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NEW DEVELOPMENTS IN THE CALCULATION OF
6—STRENGTH FUNCTIONS*
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Idaho Falls, Idaho 83415

‘ JORGEN RANDRUP
Lawrence Berkeley Laboratory, Nuclear Science Division,

University of California, Berkeley, California 94720
August 11, 1989

Abstract:

We have further developed a QRPA model that uses single-particle levels and wave-functions as
the starting point for calculating Gamow-Teller §-strength functions. In our enhanced version
Nilsson, Woods-Saxon, or folded-Yukawa wave functions and single-particle energies may serve’
as the starting point for determining the wave functions of the mother and daughter nuclei
involved in the f decay. Pairing may be treated in either the BCS or the Lipkin-Nogami
approximation. To account for the retardation of low-energy GT decay rates we add, as in the -
earlier model, a simple residual interaction specific to GT decay, namely Vgr = : 8~ - B**
to the Hamiltonian. This residual interaction is studied in the RPA approximation. In‘the case
of odd-mass nuclei the Av = 0 transitions are generally treated in a first-order perturbation
expansion. We found that these expansions occasionally break down, and have modified them
to avoid the singularities. The odd-odd case is treated in a way analogous to the odd-A case
by considering one or the other of the odd particles as a spectator for Av = 0 and both as
spectators for Av = 2. As a final extension of the earlier model, we also allow the unpaired
odd particle to be in an excited state. We use the enhanced model to calculate Gamow-Teller
B-strength functions, B-decay half-lives, and §-delayed neutron emission probabilities for nuclei
in several regions of the peribdic system, but with the main emphasis on the rare-earth region.

*This work has been carried out under the auspices of the US Department of Energy
under DOE Contract No. DE-AC07-76ID0O1570 (INEL) and was also supported by
the Director, Office of Energy Research; Division of Nuclear Physics of the Office of
High Energy and Nuclear Physics of the U.S. Department of Energy under contract No.
DE-AC03076SF00098 (LBL).

1Present address: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
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1. Introduction

The need to model astrophysical processes and the desire to understand how nuclear
structure variations influence f-decay properties, are challenges that have stimulated
the development of theoretical models for Gamow-Teller 3-strength functions. For as-
trophysical applications it is necessary to model properties of a large number of nuclei,
which limits the complexity of the models that can be considered. Earlier, many calcu-
lations of S-strength functions for astrophysical applications were based on the Gross
Theory of B-decay!). Because this model is statistical in nature it describes only the
average properties of the f-strength functions.

To account for structure in the B-strength function it is necessary to use a microscopic
model of the nucleus as a starting point for constructing the wave functions and energy
levels of the parent and daughter nuclei. Originally studies of this type were limited to
spherical nuclei, see for example the studies by Hamamoto 2), Halbleib and Sorensen ?),
Randrup *), and references quoted therein. These models were based on a spherical
single-particle model with a pairing interaction treated in the BCS apprommatlon and
a residual GT interaction treated in the RPA approximation.

The rnodel for sphencal nuclei®~*) was extended to deformed nuclei by Krumlinde
and Modller® 6) and snnulta,neously by Alkhazov et al. . ThlS extended model, which
accounts for the effect of the mlcroscoplc structure of the nucleus on the shape of the
B-strength functlon, is suitable for surveys of large numbers of nuclei since it allows one
B-strength function to be calculated in about only 20 seconds on a CRAY-1 computer,
in our implementation. Such studies of large regions of nuclei using. this model and its
associated computer code have, for example, been made by Kratz et al.?), Nitschke et
al.?), and Meyer et-al. 10) Later, a very similar model has been employed by Bender et
al. 11).

The first version of the model developed by Krumhnde and Moller was based on
the Nilsson single-particle model. Pairing was treated in the BCS approximation. Here
we discuss several extensions of the model. We now have the possibility of ‘basing the
calculations on three different single- partlcle models, namely the Nilsson model, the
Woods-Saxon model, or the folded-Yukawa model. Pairing may be treated in either the
BCS or the Lipkin-Nogami approximation. The perturbation expressions for the Av = 0
transitions have been modified to avoid a singularity. The S-strength functions may be
calculated with the odd particle in an excited state, which means that we can study
B-decay from a certain class of isomeric states. In sect. 2 we define and discuss these
new enhancements of the model and in sect. 3 we apply the enhanced model to studies
of some strength functions of particular interest. In sect. 3 we also make a systematlc
survey of 3-decay half-lives i in the rare-earth reglon

2 Models -

The S-strength function for a deformed nucleus can be calculated on the basis of
transition matrix elements between intrinsic wave functions®). The complexity of the
calculation depends essentially only on the model for the intrinsic nuclear wave func-
tion. In the approach we follow here, we construct the wave-functions by adding to a
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pure single-particle model a pairing interaction and a residual Gamow-Teller interaction
which is treated in the RPA approximation. A very simple model would be to treat
B decay in the pure single-particle model only. An additional physical effect is added
by taking into account the pairing interaction, and a third effect is treated by includ-
ing a residual GT interaction. In the most simple version, the matrix elements would
be calculated from the asymptotic quantum-number assignments in a Nilsson diagram.
The admixtures of other wave functions would then be neglected. In our model these
admixtures are taken into account, since we calculate all the components of the wave
function corresponding to a particular state. In addition we consider the pairing and GT
interactions. The addition of these residual interactions changes the complexity of the
model from a model where the strength ié simply given by selection rules involving the
asymptotic quantum numbers to a more complex one. With the present model it takes

- 20 seconds on a CRAY 1 computer to calculate one strength function. In such a calcu-

lation the two RPA equatlons for 0o and o4 are each solved for about 1000 roots. We

Ar‘}ewew the major changes and extensions of the model, relative to the earlier version ®),

e'mployir_l—'gr the same notation. One may picture the model as a three-layered model,

'vwhere_ each new layer takes into account new physical effects, but thereby increasing
the complexity of the model. The three layers are, in increasing order of complexity,
the deformed single-particle model, the pairing model, and the residual Gamow-Teller

interaction, treated in the quasi-particle random-phase approximation (QRPA).

2.1. SINGLE-PARTICLE MODELS

" The starting point of the calculation of the intrinsic nuclear wave-functions is a
calculation of levels and wave-functions in a single-particle model. The properties of
this underlying single-particle model are very important, because the positions of the
peaks in the low-energy part of the f-strength function depend on the positions and
the quantum numbers of the single-particle levels in the corresponding Nilsson diagram.
Thus, a reliable calculation of the strength function requires that the positions of the
single-particle levels are calculated accurately. No amount of refinement in the subse-
querit layers in the model can compensate for an inaccurate single-particle model. In
order to obtain a B-strength model that is accurate.over the entire nuclear chart. it is.
therefore essential to employ a single-particle model that provides an accurate descrip-
tion of the band-head energles over the entire periodic system. The addition of pairing
and Gamow-Teller residual interactions does not change the location of the peaks in
the low-energy part of the spectrum significantly, only the magnitude of the strength is
affected. These features are extensively illustrated in our earlier study °).

2.1.1. Nilsson modified-oscillator model

The use of the Ni_lssdh model in the first version ©) of the deformed quasi-particle
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rafldom—phase code was motivated both by its basic computational simplicity and the
considerable experience accumulated from applications of the model to the calculation
of a variety nuclear properties, such as ground-state spins and deformations for nuclei in
several regions of the periodic system. In the Nilsson model the single-particle potential
is given by

1
V = §hwopt2 [1 — %esz(cos 6:) + 2€e4Py(cos Ot)] — Veorr

Vier = hyo [2/~zlt-s + K (ltz— <1? >N)] (1)

In ‘this expression for the potential, x is the spin-orbit strength parameter and the
product ku is a diffuseness parameter. These parameters are determined by adjusting
the positions of calculated single-particles levels to experimental band-head energies. A
deficiency of the Nilsson model is that the potential goes to infinity at large distances
and that the diffuseness of the single-particle potential is simulated, close to the Fermi
surface, by the l;? term. These features are partly responsible for a somewhat unpre-
‘dictable variation of the model parameters between different regions of the nuclear chart,
a feature that makes it difficult to extrapolate the parameters to unknown regions of
nuclei. .

We have now acquired experience!?1%) with applying the folded-Yukawa model
to the calculation of nuclear properties such as deformation and ground-state masses
throughout the periodic system. In order to overcome some of the deficiencies associated
with the Nilsson model and to obtain a more unified description of nuclear-structure
properties, we have-incorporated the possibility of using folded-Yukawa single-particle
levels and wave-functions as the starting point for generating the intrinsic nuclear wave
functions. As a first step in this direction, a Woods-Saxon single-particle potential was
included in our B-strength model a few years ago!°).

A\l

2.1.9. Woods-Sawoﬁ model

We will only show a limited set of results obtained by use of a Woods-Saxon single-
particle potential. Some preliminary results obtained with this code have been presented
earlier 1%) and compared to.results obtained with the Nilsson model. Here we will also
- compare with results obtained by use of the folded-Yukawa potential. We obtained
the Woods-Saxon code from Nazarewicz and Dudek. It has been extensively discussed
elsewhere. The results obtained here have been calculated with the universal parameter
set 16). '

2.1.8. Folded- Yukawa model

Since the folded-Yukawa model has been extensively discussed in refs. 1217) and ref-
erences quoted therein, we present here only the major features of the model.
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In a nucleus consisting of Z protons and N neutrons the total number of nucleons
is given by A = Z + N. The protons and neutrons move in different single-particle
potentials. The single-particle potential felt by a nucleon is given by

V= Vi + Vi + Vo (2)

The first term is the spin-independent nuclear parf of the potential, for which we use
the folded-Yukawa potential ‘

et rer ‘
Va(r) = 4% 5 o (3)

r—’r’l/apot

where the integration is over the domain enclosed by the generating shape, whose volume
1s held fixed at %ﬂRpCf as the shape is deformed. The range :

apot = 0.8 fm : (4)

* of the Yukawa, functibn in eq. (3) has been determined from an adjustment of calculated

single-particle levels to experimental data in the rare-earth and actinide reglons 18, It
12.14),

The spin- orblt potential is given by the expression

_ h o-VVixp
Vo= A5 ) B

where A is the spin-orbit interaction strength, m is the mass of either a neutron or a

proton, & is the Pauli spin matrix and p is the nucleon momentum. The spin-orbit
_strength has been determined from adjustments to experimental levels in the rare-earth
and actinide regions. It has been shown !!*19) that nuclear properties such as ground-

state masses and deformations and fission barriers are well reproduced throughout the
periodic system with A given by a function linear in A through the values determined
in these two regions. The linear expressions for A, and A, are '

A
Ay =2 L
80+60240 | O (6)
and .
| Me = 315 4.5 (7)
B 240 J

Finally, the Coulomb potential for protons is given by _
| ' o dr o .'
VC(T)_epc/vF—_r'] o (8
where the charge d_enéity Pc 1s given by |

pe= s - | (9)

%WAT’OS



P. Mqller, J. Randrup/Calculation of B-strength functions = - 6

- The above relations show that in the folded-Yukawa model the spin-orbit parame-
ters decrease by about 20% and the diffuseness parameter a,, remains constant if the
region of study changes from the actinide region to the oxygen region. This is a very
small variation over the periodic system compared to the variation of the spin-orbit and
‘diffuseness parameters k£ and kg in the Nilsson model. This gives us some confidence
that the parameter choice in the folded-Yukawa model is reliable for extrapolations to
unknown regions of nuclei. For the case of modelling §-strength functions it is of par-
ticular importance to correctly predict the level order in the single-particle diagram in
the vicinity of the Fermi surface. Below, we will show how the model reproduces known
ground-state spins of odd-A nuclei throughout the periodic system.

2.2. PAIRING MODELS
In the earlier version ) of the B-strength model and its numerical implementation a
-simple BCS model was used for.the palrmg model. In the present version of the model
we have for testing and compatability reasons retained the initial BCS pairing model,
but also introduced the possibility of using somewhat different formulatlons of the BCS
model. However, the major extension in the calculation of pairing effects is that we now
have the possibility of using the L1pk1n Nogami pairing model. This model avoids the
collapse that occurs in the BCS mode] for large gaps in the single-particle spectrum.
- In solving the pairing equations for neutrons or protons in either the BCS or Lipkin-
Nogami model we consider a constant pairing interaction G acting between N, — Ny +1
"doubly degenerate single-particle levels, which are occupied by Ny, nucleons. This
interaction interval starts at level Ny, located below the Fermi surface and ends at level
N; located above the Fermi surface. With the definitions we use here, the levels are
numbered consecutively starting with number 1 for the level at the bottom of the well.
“Thus, the last occupied level in the proton well is assigned number Z/2 for even proton
number. Obviously, if the total number of neutrons or protons in the nucleus is Niop we

have

Nint = Niot — 2N, +2 (10)

For even nucleon number, the number of level pairs included in the pairing calcula-
tion is often chosen symmetrically around the Fermi surface. In such a case

Nine = Ny — Ny + 1 (11)

However, for spherical nuclei it more reasonable to require that degenerate spherical
~states have equal occupation probability. This condition cannot generally be satisfied
simultaneously with a symmetric choice of levels in the interaction region. We shall
therefore give the equations for the more general case of arbrltrary choice of N; and Ny,
and with Ny, obeying eq. (10). : o
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2.2.1. BCS pairing model

In the BCS pairing model the pairing gap A, the Fermi energy A, and the oécupaﬁion
probabilities vi? are given by the set of (N, — Ny + 1) 4 2 coupled nonlinear equations

N, ’ ‘
Nt.ot = 2 Z 'Uk2 + 2(N1 —_ 1) . (12)
k=N1
2 N 1 .
Z = 13
25 (13

k=N, \/(ek — )2 4 A?

1_.\/( ek;)j A2 ’ k‘_—.Nl,'Nl-.’rl,---,N2 .(14)
€r — + |

N | =

where ¢, are the single-particle energies. The quasi-particle energies Ej are given by

the expressions
B o= (= AP+ AN, k=NL,N+ 1., N,
Er = lex—Al, k<N or k>N,

In order to calculate the potential energy in nuclear mass calculations, one also needs an
expression for the pairing correction energy E,. — Ep.. The pairing correlation energy
E,. is given by

N> A2 G N2 '
Epc Z (2’Uk — le)ek — E - = Z (2'Uk - nk) (15)
k=N,

where n;, which have the values 2, 1 or 0, specify the sharp distribution of particles
in the absence of pairing. The calculation of the pairing correlation energy E, for an -
average nucleus will be discussed in section 2.2.2..

