11.3.3) or 
J 

(11.304) will be used instead of (11.302). 

If both increments ±IDAI. still make Talarme = true, Tdp. and 
J J 

Tdm. are both set false and the. jth derivative won't be computed at 
J 

* that stepo Then h . will be equal to 0, therefore a. will be con-
J . J 

sidered as insensitive. However, at the following step, DAME will try 
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to give it some increments again so a deri~ative can be computed. 

Tdp.' and Tdm. are false also if Wgt. = 0; that is, if h. is pro-
J J J J 

grammed in HUME. If none of the Na derivatives can be computed 

numerically and none are programmed, MAXIMEquits with an error 

comment. 

When an increment+IDAI. or--IDAI. is accepted for numerical 
J J 

computation of the derivative, the flag Twp. or Twm. is set true if 
J J 

that increment lead.s to values of I a 1 such that the routine ALARME 

returns with all the boundary functions Igi positive. If not, the 

corresponding flag Twpj or Twmj is set false and the function WPj or 

WID. will not be computed. That procedure prevents Mode 2 from ever 
J 

stepping into the unallowed region. 

10. Fits Against Boundary -- Modes 7, 8, and 9 

CORME is the routine in charge of correcting steps into the 

unallowed region. It first tries to cut the step so that it fits 

inside the allowed region, but if the parameters are already at the 

limit it tries to maximize w (a) while staying against the boundary. 

CORME makes use of a subroutine LIME seve:r;al times . Given two 
II 

vectors lal andloal such that the point lal is inside the boundaries 
I I . 

but I a I + loa lis outside of them, LIME finds a point lal + t1 loa I 

on the segment loa I just at the boundary. Actually, LIME finds. two 
I 

coefficients tl and t2 such that lal +. tl loal is inside the boundary, 
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I 

lal+ t2 IDal is outside of it, and such that t 2 - tl is very small: 

Chilim 
t2 - t~ < 11i IIDal (ILIO.l) 

If LIME is used MAXIME will consider the next approximation 

(ILIO.2) 

Whatever'mode has been used to compute a step Ivl according to the 

prescription of Sections (II.7) or (II.8), a check is made to see if 

I a I + I v I is in the unallowed region. If it is, CORME will first use 
o 

the routine LIME to cut it so that the next approximation laol+ tllvl 

is just inside the boundary. That stepping procedure is called Mode 7; 

it is illustrated in Figure 1. 

If Mode 7 does not result in a step of appreciable size (i.e., if 

LIME finds a solution of (ILIO.l) with tl = 0, then CORME will try a 

step IVII according Mode 1 unless such a step has already been tried 

before from the same iteration point. If Mode 1 has been tried already 

or if IVII still leads into the unallowed region, CORME then embarks 

upon a search for the largest value of w (a) against the boundary 

(Modes 8 and 9). 

A list is made of the relevant b01mdary functions gm(a) that are 

not satisfied at the point laol +Ivll. Those functions are placed in 

the vector 'Igrell of length N 1" The derivatives of I grell with re 

respect to lal form a matrix S with NIx N elements: . re a 
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(11.10.3) 

Additionally, at the point laol, CORME computes Igrell(ao) and the 

Nrel x Na matrix, 

** S = SR, (11.10.4) 

where R is defined by (11.4.10). 

** The derivatives S are always computed numerically. The increment 

IRI. used to compute S** . is the vector that forms the jth column of 
J n,J 

the triangular matrix R. This increment is always used in both 

** directions, and S . is defined as: 
n,J 

** [ ] S n,j =~ greln ( laol+IR!j) - greln (lao' -IR!j) . 

Then CORME computes 

** 'V** 
Q= S S 

ILambda! = 

'V** 
V = R S 

2 

, 
-1 ** -1 

Q (S R Ivl ! +Igrell), 

I Lambdal. 

(11.10.5) 

(n.lo.b) 

(11.10.7) 

(n .10.8) 

If· Igrell were composed of linear functions of lal, if w(a)were a 

quadratic function of lal, and if E were its second derivative matrfx, 

the point 

woUld be the location of the maximum of w (a) with the constraints 

Igrell = O. (11.10.10) 
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HOvlever, our constraints are expressed by an inequality of the 

type (11.10.1) not by an equality of type (11.10.10). Among the 

relevant inequalities Igrell violated at laol+\vll there might be 

some that WOQld become satisfied as soon as the others are satisfied. 

