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Abstract Plants are constantly threatened by potential

pathogens. In order to optimize the output of defense

against pathogens with distinct lifestyles, plants depend on

hormonal networks to fine-tune specific responses and

regulate growth-defense tradeoffs. To counteract, patho-

gens have evolved various strategies to disturb hormonal

homeostasis and facilitate infection. Many pathogens syn-

thesize plant hormones; more importantly, toxins and

effectors are produced to manipulate hormonal crosstalk.

Accumulating evidence has shown that pathogens exert

extensive effects on plant hormone pathways not only to

defeat immunity, but also modify habitat structure, opti-

mize nutrient acquisition, and facilitate pathogen dissemi-

nation. In this review, we summarize mechanisms by

which a wide array of pathogens gain benefits from

manipulating plant hormone pathways.

Keywords Plant immunity � Pathogen effectors �
Phytohormones � Pathogenicity � Virulence � Bacterial
toxins

Introduction

In order to complete an infection cycle, phytopathogens

need to enter plant tissues through physical barriers, over-

come defense responses mounted by the plant immune

system, obtain nutrients for proliferation, and eventually be

disseminated to a new host. During the co-evolutionary arms

race with plants, successful pathogens evolved virulence

factors such as toxins and secreted proteins (aka effectors) to

modulate plant physiology (Bender et al. 1999; Torto-

Alalibo et al. 2009; Dou and Zhou 2012; Dangl et al. 2013).

A prominent and extensively studied example is the type III

secreted effectors, which are injected by Gram negative

bacterial pathogens directly into plant cells (Deslandes and

Rivas 2012; Feng and Zhou 2012). Eukaryotic filamentous

pathogens including fungi and oomycetes also produce a

large number of effectors that can function inside host cells

(Torto-Alalibo et al. 2009; Wawra et al. 2012; Giraldo and

Valent 2013). Over the past decade, substantial efforts have

been invested to understand how effectors facilitate patho-

gen colonization and disease development. Through these

studies, phytohormone pathways have emerged as important

virulence targets.

Plant hormones are small molecules that affect a broad

range of processes during growth and stress responses

(Depuydt and Hardtke 2011; Pieterse et al. 2012; Vanstraelen

and Benkova 2012). By manipulating plant hormonal path-

ways, pathogens can further benefit through twomechanisms:

one, they can suppress defense responses regulated by the

‘‘stress’’ hormones in order to accomplish colonization in

plant tissues; two, they can hijack plant development and

nutrient allocation processes regulated by the ‘‘growth’’ hor-

mones to facilitate sustained colonization and dissemination.

In this review, we classify major plant hormones into

‘‘stress’’ and ‘‘growth’’ hormones and discuss themechanisms
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by which microbial pathogens interfere with their accumu-

lation and/or signaling. Due to space constrains, wewill focus

on pathogen effectors and toxins that have been demonstrated

to directly manipulate hormonal networks in plants as viru-

lence strategies to increase pathogen fitness. Examples from a

wide variety of pathogens (viruses, bacteria, fungi, oomycetes

and herbivores) using different infection strategies will be

discussed.

Plant hormones as key regulators of immunity

Unlike animals that can move and adapt to survive subop-

timal conditions, plants are sessile; therefore, the ability to

defeat pathogen infection is critical to survival. Threatened

by a large variety of pests and pathogens, plants have

evolved a sophisticated innate immune system (Spoel and

Dong 2012). A basal tier of plant immunity is activated by

conserved molecular signatures called pathogen/microbe-

associated molecular patterns (PAMPs/MAMPs), which can

be recognized by receptor-like kinases known as pattern

recognition receptors (PRRs) (Zipfel 2014). Pattern-trig-

gered immunity (PTI) is associated with a series of physi-

ological responses that confer effective, broad-spectrum

defense against the majority of potential pathogens (Bigeard

et al. 2015). Shortly after pathogen perception, extensive

transcription reprogramming of genes involved in hormonal

signaling occurs (De Vos et al. 2005), suggesting a key

regulatory role of hormones in mounting defense responses.

Major plant hormones that regulate defense responses

include salicylic acid (SA), jasmonic acid (JA) and

ethylene (ET). Generally speaking, SA plays a key role in

defense against pathogens feeding on live tissues, i.e. with

a biotrophic lifestyle; and JA/ET is critical to defense

against pathogens feeding on dead tissues, i.e. with a

necrotrophic lifestyle (Glazebrook 2005). In addition, JA

alone is prominent in defense against herbivores (Fig. 1).

An important concept that has been established over the

years is the antagonism between SA and JA/ET pathways

in response to pathogens with a specific lifestyle (Spoel and

Dong 2008; Van der Does et al. 2013). However, analysis

using a mutant that is defective in SA, JA and ET pathways

supported a more synergistic view in that all three hor-

mones contribute positively to defense against various

pathogens with one hormone sector makes larger contri-

butions than others in response to a specific infection style

(Tsuda et al. 2009).

Toxins and effectors targeting salicylic acid

accumulation

SA is the first plant hormone with a demonstrated role in

defense (White 1979) and has since been studied exten-

sively. Provided the importance of SA in plant defense,

many pathogens have evolved strategies to target the SA

pathway, either at the level of biosynthesis/accumulation or

downstream signaling (Fig. 1).

A main virulence strategy is to suppress SA accumula-

tion through the activity of secreted enzymes that metab-

olize SA precursors. For example, the biotrophic fungal

pathogen Ustilago maydis, which causes maize smut,

produces a chorismate mutase (Cmu1) during infection.

