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Incorporating Connotation of Meaning into Models of Semanic Representation:
An Application in Text Corpus Analysis

Shane T. Mueller (smueller@ara.com)
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A.R.A.Inc.
1750 Commerce Center Boulevard North
Fairborn, OH 45434 USA

Richard M. Shiffrin (shiffrin@indiana.edu)
Department of Psychological and Brain Sciences, 1101 . S0eet
Bloomington, IN 47404 USA

Abstract important aspect of our knowledge, for linguistic and non-
linguistic stimuli and for extreme and subtle cases.

Connotation of meaning is an important aspect of human se- .
mantic knowledge, and it cannot be captured in simple pro- Yet many psychological models of knowledge and concept

totype representations of concepts. Yet models of human representations and fail to capture connotation. For ei@mp
eplijdlCt Tetr_nOflyttY%ICa”y re:cy on ICtifOt?_type represefntrm;o prototype approaches typically consider information tebe
as ao statistical techniques 1or extracting meaningrure€p .
sentations from text corpora (such as LSA). We will demon- coded as a set of features, a_nd _a_ccumulate average or typical
strate how REM-II (a model of human episodic and semantic feature values across many individual events to form a com-
g‘eenfqnoorgt)rgl[lg\/tvﬁaﬁonqggﬁt'ggnoéem%féng}géoae]ed r?epéfnsfg?s%’n%e posite, ignoring systematic variation and correlation agio
'V . .
semantic representations by processing the Mindpixeptsj feature;. Such an approach is not unreasonable, becalise it a
80,000-statement GAC corpus. The success of the model at lows a rich composite of central tendency to be formed from
?e\;eloplng mear)angful %nd ContteX%_U&“ fefptfse_ntatlcinﬂﬁﬂo 4 aset of noisy individuals. But if there are consistent pate
ext Corpus provides a demonstration O € Importance an . _ .
utility of our assumptions. in _the co-occurrence of features, a prototype will not be_~ sen
sitive to them and will not be able to regenerate these distin
contextual representations. A prototype for the conceft ta
would be a concept that never occurs in the world: a vehi-
. . . ?Ie that is a mixture between a sedan and a compact car in a
Connotation of meaning has been shown to be importan :
color somewhere between yellow and green. And consider

in language learning (Corrigan, 2002), meaning dlsaml:'"gljaﬂaldding rickshaws, airport shuttles, limousine services a

tion (e.g., Swinney, 1979) and even latent emotional cdnte . i .
. . .horse-drawn carriages to the prototype: the result is yearl
(e.g., Cato et al., 2004). As a rough guide to its prevalemce i, . ; )
impossible to imagine.

English, the Merriam-Webster's Collegiate Dictionarytii1
edition (2003) contains 165,000 entries with 225,000 defini Despite the inadequacy of prototype techniques for rep-
tions. Thus, there are approximately 1.36 meanings for eacf¢senting knowledge, techniques for extracting meaningfu
word, even though homonyms are given distinct entries anfepresentations from text corpora typically use protosype
the dictionary is likely to contain large numbers of infrequs ~ For example, HAL (Burgess & Lund, 1997) uses a graded
and specialized terms with only one definition. word co-occurrence vector to represent semantic space; LSA
Connotation of meaning describes the fact that the confLandauer & Dumais, 1997) uses co-occurrences as input and

cepts we understand have multiple context-specific forfns. [PrOJeCts this information onto a lower dimensional space us
we consider linguistic concepts, extreme versions of ctano INY statistical optimization procedures similar to facioal-

tion encompass homophony, homonymy and polysemy: sinYSIS: leeW|se_, the Topics model (Griffiths & _Steyvers, 2_6)04_
gle word forms sharing multiple distinct meanings. WordsUSes & paygsuan approach to place constraints on theistatist
exhibiting these properties make connotation a challenge f €@l distribution taken by features, and as a byproduct gener
automated systems attempting to understand language, bR€S features that are often interpretable. And recemthes _
cause the context of the word must be considered in ordétnd Mewhort (2007) demonstrated that order and meaning
to understand its proper meaning. But even subtler forms ¢fan be incorporated into a composite holographic tracegusin
connotation can be important, and this importance can trar convolution/correlation process. Of these, only Joneks an
scend purely linguistic contexts. For example, consider ho Mewhort (2007) use a representation of knowledge that is not
taxi cabs in different cities and countries differ substiyt @ Simple prototype; instead they use a complex holographic
from one another. In Manhattan, a typical taxi is a ye||0\,\,representat|on in which information is distributed.