To take that phenomenon into account, CORME inspects the vector 

ILambda\ for negative components . 
th 

If (Lambda) is negative, the n 
n 

boundary condition is dropped from the list of relevant conditions. 

Then (11.10.6) and (11.10.7) are recomputed and jLambdal reinspected 

till all the components of I Lambda I are positive. Only then (11.10.8) 

is calculated. 

A trial step is made, equal to 

(11.10.11 ) 

where 

Cv2 = 0.9 -- 0.1 (11.10.12) 

C
v2 

from (11.10.12) is such that lui IV31 is positive and therefore 

defines a direction of improvement for w(a). It is near 1.0, so IV31 

takes the parameters close to the point la I of (11.10.9). See Figure 2. . c 

It is greater than 1.0 in order to be on 'the safe side of the inequality 

if there are small non linearities in the constraints. 

If the point laol + 1v3 1 is still in the allowed region, the boundary 

is approached again on the segment laol+\v31 to laol+lvll, using LIME . 

The resulting point is the point proposed for the next iteration. 
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This mode of computing a step is called Mode 8. 

If the point lao' .+Iv 31 is still in the unallowed region, it means 

that either igrell is not linear enoUgh or that a new boundary function 

not in the list of relevant boundary functions has become relevant now. 

In such a case, LIME is used to cut the step so that lao' + tllv31 falls 

inside the allowed region. This mode of step computation is called 

Mode 9. 

If Mode 8 produces such a small step that '~'Ivl< Chilim, the 

routine MAXlME declares la 1 a good fit against the boundary. If Mode 
o 

9 produces too small a step, the case is too complicated for MAXlME to 

handle and the iteration pr()cess is st·opped. The comment FIT MAY BE 

GOOD is printed. It is necessary for the user to understand the 

mathematical complexity of the situation to appreciate the value of 

his fit. 

III. OTHER ROUTINES 

1. The Error Routine AROME 

AROME computes an estimation of (ERR), the error matrix of (1.3.2), 

for the parameters fitted in the previous call to MAXlME. ARQIl.ill uses 

some quantities computed by MAXlME in its last step. It uses the 

* matrices R, R of (II.4.10) and (11.4.9), and sometimes the vector 

* \u.\ of (11.4.6) and w. of (11.4.4). Therefore AROMEshould be 
1 1 

called just after MAXlME, at least before those quantities get over-
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written in the computer. 

* * For AROME, the values laol are those for which luil , R, and R 

have been computed, the ones for which all parameters have been de-

clared adjusted before the last computed step Ivl is added. MAXH1E 

returns laol +Ivl as the fitted parameters, but AROME uses laol for 

its own computation unless, of course, special intervention of the 

user occurred between his call to MAXlME and his call to AROME. 

For all types, AROME performs summations over the experimental 

events. 

(U2) 

For types 3, 4, 11, 

* 
y 

= L: 
k=l 

2 
T)k 

* and 12, the matrix (U2) is defined as 

-x-
where Ihl (~k) is the gradient of Y(~k,a) in the space of lal at laol, 

as in (II. 3 .1) . 

where 

For types 13 and 14, 

(U2) * 
y 2 

T)k 
= L: 2 

k=l Y (s ,a ) 
k 0 

* 'V ""* 
lUi I I Vee I +\ Vee I lUi I 

w_ 
l 

y 

Ivee! = L: 
k=l 

Wt2 * "" * 
+ ---2 lu.1 IU

l
- I 

W. l 
l 

(IILI. 2) 

(111.1. 3) 
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v 2 

(Wt2) = L:T)k 
k=l 
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(111.1. 4) 

* * IU·1 and w~ of (11.4.6) and (11.4.4) still represent the integral IHI 
1 1 

* oflhl (x) and yea ) of y(x,a ). 
o 0 

For type 20, 

(U2) * 
v 

= L: 
k=l 

(111.1. 5) 

Then, for all types,- the error matrix (ERR) of (1.3.1) is given by 

""* * *"" (ERR) = R R (U2) R R. (111.1.6) 

