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Abstract
Cardiovascular disease (CVD) is the leading cause of death and the prevalence of CVD dramatically increases with age.
Cardiac aging is associated with hypertrophy, fibrosis, inflammation, and decreased contractility. Autophagy, a bulk
degradation/recycling system, is essential to maintain cellular homeostasis. Cardiac autophagy is decreased with age, and
misfolded proteins and dysfunctional mitochondria are accumulated in the aging heart. Inhibition of autophagy leads to
exacerbated cardiac aging, while stimulation of autophagy improves cardiac function and also increases lifespan in
many organisms. Thus autophagy represents a potential therapeutic target for aging-related cardiac dysfunction. This review
discusses recent progress in our understanding of the role and regulation of autophagy in the aging heart.

Facts

● Cardiac aging is associated with hypertrophy, fibrosis,
inflammation, and contractile dysfunction.

● Autophagy declines in the heart during aging in which
enlarged and dysfunctional mitochondria and protein
aggregates are accumulated.

● Intracellular signaling alterations (e.g., mTORC1,
AMPK, and Sirt1) underlie the decline of autophagy
in the aging heart.

● Rapamycin and caloric restriction stimulate autophagy
and prolong lifespan in many organisms.

Open questions

● How are mitochondrial dynamics and mitophagy
regulated in the course of aging?

● How does the NLRP3 inflammasome in the heart
contribute to aging-associated cardiac dysfunction
through regulation of autophagy?

● What purpose do alterations in metabolic substrate
utilization serve in the aging heart?

Cardiac aging: main features and underlying
processes

Cardiovascular disease (CVD) is the main cause of mor-
bidity and mortality and the prevalence increases dramati-
cally with age. The prevalence of heart failure in the young
adult population (20–39 years old) is less than 1%, but this
rises to ~15% among persons 80 years or older [1]. Aging
results in progressive deterioration in the structure and
function of the heart. More specifically, aging induces
hypertrophy, fibrosis, inflammation and contractile dys-
function in the heart (Fig. 1). The heart is a high-energy
demanding organ and cardiac tissue is rich in mitochondria,
accounting for ~35% of cardiomyocyte volume [2]. With
stress, mitochondria become damaged, and release reactive
oxygen species (ROS), as well as molecules such as cyto-
chrome c which induce necrotic and apoptotic cell death. In
the aging heart, there are abnormalities in mitochondrial
function and structure: less ATP production, increased ROS
generation, enlargement (often referred to as “giant mito-
chondria”), loss of cristae, matrix derangement and accu-
mulation of mitochondrial DNA (mtDNA) mutations [3, 4].
The two major sources of cellular ROS are the membrane-
associated NADPH oxidase (NOX/DUOX enzymes) and
the mitochondria. In cardiomyocytes, mitochondria are the
major source of ROS. ROS is constantly produced by
mitochondria as a by-product of respiration and this is
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counterbalanced by anti-oxidant molecules glutathione and
superoxide dismutases. Although low levels of ROS play a
physiological signaling role, excessive ROS production is
deleterious [5]. Aberrant increase in ROS is mediated by
dysfunctional mitochondria and this causes further damage
to mitochondria, inducing oxidation-dependent inhibition of
mitochondrial proteins, mtDNA mutation and opening of
the mitochondrial permeability transition pore and resultant
cell death [6]. Oxidative stress also leads to accumulation of
protein aggregates, a hallmark of most aging-related dis-
eases. Lipofuscin (aging pigment) [7] is a electron-dense,
auto-fluorescent material that accumulates progressively
with aging and exhibits cytotoxicity. Advanced glycation
end products (AGEs) are produced by glycation, a post-
translational modification of proteins, in the cell or in the
extracellular space and accumulate with aging [8]. AGEs
have been suggested to bind to their receptor (receptor for
AGEs: RAGE) to induce oxidative stress, inflammation, and
extracellular matrix accumulation. RAGE also functions as a
receptor for HMGB1 (High Mobility Group Box 1) released
from necrotic cells to initiate inflammatory responses [9].
Inflammation is increasingly recognized as an important
contributor to the progression of heart failure through
inducing apoptosis, fibrosis and contractile dysfunction [10,
11], and chronic low-grade inflammation is a characteristic
of the aging process (inflammaging) [12] (Fig. 1). Elevated
interleukin-1β (IL-1β), IL-18, and IL-6 expression has been
observed in the elderly [13, 14] and recent studies suggest a
causative role of inflammation in accelerated aging [10, 15].
IL-1β and IL-18 are potent pro-inflammatory cytokines,
produced by caspase-1 activated by inflammasomes,