To solve egs. (12-14) one must know either the pairing strength G or the micro-
scopic pairing gap A. In the previous study®) a value for A was prescribed and the
above equations were then solved for the occupation probabilities v;2 and the pairing
strength G. For the microscopic pairing A the prescription A = 12/ VA MeV was used.
This approach was taken to avoid a collapse of the BCS equations for large gaps in
the level spectra. The pairing strength G was obtained as a solution to the pairing
equations, but not used for anything. An important deficiency in this approach is that
variations in A due to the fluctuations in the nuclear level spectrum are absent. Such
nonuniformities in the level spectrum coupled with changes in ground-state shapes can
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lead to changes in A by a factor of two between close-lying nuclei. To better describe
effects of microscopic structure on the pairing gap A we have included in our 3-strength
code:, 1) a powerful method for determining the pairing matrix element G and 2) the
Llpkm—Nogaml pairing model. Both in the BCS and in the L1pk1n—Nogam1 case; We now '
normally prescribe G and calculate A.

2.2.2. Pairing model parameters and average pairing quantities

In order to incorporate the effects of the single-particle level structure on A we
have added the possibility of solving the pairing equations for a prescribed value of G.
One then needs an estimate of ‘the pairing matrix element G, which together with the
single-particle levels e, are the input quantities. In some early approaches?’), G was
determined by solving the pairing equations for a region of nuclei and adjusting G so
that calculated values of A optimally reproduced the odd-even mass differences. One
should note that in such an approach the value of G depends on the region of nuclei
considered and on Ny and Ny, that is, on the number of levels above and below the
Fermi surface that are included in the pairing calculation.

A more powerful approach that more simply leads to a prescription for the value of
G, valid throughout the periodic system and for any resonable choice of the interaction
region (Ny,N;), is to consider the properties of an average nucleus and to determine
a value of G from average macroscopic pairing gaps by use of macroscopic pairing
equations. A conventional choice of macroscopic pairing gap has been A = 12/ VA MeV.
In our study here we use new expressions for the nuclear neutron and proton average
pairing gaps that have been derived by Madland and Nix *'). They find

A = % e—sI—tl’2 _ (16)
and '
A, = ;{3/3 tsI—tI? (an
with N-Z
"Ntz (18)

Here Iis the relatlve neutron excess and B is the ratio of the surface area of the nucleus
at the deformation considered to the surface area of the spherical nucleus. In addition
ref. ') introduced a new expression for the average residual n-p interaction energy &
appearing in the masses of odd-odd nuclei.  They suggest

h E
§ = Ve /3 B, - (19)
The four constants T, s, tand h are determlned by a least -squares adjustment to experi-
mental pairing gaps obtamed from measured masses. The values obtained are s = 0.118,

ti=8.12, r =5.72 MeV and h = 6.52 MeV .-
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The dependence of G on the average pairing gaps A, and A, is obtained from the
microscopic equations by assuming a constant level density for the average nucleus in
the vicinity of the Fermi surface. This allows the sums to be replaced by integrals. The
average level density of doubly degenerate levels may be taken to be

p =53 (20)

where § is the smooth level density that is obtained '"??) in the Strutinsky procedure.
Thus, we can make the substitution

Nz Y2 ‘
S fe-N =7 [ fle)ds (21)
k=N yn
where
— 3Nt + Ny — 1
1 = -
p
—iN, o N.
g = 2ot (22)
p | |
The gap equation eq. (13) may now be applied to an average nucleus with the result
| 1 1 v dx |
I Ry
v+ A

1_ —2 —2 "
5P [log (\/ vl + A"+ yz) — log (\/ n?+ A"+ y1>] | (23)
From this expression and from eqs. (16,17,22), G may be determined in any region of
the nuclear chart.

The expression for the average pairing correlation energy E,. is obtained in a similar
manner as the expression for the pairing matrix element G. The summations in eq. (15)

are replaced by integrations according to the rule given by eqs. (21,22). For the first

part of eq. (15) one obtains

-2

N2 A
E (20, — ng)ex — —
i k=Ny ' G
N> | . N, Z2
' = Z2vk2(ek—)\)— an(ek—/\)—g
; k=N1 ’ . k=N,
h 1)2 ;1;2 0 Kz
= pf |z~ —F——— dm—2‘/ zdr — —
p/y’ ( - \/:cz—i—Z?) ’ wo G

2 -2

2 24 A A ' ._
= »ﬁ[yi_ui_+?log(,/y22+A.2+y2)]

2 2
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2

. ; 2 .9 ‘—A—Z K2 — Z
- [y? B e | O e
For the second part of eq. (15) one obtains
G Yz
—_— Z (2vk — TLk)
£ k=M :
v P2
G 2 1] € — A
= -——2— Z A_l 1— _ 12 — Nk
k=N, '[(ek - )\)2 + A ]
G /y2 z? 2z 0
= ——p 1+ i dz + G /a:d:c
4 P ¥ [ z? + A2 ( + KQ) 1/2 P ¥1

G ,
c S — ,
tP [23!1 ~ 2y 2 + A"~ Atan~ (32)] GPyl (25)

Adding the various terms together leads to the followmg expression for the average
pairing energy in the BCS model

- 1.0 — -
T = 27|61 D) -0 (Vi 4 5]

o[ (%) -t (3)] e

A%

In our computer codes we choose N, to correspond to the highest level in the range
from the Fermi surface to +10 MeV above the Fermi surface; which energy range we
designate by El‘;at". By including an equal number of levels below the Fermi surface N,
is defined. Thus, at this stage we have not implemented the possibility of a different
number of levels above and below the Fermi surface, although our formulas are derived
for this more general case.

We now solve the BCS pairing equations for a number of different choices of N; and
N,, for Nilsson-model proton single-particle levels with x, =.0.0800, u, = 0.300, and
e, = 0.20 for **Sr. For Z = 38 and an energy interval of 7.0 MeV above the Fermi
surface the code then chooses Ny = 10 and N, = 29, that is 10 levels above and 10

levels below the Fermi surface. Ore then obtains A = 1.292 MeV, G = 0.3028 MeV and

A, = 1.54 MeV. We also ran the pairing code for energy ranges of 5.0 and 9.0 MeV

above the Fermi surface for the corresponding values of N; and N,. The results corre-
sponding to a choice of an eql_l_a] number of levels above and below the Fermi surface
constitute the first 3 lines in table 1. Further down in table 1 we study the results for

-
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TABLE 1

Effect of changing the summation interval in a BCS pé.iring calculation for protons in
94Sr. The number of particles is 38, so that the last occupied level is number 19.

Epaxr Ny, N, G ' AP Epc ..Epc .

int

(MeV) (MeV) (MeV) (MeV) (MeV)

50 13 26 0.3532 1.581 —0.701 —1.80
70 10 29 0.3028 1.540 —0.749 —1.78
90 6 33 0.2666 - 1.519 —0.786 —1.78
6 26 0.2923 1.453 —0.742 —1.57
13 36 0.2923 1.630 —0.779 —2.04
13 46 0.2679 1.711 —0.807 —2.31
10 39 02655 1.615 —0.798 —2.04
‘6 43 . 0.2431 1600 —0.817 —2.04

other choices of N; and N,. It is clear from table 1 that the method that we use here
to determine G from the properties of an average nucleus works very well. The value
of A, changes very little when the energy interval or N; or N, are changed and G is
simultaneously readjusted. As a specific example let us consider the case of a 7-MeV
energy interval which yields Ny = 10 and N, = 29. Here A, = 1.540 MeV. An increase
of N, to 39 with a simultaneous corresponding adjustment of G gives a change in A,
to 1.615 MeV, that is a change of only 5%. This should be compared to the value
A, = 2.12 MeV, an increase of 38%, which is obtained if G is not readjusted according
to eq. (23) but held fixed at G = 0.3028 MeV. The pairing energy only changes by a
maximum of 0.02 MeV for different choices of interaction interval, as long as an equal
number of levels are chosen above and below the Fermi surface. '

223 ,Lipkin-Nogdmi pairing ﬁwdel -
" In the 'Lipkin Nogami bairinglmodel 23-28) vthevpair.ing gap A the Fermi enéfgsf A,

the number-fluctuation constant A;, and the occupation probablhtles v 2 are determlned
by the set of 2(N, — N; + 1) + 3 coupled, nonlinear equations

Niow =2 Z " +2(Nl - 1) (27)
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= > . (28)

vkzzl 1-— - ek_—A k:Nl,Nl-*-l,.;.,Nz (29)
-9 \/(6k ~ )2 + A2 .
Ca=et (- G k=N, N +1,...,N, (30
and - . o | -
N2 N2 N2
(Z uk3vk) (Z ukvks) — Z uk4vk4
/\ _ g k=N, - k=N, k=N (31)
2T 4 Ny LI A D
3 ukzvkz) — > wlut
i k=N k=N A
V;f.l-lé're_._ , ) : , PR .
CoL 'U,k2?1—-vk2 ,,k:Nl,Nl—f—l,'...,Ng _ ' l (32)

. | Fuljth_err'nore,‘ the quasi—'part‘i'cle energies Ej of ‘the odd nucleon in an odd-A nucleus
~are given by *)

- 12 '
Ek: [(6k—-A)2+A2] . +/\2,‘ ,.k:N1?N1+1"'f’N2 ) (33)

In an exact treatment the presence of additional quasi-particles somewhat modify this
expression ?*). However, for simplicity we have neglected such effects which are much
smaller than effects of uncertainties in the calculated single-particle level spectrum and
would be hardly noticeable on the calculated strength function. Of importance is that
we in the Lipkin-Nogami formulation avoid the collapse of the pairing equations that
occurs in the BCS. formulations, and that we, as a consequence, obtain a more reahstlc
value of the pairing gap A. Outside the interval N; < k < N, we use -

E; = |ep — A, k< Ny or k>N, (34)

We have developed a computer code to solve the Lipkin-Nogami pairing equations.
We also use this code as part of a code to calculate nuclear potential-energy surfaces,
from which we determine nuclear ground-state masses. Since we often survey large re-
gions of nuclei, a particular goal in developing this code was to make it fast and reliable.
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In particular we wanted to avoid crashes due to numerical difficulties. ‘During the de-
velopment effort we noticed that such difficulties:sometimes would arise for small values
of the pairing matrix element G and large gaps in the single-particle level spectrum at
the Fermi surface, that is in situations where the BCS equations have no non-trivial
solution. We eventually succeeded in overcoming the numerical difficulties.

For a test case of 328 nuclei in the Pb region (200 < A < 220), running on a CRAY-1
computer, the pairing part took 3 seconds longer with our Lipkin-Nogami code than in a
BCS model, for which case the code took less than one second to execute. A preliminary
version. of another Lipkin-Nogami code that we had at our disposal took 235 seconds
longer. Thus we achieved an enormous increase in speed relative to that code. Our
-'code has two possibilities for the values of the parameters of the iteration towards the
solution of the pairing equations. One we call “fast”, the other “slow”. The code will
itself choose the “slow” mode if convergence is not achieved in the “fast” mode, which
'is always tried first. ’

We determine the three unknowns A, X, and ), by (damped) Newton-Raphson
iteration. We calculate at each stép numerically the 9 first-order derivatives. From the

' - given initial set of values for A, A, and ), the next set of values are determined by use of

these 9 derivatives by use of the damped Newton-Raphson method. However, we never
allow more than a 40% change in' A and A, and never more than a 1 MeV change in A
at each step. Usually convergence is obtained in about 5 steps. We always choose the
- starting value of A to be 1 MeV, of A to be the Fermi level of the sharp single-particle
distribution, and of )3 to be 6 x G/4. This is the “fast” iteration mode. If convergence
is not obtained after 30 steps we switch to the “slow” iteration mode, starting with the
original initial values again. We now only allow up to a 20% change in A at each step, a
40% change in X and a 0.5 MeV change in ),. However, the most important difference
in the “slow” mode is that we in each iteration step first keep A fixed and solve for A
and X;. When these have been found we make one iteration in A, with A and ), fixed.
In both of these steps we use the Newton-Raphson method. When we are close to the
solution we have to switch to a simultaneous iteration in all three unknowns to obtain
convergence, that is we again calculate all the 9 first-order derivatives and invert the
full resulting matrix. ' |
We have tested the code in a number of ways. In one test we made a careful
- comparison between the results of our code and the other code we had available, for 640
ground-state masses in the Pb region. This calculation considers nuclei from the proton
"to the neutron drip line. Our pairing code ran for this new set of nuclei in 55 seconds.
" Most of this computer time was spent calcilating such quantities as shell corrections
and Coulomb energies. All cases ran without a switch to the slow convergence mode
in our code. A run with the other code took 872 seconds. There was no crash in this
region of nuclei. Comparing the results of the two runs, we found that the maximum
difference between calculated shell + pairing corrections was 0.024 MeV and between
deltas 0.003 MeV. »
 In a calculation of nuclear masses for 8979 nuclei throughout the periodic system
there was no crash of our code, despite rather extreme values of the neutron excess
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and consequently very low values of the average pairing gaps and the corresponding
pairing matrix element G. In this calculation the slow convergence mode was entered

only about 20 times.