four-door sedan built by an American car company; in Mex- In order to move beyond a simple prototype knowledge
ico City, a typical taxi may be a small green compact vehi-representation, we propose that knowledge accumulates in
cle. Thus, what we are calling connotation of meaning is arthe form of feature co-occurrences. Thus, if one considers a

Keywords: episodic memory; semantic memory; text corpus
analysis
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Statements/Events

experienced exemplars of a concept, one would determine for
each pair of features how many times those features occurred He ate the hologna sandwich,
together to form a composite trace. Such a representation The ship sailed the seven seas.
maintains a set of conditional representations, and esable
each distinct meaning to be maintained independently. We |
have implemented these notions in a computational model of
human we describe next. Following this, we will demonstrate
the utility of our assumptions by allowing the model to read
text corpora and develop meaningful representations based

Example Event Encoded Features Unlikely Features

information in the text. —
[11100] [00000]
. . . ATE [40010] [10000]
REM-II: A Bayesian Model of Episodic o [ (o110 »| w0000
H . BOLOGNA [50001] [t0001]
Memory Retrieval and Semantic Knowledge SowoT 1000 (o000
Formation
REM-II (Mueller & Shiffrin, 2006) is an extension of REM
Retrieving Effectively from Memory, Shiffrin & Steyvers, Composite
Representafion Knowledge Matrix Update Knowledge

1997), a bayesian model of human episodic memory. REM-
Il was developed in to explain empirical phenomena in which

polysemous words encoded with bias would activate earlier s0003 —

memories associated with one, but not both connotations of 00000 N

the probe word. A more precise mathematical description Saoe? »[ sococia
»| SANDWICH

of the model is available in Mueller and Shiffrin (2006), but
for the present demonstrations in corpus analysis, we will
highlight three critical assumptions. First, rather tham u

ing a global optimization process to produce represenmtatio Figure 1: Basic steps performed by REM-II to process state-
gag P P P P ments in language or events in the world. (1) the physical

we _|mplement a psychological model qf sensemaking (e'g'|dent|ty of the component objects in the event activate Know
Klein, Moon, and Hoffman, 2006) that interprets events ac- .
: ) dge structures and (2) generates traces by samplingdsatur

cording to its knowledge and grows knowledge because o 2
I?) These traces are compared to the base rate distribution

those events. The second assumption is related to a result : hich kel h h
the corpus techniques described earlier: words that arie sim 0 determine whic are uniikely to ave occurred by ¢ ance.
' (4) Then, a composite representation of the local semantic

lar to one another tend to appear in close proximity. We as-

. . i c[ontext is formed from these unlikely features, and (5) a co-
sume that the opposite relation holds as well: concepts tha o . .
occurrence matrix is formed from that composite repreagnti

appear in the same context grow more similar because of th't%e features that occurred together in the current con(éxt.

co-occurrence. And finally, we assume (as discussed befora . ) = . )
. Finally, this composite matrix is added back into the sefcant
that knowledge accrues as feature co-occurrences, egablin

: . knowledge matrix for each word in the event.
connotation and contextual meaning to be represented. The 9
basic steps involved in allowing REM-II to interpret a sen-

tence of text is shown in Figure 1.