including NLR family pyrin domain containing 3 (NLRP3)
inflammasome. Aging is associated with an increased fre-
quency of somatic mutations in hematopoietic cells and a
recent study demonstrated that clonal expansion of Tet2 (tet
methylcytosine dioxygenase 2, an epigenetic regulator)
mutant hematopoietic cells contributes to adverse cardiac
remodeling through NLRP3-mediated IL-1β overproduction
[16]. Telomere shortening is also an aging-related genomic
change in somatic cells and there exists a correlation
between intrinsic epigenetic aging and telomere length [17].
In addition to cell division, factors causing telomere short-
ening include DNA damage, inflammation, and oxidative
stress, thus telomere shortening has been suggested to
contribute to cardiac dysfunction with age [16, 18].

Adult cardiomyocytes have a limited capacity to pro-
liferate and regenerate thus cellular quality control is critical
in prevention of cardiomyocyte death and cardiac dys-
function. Nutritional and pharmacological interventions that
activate autophagy have been demonstrated to increase
longevity in organisms ranging from yeast to mammals.
This review summarizes recent advances in understanding
the role and regulation of autophagy in the aging heart.

Mechanism of autophagy

The term “autophagy (self-eating” in Greek)” was coined by
Christian De Duve in 1963 [19], who also discovered the
lysosome. Autophagy is a highly conserved and regulated
process, and governed by a series of autophagy-related
(ATG) genes, initially discovered in yeast by pioneering
researchers, such as Drs. Yoshinori Ohsumi, Michael
Thumm, and Daniel Klionsky [20]. There are three types of
autophagy: microautophagy, chaperone-mediated autop-
hagy, and macroautophagy. In this review, we focus on
macroautophagy (hereafter referred to as autophagy).
Autophagy is a lysosomal degradation process. This self-
digestion process was initially considered as a cell death
mechanism (type II programmed cell death) and indeed
excessive autophagy triggers a specific form of cell death,
termed autosis (reviewed by Kriel and Loos in this issue
[21]). The molecular and functional interaction between
autophagy and apoptosis has been demonstrated, as
reviewed by Denton and Kumar in this issue [22]. On the
contrary, autophagy can also play an important role in
cellular homeostasis under basal conditions, as well as serve
as a protective mechanism against stresses by eliminating
misfolded proteins and damaged organelles including
mitochondria, as well as providing nutrients and energy
through degradation of the autophagic cargo [23]. Regula-
tion of autophagy has been suggested to be a potential target
for the prevention or treatment of diseases (see review
articles in this issue [24–26]). Autophagy consists of several

Fig. 1 Characteristics of cardiac aging. Cardiac aging is characterized
by functional, structural, cellular, and molecular changes: left ven-
tricular hypertrophy, contractile dysfunction, increased apoptosis and
cardiac fibrosis, accumulation of dysfunctional and enlarged “giant”
mitochondria, increased chronic inflammation (inflammaging) and
accumulation of protein aggregates
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sequential steps–initiation, membrane nucleation, elonga-
tion for autophagosome formation (maturation) and fusion
with lysosomes (autophagolysosome) (Fig. 2). Unc-51 like
autophagy activating kinase 1 (ULK1/ATG1), a serine/
threonine kinase, plays an essential role in the initiation of
autophagy. ULK1 activity is negatively regulated by
mechanistic (mammalian) target of rapamycin (mTOR).
mTOR complex 1 (mTORC1), which contains mTOR and
regulatory-associated protein of mTOR (Raptor), phos-
phorylates and inhibits ULK1, inhibiting autophagy
[27, 28]. ULK1 activity is positively regulated by AMP-
activated protein kinase (AMPK), a sensor for metabolic
suppression. The ULK1 molecular complex containing
ATG13, ATG101, and FIP200, in turn, increases activity of
VPS34, a class III phosphatidylinositol 3-kinase (PI3K),
that forms a molecular complex with several components of
the autophagy machinery including Beclin1, VPS15, and
ATG14L. Beclin1 undergoes multiple layers of positive and
negative regulation, serving as a molecular rheostat, as
reviewed by Rubinsztein in this issue [29]. Activation of the
VPS34 complex initiates nucleation of the isolation mem-
brane and maturation of autophagosome is regulated by the
ubiquitin-like conjugation system, the ATG7, ATG3, and
the ATG12-ATG5-ATG16L1 complex mediated LC3-
phosphatidylethanolamine (PE) conjugation system. Sub-
sequent fusion of autophagosome with lysosome results in
formation of the autophagolysosome where cellular cargo is
degraded [30]. A recent study demonstrated that ULK1
regulates not only the initiation step but also fusion with
lysosome [31]. For further details regarding the molecular

basis of autophagosome and autophagolysosome formation,
please refer to previous review articles [30, 32, 33].