2.3. RPA MODEL

The calculated (-decay rates are sensitive to certain components of the residual
interaction. As in our earlier treatment ¢) we add the so called Gamow-Teller force;

Vor =2xgr : B~ - B ' o (35)

te_the single—particle -Hamiltoriian, after pairing has already been incorporated. Here
B*~= Y ;o;t] is the Gamow-Teller 3~ -transition operator, so the correlations generated

by the GT force are of specific importance to the Gamow-Teller decays, which are the .

dommant decay modes in many nuclei of astrophysxcal interest. Other types of residual
mteractlon are of importance for other decay modes, but leave the- Gamow-Teller decay
rates unaffected, and can consequently be ignored in the treatment here. .The only
,major changes in the RPA model relative to the earlier work ®) involve the treatment of
__the transitions of the unpaired nucleons in odd-A and odd-odd nuclei.
It should be noted that the RPA treatment, as formulated by Halbleib and Sorensen 3)
_Yincorporates only particle-hole corrections of specific importance to GT transitions. It
has recently been found 26:27) that the effect of neglected particle-particle terms may be
‘significant for At transitions. Moreover, the RPA treatment may not contain enough
ground-state correlations 27) However, in view of the: present uncertainties regardlng
‘these points we leave p0551ble further refinements for future consideration. Some ad-
ditional comments are given in the presentation of the results of our B-decay half-life
calculations, in section 3.4. |

2.9.1. 0dd-A nuclei

For odd-A nuclei there are two types of transition, Av = 2 transitions and Av.= 0
transitions®). For the first type of transitions the RPA formalism for the even-even case
may be used, since the odd particle only acts as a spectator. The Av = 0 transitions
in’{_zolve the unpaired odd particle and are treated in first-order perturbation theory. For
an odd-proton parent nucleus the Av = 0 case may be treated by writing the wave
function for the odd proton in the initial state as

_Ipcoyr >= a;|GTO >

+ 3 afM(w-x)|GTO >< GTO| [af T e (w- )]*V@;KayGTo > Ap(nw_g)

nwWo K

(36)
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and that of the odd neutron in the final state as

Incore >= o} |GTO>

+>° a*I‘}}(wk)|GTO >< GTO| [ T (wk )] K aT|GTo > A (pr)

© WK

- (37)

In our earlier work ¢) and that of Halbleib and SorerisenS)
1
E,-E, —w
Below we will show that this expression for A,(nw) has to be modified to avoid
singularities in the expressions for the transition amplitudes that are obtained from the

‘above first-order perturbation expansions for the odd- partlcle wave-functions. These
ltransxtlon amplitudes are: :

(38)

Ap(nw) =

< ncorrIﬂK Ipcorr > - unup < nIﬂK+ |P > +2X < nlﬂ}\-'- Ip > Rl )
Bt decay of odd-proton nucleus

< pcorrIIB]l(+|ncorr > = U0, < plﬁK In > +‘)X < p|ﬂ I’I'L > R, .,
B* decay of odd-neutron nucleus

< ncorrlﬁ}\’_ Ipcorr > = vnvp < nlﬁ}(_ lp > +2X < nlﬂfl(_ lp > R2 )
8~ decay of odd-proton nucleus

< pcorr'ﬂ}\:.lncorr > = UnlUp < pl,BK |TL > +2X < pl)BK |n > Rl >

_ v B~ decay of odd-neutron nucleus (39)
Uwhere Ris givén by . ‘
Z X {Ap(nwK) [upun + Cf;;v,,vn] + CE A (pwr) [vpvn + C’f;(’upun]}

Xfl,z{ e Ap(nwie) [u,,un- + CWKvpvn] + An(pwk) [v,,vn CK upun]} (40)
Wi .

and where we have used the fact that the various quantities are 1ndependent of the 31gn
of K. -

It was pointed out by Bender et al. 1!), that the terms linear in C’I‘ in eq. (40) should
have a negative sign with the sign conventions for the quantities ¢;x and G;x that were
used in our original work®). We are grateful that this error in our original work, an
error that was unfortunately present also in the computer code, was discovered. To
correct the error one may either change the sign of the terms linear in CJ_ in eq. (40)
from plus to minus or change the sign of §;x. We choose the latter possibility. Thus,
the definitions of ¢;x and §;x should be . '

gk =  <plokln > upv,

qviK = —< P|CTK|n > UnVp - (41)
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As a test, we have run our code both with correct and incorrect sign. Fortunately, we
find that the effect of the sign error on the calculated S-strength function is very small.
For all practical purposes its effect on our earlier results can be neglected. In fact, for
our standard test cases of #~-decay of **Rb and ®Rb there is no visible difference in
plots of the strength functions between results obtained with the different signs. Usually
the difference between the two sign choices is a few percent in one or two peaks in the
calculated f-strength function. The Av = 2 transitions are of course not affected at all
by this sign error. o '

2.8.2. Non-singular Av = 0 transition-amplitude ezpressions

It was shown ') that the above expressions for the transition amplitudes occasionally
exhibit a singular behavior, due to a breakdown of the perturbation expansion given in
egs. (36,37). However, the singularity may be removed by moving the pole at E, — E,
in the expression for A,(nw) from the real axis into the complex plane. This was
accomplished '®) by introducing a width d in the expression for A,(nw). One obtains
the new expression

A () = = : + -
) = 9\E,~E,+id-w ' E,—E,—id—w

’ E,—E,—w
= . 42
(Ep_En_w)2+d2 ( )

- As an example of the singularities that may occur we show in fig. 1 the f-strength
function for A~ decay of ®°Nd, calculated in our original model with the expansion
coefficients A, given by eq. (38). There is a huge singularity at about 3.0 MeV. With
the generalized model for the expansion coefficients, given by eq. (42) the singularity
1s removed, as is seen in fig. 2. Results obtained using two values of the width d are
given in the figure. The solid line corresponds to d = 0.1 MeV and the dashed line to
d = 1.0 MeV. Strength above 9.0 MeV has not been plotted. As expected, we find that
the results are very insensitive to the choice of d. As our standard choice for d we have
selected d = 0.5 MeV.

2.8.8. Odd-odd nucles

With certain assumptions, the odd-A case formalism may be used to calculate the
strength function also in the odd-odd case. The possible transitions that can occur in 3~
decay in the odd-odd case are shown schematically in fig. 3, in an extreme single-particle
model. In the first case, Av = 2 transitions to the upper left, the two odd particles act
as spectators and the transition amplitudes are obtained from the solutions to the RPA
equations®), just as in the case with no unpaired protons or neutrons.
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There are two types of Av = 0 transitions. In treating these two cases we disregard
any residual interactions between the two odd particles and consider one or the other of
the odd particles as a spectator. Thus, to the upper right the odd neutron is a spectator
and the transition amplitudes are given by eq. (39), case 3. This approximation means
that in our model the strength goes to a single state, but in an actual decay the strength
would be distributed between states corresponding to some of the different orientations
of the relative spins of the two unpaired neutrons in the final nucleus. These states
would have energies that depend on residual interactions that are not included in our
model. Our approximation here is somewhat similar to the approximation that the
splitting of strength between rotational states is not treated in the model. Instead the
strength is all collected in the band-head energy level ¢). The transition amplitudes for
the case to the lower left in fig. 3 are given by eq. (39) case 4.

The ground-state to ground-state transition to the lower right is in our approxima-
tion also given by the same expression for the transition amplitude as is used for the
case to the lower left, but the energy relative to the ground-state of the daughter is of
‘course 0, which is 2A,, lower than if we had ignored the fact that the two odd protons
are paired in this state. For an odd-odd parent nucleus the ground-state to ground-state
transition only takes place if the initial state has spin-parity 1*. For other cases, the
strength that we in our approximate treatment occasionally would assign to the ground
state will in an actual nucleus decay into states 2A, and higher above the ground state.

To summarize, we find that for the Av = 2 transitions the accuracy of our model is
about the same as in the odd-A case. For Av = 0 transitions we neglect the residual
interaction between the two odd particles. Consequently we cannot obtain the distri-
bution of strength between levels corresponding to the different relative orientations of
the spins of the odd particles. Instead, this strength is collected in one state. It is of
interest to observe that the first type of transitions that we treat more exactly than
the other transition types are the more numerous, since the number of such transitions
are proportional to N x Z, whereas the latter type of transitions are only proportional
to Z + N. The treatment of the ground-state to ground-state transition sometimes
introduces errors of about 2A, in the location of the strength. This treatment of the
odd-odd case is the standard one used in surveys over large regions of nuclei. However,
the user of the f-strength code may of course use specific knowledge of the relative
initial spin orientations of the odd neutron and odd proton to improve on the analysis
of the odd-odd case, instead of accepting the standard output of the code. Below, when
we study half-lives in the rare-earth region, we will analyze the difference in model ac-
curacy between the odd-A and odd-odd case.

2.3.4. Gamow-Teller residual-interaction coupling constant

In the earlier work ¢) the choice

XGT = 23/A MeV (43)
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was made for the coupling constant for the residual Gamow-Teller interaction. This
choice corresponds to a commonly accepted value ?®) and was derived by adjusting the
position of the calculated giant Gamow-Teller resonance to the experimental data for
208P}, In a recent study Bender et al. ') obtained the value xgr = 15/4 MeV by adjust-
ing the calculated value of the giant GT resonance to its observed position for a number
of cases in the Fe region. This latter value was also used by Bender et al. in a calcula-
tion of B-decay half-lives in this region of nuclei.- The value of xgr influences both the
magnitude of low-lying strength and the position of the giant GT resonance. We show
- here in fig. 4 the effect of the two values of x on the position of the giant GT resonance
in Pb in both the Nilsson modified-oscillator and the folded-Yukawa single-particle po-
tential. The upper two strength functions correspond to the choice ygr = 23/4 MeV
and the lower two to the choice xgr = 15/4 MeV. The notation (L-N) in fig. 4 and sub-
sequent figures indicates that the Lipkin-Nogami pairing model was used.. Comparing
the upper left strength function to the similar.calculation shown in fig. 1 in the earlier
- work ¢), we find that the centroid of the giant resonance in our earlier work is located at
-15.73 MeV as compared to 16.3 MeV here. This difference is due to differences in the
pairing models. It is found experimentally ?®) that the GT giant resonance is located
at 19.2 MeV relative to the ground state of ?®®Pb. Since the Q-value of the reaction is
@pn = 3.67 MeV our calculated result. here is that the location is at 19.97 MeV. With
the lower value of xgr = 15/4 MeV we find.in the lower left diagram that the location
of the resonance is about 13.25 + 3.67 MeV = 16.92 MeV. Thus, the calculated location
of the giant resonance is too high by about 0.8 MeV with the conventional choice of x
and too low by about 2.3 MeV for the choice of ygr = 15/A MeV. In the folded-Yukawa
model the calculated location of the resonance is too high by about 1.0 MeV and too
low by about 1.8 MeV for these two cases, respectively. These results indicate that to
reproduce the location of the giant resonance optimally in both the folded-Yukawa and
the Nilsson modified-oscillator model one should choose xgr to be 21/4 or 20/4 MeV.
However, the difference between any of these two values and the conventional choice for
xct as made in eq. (43) is so small that we continue to use in our calculations the value
given in eq. (43). In this context one should observe that the calculated Gamow-Teller
strength in the low-energy region usually is twice as large as the experimental results.
This is the well-known problem of the missing GT strength 2*=3%). To reproduce experi-
mental half-lives the calculated strength is therefore in most investigations with models
of the type we use here renormalized (multiplied) by a factor of about 0.5. Were we to
use a lower value of xgr the suppression factor would have to be even smaller. We will
comment more on this aspect when we discuss calculated S-decay half-lives below.-

2.4. f-DECAY FROM EXCITED STATES

In our earlier treatment ®) for Gamow-Teller 3-strength decay we assumed that the
mother nucleus decays from its ground state. However, in many experimental situations
the nucleus undergoes §-decay from certain types of excited states. We have therefore
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generalized our model to allow the description of decay from certain isomeric states

- and implemented these generalizations in our computer code. We only consider such
isomeric states where the odd particle is in an excited state. Normally, when the nucleus

_is in its ground state the odd particle is in the lowest available orbital. To show that
it 1s straightforwe,rd to consider also the more general case when the odd particle is in
some other orbital Webdiscus's below a few representative cases in greater detail.

2.4.1. Odd-A nuclei »

- I‘n‘oddv—A nuclei the excitation of the.odd particle affects the Av = 2 and the Av =0
transitions differently. Let us first study the Av = 2 transitions. Specifically, let
 us consider Av = 2, B*-decay -of an odd-proton nucleus, as shown in the upper left
- part of fig. 5. In this case, with the odd particle as a spectator, the solutions to the
RPA equations for the transition energies w remain unchanged. The only part of the
calculation that changes is the calculation of the zero. reference point of the energy
scale. The energy of the - strength function is given relative to the ground state of the
daughter nucleus. The solutions w to the RPA equations are obtained relative to the
‘vacuum, which is the ground state of a neighboring even-even system. Now, relative to
the even system the energy of the daughter configuration is w + Epspec, However, the
energy of the ground state of the daughter system is E,, relative to the even system
where E,, is the quasi-particle energy of the odd neutron in the lowest orbital. Thus,
the energy E of the above daughter configuration relative to its ground state is
E=w + Epspect - Eno v (44)
The only change made in the present code relative to the original version®) is that
" By, ... 18 now allowed to be different from E;,. Obviously, it has also been necessary to
introduce a new variable to specify in which orbital the odd proton is initially located
in the mother nucleus. In the Av = 2 case just discussed it remains in that orbxtal in
the daughter nucleus. ' '

~ The above discussion shows that for Av = 2 transitions there are the following
relationships between the calculated spectra for decay from excited configurations and
from the ground-state configuration: Precisely the same peaks that occur in decay from
the ground state also occur in decay from excited states. The transitions have the same
- amplitude in both cases, but the positions of the transitions are displaced by the positive
energy E, . — Ep, in the decay from the exc1ted configuration relative to the decay
from the ground state. ' '

We must also consider the Av = 0 case. In this case only the odd, unpaired proton
is involved in the decay. This is shown in the upper right part of fig. 5. In this case the
only change that was made to the computer code was to allow for other initial states
than the lowest unoccupied proton orbital. The expressions for the energies of the

daughter configurations are unchanged relative to the previous model. For the energy

spect
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we obviously have

E = En - Eno ’ . (45)

Here E, is the quasi-particle energy for the configuration with the odd neutron in orbital
n, and E,, is the lowest quasi-particle energy, corresponding to the ground state with
the odd particle in the lowest possible energy state. Again we have of course introduced
in our computer code a new variable that specifies the initial proton orbital.

Although the changes required in the computer code to treat decay from excited
states are very minor for transitions of the Av = 0 type, there are for this type of
transitions important differences between the calculated spectra for decay from excited
states and for decay from the ground state. These changes occur because the initial con-
figuration of the odd particle is quite different in the two cases and it is this odd-particle
configuration that changes for transitions of the Av = 0 type. Thus, for transitions of
the Av = 0 type, peaks that are present in decay from the ground state will be absent
in decay from excited states and new peaks will appear instead.