In REM-II, an event consists of a set of concepts that occuf€ current semantic context, at first by sampling a feature
at the same time and place. In the context of corpus analysi§0m the current context, selecting that row in the knowkedg
we treat each individual sentence or statement as a distinfatrix and sampling a feature from the selected row. We as-
event. An episode is formed through a “Sensemaking” prosume that greater_study_tlme would a”OW-more features to be
cess by which each event is interpreted through past knowfampled, generating a richer representation of the concept
edge, and is represented as a set of features that weretpresenin the original REM model, memory matches are com-
in the event. In contrast to this flat representation, seimant puted by computing a likelihood ratio based on a probalhilist
knowledge of a concept is maintained as a symmetric matrixnodel of memory encoding. The model assumes that a fea-
that encodes the co-occurrence of features within indalidu tures can appear in a memory trace either because they are
events. Each row of that matrix keeps track of a prototype ofvere correctly encoded, or because an error was made. The
a conditional representation of that concept, conditiomed distribution of errors is assumed to follow the base rate of
the presence of each feature. features in the environment, and so for any memory probe,

To encode a new episode, we assume that the proper sene can compute the probability that it “matches” an episodi
mantic knowledge matrix is identified based on perceptuatrace by computing the likelihood that the trace arose fitwen t
and contextual information. The model then samples addimemory structure associated with the probe. When events are
tional features from the knowledge matrix to enhance anancoded, we go through a similar process to determine which
give meaning to the representation. Sampling is biased bgncoded features are important carriers of the unique-infor
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Grz‘;?sgd\i’cefﬁcsoﬁif;fka Non E:\?v;?g;u‘[rzgévgg’rds look like: A1A3P1A2A1P1.BJ_B3P2P28182P2. The model

made 5000 iterations through each of four sentence types
(A,P,A,P,,B,P1,A P), at which point we determined that
the representations had converged to be highly similarimvith
each meaning set, and the two polysemous words had also
converged to nearly identical representations.

* Growpa o word4 We were especially interested in whether the representa-
v Group B v Word 8 . .
tions of the polysemous words would indeed keep the mean-
olysermous Word % polysemous Word § ings associated with the distinct contexts separate, othehe

the representation would simply converge to an average of
the two contexts. To test this, we used probabilistic encod-
ing process described earlier to generate biased and edbias
episodic traces from different words in this small corpus. T
encode an unbiased representation, a row is initially sam-
pled unconditionally from the base rate distribution, and a
feature is sampled from that row, but for following samples
row are chosen probabilistically from the he representatio
Figure 2: MDS solution for biased and unbiased episodes erpeing built. We encoded 100 unbiased episodes from group
coded from each meaning group and from the two polyseA, group B, and the two polysemous words, and 100 biased
mous words. episodes from the two polysemous words, biased by “A’ or
“B” contexts. Once encoded, we computed a distance matrix
Quer the complete set of sampled episodes by calculating the
root-mean-square deviation between episodes normalized t
gum to 1.0. We then submitted this distance matrix to a single
ulti-dimensional scaling (MDS) solution using theoMDS

mation about the episode. For each encoded trace, we co
pare its distribution to the base rate distribution of feasu
across the entire history of the model. Only those feature

with density greater than expected by chance are selected. ;R i fthe R statistical tin | We pre
co-occurrence matrix is formed from the outer product of the unction ottne = statistical computing fanguage. We presen
he data from the global MDS solution in multiple panels of

index features, and this co-occurrence matrix is added back.

into the semantic knowledge matrix for each concept occur- '%‘rezm ars|5|fs:[t V|snua|1I|z]:':1"t:|;)n.r 2 shows that unbiased en
fing in the episode. e upper left panel of Figure 2 shows that unbiased en-

Although this is a model of the interpretation of events andc.Odlng of pure A or B worc_is segregate n the space, with
) ittle overlap. At the same time, unbiased episodes encoded
formation of knowledge from those events, we have foun

) : ) . from the two polysemous words (upper right panel) cover the
that it can go beyond modeling simple laboratory experlmenentire space and are indistinguishible from one anothemn(ev

tal situations, and be deployed on meaningful text to Iearr%hough they never appeared together). When episodes were

usefu! representations. In the_ remglnde_r of the paper, e wi ncoded from the polysemous words biased by either A or B
describe several demonstrations in which the model was aE

lowed to read a corpus of text and develop semantic represe jower panels) the resulting episodes clustered in theespac

tations based on the co-occurrence patterns in the text. corresponding to unbiased encodings of words from those

two groups. Thus the two polysemous words which appeared
Application: Text Corpus Analysis in two distinct contexts retained the information sepdyate