Mitochondrial quality control is fundamentally important
in the preservation of cellular integrity thus there exists a
process for selective elimination of damaged mitochondria
by autophagy (mitophagy) [34]. The means by which
damaged (vs. healthy) mitochondria are selected for
mitophagic removal is largely attributed to their specific
tagging for recognition by autophagosomes. One of
the most well-characterized mechanisms of tagging
damaged mitochondria is the mitochondrial membrane
depolarization-dependent PINK1 (PTEN-induced putative
kinase 1)/Parkin pathway. PINK1, a mitochondrial serine/
threonine protein kinase, undergoes constant degradation at
healthy mitochondria but accumulates upon mitochondrial
membrane depolarization and recruits Parkin to damaged
mitochondria through phosphorylation of Parkin, mitofusin-
2 and ubiquitin [35, 36]. Parkin in turn ubiquitinates
mitochondrial proteins, tagging them for mitophagy [34].
Ubiquitinated mitochondrial proteins are recognized by the
ubiquitin-binding adaptor proteins including p62/sequesto-
some 1, optineurin and nuclear dot protein 52 (NDP52),
which interacts with LC3-II on the autophagosome mem-
brane, and consequently engulfed and degraded [35, 37].
PINK1 also directly recruits optineurin and NDP52 through
phosphorylation of ubiquitin independently of Parkin [38].
Ubiquitin-independent mechanisms also exist, whereby
BCL2 Interacting Protein 3 (BNIP3), NIX/BNIP3L,
BCL2L13, cardiolipin and FUN14 domain containing 1
(FUNDC1) function as LC3-II receptors, targeting damaged

Fig. 2 Autophagy consists of several sequential steps: initiation,
nucleation, elongation and fusion. Unc-51 like autophagy activating
kinase 1 (ULK1/ATG1) complex plays an essential role in inducing
autophagy by initiating the autophagosome formation. ULK1
activity is positively regulated by AMP-activated protein kinase
(AMPK) and negatively regulated by mechanistic (mammalian)

target of rapamycin (mTOR) complex 1 (mTORC1). mTORC1 is
activated by the PI3K/Akt pathway to inhibit ULK1. Cytoplasmic
components and damaged organelles are engulfed by double-
membrane autophagosomes which subsequently fuse with lyso-
somes (autophagolysosomes) for degradation
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mitochondria for autophagosomal engulfment and sub-
sequent clearance [39].

Autophagy in the aging heart

Autophagic degradation is established to play a crucial role
in preservation of cardiac function against aging. For
instance, Atg5-deficiency in the mouse heart induces age-
related cardiomyopathy [40]. In contrast, Atg5 over-
expression in mice extends lifespan through activation of
autophagy [41]. A recent paper also demonstrated that
disruption of the Beclin1-Bcl2 complex, a molecular com-
plex that inhibits initiation of membrane nucleation,
increases autophagy and inhibits age-induced apoptotic cell
death, cardiac hypertrophy and fibrosis, delaying cardiac
aging [42]. Mitophagy has also been suggested to be pro-
tective against aging. PINK1 knockout (KO) mice show
age-dependent impairment of mitochondrial respiration and
increased numbers of larger mitochondria in the cortex [43].
Parkin deficient mice accumulate abnormal mitochondria in
the heart as they age [44] and Parkin transgenic mice show
increased mitophagy and are resistant to cardiac aging,
ameliorating the cardiac functional decline and decreasing
cellular senescence and inflammation [45]. These seminal
studies suggest that stimulation of autophagy can function
as an anti-aging mechanism. However, it is generally
accepted that autophagy and mitophagy decline with age in
many tissues including the heart [40, 42, 45–47]. The
mechanisms by which autophagy is reduced with age
appear to be highly complex and remain still elusive. In the
following section, we discuss the intracellular signaling
mechanisms by which autophagic clearance is declined in
the aging heart and potential targets to control cardiac
autophagy (Fig. 3).