These formulae can be justified if the values lal of lal that 

maximize w( a) and the true values IJL I are not too far apart. Then, 

lal could be reached in one step in the maximization process, using 

Mode 1, if one would happen to start the iterations in IJt I. From 

(11.2.2) or (11.4.13), using lut computed in IAI ,we have the relation 

. . 1 ."'* * 
Ivl = la I -:-IAJ = E- lui = R R jul (111.1.7) 

* * For lu I computed in IAI, < I u I > = ° but the random variables 

* * lui are not zero in general. There is a correlation matrix (U2) : 

* * "" * (U2) = < lu I I u I > (111.1.8 ) 

* * * If (U2) is an estimation for < lui lu I > then (111.1. 7) justifies 

(111.1.6), but we still have to justify (111.1.1), (111.1.2), and 

(111.1. 5) • 
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To justify (III.1.l) for types 3, 4, ll,and 12, it should be noticed 

* * * that the random part of lui islurl of (II.4.5); IUrl is a summation 

over the contents y(x, dx) of different hypervolumes dx (see Section 

1.2): 

(111.1.9) 

The different hypervolumes have uncorrelated contents; therefore, the 

* correlation matrix for lu I . is the sum of the contribution of each 
r 

hypervol ume . 

* *"-'* * "'-'* 
(U2) =<Iu 1111 I > -<Iu I ><Iu I >. 

~[ 2 r r . r 2] r 1 * "-' * 
== < 1 (x,dx) > - < I(x,dx) >. 2 Ihl (x) Ihl 

. y (x, Jl) 

(II1.1.10) 

(x) . 

222 2 
However < I(X, dx) > == y (x) dx .~ 0, as (dx) when dx ~ 0. Therefore 

*f 2 1 * "-'* ( U2 ) == < 1 ( x , dx) > 2 I h I ( x ) I h I ( x) 
y (x,A) 

%J12 
(x, dx) 2 1 Ihl* (x) 1111* (x) 

y (x,A) 

(III.l.ll) 

(II1.1.I) is an approximation for (111.1.11), where the values of 

y (x, a) and Ihl* are taken for fat == lat instead of tal ==I~~I . 

The justification of (111.1.2) for types 13 and 14 is straight-
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. , 
forward once (111.1.1) is justified for types 11 and 12, and once 

y (x, a) and [l/Y(X, a)] 1 hi * (x) are replaced by 

, ~·a 1 ,* 1 * 1 * y (x, a) = y . ,and Ih I (x) = ( ) Ihl (X)-yvr;:;\IHI • . x, a, y x a l.\Uj y (x, a) , 

(III.l.5) for type 20 can be justified just as (111.1.1) can be 

for types 3 and 4 by replacing the factor [l/y(x,a)] by 1.0 in (III.1.9) 

and developing the same arguments as above. 

Warning! If integrals are performed numerically, the errors 

printed by AROME and described here do not include the uncertainties 

as soci ated with the evaluation of integrals. 

2. Integrations in OPTIME --NORME 

Fits with type 11 do not require any integration. For the other 

types, however, the fits in MAXIME involve expressions with integrals 

over the space of Ixl. The structure of the program is such that each 

integral of the type 

F = Jf (x) dx (III.2.1) 

is actually computed as a summation over Nint integration points. Let 

D.£ be the weight and Ix 1.£ the coordinates of the .£ th integration point. 

For F of (111.2.1), the program uses the quantity ~ instead: 

(III.2.2) 

For types 3 and 13, exact expressions can be used for integrals. 

The user has to make Nirit = 1, give the single integration point the 
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weight o£ = 1.0, and, when HOME is called with that integration point, 

return for y (x£, a) the value of the integral yea). If some derivatives 

h.(x) are not computed numerically but are programmed in HUME, the user 
J _ 

should also return for hj(x£), the value of the integral Hj • Then all 

integrals are exact in MAXIME because, for types 3 and 13, the only 

* integrals used are the integrals of y and Ihl . Of course, this 

technique of using a single point of integration may also be useful with 

type 3 or 13 if integrals cannot be programmed exactly for y (x, a) 

but only approximated with sufficient accuracy. 