- At prespnt only a restricted class of excited states can be studied by the code. This
can be understood by considering how the odd configurations are generated in the model
and computer code. As a starting point one solves the single-particle, pairing, and RPA
‘equations for an even-even nuclear system, which is called the vacuum nucleus. Both
‘mother and daughter nuclei are generated from this vacuum nucleus. The proton and
neutron numbers of the vacuum nucleus are selected such that the mother and daughter
configurations deviate as little as possible from the vacuum, because the closer these
configurations are to the vacuum the simpler the expressions for the energies, transition
rates and other quantities of interest become. In addition, one obtains more accurate
results from the perturbation expressions, the closer to the chosen vacuum the studied
configurations are. In figs. 3 and 5 the dashed lines represent the positions of the Fermi
surface for the vacuum nucleus, which has Z protons and N neutrons. It is easiest
to understand how to select the vacuum by considering the Av = 0 transitions. For
Bt decay it is clear that with the vacuum selected as in the upper right part of fig. 5.
the parent configuration is constructed by creating a proton particle out of the vacuum
and the daughter state by creating a neutron particle out of the vacuum. It is easy
to verify that any other choice of vacuum would require either the mother or daughter
conﬁguration to be a three-quasiparticle state. In the case of 8% decay of odd-proton
nuclei this means that we can consider excited proton particle states in the mother
nucleus as initial states. We show an example of 8~ decay of an odd-proton nucleus
in the lower left part of fig. 5. In this case it is clear that the initial states are of a
hole type. A consideration of the various cases that can occur shows that our simple
generalization of the code at this stage leads to the following restrictions on the type of
initial, excited configurations that can be studied:

o f* decay from odd-proton nuclei: profo'n particle states
¢ 3~ decay from odd-proton nuclei: proton hole states

¢ % decay from odd-neutron nuclei: neutron hole states
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e 3~ decay from odd-neutron nuclei: neutron particle states

2.4.2. Odd-odd nuclei

A case of decay of an excited odd-odd system is shown in the lower, right part of
fig. 5. As is seen in fig. 3 there are two types of Av = 0 decay for an odd system. In
- the Av = 0 decay shown in fig. 5, the odd particle that is in an excited state, in this
“case the odd neutron, is not involved in the transition. Instead it is the odd-hole state

corresponding to the lowest-energy proton hole state that is involved in the transition
shown. For this type of Av = 0 transitions in the odd-odd system the transitions are
identical to those that occur from the ground-state configuration but displaced in energy
relative to the decay of the ground-state configuration by an amount that is equal to the
excitation energy of the other odd, uninvolved particle. In the odd-even case Av = 0
transitions always had to involve the excited odd particle, in which case the Av = 0
- transitions occurring from the ground-state configuration were replaced by completely
- different’ Av = 0 transitions from the excited configuration. This situation also occurs
_in the odd-odd case for Av = 0 transitions that do involve the excited odd particle.
. The energy of the transition shown in the lower right part of fig. 5 is simply given
o E=E,+E, (46)

speci

‘where E, is the quasi-particle energy for the configuration with the odd neutron in
“orbital n, and Enspec'isbthe quasi-particle energy of the sp‘ecta;tor'. In the case of decay
from the ground-state configuration E, .. = E,,, where E, corresponds to the case
when the odd particle is in the lowest possible orbital. The rules above for the possi-

ble excited states that can be studied in the odd-even case may be carried over to the
~ odd-odd case and in that case mean that for 8+ decay we may consider proton particle
states or neutron hole states, and for 3~ decay proton hole states or neutron particle
- states. ' '

2.5. B-DECAY HALF-LIVES AND DELAYED NEUTRON-EMISSION PROBABILI-
TIES - o -

We here discuss the calculation of 8-decay half-lives for Gamow-Teller decay and the
related problem of calculating (3-delayed neutron-emission probabilities. As a first step,
we investigate a relatively simple model in order to gain some basic insight into how the
half-life is calculated. In our discussion of the model we follow closely the presentation
in the books by deShalit and Feshbach *) and Preston*?). We develop a computer code
based on this model and compare the results to a more exact model. Unless otherwise
stated, we take the expressions in this section from the book by deShalit and Feshbach.
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2.5.1. B decay

The B decay occurs from the ground state or an excited configuration in a mother
nucleus to some state in the daughter nucleus, that is from an initial configuration
to a final configuration. For = decay, the final configuration is a nucleus in some
excited state or in a ground-state configuration, an electron (with energy E.), and an
"antineutrino (with energy E,). The transition from the initial to the final state then
involves an operator H, which is the weak-interaction Hamiltonian density. Once the
operator H is known, the probability per unit time for emitting an electron between hk,
and h(k. + dk.) and an antineutrino with a momentum between kk, and ik, + dk,)
is given by the well-known golden rule
' | or . 1, dk. dk,
w1 Gy Gy

where Ej is the energy release in the decay.
- In the above expression sums over the spins of the final states and averages over the
' 1n1t1a1 spins should be performed. Qur interest here is mainly to obtain the probability
of decay to a specific final nuclear state f. To obtain this probability we observe that
. the matrix element |Hy;|? is a product of the antineutrino and electron level densities
and nuclear matrix elements. One may obtain the probability distribution for the elec-
trons from eq. (47) by summing over the appropriate spins and integrating over the
direction of motion of the electron and over the antineutrino momentum. One must go
‘through several lengthy steps to accomplish this. These steps are usually glossed over
" in discussions of these models but one extensive account of the steps involved is given
in the book by Preston3?). The resulting probability distribution of the electrons is

dwy; = §(Eo— E, — E,) (47

dwy; - moc? T?

Y L WB RO M- -1 (49)

- where € = E,/myc? and €y = Ey/moc?, mg being the electron mass. -
The nuclear matrix element |M;|? is the B-strength function. The dimensionless

constant I' 1s given by
g moc?
I'= <—) 49
: mec? \ h : ' (49)
Note that there is a misprint in the book ') by deShalit and Feshbach, where in chapter 9
eq. (2.11) the exponent is erroneously 2 instead of the correct value 3. The density p is
in the relat1V1st1c limit given by

y 145 |e™?T(s+1+in) 2
= 2(2kR)*~Y 50
where :
s2=1—(aZ)* - (51)
ZE
n = +257% _ 40z Ee  moc for et (52)

CPe TnOCZ De
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and o :
a=— _(53) B

is the fine-structure constant. ‘ _
The total probability for decay to one nuclear state is obtained by mtegratlng eq. (48)
to obtain

mac?: T o : - '
wfz- = ;)i o 3 |Mf,|2f(Z R 60) , : (54) .
where - @ , - 1 ' - .
f(Z,R,€) = / dep(Z, R, €)(eo — €)?e(e® — 1)3 . (55)
1

The probability for 3-delayed neutron emission, in percent, is given by

o > owso
P, =100 Sn<BEy<Qs . (56) |

> w

0<Ef<Qg

where we have assumed that decays to above the neutron binding energy S, alwayslead
to delayed neutron emission.

To obtain the half-life with respect to S-decay one sums up the decay rates wy; to
the individual nuclear states in the allowed energy window. The half-life is then related

_to the total decay rate by
S In2

t = (b7
12 = Zum ( ,)
The above equation may be rewritten- as
; h 273In2 1 o B
T med TP Y \MuPf(Z,Re) |y IMuPf(Z,R <)
f f
with
h 2731n2
B =
mec?  T? (58)
In our half-life code we use for B fhe value
B =14131s R = (59)

for Gaﬁow Teller decay
The above formulas apply to St and 3~ decay. However, for the purpose of calcu-
lating half-lives electron capture (EC) must also be considered.
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2.5.2. Electron capture

The energy release in positron emission is ‘ |

EFT = [M(Z,N)-=M(Z—1,N +1)—2mg]c? R ('60)

and in electron capture o | i

EEC = [M(Z, N) - M(Z —"1, N +1)] ¢® — electron binding energy (61)
“In fact o '

EEC_— Eﬁ + 2m0c — electron binding energy - . (62)

which shows that for some decays electron capture will be possible although ,3"' decay
is energetically forbidden. The decay rate by electron capture is

dk,
(2m)°
' After;integrating over the neutrino wave. vector k, one obtains

x  mgc? F2( h

‘fl h T \MpC

dw}‘;_ |H,«,;2 §(Eo — E,) (63)

3 . ) H } .
)lef,'|261';2_ . . v k . (64)

where K indicates electron capture and ¢, is the neutrino energy in units of mgc?. The
‘"density p is different from the densxty entermg in 8~ or Bt decay In a nonrelativistic
approximation it is given by : '
zZ3 '
p= . . . (65)

7ra03_. L

where qg is the Bohr radius. Thus - '
() r=ta@ze (60
The total half-life with respect to. 3t and EC decay is obtained through

In2 ‘ o .
hpe = o (67)
Z(wfi+wfi)
f

'As pointed out above, the energies involved in the two terms in the sum differ by 2mgc?
and for some nuclear final states w?:r may be zero (energetically forbidden) while wf; is
not. : : .
‘However, to get reasonable accuracy.it is necessary to use the relat1v1st1c expressions
gwen by Preston 32) and also to cons1der electron capture from both the K-shell and
the L-shell. One then obtains

K+r; _ Moc® T

u)f2 = 7 _lezl —(g 1,K ‘IK +g -1,Ly qLI ) (68)
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TABLE 2
Comparison of log f; values calculated in two models

zZ A €0 log fo_ log fg
(MeV) eq. (55) ref. )

20 44 6.00 426  4.26
37 95 0.10 -219 —213
37 95 0.60 0.41 0.41
37 95 1.00 1.22 . 122
37 95 6.00 449 447
37 95 10.00 5.51 5.49
65 160 0.10 -—1.57 —1.54
65 160 060 - 098  0.96
65 160 1.00  1.77 1.74
65 160 6.00 © 4.91 4.86
65 160  10.00 5.91 5.83

or equivalently.
K+L; __ TnOC2 F_2
Wy T K 93

|MsPf1H(Z, R, &)

where ' _ -

K+L :
(2, R, e0) = ;(9—1,1{2(11{2 +9-1,0,°95,%)
Here ' » '

2 _  2-—Bg )(2aZK)3(2aZK)2s_2(

: mOcR>2"'2
I-1K = Sr@s+1

h

(2= Br,)(2s+1)(2s +2)"®

2 _ mocR
JLL = 4T(2s + 1)[(2s + 2)1/2 + 1]

' : . 25—2
(2021, (202, )>~* (T)

s = (1-a?zZxh)?

BK ‘= 1—3s

1 + 3)1/2

B, = 1“( 2

Zg = Z-035
Zy, = Z-—4.15

gx = [M(Z,N)—-M(Z—1,N +1)]c®* - Bx

25

(69)

(70)

(71)
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Gove and Martin33) have tabulated f(Z,R,¢) in a treatment that is somewhat
more exact than outlined above. In table 2 we compare results obtained from eq. (55)
with the results of Gove®?). The differences between the two models correspond to a
difference in half-life of less than 20%. Despite the small differences we have obtained
the computer code used to generate the tables of Gove and Martin and incorporated
it into our programs. Most of the results presented here have been obtained with this
more accurate treatment.

3. Calculations

Deformed single-particle models provide a starting point not just for calculations
of p-strength functions but also for many other nuclear-structure quantities. Initially,
deformed single-particle models were used to calculate the ground-state deformation and
level structure of deformed nuclei. Since nuclear wave functions are also provided by
these models, such quantities as electromagnetic moments and transition rates can also
be calculated. In other applications, for example the macroscopic-microscopic approach,
the potential energy of the nucleus is calculated as a function of its shape, and in this
approach the shell correction is extracted from calculated single-particle spectra by
use of Strutinsky’s shell-correction method. In the macroscopic-microscopic approach
nuclear ground-state shapes and masses may be determined, and by considering a larger
set of shape variations one may also investigate the structure of the fission barrier: A
knowledge of the ground state shape is of course necessary to calculate the §-strength

fanction. '

A detailed knowledge of the low-energy part of the [-strength function is essential

for:the calculation of such quantities as the probability of §-delayed neutron and proton

emission, the probability of S-delayed fission; and half-lives with respect to 8-decay.
Experimentally it has been known for some time that the low-energy part of the 3-
strength function exhibits a pronounced structure ®*?%), that is the strength is collected
in a few well-localized peaks. For nuclei that are spherical in their ground state there
are usually very few peaks within the Qg window; for deformed nuclei the strength is
more spread out, ‘but still exhibits significant structure.

Theoretlcally these properties of the 3-strength function can be understood in their
main features in an extreme single-particle model. The peaks in the strength functions
correspond to transitions between specific single-particle levels. Inthe spherical case the
levels are highly degenerate and spaced far apart, which gives rise to the very few but
strong peaks in the experimental strength function. For deformed nuclei the degeneracy
1s removed, allowing for significantly more transitions. Thus, compared to the spherical
case, there are now more peaks in the experimental strength functlon but the strength
of each peak is lower.

Although an extreme single-particle model explains the origin of the structure in the
B-strength function and the characteristic difference between strength functions asso-
ciated with deformed and spherical nuclei, a more detailed description of the strength
function requires the inclusion of the pairing and a Gamow-Teller interactions as dis-
cussed above. The inclusion of these terms in the potential reduces the calculated
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strength in the low-energy part of the strength function to about 10% of what is ob-
tained in an extreme single-particle model®). Because the pairing leads to a diffuse
Fermi surface and consequently to some occupation probability above and to partially
unfilled levels below the Fermi surface there are decay channels open in the more refined
model that are blocked in the extreme single-particle model. One should also note that
for deformed nuclei we often find considerable strength for transitions between Nilsson
‘levels whose asymptotic quantum numbers do not allow for any transition probability,
+according to the GT selection rules. This result is due to the fact that the conventional
-asymptotic quantum number label gives the main component of the wave function corre-
“sponding to the level, but the transition strength is due to admixtures of wave-functions
with other asymptotic quantum numbers. Since we perform a full diagonalization of
the single-particle Hamiltonian we account for these admixtures in our model.

3.1. GLOBAL MODEL BEHAVIOUR

The above discussion makes clear that the positions of the peaks in the low-energy
part of the B-strength function depend critically on the positions of the single-particle
levels of the underlying single-particle model. In the deformed case one might expect a
somewhat random distribution of strength because of the considerable number of levels
available in the deformed region, and their seemingly irregular distribution. However,
although the level distribution may seem random at a casual glance, the locations found
experimentally for the low-lying bandhead energies and for the values of their quantum
numbers are quite well described by calculations based on single-particle models. As
an example we refer to the comparison ') of calculated and experimental levels in the
deformed actinide region. For cases where the experimental level positions close to
the Fermi surface are as well reproduced by the calculations as in this comparison,
one expects that the B-transitions from mother to daughter also should be relatively
well described by our model, with a structure of the calculated strength functions that
reflects the structure of the underlying single-particle level diagram.