Molecular pathways controlling autophagy
in the aging heart

IGF-1/Akt pathway

Akt is activated by growth factors including insulin-like
growth factor 1 (IGF-1) and promotes cellular proliferation
and growth. In the heart, IGF-1/Akt signaling axis provides
strong protection against acute oxidative stress such as
ischemia/reperfusion (I/R) and also contributes to develop-
ment of physiological hypertrophy [48, 49]. However,
somewhat paradoxically, it seems evident that IGF-1/Akt
pathway negatively regulates aging and lifespan, suggesting
that growth-promoting Akt pathway and self-digestive
autophagic pathway could serve distinct homeostatic roles
in different settings. Plasma IGF-1 levels show an inverse

correlation with a median lifespan in mice [50] and this is
also the case in human; low IGF-1 levels predict life
expectancy in exceptionally long-lived individuals [51]. Akt
is a major upstream activator of mTOR thus it inhibits
autophagy (Fig. 3) and activity of Akt is increased in the old
mouse heart [47, 52, 53]. Deletion of IGF-1 receptors and
suppression of PI3K, an upstream kinase of Akt, prevent
cardiac aging in mice with enhanced autophagy [52, 54].
Moreover, ablation of Akt2, an isoform of Akt, recovers the
level of autophagy in the aging heart and attenuates cardiac
aging [55], while Akt overexpression in the heart enhances
age-induced decrease in autophagy and exacerbates
cardiac aging, such as hypertrophy, fibrosis and contractile
dysfunction [53]. Together, these findings suggest
that inhibition of IGF-1/Akt signaling promotes autophagy
and provides protection against aging-induced cardiac
dysfunction.

mTORC1

In line with increased Akt activity, mTORC1 activity has
been shown to be increased with age in the mouse heart
[47, 53] and in the heart of a mouse model of progeria [56],
although it could be sex-dependent and tissue-dependent
[57]. Interestingly, gene expression of Raptor, the defining
component of mTORC1 (vs. mTORC2) is lower, but that of
proline-rich Akt substrate of 40 kDa (PRAS40), an inhibi-
tory binding protein of mTORC1, is higher in non-
agenarians, implicating an inverse relationship between
mTORC1 pathway and longevity in human [58]. Thus,
aberrant activation of mTORC1 contributes to the decreased
levels of autophagy in the aging heart (Fig. 3). This is also
supported by the findings that genetic and pharmacological
inhibition of mTOR increases autophagy and extends
lifespan in many organisms and ameliorates cardiac dys-
function with aging [59]. More specifically, rapamycin, a
mTORC1 inhibitor, reverses the pre-existing age-dependent
cardiac hypertrophy and diastolic dysfunction in mice
[60, 61]. Rapamycin treatment in mice also inhibits age-
related increases in mitochondrial ROS production, mito-
chondrial protein lipoxidation and lipofuscin accumulation
[60, 62]. These salutary effects of rapamycin could be
attributed to enhanced autophagic clearance of damaged
proteins and mitochondria, but this requires further experi-
mental clarification since mTORC1 modulates a range of
cellular processes. Caloric restriction is another established
intervention that extends lifespan in many animal models, in
which mTORC1 activity is also decreased [46, 63]. Given
that mTORC1 is a key nutrient-sensing kinase, responding
to amino acids, as well as glucose [64] to inhibit autophagy
under growth conditions, it is likely that mTORC1
inhibition contributes to the anti-aging effects of caloric
restriction.
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AMPK

AMP-activated protein kinase (AMPK) is a major sensor for
metabolic suppression, activated by reduced cellular ATP
levels (increase in AMP/ATP ratio). AMPK negatively
regulates the mTORC1 pathway at multiple steps [65]. It
phosphorylates and activates tuberous sclerosis 1/2 (TSC1/
2), an upstream inhibitor of mTOR, and also phosphorylates
Raptor, both resulting in inhibition of mTORC1 [65]. In
addition, AMPK directly phosphorylates and activates
ULK1, as well as Beclin1 to induce autophagy [65].
Activity of AMPK is decreased in the aging heart [53, 66]
and AMPK deficiency exacerbates cardiac aging in mice
[67]. AMPK is also activated in the hearts of caloric
restriction mice [68]. Metformin, an anti-diabetic drug,
activates AMPK and induces autophagy. The mechanism
for metformin to activate AMPK remains unclear and
controversial. While it was generally accepted that metfor-
min inhibits the respiratory chain complex 1, leading to a
drop in cellular ATP levels and thereby activating AMPK
[69], a recent study suggests that it acts on the lysosome and

promotes the translocation of LKB1 (liver kinase B1), an
upstream kinase of AMPK, onto the surface of lysosome to
activate AMPK [70]. Nonetheless, metformin treatment
improves healthspan and lifespan in mice [71] and abro-
gates the aging-induced cardiomyocyte contractile dys-
functions [67].