* For types 4, 12, and 14, the matrix E also is determined by 

using integrations, but its expression (11.4.8 and Table I) is unlikely 

to be a linear combination of simple"reference functions''because 

y (x,a) appears in a denominator. Therefore, there is need for lllallY 

* integration points to get a reasonable estimate of E. However, 

* E is used only to compute the step. For type 12 the location of the 

maximum of w (a) does not depend on any integrated value. For types 

4 and 14 that location depends on the integrated value of y and Ihl 

only. If Y and Ihl are always linear combinations of some functions 

(fr) (x) whose integrals (Fr) are known, ,the integrals Y and IHI n . n 

will be computed exactly if the (fr) (x) are used as reference functions 
n 

in INTI ME (see Section III. 3). The use of reference f'unctions can also 

reduce the error on all integrals an-y>'lay. 
- --- ----

~---~~----- --.. -- ------.- --"- --- ---- -----------
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2 'V 

For type 20, if Y , y, I hi, and I hi Ihl are always the linear com-

bination of the functions (fr) (x) used as reference functions in 
n 

INTIME, all integrals performed in MAXIME will be exact. If not, 

errors on integrations are just reduced by the use of reference 

functions. 

To obtain the integral Y(a) of the function y(x,a), the routine 

NORME can be called with the parameters in a transfer vector. NORME 

will perform summations of the type given by (111.2.2). The result 

will be exact for all linear combinations of the reference functions, 

i.e. , 

( 
Y(a) = J y(x,a) dx"" 

Nint 
L: st.e y (x£,a) 

£=1 

if I al happens to be such that .for all Ix I' s 

y(x,a) = L: 
n 

c (fr) (x). 
n n· 

(111.2.3) 

(111.2.4) 

If (111.2.4) is not satisfied, the output of NORME by (II1.2.3) 

is still an estimation for the integral Y. 

It should be noticed that NORME, just like MAXIME, uses the 

vector IPI of (1.3.1) containing variable and constant parameters and 

not lal. Therefore, to get integrals of ywhen the constant parameters 

are changed, one just changes the constant parameter in Ipl before 

calling NORME. 

Sometimes not only the integral Y( a) is wanted but also its 
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derivatives H(a) with respect to lal, as defined by (11.2.5:. For this 

purpose, the routine ENORME may be called, which also performs sum-

mations of the type (111.2.2) by using for f(xt ) the values.y(xt,a) 

andthe-ValUesh*j(X
t

) as defined in Section (11.3). The summation 

* with y(x,a) gives Y(a) and the summation over h j(xt ) gives 

* 'V I HI = (DA) I H I. (r:tI.2.5) 

After the summation is finished, the routine performs the division of 

* 'V I H I by the matrix DA and retUrns 

IHI = (DA)-lIHf*. (III. 2.6) 

3. Generation of Integration Points by INTI:ME 

The coordinates of every integration point are generated by the 

secondary routine GETUM2. Versions of GETUM2 exist that generate 

points representing interacting particles by using a Monte Carlo 

technique. other versions of GETUM2 can be programmed for other appli-

cations or to replace the Monte Carlo technique. We describe here the 

action of INTI:ME only when supplied with a GETUM2 using Monte Carlo 

technique. 

In addition to the coordinates, GETUM2 provides a temporary weight 

nt(o) that is inversely proportional to the local density of points. 

DO:ME is then called. There, the user can reject the point to restrict 

the domain of integration. If DO:ME keeps the point, it must also return 

the vector Ixli in a convenient format for future use inHU:ME to com-
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If no special secondary routine FLAME is programmed, all INTI ME 

does isto store the vector Ix I.e and give the event a definitive 

weight n£ equal to 

n (0) 
£ 

Nintn (0) 
£=1 .g 

(111.3.1) 

where Nint is the number of points retained in DOME. The normalization 

of the weights expressed by (111.3.1) will make the functions w inde-

pendent of the nuniber of fake events produced, except for the fluctua-

tions in the Monte Carlo generation. 

If reference functions are to be used, bowever, a routine FLNill 

has to be written that returns the value of the Nref functions (fr)n(x.e) 

for each point IXI£. After the generation is over, FLAME must return 

the N f values of their integral Fr. Using vectorial notation, re n 

I Fr I =J Ifrl (x) dx. (III. 3.2) 

INTI ME performs the following computation: 

Nint 
D == L 

£=1 

Nint 
L 

£ =1 

()n(o_) If I ( ) 
H,r, r x.e' 

( {)n(0))2 () I""' ( ) 
",r, Ifrl x£ frl x.e' (III. 3.4) 

• 



f 
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'V -1 IFrI D IFrl 
cfr 

= 
I~I -1 IFrl D 

(III. 3.5) 