Since the B-strength function is a sensitive function of the underlying single-particle
structure, a basic requirement in a calculation of a f-strength function is ideally that
two conditions are fulfilled. First, the ground-state shape of the system of interest must
be known. Second, the single-particle spectrum calculated at this shape must agree
reasonably well with the experimental situation, in particular for the levels closest to the
Fermi surface. Because we now use the folded-Yukawa single-particle potential, which
has been used to calculate nuclear masses, shapes, and other ground-state quantities for
nuclei throughout the periodic system 1%11),
requirements are met globally throughout the periodic system in this model. In general,
very good agreement has been found between calculated and experimental ground-
state masses’?) and between calculated and experimental values for the ground-state
quadrupole and hexadecapole shape coordinates *). More recently, we have, with only
slight modifications of the model, performed a new calculation of ground-state masses

we have extensive experience on how these



P. Moller, J. Randrup/Calculation of B-strength functions 28

and shapes, now for nuclei from the proton to the neutron driplines, from oxygen to
beyond Z = 120, altogether 8979 nuclei **). The masses were calculated in two different
macroscopic approaches. In both approaches the microscopic correction was based on
the folded-Yukawa single-particle model, but two alternative macroscopic models were
‘used. One of the macroscopic models is the finite-range liquid-drop model (FR liquid-
drop model). It corresponds to the model used in our original mass calculation '?)
and in a later calculation®’). The second model is the finite-range droplet model (FR
droplet model). This model was first used in a 1984 calculation®®) (which reference
unfortunately has numerous misprints). It was also used later in a contribution®) to
the 1986-1987 Atomic Mass Prediction (this reference is devoid of misprints in the model
“specification). In our calculation of S-decay properties, the macroscopic model enters
only in the calculation of Q)4 values, neutron separation energies, and similar quantities.
The theoretical values for these quantities also depend on the shell corrections. For
the calculation of these quantities we use the Wapstra 1986-1987 experimental mass
compilation *°) and for the cases where experimental masses are not available, we use
the 1988 mass calculation *¢) with the macroscopic model given by the FR droplet model.
In this latest mass calculation *) the calculated masses and ground-state deforma-
tions differ little from the results obtained in earlier calculations'®*~'*). However, in
contrast to the earlier calculation we have tabulated additional calculated ground-state
- properties in a form that can easily be used for further computer studies. We mentioned
. -earlier the good agreement between calculated and measured ground-state deformations
" and the importance of using a correct ground-state deformation when calculating the
" B-strength function. We have now also tabulated the calculated levels with correspond-
ing quantum numbers in the vicinity of the Fermi surface for all 8979 nuclear ground
states. A good description of the low-lying level spectrum is also crucial for a reliable
‘calculation of the S-strength function. . :

-To investigate the global reliability of our calculated level spectrum close to the Fermi
-surface for our standard parameter choice we compare in figs. 6 and 7 calculated and
- experimental spin and parity assignments for odd-A nuclei for the light and heavy part

of the periodic system, respectively. The calculated values are obtained from our 1988
~ tabulation ®¢). The calculations very seldom predict that a nucleus is exactly spherical.
"To make a meaningful comparison between experimental spin and parity assignments

and our calculated values for nuclei close to magic numbers we give a spherical level

assignment to all nuclei whose calculated ground-state deformation ¢, is less than 0.15.
- We obtain correct assignments in 60.0% of the cases. More specifically we found that

the predictions were correct in 428 cases and incorrect in 285 cases. OQur first aim in
making this comparison was to check if there was any discrepancy that suggested an
obvious improvement in our prescription in eqgs. (6-7) for the spin-orbit strength. Since
figs. 6 and 7 show excellent agreement at magic numbers throughout the periodic system
it may be difficult to device a better prescription for the spin-orbit strengths than our
chosen'one. We have not concluded our analysis of the comparison between calculated
and measured ground-state spin and parity assignments. However, it is clear that much
of the disagreement occurs for transitional nuclei, where we have calculated the spin for
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deformed shapes, but the experimental situation is that the nucleus remains spherical.
One example of this type of disagreement is found in the region 84 < N < 89 in the
rare-earth region. Another example of a consistent disagreement is the region in the
vicinity of N = 56. Experimentally N = 56 is a spherical subshell close to Z = 40, but
the calculated result is that nuclei in this region are weakly deformed.

3.2. B-STRENGTH FUNCTIONS FOR Rb

Major new featufes in our f-strength code that were discussed above are, improved
perturbation expressions for the Av = 0 transition rates, the use of the Lipkin-Nogami
pairing model that avoids the collapse that may occur in the usual BCS approximation,
and the possibility of using the folded-Yukawa single-particle potential as the starting
point for calculating the B-strength functions. 'T_o show the effects of some of these new
features we display in figs. 8-10 B-strength functions for odd Rb isotopes from *Rb to
% Rb. The calculations are based both on the Nilsson modified-oscillator and the folded-
Yukawa single-particle potentials. The Nilsson-model results may be compared with
~ the corresponding results obtained in the earlier model®). There are only very minor

differences between the results of these two calculations for this sequence of ‘nuclei. The
‘main difference is that the two lowest peaks in the strength function are closer together
in the new calculation than in the old one. This is an effect of the new pairing A values.
“In the new model the neutron and proton pairing gaps may be different, and we note in
- 'the figures the difference between the:neutron and proton pairing gaps exceeds 0.5 MeV
“for ®°Rb. ' - ' ‘ - S

" A detailed comparison was made in our earlier work ) between mieasured and cal-
culated étrength functions for this sequence of nuclei. It was found that the low-energy
‘peak in the calculated strength was about 1 MeV higher than the experimental result,
but that the change in magnitude and location of the strength with neutron  number
was well reproduced by the calculation. That is, if the experiment showed an increase
in the magnitude of the low-energy peak and a move towards lower excitation energy,
* as'is the case when going from *Rb to ¥ Rb, then the low-energy peak in the calculated
strength shows the identical behavior, as we also see in fig. 9 for both the Nilsson and
‘the folded-Yukawa potentials. In fact, it is interesting to observe that the differences
between the Nilsson and folded-Yukawa models in figs. 8-10 are rélatively minor. It is
particularly noteworthy to observe how well both models reproduce the drastic change
that oc¢curs in the experimental strength function as the ground-state shape of the nu-
cleus changes from spherical shape for Rb to well-deformed for ®Rb. For **Rb the
experimental data35) show a sharp peak at about 4.5 MeV with no allowed strength
" below this peak, while for ’Rb a radically different, much smoother strength function
is observed, with some strength around 1 MeV, a window with no allowed strength in
the interval 1.5 MeV to 3.5 MeV, and then a continuous distribution of strength above
3.5'MeV. The calculated strength functions reproduce this behavior very well. '

A detailed interpretation of the calculated S-strength functions requires a knowledge
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- TABLE 3
Identification of major peaks in the ®’Rb S-strength function.

Eexc IMf, |2 ip in Qg Qr Av Iﬁ Tl /2

n

(MeV) | (s)
0.01 0.0070 19 31 3/2t 3/2t 0 0470 1.47
~0.35  0.1156 19 28 3/2* 3/2t 0 6.632 0.10
078 0.0707 19 26 3/2% 1/2* 0 3.330 0.21
3.40 0.2018 19 23 3/2+ 1/2t 0 2253 0.31
3.63 0.0036 20 31 5/2t 3/2t 2 0.034 204,
4.12 02125 20 28 5/2t 3/2t 2 1.461 047
4.36  0.0500 19 21 3/2t 5/2t 0 0.289 2.40

- of the underlying neutron and proton single-particle level diagrams. We choose *"Rb
to illustrate some aspects of such an analysis. In figs. 11 and 12 we have plotted the
.corresponding Nilsson diagrams for neutrons and protons, respectively, for a folded-
Yukawa single-particle potential. In table 3 we show some properties associated with
. the peaks seen in the folded-Yukawa (-strength function of ®”Rb shown in fig. 10. For
each peak table 3 shows the energy of the peak, the nuclear matrix element for the
transition, the number of the proton level involved in the transition counting from the
bottom of the single-particle well, the number of the neutron level involved, the spin
and parity of the proton level, the spin and parity of the neutron level, the difference Av
between the number of broken pairs in the daughter and mother nucleus, the intensity
of the transition in arbritrary units, and the partial half-life of the transition, in seconds.
Table 3 is very similar to a-standard output that.is obtained when the 3-strength code is
run. One immediately observes that the lowest few transitions are of the Av = 0 type.
‘The Av = 2 transitions can only occur above 2A,, that is in this case above 2.58 MeV.
Thus the lowest transitions involve a neutron changing into a proton in level 19, where
there is already one unpaired proton. This situation is illustrated in the lower left graph
in fig. 5, where we in this case should consider the unpaired proton to be just below the
.Fermi surface. In figure 12, we can identify the proton level involved in this transition.
At €3 =~ 0.30 the 7, = 19 level is the Q, = 3/2% level emanating from the go/, spherical
level. The neutron level involved is the level ¢, = 31 which when filled corresponds to
neutron number N = 62. In fig. 11 we see that this level is coming from the g7/, spherical
shell. Since both the initial and the final state involve orbitals emanating from spherical
g shells, one might wonder why the. overlap is so small. The nuclear matrix element
is only 0.007, but since the ! quantum numbers at first sight seem to be the same one
would naively expect a much larger overlap. A further inspection of the neutron level
diagram resolves this paradox. At e; = 0.13 the 3/2% levels coming out of the g7/, and
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‘the ds/; spherical shells interact strongly and the quantum numbers are interchanged.
Thus at €; & 0.30 level ¢, = 31 has only a very small / = 4 component, which accounts
for the small overlap. Instead, the large overlap occurs for level i, = 28 as is seen in
table 3. It is clear from inspecting fig. 11 that this level at €; ~ 0.3 is now mainly of
| = 4 character. The first Av'= 2 transitions occur at 3.63 and 4.12 MeV. The relative
magnitude of these two transitions can also be understood by again corisidering the
interaction at & ~ 0.13 between the levels coming out of the g7/, and the ds /2 spherical
shells and the exchange of quantum numbers that occurs.

" As an example of results calculated with Woods-Saxon single-particle wave functions
we show calculated strength functions in this model for four Rb isotopes in fig. 13. These
results are fairly similar to the results obtained by use of folded-Yukawa wave functions.
For instance, if we compare the results for ®Rb we see that in both the Woods-Saxon and
the folded-Yukawa calculation thére are four prominent bins in the interval 4.75 MeV -
to 9.0 MeV. The slight difference in the location of the strength in the two models
reflects small differences in the underlying single-particle potentials. A comparison of
‘the results for **Rb in fig. 13 with the folded-Yukawa results in fig. 9 reveals that there
“seems to be one peak missing below 8 MeV. in the Woods-Saxon results. An inspection
~of the single-particle level diagrams reveals the source: of this difference in results. In
the folded-Yukawa model we have immediately below the spherical Z = 38 gap in fig. 12
aps /2 level followed by a f5/, level further below. In the Woods-Saxon model the order
of these two levels is reversed for ®*Rb. Thus in the folded-Yukawa model the ground-
state of *Rb is 3/2~, whereas in the Woods-Saxon model it is 5/27, with the universal
parameter set. To see the result in the Woods-Saxon model with the unpaired proton in
the ps/, level we have used the feature that allows us to study decay from excited states
in the mother nucleus and calculated the strength function from the excited state where
the odd particle is in the ps/; state. In the Woods-Saxon model the state is only about
50 keV below the f5/2 state. With this initial state we obtain strength of magnitude 1.07,
0.94, 1.2, and 3.24 in the bins starting at 4.75, 5.50, 6.00, and 8.25 MeV, respectively.
As expected, this result is indeed very similar to the folded-Yukawa result.

- Experimentally, the ground-state spins and parities of the odd-A %9~9°Rb sequence.
are 3/27,3/27,5/2, and 5/2 (parity unknown), the folded- Yukawa result is 3/2~, 3/2",
3/27, and 3/27, and the Woods-Saxon result is 5/27, 5/27, 5/27, and 3/2~. We now

“understand the similarity for ®Rb between the folded-Yukawa and the 'Woods—Sa,)xon
model; in this case both models place the unpaired odd proton in the same orbital.

None of the models reproduce the experimental spin over the entire range of neutron

numbers. The Nilsson model does give the correct ground- state spin in all four cases,

but this was achieved through a change of parameters at N = 93. Such convenient
parameter changes can usually not be invoked when the model is applied to unknown
regions of nuclei, as in astrophysical abplications, for example. '
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3.3. CALCULATED S-DECAY HALF-LIVES COMPARED TO OTHER MODELS

The calculated half-lives presented below are all based on the folded-Yukawa single-
particle model. The deformations used in the calculation are taken from our most
recent mass calculation ), except in special cases, such as when we compare to the
results of other calculations, for example in fig. 14. The ground-state deformations
obtained in this most recent calculation are usually very similar to values obtained in
a previous calculation **). However, differences occur in transitional regions. Our most

:recent calculation has the advantage that it considers nuclei from the proton to the
_neutron drip lines, so we have available values of the ground-state deformations for all
.nuclei. of astrophysical interest. The Qs values are calculated from experimental mass
... differenices 4°) where available, otherwise from our most recent mass calculation. In all
-our calculations of half-lives we multiply the calculated half-lives by a renormalization

zvl'factor. ) - .
Tre = 2 v (72)

" 'This is equivalent to dividing the calculated strength by 7. No strengths shown in
any figure in this paper have been renormalized in this way; the renormahzatlon is only
carrled out on the calculated half-lives.

"'As our first object of study, we select to calculate half-lives for the cases recently
studied by Bender et al.''). In fig. 14 we compare half-lives calculated with a folded-
Yukawa, single-particle potential in our present model with the results of Bender et al.,
" and with experimental data*'=*?). Both calculations use ground-state deformations
from ref.'3). There are some differences between the results of the two calculations,
but this is not unexpected since they do not employ the same single-particle potential;
Bender et al. use a Nilsson potential in their calculation. In our calculation we have 3
" cases out of 12 where the calculated result is more than a factor of 10 different from
the experimental value. In this particular figure our calculated half-lives in this group
of large deviations are all longer than experiment. Bender et al. have no case with an
error larger than a factor of 10. As we will discuss in more detail below, there are
experimental cases where $-decay from the ground-state and 3-decay from a close-lying
isdmer have decay half-lives that differ by two orders of magnitude, or more. This large
difference is due to the influence of the quantum numbers of the odd particle on the
‘decay properties.” Since we in our model do not always determine the ground-state
shape and the corresponding oad—particle configuration correctly we expect that errors
in the calculated half-lives of this order of magnitude will occur occasionally. This must
obviously be the case in any model, with a frequency that depends on the accuracy of
the model. For rare-earth nuclei we calculate below more than two hundred decay half-
lives. We postpone further discussion of the magnitude of the error in 3-decay half-life
calculations until we present this larger sample.

The plot of the ratio tcac/texp shows that the points are approximately similarly
distributed around the ratio 1 in both calculations. However, Bender et al. use ygr =
15/A MeV. By using this value in test calculations we find that this choice decreases
the half-lives to about half the value that is obtained with the choice xgTr = 23/A4 MeV,
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which is the value we normally use. In our calculation we have multiplied the-calculated
half-lives by the renormalization factor r,, = 2 to account for the fact that the strength
obtained in models of the type we use, is about twice the experimental strength. Bender
et al. use no renormalization factor. One would therefore expect that the half-lives
calculated by Bender et al. would be about a factor of four shorter than the half-lives
calculated by us. No such trend is seen in fig. 14. At this point we do not understand
why the two calculations yield about the same half-lives with different choices of xgr
and renormalization factor r... One possibility is that the sample of nuclei studied is
too small for a systematic trend of this nature to be visible against a background of
random fluctuations. We shall see in the further calculations presented below, that our
calculated decay half-lives are centered on a line only slightly above the line representing
the ratio 1. Our results thus are very consistent with results that have been obtained
“over recent years: a) to reproduce the position of the giant Gamow-Teller resonance one
“should choose xygr = 23/A MeV and b) this choice leads to a calculated strength that
‘1s about twice as high as the observed experimental strength.