FoxO and TFEB mediated gene expression

Downregulation of ATG genes could contribute to age-
related decline in autophagic and mitophagic capacity in the
heart. Genome-wide analysis in normal brain aging of
human revealed that ATG5, ATG7, and BECN1 genes are
downregulated with age [72]. Forkhead box O (FoxO) and
transcription factor EB (TFEB) are the prominent tran-
scriptional factors to positively regulate autophagy-related,
as well as lysosomal gene expression [73, 74]. FoxO1 and
FoxO3 regulate autophagic genes such as ULK1, LC3, Atg5,
Atg12, Becn1, and Bnip3 [73, 75, 76]. TFEB regulates
autophagy-related genes such as Atg4, Atg9B, and LC3 and
is also a master regulator of lysosomal biogenesis [73].

Fig. 3 Regulation of autophagy in the aging heart. Aging inhibits
autophagy through multiple mechanisms. Akt is activated by growth
factors including insulin-like growth factor 1 (IGF-1). Activity of Akt
is increased in the aging heart, leading to activation of mTORC1 and
inhibition of autophagy. AMP-activated protein kinase (AMPK)
negatively regulates mTORC1 and thus stimulates autophagy. Activity
of AMPK is decreased in the aging heart, leading to inhibition of
autophagy. Sestrin 2 downregulation contributes to the decrease in
AMPK activity. FoxO (Forkhead box O) and TFEB (transcription
factor EB) are the transcriptional factors (TFs) to positively regulate
autophagy-related, as well as lysosomal gene expression. The activity

of these TFs is diminished in the aging heart through inhibition of
sirtuin 1 (Sirt1) activity and through activation of Akt/mTORC1
pathway. Damaged mitochondria release ROS, which lead to accu-
mulation of protein aggregates, inhibition of ATG proteins and cyto-
toxicity. Impairment of mitochondrial dynamics also participates in
accumulation of damaged mitochondria. Activation of the NLRP3
inflammasome negatively regulates autophagy and contributes to
accumulation of damaged mitochondria, whereas autophagy nega-
tively regulates the NLRP3 inflammasome by removing danger sig-
nals. As a result of these cellular events, autophagic machinery
exhaustion and inhibition of autophagy are induced
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Overexpression of TFEB in the heart increases autophagic
flux and provides cardioprotection against oxidative stress
[77]. A recent study using a nanotechnology-enabled high
throughput screen discovered small molecules that activate
TFEB and enhance autophagolysosomal activity, amelior-
ating metabolic syndrome in mice and prolonging lifespan
in C. elegans [78]. Akt and mTORC1, anti-autophagic
kinases activated in the aging heart, inhibit FoxO3
and TFEB, respectively, leading to inhibition of expression
of autophagy genes [79, 80] (Fig. 3). Interestingly, recent
studies have demonstrated that Akt/FoxO and mTORC1/
TFEB pathways interplay to regulate autophagy. Akt
phosphorylates and inhibits not only FoxO but also TFEB
[81], while CARM1, a co-activator of TFEB, is stabilized
through FoxO3 activation leading to TFEB-dependent gene
expression [82]. Together, suppression of FoxO and TFEB
activity could contribute to age-dependent autophagy
decline in the heart and thus activation of these transcrip-
tional pathways would provide anti-aging effect.

Sirtuins

Sirtuins are nicotinamide adenine dinucleotide (NAD+)-
dependent deacetylases which are highly conserved from
bacteria to mammals. There are seven sirtuins in mammals
(Sirt1-Sirt7), among which Sirt1 is the most extensively
studied mammalian sirtuin. Many studies have suggested that
Sirt1 regulates autophagy and longevity [83, 84], although
there are some controversies [85]. Sirt1 expression is
decreased by age and its upregulation is suggested to be
involved in caloric restriction-induced beneficial effects
against aging [86, 87]. The level of NAD+ is also decreased
with age in many organs, because of downregulation of
nicotinamide phosphoribosyltransferase (Nampt) [88] and
this plays a causal role in suppressing Sirt1 activity and
autophagy. SRT1720 and SRT2104, Sirt1 activators, extend
lifespan in mice [89, 90] and resveratrol, a bioactive poly-
phenol in red wine, activates Sirt1 and autophagy [91].
Injection of nicotinamide mononucleotide (NMN), a product
of Nampt and precursor of NAD+, provides cardioprotection
against I/R through Sirt1 activation [92]. Moreover, moderate
levels of overexpression of Sirt1 in the heart retards aging of
the heart [83]. Mechanistically, Sirt1 deacetylates and acti-
vates FoxO family transcription factors (Fig. 3), thereby
facilitating autophagy through upregulation of Atg genes and
Rab7 [74, 75, 93], a regulator of autophagosome and
autophagolysosome maturation [32, 33]. Sirt1 localizes in the
nucleus, as well as the cytoplasm, and cytosolic Sirt1 can
also increase autophagy [91]. This could be due to Sirt1-
mediated deacetylation of ATG proteins including ATG5,
ATG7 and ATG8 [94]. The mTOR signaling pathway is also
negatively regulated by Sirt1 through its interaction with
TSC2 [95]. Altogether, Sirt1 is a promising candidate to