) and appropriate versions of these traces could be extracted
Ifthe assumptions of REM-Il are accurate, we should be ablgsing a biased encoding process.

to present information to the model and have it grow represen

tations that produce natural semantic spaces. We firsttestdéemonstration 2: “Fly” Subset of the GAC Corpus

some of the assumptions using a small hand-generated caie next attempted to scale up the model to a larger naturally-
pus. We then scaled the model to a large targeted corpus, aa@curring corpus. To increase the efficiency of the learning
finally to a broad corpus of knowledge. Results from eachprocess, we replaced the sampling process used to generate
demonstration are described below. an episodic trace in Demonstration 1 with the probabilistic
computation of the expected distribution. This is simply a
weighted sum of a normalized context vector and a normal-
We began with a small toy corpus generated with sim-ized knowledge matrix. This was compared to the base rate
ple probabilistic rules. The corpus contained eight dis-distribution for features, and only unlikely features weee
tinct words with two sets of three words that tended tolected, and so this remained a fairly similar process, but in
appear together, and two polysemous words that appear@deased the efficiency of the process substantially.

with each set but not together. So, Af B and P de- We attempted to identify a text corpus which could pro-
note whether a word was from Set A, B, or a polyse-vide fairly dense information, to reduce the processing re-
mous word, a typical automatically set of sentences mightjuirements for this exploratory project. One of the better

Demonstration 1: Small Polysemous Corpus
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Figure 3: Results of Demonstration 2: An MDS solution, agggoative hierarchical clustering tree, and visual depictf
similarity matrix for words related to three connotatiorsfty”.

sources we identified was a corpus produced by the Mind-

pixel project. The Mindpixel project was an internet-based
Similarity of conditional representations of FLY collaborative project to generate verifiable statementsitib
the world. Users submitted statements or questions about
the world (e.g., “Is a dog is a mammal?” and other users
o would verify if the statement was correct. Each such state-
y ment was considered a “mindpixel”. The project began in the
year 2000, and had putatively collected 1.4 million “mind-
pixels” by 2004, in a database called GAC (General Artificial
2 Consciousness). Although the project appears to have been
) abandoned with the death of its founder in 2006, a database
of 80,000 verified statements was released on the interreet. W
view these statements as a rich yet broad source of semantic

B 20 content that could be used by our REM-II model to grow rep-

7 n resentations resembling human knowledge.

4 We have found that when the model is applied to typical
. p text corpora, common function words which appear in many
% contexts end up developing representations that reseimnble t
® base rate distribution substantially, and so their infdromes
b 10 filtered out’ by the likelihood comparison process. Thums, i
4 i order to further increase the speed of the algorithm, we per-
formed some simple pre-processing to the GAC corpus, elim-
inating common function words and mapping distinct word
forms onto the same base word according to the lemmas in
the CELEX database. As a result of this preprocessing, the
‘ ‘ ‘ 80,000 statement corpus containing approximately 660,000
AIRPLANE BIRD INSECT tokens and 29,000 unique words was reduced to 78,745 state-
word ments containing 269,000 tokens and 11,859 unique words.