In fig. 15 we compare B-decay half-lives calculated in three different models to experi-
mental data **) for nuclei in the beginning of the rare-earth region. All three calculations
are about equally distributed on both sides of the line tca/texp = 1, if we ignore three
points in our calculation with particularly large deviations. One sees that on the average
the half-lives by Klapdor et al. %) are a little shorter and the half-lives by Takahashi et
al.1) a little longer than experiment. The model used by Klapdor et al. in this figure
is different from the model used by Bender et al in fig. 14: To analyze the deviations
between calculated and experimental 8-decay half-lives in more detail than is possible
for the data shown in figs. 14 and 15 a larger data set is needed.  We have therefore
performed a calculation of half-lives in the rare-earth region for all nuclei for which
‘experimental half-lives are known and for which Qg is larger than 1 MeV.

3.4. CALCULATED [-DECAY HALF-LIVES FOR RARE-EARTH NUCLEI

Our most extensive calculation of -decay half-lives is in the rare-earth region. Here
we have calculated the half-lives with respect to both #+ and EC decay and with respect
to B~ decay. To avoid lengthy constructions we will in our discussion in . this section
usually not distinguish between A+ and EC decay and somewhat inexactly take Qs to
mean the maximum energy release in the decay. We have performed the calculation for
all nuclei with Z between 62 and 76 for which the half-lives are known and for which
Qg is larger than 1 MeV. In figs. 16 and 17 we show the half-lives for combined 8% and
- EC decay. .

Cases that lie out51de the scale of the figure have not been taken into account in
our error analysis. Our conclusions below are not in any significant way affected by
this selection of cutoff value for tcac/texp. It is not our aim here to make a detailed
analysis of each individual nucleus, but instead to present an overview of the rare-earth
region and the model performance in a calculation of a large number of 3-decay half-
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lives. However, to get some understanding of what can be learned from a more detailed .
analysis we discuss briefly the cases that lie outside the window considered. There are
nine such cases. In eight of those cases the experimental half-life is longer than 1 day,
clearly cases where the decay usually should be dominated by forbidden transitions.
In those eight cases we do not have any calculated strength below the Qs value, and
we are thus in agreement with the experimental situation for allowed decay. For ¢7Yb
the experimental half-life is 17.5 m but we calculate that the half-life is 1062 times
longer, thus outside the window in the figure. For ¥"Yb we have predicted a ground-
state spin 5/2%, but experimentally the ground-state spin is 5/27. (For **Yb we do
predict a ground-state spin of 5/27, in this case in agreement with the experimental
situation.) In this particular case the large disagreement is probably due to the fact
that the ground-state spin obtained in our model is incorrect.

In fig. 16 tcaic/texp is plotted as function of Qs with the aim of showing how the
average error increases as (s decreases. It is obvious that errors in the location of
the peaks in the calculated strength function have a larger effect on the calculated
half-lives for small Qs values than for larger ones. For a Qg value of, say, 1 MeV the
_calculated half-life will be infinite if all the strength is above the Q5 window. Even if
‘there experimentally is some strength in this window, very minor errors in the calculated
level diagrams may have the effect that no strength is obtained in this window. Indeed,
- we see a fairly clear increase in the scatter of the points in fig. 16 as Q3 decreases. In
fig. 17 the quantity tcac/texp is plotted as a function of the experimental half-life teyp.
. As a function of this quantity, one would expect the average error to increase as teyp
increases. This is also the case. In a visual inspection of fig. 17 one is left with the
impression that the error in the calculation is fairly large. However, this is partly a-
fallacy, since for small errors there are many more points than for large errors. This is
not clearly seen in the figure, since for small errors many points are superimposed on
each other.

Normally one analyzes the error in a calculation by studying a root-mean square
deviation, which in this case would be

1
Orms? = = E(texp — teale)” - (73)

Such an error analysis is unsuitable here, for two reasons. First, the quantities studied
vary by many orders of magnitude. In our case the variation is more than 10 orders
of magnitude, from the millisecond range to years and beyond. Second, the calculated
and measured quantities may differ by orders of magnitude, For quantities with this be-
haviour it is of interest to establish if the model reproduces measured values to within
2 orders of magnitude, to within 1 order of magnitude or perhaps to within a factor of
2. This can be established by studying the quantity log(tcac/texp), plotted in fig. 17,
instead of (fexp — tealc)?. It is clear that this error definition is related to the distance of
the points in fig. 17 from the line tcy./tex, = 1. Were all the points located on this line
there would be perfect agreement between data and measured values. For the case all
the points were grouped on the line fcaic/texp = 10 there would in all cases be an etror
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of a factor of 10. However, it is immediately clear that an error of this type could be
entirely removed by changing the renormalization factor from the value given in eq. (72).
In another extreme, suppose half the points were located on the line tcac/texp = 10 and
the other half on the line fcac/texp = 0.1. In this case the average of log(tcaic/texp) Would
be zero. We are therefore led to the conclusion that there are two types of errors that
are of interest to study, namely the average position of the points in fig. 17, which is
just the average of the quantity log(tcaic/texp) and the spread of the points around this
average. To analyze the error along the ideas above we therefore introduce the quantities

r o= rtcalc/texp
= logy(r)
13
.Z\d-r,-l = ;;7‘1
M = 10Mn (74)
1 n . 2 y1/2
S iU
n 1=1
0.10 — ]_0""1

where M,, is the average position of the points and o,, the spread around this average.
The spread o,, can be expected to be related to uncertainties in the positions of the
levels in the underlying single-particle model. The use of a logarithm in the definition
of r implies that these two quantities correspond directly to distances as seen by ‘the
eye in fig. 17, in-units where one order of magnitude is 1. After the error analysis has
been carried out we want to discuss the result of the error analysis in terms like “on the
‘average the calculated half-lives are ‘a factor of twd’ too long.” To be able to do this we
must convert back from the logarithmic scale. Thus, we realize that the quantities M, 10
and a are conversions back to “factor of” units of the quantities M, 10 and O'TI, Wh]Ch
are expressed in distance or logarithmic units. - '

* In table 4 we show the results of an evaluation of the expressions in. eq. (75) for
three different cutoff values of tex,. A reasonable cutoff value might be tey, = 1000 s.
‘For longer half-lives one can expect forbidden decay to be dominating, as is also man-
ifested by the increase of o}° for the o-¢ and o-o cases between the cutoffs 1000 s and
10000 s. We find that the average value of r, M!°, is about 1.5 in the o-e and e-e cases.
This means that on the average our calculated half-lives are about 50% too long. One
would thus in the o—e and e—e cases obtain better agreement betwéen experimental and
calculated values if the renormalization constant were 2 /1.5 that is r,, = 1.33 instead of
the value 2 that we currently use. One interpretation why the renormalization constant
should be 1.33 instead of the commonly accepted ?®) value 2 is, of course, that our cal-
culated strength on the average is only 1.33 times the experimental strength instead of



P. Moller, J. Randrup/Calculation of -strength functions _ .36

TABLE 4

Analysis of the discrepancy between calc'ulate"d and
measured B-decay half-lives seen in fig. 17.

. 10 v . 10 max
n ‘M, M, o 0y Toxp

(s)

oo 17 022 165 046 2.87 100
oe 43 016 145 051 324 100
ee 22 022 167 024 1.75 100

oo 30 035 224 0.58 3.84 1000
o-e 69 0.17 1.48 0.60 3.96 1000
ee 35 0.17 149 0.28 1.90 1000

oo 35 034 219 0.60 4.03 10000
oe 84 0.15 141 0.72 5.23 . 10000
e-e 41 0.17 148 0.28 1.92 10000

twice the experimental strength as is usually assumed. However, another interpretation
is that the calculated locations of the peaks are somewhat too high on the average.
To check how much the peaks have to be lowered to change the half-life by ‘1/1.5 we
calculated the half-life of ®*Rb in the Nilsson model for. the correct Qs value of 9.28
MeV for which value we, obtained the half-life 2.92 s. For the Qg value 9.68 MeV we
obtained 2.0 s. Thus, an increase in Qg by 0.4 MeV, which simulates the effect on the
half-life of lowering the location of the peaks in the strength distribution, decreased the
half-life by about the same amount as multiplying the strength by 1.5.

- In section 2.3.3 certain simplifications were made to allow the extension of the odd-A
formalism to the odd-odd case. Were these simplifications inadequate one would expect
to see a larger o,, in the o-o case than in the o-e case. No such trend is seen in table 4.

An interesting ‘observation that can be made in table 4 is that M, is larger for
0-0 decay than for o-e and e-e decay. This supports our speculation above that the
location of the peaks in our calculated B-strength functions may be consistently too
high in energy and one may argue that the reason is that our calculated pairing A
values are too high by ea, with the estimate that ea = 200 keV, on the average. First
let us discuss the Av = 0 transitions in 0-o and o-e decay. In o-e decay the energies of
the Av = 0 transitions are given by the difference between the quasi-particle energy of

the orbital to which a particular decay takes place and the quasi-particle energy of the -

~ ground-state level. The two quasi-particle energies both contain A, but the difference
‘does not depend on A, to first order. Thus, these peaks should have approximately
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correct location independently of reasonably small errors in A. The energies of the
states populated by Av = 0 transitions i the case of 0-o decay are given by a sum of
two quasi-particle energies. An error in €a in A would give an error of 2 X € in the
location of these peaks.

For all three types of decays there is also strength due to the Av = 2 transitions.
For e-e decay these are the only transitions that occur. The energies of these transitions
are given as roots to the RPA equations, where the asymptotes are sums of two quasi-
particle energies. An error ea would increase the energy of these transitions by 2 X €a.
The same types of transition occur in the o-e and o-o cases. Thus we may argue that
the Av = 2 transitions with the error 2 x ea contribute about 0.15 to the error in M,
in all these three cases and that the additional error of 2 X €a in the Av = 0 transitions
in the o-o case gives an additional contribution to M,, in this. case.

The above analysis is somewhat incomplete in the sense that it failed to take into
account how dominating the-Av = 0 transitions are over the Av = 2 transitions in
the o-e case. If most of the decay probability is due to.the Av = 0 transitions, then
an error in the location of the Av = 2 peaks would have very little effect. A detailed
simulation of the effect of small changes in A in all three cases would provide the
necessary information. A more extensive analysis of the source of the error in the mean
M, should consider the following sources: i) the overall renormalization 7. could be
different from 2, ii) the location of the peaks may have systematic errors from other
sources than from an incorrect pairing A, and iii) there may be a systematic error in
the pairing A which manifests itself in the characteristic error pattern discussed above.
From our mass calculation *®) we have some indications that the calculated values of A
are indeed too high. The resolution may be that a slightly dn‘ferent average pairing . A
should be used in the Lipkin- Nogarm case as compared to the BCS case (cf. sections
>_222and223) . .

In the beginning of section 2.3 it was rnentloned that partlcle part1cle correlat1ons
were not taken into account in our RPA treatment. These correlations are expected
to strongly suppress 8% transitions 11, 26)) that is lead to. longer half-lives than what is
obtained in a.model that does not consider these correlat1ons However, our results in
fig. 17 and table 4 show that we in a standard treatment w1th a standard ch01ce of
xaT.= 23/A MeV and renormalization coefﬁc1ent Tre. = 2 obtain BT decay rates that
agree approximately with experiment. In fact as d1scussed above the calculated rates
_we-obtain are somewhat suppressed relative to experiment, although we do not incor-
porate partlcle partlcle correlations. The £~ decay rates presented below are calculated
for too few nuclei to allow for any detalled conclus1ons ‘but show no clearly dlfferent
characteristics from our results for ,3+ decay

: Because of the phase-space factors (Qg — Eexc) for B- decay and (QEC - exc) for
~electron capture, where E,. is the energy of the final state in the. daughteg nucleus
relative to the ground state, 8-decay and EC half-lives decrease rapidly with increasing
@ values. In fig. 18 we display the correlation between @3 values and experimental
_ B-decay half-lives for #* decay. The relation between the experimental half-life and
Qg is approximately linear in the log-log representation of this figure, with even-even,
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TABLE 5

Analysis of the discrepancy between schematically calculated
and measured §-decay half-lives seen in fig. 20.

10 10 max
n M, M, Or O toxn

(s)

oo 17 027 1.86 0.50 3.19 100
o-e 43 0.19 1.56 049 3.11 100
e-e’ 22 -0.07 0.85 0.30 1.99 100

o0 29 041 256 0.67 4.67 1000
oe 69 0.13 1.33 048 3.05 1000
ee 35 001 1.02 033 2.14 1000

oo 34 040 252 0.69 484 10000
oe 85 016 1.44 0.60 3.96 - 10000
ee 41 011 1.28 046 2.88 10000

,odd-‘even and odd-odd nuclei grouped on three different lines. We define a schematic
‘model for 8t decay in which the calculated half-lives are related to Qs by such linear
relations. These postulated linear relationships were used to generate figs. 19 and 20. It
would of course be possible to device a more refined schematic model, but our purpose
is to compare the results of an almost trivial model to a refined calculation.

- Figures 19 and 20 show that the discrepancies between the schematically calculated
half-lives and the experimental half-lives are very similar to those in figs. 16 and 17,
‘where the half-lives were calculated in the QRPA model. In table 5 we show the result
of an analysis, similar to the one presented in table 4 for fig. 17, of the discrepancy
between the schematic half-lives and the experimental data shown in fig. 20. We see
that the results in tables 4 and 5 are very similar, as expected from the figures.