increase autophagy and provide cardioprotection against
aging.

Sestrin

Sestrins (Sestrin1-Sestrin3) are conserved stress-inducible
proteins that inhibit mTORC1 through activation of AMPK
and through the inhibition of GTPase-activating protein
toward Rags 2 (GATOR2), a positive regulator of mTORC1
activation at the lysosome [96, 97], thus they are involved in
the induction of autophagy (Fig. 3). Loss of Drosophila
Sestrin (dSens) results in age-associated pathologies
including mitochondrial dysfunction and cardiac malfunc-
tion in Drosophila, which are prevented by pharmacological
activation of AMPK or inhibition of mTOR [98]. Sestrin2 is
shown to increase ULK1 protein expression levels and to
induce mitophagy in macrophages [99], suggesting that
multiple mechanisms exist by which Sestrin2 enhances
autophagy. Sestrin2 is expressed in the heart and Sestrin2
KO hearts show impaired activation of AMPK in response
to ischemia and increased cardiac damage induced by I/R
[100]. Importantly, Sestrin2 protein expression is decreased
in the heart with age and Sestrin2 KO mice show increased
sensitivity to ischemic insults while overexpression of
Sestrin2 is protective in old mice [101]. Although there is
currently no pharmacological activator of Sestrins, physical
exercise increases Sestrin2 protein levels and induces
autophagy in the skeletal muscle of old mice [102].
Thus Sestrin2 upregulation could enhance autophagy in the
aging heart.

ROS dependent inhibition

Increase in damaged mitochondria and/or imbalances
between oxidative stress and antioxidant mechanisms leads
to ROS accumulation in the cell. Although oxidative stress
can oxidize and inhibit mTOR [103], sustained high levels
of ROS may lead to exhaustion of the autophagic pathways
(Fig. 3) [104]. AMPK activity is also negatively regulated
by oxidation [105] which also leads to inhibition of
autophagy by releasing inhibition on mTORC1. A recent
study demonstrated that ATG3 and ATG7 are oxidized and
that this prevents lipidation of LC3, a critical step in
autophagosome maturation [106]. Oxidative stress also
mediates formation of lipofuscin which is accumulated in
the lysosome and impairs lysosomal function, resulting in
accumulation of autophagy substrates including damaged
mitochondria [7]. This in turn creates a vicious cycle of
ROS generation from damaged mitochondria and ROS-
induced inhibition of autophagic degradation. Although
ROS accumulation has been implicated in a variety of age-
related diseases, translation of ROS scavengers into the
clinic has not been successful, and it has been suggested
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that targeting ROS scavengers to mitochondria would
provide a selective means to prevent the production of
pathophysiological ROS [5].

Mitochondrial dynamics

Enlarged mitochondria with membrane and matrix
abnormalities accumulate [3, 4] and mitophagy also
declines [45, 107, 108] in the aging heart. Mitochondria are
highly dynamic organelles that constantly fuse and divide in
response to environmental cues. Mitochondrial fusion and
fission are functionally related to the mitochondrial quality
control mechanisms and critical in maintaining basal car-
diac homeostasis as evidenced by the observations that
cardiac-specific deletion of dynamin-1-like protein (Drp1),
a fission protein or mitofusin-1/2 (Mfn1/2), fusion proteins,
causes cardiac dysfunction [109, 110]. Mitochondrial
dynamics also play an important role in adaptation to stress
conditions, although the effects of stimulation of mito-
chondrial fusion or fission on cellular survival appear to be
context dependent [109, 110]. Interestingly, recent studies,
in which fusion and fission are simultaneously inhibited,
demonstrated that balanced mitochondrial dynamics but not
morphology of mitochondria is critical in quality control of
mitochondria (Fig. 3) [111, 112]. More specifically, Mfn1/
Mfn2/Drp1 triple KO mouse hearts develop mitochondrial
senescence and heart failure from defective mitophagy and
accumulation of mitochondria, similar changes to those
observed in the aging heart [112]. Despite extensive

research on the role of mitochondrial dynamics in regulating
mitophagy, challenges still remain in determining the age-
related alterations in molecular signaling regulating mito-
chondrial dynamics and mitophagy.