Our initial target for corpus analysis was a subset of the
Figure 4: Dissimilarity of each conditional representattd =~ GAC corpus: statements which contained either the word
“fly” to three key words: “airplane”, “bird”, and “insect”. “fly” or one of its close associates (e.g., airplane, birdeitt,
Each conditional representation is indicated by the index o€tc.). This resulted in 3992 statements containing a tdtal o
the feature used to form the conditional representation. Rel5,583 tokens and 2907 unique words. To monitor progress,
sults demonstrate that the matrix representation segregatWe selected 16 words in three groups describing three con-

meanings related to each context, enabling connotation arfgPtations of “fly”: the word fly, words related to insects,-air
polysemy to emerge. planes, and birds. We used 25 features as a basis for the rep-

resentation. Reasonable representations for these 16 word
developed fairly quickly, but the meaning groups continued

Distance
0.10 0.15 0.20 0.25 0.30 0.35
I I I I I I
&
=2

0.05
|

0.00
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to develop over more than 100 consecutive readings of the
text. We computed a similarity matrix across the 16 words, & travel
and show three methods for visualizing it in Figure 3. On
the left, an MDS solution shows that the word “fly” is in the & | ks
center of the space, and the three different meanings clus-
ter together in three corners of the space. The center panel. wine  “beer
shows how an agglomerative hierarchical clustering smiuti car
tends to cluster the like words together. Finally, the mgbst ; cat animal drive
panel shows the pairwise similarity between each word, with ~
darker entries indicating greater similarity. These sohd
compared favorably to the ones produced by LSA using the
TASA corpus ( = .584), and the solution produced by LSA
on the exact same GAC corpus= .403). In fact, the REM
solution was more similar to both LSA solutions than they
were to one another & .202). Figure 5: Multi-dimensional scaling solution for four clus
ters of four words, based on REM-II learning of the complete
These graphical visualizations show that REM-II placedGAC corpus. Semantically similar words tend to cluster in
“fly” and its semantic neighbors into a reasonable semanti§imilar regions of space.
space, with related subsets of words clustering together an
“fly” being somewhat similar to all concepts. Yet such a phe- . ]
nomenon could occur even if a prototypg representatioﬁ Wa@emonstratlon 3: Complete GAC Corpus
used. To determine whether the representation of “fly” confinally, we wanted to demonstrate that the model could be
tains conditional representations that segregate thdfge-di Used to learn representations of wider knowledge in the com-
ent meanings, we examined each row of the matrix represertlete GAC corpus. In this demonstration, we used 40 fea-
tation. Recall that each row (or column) of a co-occurrencdures, and allowed the model to read the complete 80,000-
matrix can be interpreted as a conditional representatmn, ~ Statement database multiple times, randomizing the orider o
ditioned on the presence of a specific feature. For the 25 fedhe statements between each pass, and monitoring the inter-
tures in this demonstration, there were thus 25 conditionanediate solutions.
representations for “fly”. We examined each of these in turn, To assess whether the representations of different words
comparing them to the composite representations for “airhumans judge as similar grow similar to one another, we se-
plane”, “bird”, and “insect” using a root-mean-square devi lected 16 high frequency words in four target areas to monito
ation over normalized vectors. This produced 25 distanc@s the representations grew. These included: pet, catadeg,
scores for each comparison word, which are all shown in Figimal, child, baby, father, mother, travel, car, drive, flgeb,
ure 4, denoted by the index of each feature. tea, coffee, and wine. A multi-dimensional scaling solatio
for these target words is shown in Figure 5 after twelve passe
This analysis reveals several things. Similar to Figuré 2, ithrough the database. Semantically similar words tended to
shows that conditional representations of “fly” are on agera cluster together, with the curious exception of the word™fly
closer to the word “bird” than “airplane” or “insect”, and-al This apparent anomaly was completely unrelated to its role i
though several are close to “airplane”, none are very close tthe earlier analysis.
“insect”. Additionally, representations that were closédir- Considering just the 16 target words, REM-1l was able to
plane” tended to be farther from “bird” and “insect’. Over- produce between-word similarities that compared well with
all, the dissimilarity of conditional representations @if“to  those produced by LSA on the large TASA corpus-(.439),
“airplane” was negatively correlated with the dissimiles  in ways similar to that produced by LSA on the same GAC
of “fly” to “bird” ( r = —.5) and insectr(= —.8), whereas the corpus ( = .459). The between-word similarities from REM-
dissimilarities of “fly” to “bird” was slightly positively orre- 1l and LSA analyses of the GAC corpus were also correlated,
lated with those of “fly” to “insect” R=.17). This indicates but to a lesser extent & .324). The dissimilarity matrices
that several of the features (e.g., 4, 9, 13, and 17) in “fly”for these three analyses are depicted visually in Figure 6.
tended to encode an “airplane” connotation, whereas others Finally, because the analysis was completed for a larger
(e.g., 10, 12, 21, 22) tended to encode “bird” or “insect”-con corpus with approximately 29,000 words, we are able to gen-
notations. The features of “airplane” that had the greatesgrate similarity-based queries and evaluate their fitneab-g
densities were 4,9,10, 13, 17, 18, and 22, and the featurdatively. To demonstrate, we present the closest ten repres
of “bird” that had the greatest densities were 10, 12, 14, 18tations to a variety of key probes in Table 1.
21, and 22, which maps closely onto those conditional repre- . )
sentations of “fly” that were similar to the each word. Inter- Discussion
estingly, the two connotations of “fly” appear to map onto aln this paper, we have shown how a model of human memory
natural/man-made distinction fairly nicely. can be deployed to grow the same types of representations
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Figure 6: Depiction of dissimilarity matrices for sixteeardet words, created using REM-II on the GAC corpus (leftghan
LSA on the TASA corpus (middle panel), and LSA on the GAC carfrightmost panel)