* The fact that a simple schematic mode] leads to the same accuracy for the calculated
B-decay half-lives as does the more refined QRPA calculation might lead to the reaction
‘that it is not “necessary” to use a QRPA approach in the study of 3-decay properties.
However, our more detailed comparisons above and below, between calculations and
experiment, show that the QRPA model, with its ability to take into account the effect
of internal structure on the S-strength function, does lead to a much more detailed
understanding of #-decay properties than approaches not incorporating the microscopic
structure of the nucleus. :

It obviously remains somewhat of a challenge to obtain better agreement between
calculated and measured f-decay half-lives than what is obtained in the schematic
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model. Part of the discrepancies present in figs. 16 and 17 may be due to the fact that
a large part of our calculations involve nuclei in the transitional region around N = 82.
_ In our calculations we used for the ground-state deformation precisely the shape that
was obtained as the minimum in the potential-energy surface in our mass calculation.
It is possible that a better approach would be to assume a spherical configuration
whenever the calculated ground-state deformation e, is less than, say, 0.15, as was done
in the comparison between calculated and experimental ground-state spins. One should
‘also note that one may have substantial errors in calculated decay half-lives even if
the structure of the calculated B-strength function agrees very well with the measured
strength function, because small errors in the calculated energy position of the peaks in
" the strength function give rise to large errors in the calculated half-lives. '
- We also investigated whether we would obtain much better agreement with data if
" we studied only those odd-A nuclei for which our calculated ground-state spin agree
" with data. We did see a trend in that direction, but the number of data points that
could be used in this study were rather few, only 23 odd-even cases, compared to 104
in fig. 17. Thus, no firm conclusions could be drawn from this study.

In figs. 21 and 22 we show results obtained for =~ decay. The number of cases are
too few to allow any detailed analysis of the results. '

'3.5. B-DECAY FROM EXCITED STATES

In section 2.4 we discussed how our model treats decay from excited states. As two
illustrative examples of such decays we have selected the nuclei 1°2Tc and Mo, for
" which we calculate decay properties from the ground state and from one isomeric state.
"The results of this calculation are shown in fig. 23. The top two plots show the decay
“from the calculated ground-state and an excited state of the deformed nucleus *Te.
~ One should observe that the calculated ground state and excited state configurations
- are reversed relative to the experimental situation for this nucleus. Experimentally it
is the ground state configuration that has spin I” = 1*. In the calculations this state
is obtained as an excited state, and when discussing the calculations we therefore refer
"to this configuration as the excited state. In our model the calculated energy of the
excited mother configuration we have selected in °?Tc¢ is 0.10 MeV above the ground-
state energy. We mentioned above that the magnitude of the strength in each one of the
Av = 2 transitions would be the same in the decay from an excited configuration as in
the decay from the ground-state configuration but that the location of these transitions
‘would be shifted up in energy by the amount of excitation energy of the excited state.
In the case of 1027 decay we find that there are no such transitions below 7.4 MeV.
Above this energy it is difficult to study their behav1or because each bin contains a
superposition of Av =0 and Av = 2 transitions.

In section 2.4 we pointed out that for odd-odd nuclei the behavior of the Av =0
transitions is somewhat more complex than for the odd-even case. Figure 3 provides an
‘illustration of the various types of decay that can occur from the ground-state configu-
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ration of 192T¢. The unpaired proton is in level 22 and the unpaired neutron in level 29.
In our treatment of the excited state we have put the odd neutron in level 28. This is
at variance with the rule we gave at the end of section 2.4, namely that we should not
create excited states as particle states in levels below the Fermi surface, but since level
28 is so close to level 29 and just at the Fermi surface we may break this rule, since the
probability of hole and particle states close to the Fermi surface both are close to 0.5.
. Our output that identifies the origin of the transitions in the S-strength function shows
'~ that the orbitals that are involved in the transition from the excited '°*Tc in the upper
. right of fig. 23 to the ground state of '“?Ru are the proton orbital 22 and the neutron

- orbital 28. It is clear that this is the only possibility; this transition corresponds to

the type shown in the lower right part of fig. 3. Obviously the only way to obtain a
transition below A, + A, is through this transition.

Our code also 1dent1ﬁes the large peak at about 3.5 MeV as a transition involving
proton orbital 22 and neutron orbital 28. This may appear puzzling, since these are the
- ‘orbitals involved in the decay to the ground state. The resolution is that the transition
leading to the large peak at about 3.5 MeV is of the type shown in the lower right
part of fig. 5. Thus, it is a paired neutron in level 28 that makes a transition to the
proton orbit 22, where we initially had an unpaired proton, but as a final state have
two paired protons. The same transition is present in the decay from the ground-state
configuration of °?T¢ in the upper left part of fig. 23, but at a slightly lower energy.
As discussed in sect. 2.4 in the case of a doubly odd system, the Av = 0 transitions
that do not involve the odd particle that is excited, in this case the odd neutron in
levels 29 and 28 in the ground-state and excited-state configurations, respectively, will
be present in the decays from both the ground-state and excited-state configurations.
Just as is the case with the Av = 2 transitions the energy of these Av = 0 transitions
from the excited configuration will be higher than the corresponding transitions from
the ground-state by an amount that is equal to the difference in excitation energy of the
quasi-particle that is not involved in the transition. In the case studied in the top part
of fig. 23, the difference between the two neutron quasi-particle energies corresponding
to levels 28 and 29 is 0.10 MeV which is consistent with the shift in location of the peak
at about 3.5 MeV in the two top graphs in fig. 23.

Experimentally the ground-state decay of ®2Tc is from a 1t state with a half-life of
5.3 s. The excited state has spin 4 and decays with a half-life of 260 s. This 1s quite
consistent with the calculated results, except that in the calculation the excited and
ground states are interchanged, relative to the experimental situation. We see then,
that in this particular case there is a change in experimental half-life by a factor 50
when the odd neutron is moved from a level Q7 = 3/2% to a level Q7 = 3/2~ which is
calculated to be only 100 keV away. This case clearly illustrates that it is impossible
to guarantee small errors in the predictions of #-decay half-lives, even in a model that
takes microscopic structure into account. Obviously one must expect occasional errors
of up to two or more orders of magnitude even when decays in the range of a few seconds
are considered.

The lower part of fig. 23 shows the decay of the spherical odd-even nucleus Mo
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from both a ground-state and an excited-state configuration. Experimentally the ground
state of this nucleus has spin Q7 = 9/2% and a §-decay half-life of 15.5 m. There is an
-excited state at 0.65 MeV with a B-decay half-life of 1.1 m and with spin QF = 1/2".
In the calculation the excited state is located at an energy 1.76 MeV above the
ground-state. The peaks between 0 and 1 MeV are of Av = 0 character. The peaks
that are present in this region in the decay of the ®*Mo ground-state configuration have
been replaced by a completely different set of transitions in the decay of the excited
configuration. However, the peak at about 7.5 MeV present in the decay of the ground-
‘state configuration is of Av = 2 character and is therefore present also in the decay
of the excited configuration, but its position has moved up by an amount equal to the
- calculated excitation energy of the system, namely 1.76 MeV.

- The fairly large difference between the calculated and experimental value for the
-energy of the excited state is due to several effects. The shape considered is a spherical
- shape, for which we predict the correct spin configuration of both the ground-state and
the excited state. The splitting between the several spin-orbit partners that are present
at spherical shape is in the model determined by a single spin-orbit parameter. In an
actual nucleus there are additional residual interactions that cause deviations from this
simple one-parameter model. The energy of the excited state is in the model given by
the quasi-particle energy obtained from the pairing model. This energy depends not
only on the position of the single-particle level in question but is also strongly dependent
on the value that is obtained for the Fermi-surface parameter A obtained by solving the
equations in section 2.2.3. For situations where there are large gaps in the single-particle
level spectrum this parameter is very sensitive to small changes in the positions of the
calculated positions of the single-particle levels. .

The calculated spins for the ground-state and excited-state conﬁguratlons agree with
measured values. In the calculation of half-lives the experimental Qs values were used.
The calculated half-life for decay from the ground state is 85 s and for the decay of the
excited configuration 16 s which for the ground-state configuration is about a factor
of 10 faster, and for the excited state about a factor of 4 faster than the experimental
values. In our calculation of the 8-decay properties of Mo we have assumed that the
nucleus is spherical. The calculated ground-state shape is actually slightly deformed,
namely €, = 0.05. Experimentally, the 9/2% and 1/2 configurations are probably not
as pure as is obtained with our assumption of a completely spherical configuration.
This is probably the mechanism behind the slower experimental decay rates. It has
previously ®) been pointed out that one can expect that the model has its greatest dif-
ficulties in describing nuclei of transitional character.

3.6. B-DELAYED NEUTRON EMISSION AND HALF-LIVES FOR ?-%Na

In decay from the r-process line to the line of 3-stability #-delayed neutron emis-
sion plays an important role in determining the isotopic abundances on the line of 8-
stability ). To show some examples of model predictions of #-delayed neutron emission
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probabilities, P,, and to gain insight into the interplay between S-strength functions,
B-decay half-lives and P, values, we have calculated these quantities for the sequence
25-35Na of sodium isotopes. In figs. 24 and 25 we display calculated strength functions
for the eight lighter isotopes in this sequence. In fig. 26 we show the corresponding
“calculated B-decay half-lives and P, values compared to experimental data*~*®). The
strength in the shaded triangular regions in figs. 24 and 25 has not been plotted, to
avoid an unsuitable change of scale. The wide arrow indicates the neutron separation
energy in the daughter and the thin arrow the @ value of the decay. In our simple model
the decay to states above the wide arrow but below the Qg value indicated by the thin
arrow, will lead to delayed neutron emission.

In the calculations the ground-state deformation has been taken from the. most
recent mass calculation 3¢), except for 3 Na. For this nucleus experimental data indicates
deformation, but in the calculation we obtain the deepest minimum at spherical shape.
However, as discussed in ref.'*) one obtains in the potential-energy surface for this
“nucleus two minima of almost equal depth. Minor details in the calculations determine
~iwhich is calculated to be the deeper one. We have therefore for ' Na used a deformation
‘ corresponding to the deformed prolate minimum, although the spherical minimum is
“ calculated 3¢) to be the deeper minimum. In our earlier calculation®'*) the deformed
* minimum was calculated to be the deeper minimum.

On the logaritmic scale in fig. 26 the agreement between calculated quantities and
‘experimental data looks fairly good. An interesting correlation is that the calculated
half-lives and P, values are either both below or both above the experimental data. A
simple argument explains this correlation. Suppose the calculated P, value is too low.
This means that there is too much strength below the neutron binding energy, indicated
by the wide arrow in the figures. But, too much strength at low energies also leads to
increasing decay rates and consequently to too short half-lives compared to experiment.
Thus excess strength at low energies leads both to too low P, values and to too short
B-decay half-lives relative to experiment.

It is clear that the f-decay half-lives are particularly sensitive to the strength at low
excitation energy, because of the strong phase-space factor dependence. The P, values
are also affected by the strength in this region, since a large decay intensity to the low-
lying energy levels would leave less decay intensity to levels above the neutron binding
energy, the energy region from which -delayed neutron emission occurs. However, the
" P, values are particularly sensitive to the location of the strength in the vicinity of
the neutron binding energy, indicated by the wide arrow in figs. 24 and 25. Obviously,
strength below the neutron binding energy does not contribute to the delayed neutron
emission rate, but strength above does. The strength function for *’Na provides an
interesting example of the sensitivity of the P, value to the location of the strength in
this region. As is seen in fig. 26 there is very good agreement between the calculated
and experimental half-life for this nucleus. However, the calculated P, value is 12%
- compared to the experimental *) value of 36%. An inspection of the calculated -
strength function for ®Na in the lower left of fig. 25 shows that there is a huge peak
“in the strength function just below the neutron binding energy. To study the effect of
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a small chiange in the location of this peak we have (by changing a number in one of
the temporary files in the calculations) moved the location of this peak from 1.94 MeV
to 2.06 MeV, just above the calculated location of the neutron binding energy. The
effect on the calculated half-life is only 2%, but the calculated P, value increases ito
75%. This example illustrates the difficulty of cons1stently achieving hlgh accuracy in
P, calculations.

* Conceivably, the above described sensitivity of the Pn values to the exact locations
~ of the sharp peaks in the calculated B-strength function can be reduced by performing
" a smearing. Such a procedure can be seen as an attempt to take a rough account of
the remaining, non-specific residual interactions. The empirical fact that large jumps
in P, between neighboring nuclei ‘appear to be absent lends further support for such an
approach.

4. Surhmary

~ We have presented an improved model for the calculation of strength functions for
Gamow-Teller 3-decay. We have incorporated many significant enhancements over the
original model for Gamow-Teller 3- decay of deformed nuclei that was presented 6 years
ago®). The most important are:

¢ In addition to the Nilsson modified-oscillator single-particle potential, we can now

 also use folded-Yukawa and Woods-Saxon potentials as starting points for ‘de-

" termining the wave functions of the mother and daughter nuclei mvolved in the
decay. ‘ '

-# The pairing part of the model has been improved. The pairing A, and Ap values
are determined in a microscopic model with the effect that the underlying level
structure is reflected in the values obtained. We can use either a BCS pairing

. model or a Lipkin-Nogami.model. The latter model avoids the collapses that
occur in the BCS model. The strength G of the pairing interaction is determined
by a method that is valid in any part of the nuclear chart.

e The perturbation treatment of Av = 0 transitions in odd-even and odd-odd nuclei
has been improved so that we now avoid the singularities that occurred in earlier
treatments. Odd-odd nuclei are also treated.

e Decays from states where the unpaired odd particle is in an excited state can now
be treated.

e Models for the calculation of half-lives with respect to = and B+ decay and
electron capture have been studied and incorporated into our computer codes.

Most of the enhancements described above were added to the model in 1988, but
a few of the above features were 1ncorporated earlier into the Nilsson model codes.
In particular, the present treatment of the Av = 0 transitions already was included
already in 1985%). Our aim here has been to mtroduce fully define, and discuss all the
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enhancements relative to the earlier model ) in a consistent manner and to apply the
model with several of its new features to a set of problems of current interest.

The initial applications of the enhanced model that we have introduced here, have
been studies of Rb strength functions in all three single-particle models, calculations
of rare-earth half-lives, calculations of decay properties from excited and ground-state
configurations in °2Tb and %Mo and the calculation of 3-decay half-lives and P, values
for a sequence of neutron-rich sodium isotopes. Our general conclusion is that the model
explains structure in the 3-strength properties in terms of properties that we are able to
understand and describe in our underlying nuclear-structure model. One illustration of
a typical structure effect of this nature is the sudden change in the §-strength function
and the B-decay half-life between **Rb and ?"Rb which is explained by the onset of
deformation. Another example is the drastic difference in decay properties of the two
lowest energy states in 1°2Tc, which is explained by the different decay selection rules
for the two odd-neutron orbitals.

A particular advantage of the current model is that the calculation of the S-strength
functions is now based on the folded-Yukawa single-particle model. This model has
been used in a microscopic-macroscopic approach in the calculation of nuclear struc-
ture quantities, such as ground-state masses, shapes, spins, level structure and pairing
effects for 8979 nuclei between the proton and neutron drip lines from oxygen to the
heaviest elements. This unified approach to the calculation of nuclear-structure quan-
. tities considerably enhances our capability to interpret the experimental data in terms
of a consistent, underlying nuclear-structure picture. It should be recalled that the en-
tire model for the Gamow-Teller strength function introduces few new free parameters.
In principle only the renormalization parameter r,, = 2 and the strength ygr of the
Gamow-Teller residual interaction are new parameters. Both may be determined from
studies of the giant Gamow-Teller resonance in lead and, for greater accuracy, from
resonances in other nuclei, without any consideration of low-energy S-decay properties.