NLRP3 inflammasome

The NLRP3 inflammasome comprised of NLRP3,
apoptosis-associated speck-like protein containing a CARD
(ASC) and pro-caspase 1 plays a critical role in sensing
cellular stress and eliciting inflammation (Fig. 4). The
NLRP3 inflammasome is initially “primed” by damage
associated molecular patterns (DAMPs) (e.g., extracellular
HMGB1, double stranded DNA and cytosolic mtDNA),
which leads to upregulation of NLRP3, IL-1β, and IL-18
mRNA. Subsequently, the NLRP3 inflammasome is
assembled and “activated” by stress signals (e.g., extra-
cellular ATP, ROS released from mitochondria) [11]. Thus
the NLRP3 inflammasome links mitochondrial and cellular
damage to inflammation. The role of the NLRP3 inflam-
masome in cardiac diseases has been increasing recognized
[113–115] and recent evidence further suggests that NLRP3
inflammasome activation occurs in cardiomyocytes within
the heart [113, 116, 117]. For instance, our recent studies
have shown that the NLRP3 inflammasome is activated in
cardiomyocytes in response to angiotensin-II or pressure
overload and that this contributes to recruitment of immune
cells, cardiac fibrosis, and ventricular dysfunction [116,
118]. Involvement of inflammasome signaling in cardiac
disease has also been suggested by clinical findings using
interventions that inhibit IL-1β function or block the IL-1
receptor [119, 120]. Notably, multiple lines of evidence in
non-cardiomyocyte cells have suggested that activation of
inflammasome negatively regulates autophagy/mitophagy.
NLR family proteins, including NLRP3, bind to Beclin1
and inhibit autophagy [121]. Deletion of NLRP3 leads to
higher PINK1 expression leading to elimination of damaged
mitochondria and suppression of apoptosis under stress
conditions, suggesting an inhibitory role of the NLRP3
inflammasome in PINK1-dependent mitophagy [122].
Deletion of caspase-1, the effector molecule in the inflam-
masome, increases autophagy and provides cellular pro-
tection in macrophages and in neuronal cells [123, 124].
Furthermore, NLRP3 activation triggers mitochondrial
damage through caspase-1 activation and this is further
amplified by inhibition of mitophagy mediated by Parkin
cleavage by caspase-1 in macrophages [125]. These studies
clearly highlight the importance of the NLRP3 inflamma-
some in regulation of autophagy and collectively these
findings suggest that there is mutual inhibition between
autophagy and inflammasome; autophagy inhibits the
NLRP3 inflammasome by removing danger signals
including damaged mitochondria, while activation of the

Fig. 4 The NLRP3 inflammasome is primed and activated in response
to stress, and induces inflammation and inhibits autophagy. The
NLRP3 inflammasome is initially primed by DAMPs (damage asso-
ciated molecular patterns) including cytosolic mitochondrial DNA
(mtDNA) and subsequently activated by stress signals such as extra-
cellular ATP and ROS, leading to caspase-1 activation and production
of pro-inflammatory cytokines, IL-1β and IL-18. NLRP3 negatively
regulates autophagy and mitophagy through suppression of Beclin1
and PINK1 and activation of caspase-1 cleaves Parkin and thereby
inhibits mitophagy
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NLRP3 inflammasome inhibits autophagic degradation.
This in turn would lead to a vicious cycle that can culminate
in further cellular damage.