Iql = D-l IFrl -1 
- cfr D lil1rl. (III. 3 .6) 

Then .INTlME goes over the integration points again and .corrects 

their weights, giving the £th point a new weight n£ that will be used 

in the future integrations: 

(III.3.7) 

If a function f(x) is a linear combination of the functions ( fr) (x), 
n 

'V 

f(x) = Ifrl (x) Ie I, (III. 3.8) 

where the c 's are coefficients independent of x, the result of the 
n 

surmnation (III.2.2) is the exact integral F of f: 

'V 

+Iql 
Nint 

L. 
£=1 

If f(x) is not a .linear combination of the (fr) 's, the result of 
n 

(111.2.2) depends on the rand<?mness of the Monte Carlo generation. 

However, there is an expectation value < il1 > for the quantity q, and 

it is the same whether n£ is computed with (III.3.7) or with (111.3.1) 

because 
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< ¢r > = IFrl. (III. 3.10) 

4. Histograms -- FAME and COCHIS 

Histograms involve different categories of events. ilmong the ex-

perimental events, there are the-events of category 1 whose specifica-

tions fall into the domain of the fit and there are the events of 

category 2 which fall outside but that the user wants to include in 

some histograms though not in the fit. Those histograms can be ob-

tained by calling COCHIS if proper preparation has been provided during 

the call to IMME [61. 
If displayed curves are wanted on the histograms, the same Monte 

Carlo generation that provides integration points can be used to con-

struct fake events. Actually, the Nint integration points are used as 

fake events for the histograms. They are the events of category 3, all 

falling inside the domain accepted for the fit. If the user wants more 

fake events for the histograms then he has integration points, he can 

trigger the generation of events of category 4: fake events falling 

in the domain of the fit but not accepted as integration points. 

There is a fifth category of events, the fake events that fall 

outside the domain of the fit. The events of category 5 are the fake 

events that correspond to the experimental events of category 2. 

We define N to be the number of events of categories 3 and 4 only. 
p 

They will be used with their preliminary weight (1£(0) and not their 

, 
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corrected weight Q£ (see,Section IIl.3). For types 3, 4, and 20, the 

normalization factor C is computed from a summation over the Nint 
p 

events of category 3 and another summation over the N events of 
p 

categories 3 and 4. 

Nint 
L: Q£ 

£=1 C - Np (111.4.1) p 
(0 ) 

L: Q£ 
£=1 

To get the fitted curve displayed on the histograms, FAME must 

be called with the parameters I al in the transfer vector. Then, Fr'\ME 

will give each event of categories 3, 4, and 5 a new weight 

/ 

Q £ = Q (0) 
.e 

(III. 4 • 2) 

where the value for y (lxl.e,lal) will be obtained by calling RUME with 

Ixl.e and lal in the transfer vector. If COCRlS is called next, it will 
/ 

histogram the points Ix I.e with the weights Q .eto represent the fitted 

curve along with the experimental events. 

For types 11,12,13, and 14, y (lxl,la\) represents only the 

shape of the distribution and was fitted independently of the normali-

zation. Therefore, the factor C used by FAME in (111.4.2) is not 
p 

(111.4.1) but, instead, 
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, Nint 
L: 0,£ Wt £=1 Cp Np Y(o:) (IIL4.3) 

L: 0, (0) 

£=1 £' 

where W
t 

is the sum of the weights of the experimental events as in 

'(ILl.8) and Y(o:) is the integral of y (x,o:). For types 12, 13, and 

14, Wi at the last step of the fit is Y(o:). ,FAME will use the value 

w. stored there. For type 11 the value of w. must be filled by the 
1 1 

I 
user with the proper value of Y. If the user does not know it he can 

call NORME to find out~ 

The user may want to display histograms with curves corresponding 

to parameters I a I different from the value 10:1 of the last fit; Then 

he can call FAME with those parameters lal in the transfer vector. If 

only the shape of y(x,a), not its normalization, is meaningful, he 

should set the type to 11, 12, 13, or 14 and set w. to the value that 
1 

will give him the proper normalization. However, if the normalization 

of Y is meaningfUl, he should set the type to 3, 4, or 20. The co­

efficient then is going to be computed according to (III.4.1), and w. 
1 

will be irrelevant. 
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with the, Commission, or his employment with such contractor. 
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