Other parameters in the model have been determined earlier, from studies not directly
related to B decay, namely nuclear mass calculations and studies of ground-state single-
particle level spectra. .

Nuclear-structure models are of great importance in many astrophysical studies, for
instance in studies of isotopic abundances produced in the decay from the r-process line
to the line of B stability. Clearly, the introduction of realistic nuclear-structure mod-
els now significantly influences the conclusions that can be drawn in the modelling of
astrophysical scenarios ®). Nuclear mass models can now be used with some confidence
outside the regions to which the model parameters were adjusted 12*739). Many quan-
tities associated with 3-decay are, as we have seen above, quite well understood and
described by the current model. However, occasionally small changes in deformation val-
ues, level order, or ) values will affect calculated 3-decay rates and P, values by several
orders of magnitude. Such large uncertainties are of course undesirable and impair the
confidence by which the model can be applied to unknown regions of nuclei in the study
of problems of astrophysical interest. However, relative to earlier approaches that did
‘not take full account of the effect of single-particle structure and nuclear deformation,
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the present models represent an important step forward.

In the present version of our model, with its enhancements relatlve to the 1n1t1a.l
formulation ®), in particular the use of the folded-Yukawa single-particle potentxal, we
have achieved a unified model framework for the study of a large number of nuclear
structure quantities within a single model and with a single, limited model parameter
set. The model has, as mentioned above, already been applied to the calcilation of a
significant number of ground-state properties for 8979 nuclei, such as masses, shape,
spin, level structure, and pairing properties. A detailed analysis of these results is now
in progress. ‘This analysis, together with more extensive studies of 3-decay properties
of known nuclei with the present model, now give us a better understandmg of the
properties of these nuclei and also the experience with the models that is required for
e\tenswe apphcatlons to regions far from stability.
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Fig. 1

Fig. 2

Fig. 3

P. Moller, J. R. Nix, and A. J. Sierk, (1989), unpublished.
Figure Captions

B-strength function obtained from a calculation with expansion coeffi-
cients given by eq. (38). The breakdown of this expansion gives rise to
the huge peak just below 3 MeV. The singularity was discovered in 1983
when only a simple pairing model had been incorporated in the code.

In that pairing model the BCS equations are solved for externally fixed
(FXD) Ap and A, equal to 12/v/A MeV.

B-strength function obtained from a calculation with expansion coeffi-
cients given by eq. (42). The values of the width d are 0.1 MeV (solid
line) and 1.0 MeV (dashed line). The singularity present in fig. 1 has
disappeared. One also notes that the difference between the strength
functions corresponding to the two d values is very small. '

Four different types of 87-decay of an odd-odd nucleus in an extreme
single-particle model. The shaded circle in the daughter nucleus indicates
which nucleon decayed. The dashed line shows the location of the Fermi
surface for the even-even vacuum nucleus. It is for this nucleus that the
pairing and RPA equations are solved.
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Fig.

Fig.

Fig.

/Fig.

Fig.

Fig.

Fig.

Fig.

4

10

11

Calculated 8~ Gamow-Teller strength functions based on two single-particle
models and a Lipkin-Nogami (L-N) pairing model. The upper two strength
functions are calculated for the choice xgr = 23/A MeV, the lower two
for the ¢hoice xct = 15/A MeV. The experimental location of the glant
Gamow-Teller resonance corresponds to the excitation energy 15.5 MeV.

Four different types of §-decay from excited states in odd-A and odd-
odd nuclei in an extreme single-particle model. The different cases are
discussed in the text.

Comparison between calculated and measured ground-state spin-parity
assignments for odd-A nuclei in the lighter part of the periodic system.
There is excellent agreement for spherical and well-deformed regions, but
disagreements in transitional regions such as N ~ 56 and N ~ 87.

Comparison between calculated and measured ground-state spin-parity
assignments for odd-A nuclei in the heavier part of the periodic system.
The calculations in fig. 6 and this ﬁgure agree with data in 60% of the
cases over the penodlc system. '

Calculated B-strength functions for ®*Rb and ®*Rb in a Nilsson and a
folded-Yukawa model. The difference in the Nilsson model calculation
relative to our earlier work %) is that we use a Lipkin-Nogami pairing model
and an improved perturbation treatment of the Av = 0 transitions. The
differences relative to the original work and between the two single-particle
models are fairly minor.

Calculated (-strength functions for *Rb and ®Rb in a Nilsson and a
folded-Yukawa model. The Nilsson « and p parameters are changed rel-
ative to fig. 8 (cf. discussion in ref.?)). In agreement with experimental
data the calculations show an increase in strength and a decrease in exci-

_ tation energy for the low-energy peak for ®Rb compared to **Rb.

Calculated B-strength functions for Rb and *Rb in a Nilsson and a
folded-Yukawa model. A characteristic change in the structure has oc-
curred in the (-strength function when compared to the calculations in
figs. 8 and 9. This change in structure is seen experimentally and occurs
because the ground-state shape of the nucleus has changed from spherical
to deformed.

N

Calculated neutron single-particle level diagram for ®°Rb for our standard
parameter choice. The €, parameter is kept fixed at ¢4 = 0. As discussed
in the text and illustrated in table 3, one may interpret peaks in the -
strength functions in terms of transitions between particular levels in this
level diagram and the level diagram in fig. 12.
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Fig.

Fig.
Fig.

Fig.
Fig.
Fig.

Fig.

Fig.
Fig.

Fig.

12

13

14

15

16

18

19

20

21

22

Calculated proton single-particle level diagram for **Rb for our standard
parameter choice. The ¢; parameter is kept fixed at ¢, = 0.

Calculated B-strength functions for #Rb, ®'Rb, ®*Rb and **Rb in a Wood-

Saxon model. In the text these results are compared to the results pre-
sented in figs. 8 and 9.

- Measured (-decay half-lives compared to two RPA calculations in the

A = 60 region. The calculation by Bender et al.'!) is based on a Nilsson
and our present calculation on a folded-Yukawa single-particle potential.

Measured (-decay half-lives compared to three calculations in the begin-
ning of the rare-earth region. Our present calculation is the only one that
takes deformation fully into account.

RatiQs between calculated and ‘measured half-lives for B* and electron
capture decay as functions of 5. The discrepancy between calculated and

: ~ experimental half-lives is expected to be larger for low Qg values, because

the calculated half-life is here most sensitive to errors in the calculated
positions of the peaks in the strength functions. Qg is the maximum

. energy release in the decay.

R'atiés. between calculated and measured half-lives for gt and electron
* capture decay as functions of the experimental half-life for f* and EC

decay. As expected, the error in the calculated half-life increases with
incréasing experimental half-life. An error analysis of the results in this
figure is presented in-table 4 and discussed in the text. Qg is the maximum
energy release in the decay.

~ Correlation between Qg value and measured S-decay half-life. Qg is the
~ maximum energy release in the decay.

- Ratios between schematically calculated and measured half-lives for g+

and electron capture decay as functions of Q3. The schematic model is

' _ a linear approximation to the correlation between to and Qs found in

fig. 18. Qp is the maximum energy release in the decay.

- Ratios between schematically calculated and measured half-lives for g+

and electron capture decay as functions of the experimental half-life for
Bt and EC decay. Qg is the maximum energy release in the decay.

Ratios between calculated and measured half-lives for 8~ decay as func-
tions of 3. The number of cases in the figure are too few for revealing
systematic trends. :

Ratios between calculated and measured half-lives for B~ decay as func-

‘tions of the experimental half-life for 3~ decay. The number of cases in
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Fig. 23

Fig. 24

Fig. 25 -

Fig. 26

the figure are too few for revealing systematic trends. In particular, there
are very few cases corresponding to short half-lives.

Decays from the ground state compared to decay from excited states. :
For Tc the calculated energy of the excited state is only 0.1 MeV above -
the ground state, but the half-life is about 100 times shorter. The large
difference in decay half-lives between configurations that are so close in
energy shows that one has to expect errors in the calculated half-lives that
occasionally are of this or larger magnitude. In the calculation the excited
and ground state are reversed, relative to the experimental situation.

Strength functions for A~ -decay of four neutron-rich sodium isotopes. The
wide arrow gives the neutron binding energy in the daughter nucleus and

* the narrow arrow the Qp value of the decay. In the two lower strength
- functions the neutron binding energy is lower than the Qs value, thus

B-delayed neutron emission is possible. Strength above 15 MeV in the
triangular shaded regions of 2Na and 2’Na is not plotted.

Strength functions for f~-decay of four very neutron-rich sodium isotopes.
The wide arrow gives the neutron binding energy in the daughter nucleus

..~ and the narrow arrow the Qs value of the decay. Experimentally the

delayed neutron-emission probability P, is above 20% for all four nuclei.

.. Strength above 15 MeV in the triangular shaded region of 29Na, is not
+ plotted.

Calculated B-decay half-lives and delayed neutron-emission probabilities

" compared to experiment for neutron-rich sodium isotopes. If the calcu-
" lated half-life is lower than the experimental value, then there is too much

strength at low energies, possibly below the neutron binding energy; there-

- fore the calculated P, value can be expected to be lower than experiment
" in these cases. The plot shows that this expected correlation usually

holds. The calculated half-lives and P, values are either simultaneously
both lower or both higher than experiment.
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QuaSi-particIe_ RPA calculations relative to experiment
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- Three calculations relative to experiment

N Y D D B

R

I

Lol

@ 0 -
— @ Moller and Randrup (1989) =
— @ Klapdor et al. (1984) _
— [ Takahashi et al. (1973) —
N S S [ U N N N A O N
151Pr 153Pr 154Nd 156Nd 155Pm 155Pm 157Sm 1598m 161Eu 164Gd

1‘52Pr 153Nd 155Nd 153Pm 156Pm 156Pm 1588m

Figure 15

160
Sm

162
E

u

suonouny yibuals-g jo uonejnojen/dnipuey ‘r “18(I9N d

99



P. Modller, J. Randrup/Calculation of B-strength functions = -

dxej / opeol

T T T T T T T 1
©
o)
+ + - ?
) st 33
L o B S £ 7 N ©® 00 _
oL o 5 00 @ O + -
£l t Ok - ) ]
<| % |8 ¢ _
Q. %_+ o o, ©
O © @ eMg0 o7
- F + Q‘ _ _ O -
> | + 0‘80 O -
8 I © + @ T 05 +
O O+ o OQ-:OG o O +O
OfF * . °+  Oey|® o i
L o O o ® o/g88 0
© - o+ ‘O + © .
C o © o
© | o ‘ .O Q?O -
h o® “" ©
o) o[ J
° o
O o ® o
O. O |
wooeesr  Dgees o loee s B g hevs 1l
™ al ~— o ~— o ™
& © o © b b b
~~— v - ¥ D S =~

10’

o
O
F

67

Qs (MeV)

Figure 16



P. Méller, J. Randrup/Calculation of B-strength functions

M T T T T T T T T T T T T
E:IIIIII | | T T O| cg
: + O O , _
_ 0 © | -
= to_© o + 3
— %% + © o O o 7
_— o 7]
8 — 0 1O | =
O E o © o =
E — + P - (o) -
c L o) @ o |0 .
<L © ®,+g lg o) o O _
= + 20 g8 E
n E + (o) @O"' 3
— + o -
GL o % W Bels :
-E ol o E
c>U~: S 28 +9 o =
(@] B : & +OO 7
O E +,0 e O =
o E ° + =
— + 3
OF ’
L 0 o 3 -
oE °+8+ | c_ 9 3
c E o | T T I
ol > 0 T -
O OO
+ E + =
o E ® O + =
= © E
;mn TN TR TN NTT N 11T TR ]
™ N ~ o - '\ ™
~ ~— ~— — — — —

| dxel / 0|eol

10° 10°

10*

68

102 10°
o (S)

Figure 17

10’

1 OO.

10° 102 10°



Correlation between me

asured values of Q; and t.,

10° F—oo5 — Fo T T T T T T '°
. o 0 | +
10° ©°q 00 |t | |
4 ° &% 0 -
10 o . Cb. 0O OCS + N + . §
o | -
10 e .‘b:o‘ °c tggo @g;o Tt E
ey -
@ 102 ..8.'0':?% OC% O+':-I- E
| ot 3
% 1 L °o , ]
210 ‘ | | o 'o.., %aéygf .
10° R
o Tt =R
10” o even o E
P o odd | - J
10 + odd-odd ° 3
10-3 | | | l | T T N
100 . : 101

QB (MeV)

Figure 18

suonouny yibuais-g jo uonenofen/dnipuey ‘r “49IION “d

69



P. Méller, J. Randrup/Calculation of B-strength functions

T T lllillll R LLLERIA

B* and EC decay, schematic model

e éeven
o odd
+ odd-odd

NI AR I (TSR W IR

I
10’

IIlIlI Iq T TR R I (T TTR N

™ A ' ~

o o ()
™ il

™

dxel / meol

o
o
F

@
o
F

70

OB (MeV)

Figure 19



71

P. Mdéller, J. Randrup/Calculation of 3-strength functions

02 ainbl4

e0l
20l

Ol

| va Q,xmh
oO | mO | vo g mO | NO | _.O | oO—. P..O ! N-O ! m-O |
__.__:_ I L0 1110 11 S 11 L LR LR (L R LR ]
Eo ppo-ppo + E
n _ PpPO © _
- O UBAS @ -
E " o0 ©
o |
o .
H++ .*n.u o o+ .% & %u g@@- .n_.uﬁ 7]
..m. m Q% 3. [ OOO._. W
= 90 =
- Oﬂu +© + -
- . N o =
3 0 E
H o _
T T I T T I T T

|opow onewsyos ‘Aeosp O3 pue .4



P. Méller, J. Randrup/Calculation of B-strength functions

M7 T

LU LR N |11 A | AR R DR
©
©

-

O© OO

> 0 VO

| ® ©C O

—_— ® O +

D L

©

O L

-

<C

0. |

m H

@ \

.v"u’v\'- + +

> o+

= F

O L +

D +

© o

, o

o © 00

0]
B O o +
o o
O
OCo o ' o)
(@)
TIEN I IR 111 l%nnyl Ll o deoaa g
(ap] (4] -~ ~— (a\]
(@) () (@) o ' o
-~ v — ~— ~— ~—

dxel / OIEO'I

10!

o
o
F

72

QB (MGV)

| Figure 21



103

B decay, QRPA model
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