It has been established that NLRP3 inflammasome links
low-grade inflammation to age-related chronic diseases
[126, 127]. Deletion of NLRP3 inflammasome enhances
healthspan and prevents functional decline in multiple
organs, including protection against glucose tolerance,
astrogliosis and cataract development [126]. Importantly,
NLRP3 inflammasome activity is increased in old mouse
hearts [128] and inhibition of RAGE, a receptor for AGEs
which is accumulated with age, attenuates adverse effects of
angiotensin II through inhibition of NLRP3 inflammasome
activity in cardiomyocytes [129]. In addition, recent evi-
dence suggests that NLRP3 is a convergent point of anti-
aging interventions. NLRP3 inflammasome is inhibited by
rapamycin, metformin, or resveratrol through regulation of
mTOR, AMPK, and Sirt1 [130, 131]. Interestingly, nutri-
ents status is shown to modulate the NLRP3 inflammasome
in human and mouse. Caloric restriction/fasting induces
robust inhibition of the NRLP3 inflammasome [132, 133],
while hyperglycemia is associated with upregulation of
NLRP3 inflammasome [134]. Thus inhibition of the NLRP3
inflammasome could be involved in caloric restriction
induced anti-aging effect. A potent, selective small-
molecule inhibitor of NLRP3 (MCC950) has recently
been developed [135]. MCC950 blocks NLRP3 activation
at nanomolar concentrations [135] and it has been demon-
strated that MCC950 reduces ischemic damage in the pig
heart [115] and attenuates angiotensin-II induced cardiac
fibrosis in mice [116]. Furthermore, MCC950 is shown to
induce autophagy and to exert beneficial metabolic adap-
tations in hearts from high fat and high sugar diet-induced
damage [136]. Together, accumulating evidence points to
the role of the NLRP3 inflammasome in various cardiac
diseases and chronic activation of the NLRP3 inflamma-
some may contribute to cardiac aging through regulation of
autophagy. However, the role of the NLRP3 inflammasome
in the heart is still emerging and requires further studies,
especially in the aging heart. It would be of importance to
determine whether inhibition of the NLRP3 inflammasome
in the heart recovers the level of autophagy and prevents
cardiac aging.

Concluding remarks

Cardiomyocyte autophagy declines in the course of aging
and this directly contributes to cardiac aging. Although our
understanding of regulation of autophagy in the heart has
greatly improved, it is still not entirely clear how autophagy
decreases in the heart with age and there are unsolved
questions that warrant future research. First, a more

comprehensive understanding of the molecular signaling
changes in various different steps of autophagy in the aging
heart is obligatory for identifying precise targets for mod-
ulating autophagy therapeutically. Especially, relatively
little is known about the regulation of mitophagy in the
aging heart. To what extent does the defect of Parkin-
dependent vs. that of Parkin-independent mitophagy play a
role in aging-associated accumulation of mitochondrial
dysfunction? Second, there are only limited data available
with regard to autophagy flux in the aging heart especially
in vivo. It would be critical to determine how autophagy
flux is altered with aging. A recent study pointed out the
significance of defects in intracellular trafficking of the
autophagosome in aging-induced insufficient autophagy
[137]. Lysosomal function also declines with age in which
altered v-ATPase activity and lysosomal pH dysregulation
are implicated as causes [138]. Further clarification of these
findings in the aging heart would be beneficial. Third, it is
still unclear how changes in cellular metabolic pathways
and autophagy interplay in the course of aging in the heart.
Alterations in cardiac energy metabolism are induced in
pathological conditions and, in the aging heart, there is a
shift in myocardial substrate utilization; away from fatty
acid utilization to glucose utilization [60, 139, 140]. This is
also the case in heart failure induced by pressure overload,
whereas the opposite is observed in the heart of diabetics
[141, 142]. Notably, an increase in glucose availability in
the heart mediated by expression of glucose transporter 1
has been shown to be beneficial in the context of cardiac
aging and in the response to ischemia in mice [143]. The
protective effect of increase in glucose availability in the
heart might not be completely attributed to a switch in
substrate utilization [142, 143] and we and others have
shown that glycolytic molecules (eg., hexokinase 2 and
glyceraldehyde-3-phosphate dehydrogenase) have an ability
to facilitate autophagy through inhibition of mTORC1
pathway [144, 145]. Many more studies will be required to
delineate the roles of alterations in metabolic pathways in
regulation of autophagy in the aging heart. A recent
exciting study has demonstrated that oral supplement of the
natural polyamine spermidine enhances cardiac autophagy,
and induces cardioprotection and lifespan extension in mice
[146]. Tissue concentrations of spermidine decline in an
age-dependent manner, and thus this suggests the possibility
that spermidine-based nutritional supplement could recover
the level of autophagy in the aging heart and provide pro-
tection against aging.

It is clear that autophagy plays a critical role in main-
taining cellular homeostasis and that a decline in autophagy
underlies aging-associated cardiac dysfunction. There is
ample evidence indicating that activation of autophagy
mediates many lifespan extending interventions. Although
further understanding of aging-specific alterations in
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signaling pathways in the heart will be required, we
anticipate that pharmacological targeting of autophagy will
provide a novel approach to treating age-related heart
diseases.
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