Table 1: Ten most similar words to eight probes.

color food europe man fly fire car earth animal
color food europe man fly fire car earth animal
blue eat italy woman flap match drive around breath
violet cereal locate physically airplane flame motorcycldose worm
combination rice portugal strong air touch ride spin predat
red regularly rome attractive  plane start driving mars lgua
orange restaurant germany virgin balloon wise automobiléanet human
primary hamburger belgium average lighter  term form sun elligent
yellow mouth music naked african  off move spherical eat
combine order spain crave pop hot vehicle rotate curious
purple usually japan reach fan lightbulb  consume moon i

that statistical corpus analysis techniques can prodube. T Griffiths, T. & Steyvers, M. (2004). Finding Scientific TopidPro-

success demonstrated here shows that the psychological asﬁeezdgl%%ssgf the National Academy of Sciences, 101 (suppl. 1),
sumptions we based the model on are sufficient to develogones, M. N. & Mewhort, D. J. K. (2007). Representing word mea

rich knowledge representations, providing a clear demmanst  ing and order information in a composite holographic lerico
tion of the conference theme: “CogSci in the Real World”. By & ychological Review, 114,123 7. i
. g - BYKlein, G. Moon, B., and Hoffman, R. R. (2006). Making Sense
taking our psychological model out of the laboratory and al- of Sensemaking 2: A Macrocognitive modelEEE Intelligent
i i ; ems, 21, 88-92.
lowing it to learn from natural artifacts, we are able to demo La%%uer, T'K.. & Dumais, S. T. (1997) A solution to Plato’s
strate the utility of the model, and at the same time create a problem: The Latent Semantic Analysis theory of acquisitin-

tool that can be useful for automated processing and irgerpr ggztig?,laggorepresentation of knowled@sychological Review,
tation of text. By taking these psychological processes angherriam-Webster's Collegiate Dictionary, 11th Ed. (2003pring-

representations seriously, we believe that new and more ir|1\;I fielfd, I\/éA:TMgrgérl]r.?f-WE%St%, |n20006 REM-II: A Model of th
telligent tools can be developed for a range of applications usten o - ifirin, R. M. ( ) o oce o e

J developmental co-evolution of episodic memory and seroanti
knowledge management and understanding. knowledge. Paper presented at the International Conference on

Learni r&g and Devel opment S{/ICDLZ)’ Bloomington, IN, June, 2006.

. M. & Steyvers, M. (1997). A model for recognitio
memory: REM-retrieving effectively from memoryPsycho-
nomic Bulletin and Review, 4, 141-166. )

Lexical access during sentence cempr
hension: (Re)consideration of context effeclsurnal of Verbal
Learning and Verbal Behavior, 18, 645—659.
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