Fig. 1 A diagram showing the

crosstalk among SA, JA and ET

signaling pathways and their

roles in defense against

pathogens/herbivores using

distinctive infection strategies.

Effectors and toxins target SA,

JA and ET signaling to suppress

plant defense are presented.

Virulence factors produced by

biotrophs/hemibiotrophs are

highlighted in blue, and those

produced by necrotrophs are

highlighted in red. Chorismate

mutase and isochromatases are

produced by both biotrophs and

necrotrophs and are highlighted

in green. Broken lines indicate

indirect manipulation processes

or unknown mechanisms
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Following pathogen perception, SA is produced from

chorismate via the intermediate isochorismate through the

activity of the isochorismate synthase (ICS) (Wildermuth

et al. 2001). Cmu1 converts chorismate to prephenate,

potentially lowering the availability of plastid chorismate

for SA synthesis (Djamei et al. 2011). Indeed, maize

infected with a Cmu1 mutant of U. maydis accumulated

more SA and exhibited attenuated disease symptoms

compared with plants infected with wild-type strain (Dja-

mei et al. 2011). Many biotrophic and hemibiotrophic

pathogens produce chorismate mutases that can potentially

benefit infection (Djamei et al. 2011). Interestingly, the

necrotrophic fungal pathogen Sclerotinia sclerotiorum also

produces a putative chorismate mutase. Pretreatment of the

SA analog benzothiadiazole (BTH) on rapeseed plants

resulted in an approximately 40 % reduction on lesion

sizes caused by S. sclerotiorum, suggesting a positive role

of SA in defense against S. sclerotiorum (Novakova et al.

2014). This observation indicates that the putative choris-

mate mutase produced by S. sclerotiorum may promote

infection by reducing SA accumulation.

Another secreted enzyme with the ability to suppress SA

accumulation is isochorismatase, which is produced by the

hemibiotrophic oomycete pathogen Phytophthora sojae

and the necrotrophic fungal pathogen Verticillium dahlia.

Isochorismatase hydrolyzes isochorismate to 2,3-dihydro-

2,3-dihydroxybenzoate (DDHB) and pyruvate. As such, P.

sojae and V. dahlia reduce the SA levels in their specific

hosts to facilitate infection (Liu et al. 2014). These studies

demonstrate the suppression of SA accumulation as a

common virulence strategy employed by both biotrophic

and necrotrophic pathogens.

Enhanced SA accumulation may benefit pathogens

using a distinctive infection strategy and in specific host-

pathogen interactions. For instance, the broad host-range,

necrotrophic, fungal pathogen Botrytis cinerea produces

exopolysaccharide b-(1,3)(1,6)-D-glucan, which acts as an

essential virulence factor by inducing SA accumulation,

and hence suppressing JA signaling, in tomato (El Oirdi

et al. 2011). Other interesting observations are that the

mucus secreted by molluscan slugs and snails, and the

honeydew deposited by whitefly could induce the expres-

sion of the SA marker gene PR1 (Meldau et al. 2014;

VanDoorn et al. 2015). Intriguingly, SA was found in the

mucus of the slug Deroceras reticulatum (Kastner et al.

2014) and honeydew of the sweetpotato whitefly Bemisia

tabaci (VanDoorn et al. 2015). Since the activation of SA

signaling may suppress JA-mediated defense against her-

bivores, it would be interesting to investigate whether these

herbivores-produced SA actually play a role in promoting

infestation.

In addition to the above virulence factors with relatively

clear SA manipulation mechanisms, other effectors have

also been suggested to affect SA accumulation. For

example, HopI1 produced by the hemibiotrophic bacterial

pathogen Pseudomonas syringae suppresses SA accumu-

lation in chloroplasts. HopI1 directly interacts with the heat

shock protein Hsp70 and alters chloroplast thylakoid

structure (Jelenska et al. 2007, 2010). However, how HopI1

interferes with SA production remains elusive.

Toxins and effectors targeting salicylic acid

signaling

NPR1 (NONEXPRESSOR OF PR GENES 1) is an

essential component in SA-dependent defense. Upon

pathogen perception, SA potentiates the reduction of the

oligomeric form of NPR1 in cytoplasm to a monomeric

form through redox changes (Mou et al. 2003). Monomeric

NPR1 is then relocated to the nucleus and activates the

expression of SA-responsive genes. NPR1-regulated SA

signaling is tightly regulated through post-translational

modifications and proteasomal degradation. In particular,

proper turnover of NPR1 is required for the perpetuation of

SA response (Tada et al. 2008; Spoel et al. 2009). There-

fore, it is not surprised that NPR1 turnover is manipulated

by various pathogens for the benefit of disease

development.

The bacterial pathogen P. syringae produces a peptide

toxin, syringolin A (SylA), which acts as a potent inhibitor

of proteasomes (Groll et al. 2008; Schellenberg et al.

2010). SylA can diffuse through plant vasculature, gener-

ating a gradient of SA-insensitive cells and suppressing

SA-mediated defense both at the initial infection site and in

surrounding tissues (Misas-Villamil et al. 2013). It is

postulated that SylA blocks the proteasomal degradation of

NPR1 to interfere with SA signaling. The type III-secreted

effector XopJ from the bacterial pathogen Xanthomonas

campestris acts as a protease and degrades the 19S pro-

teasome regulatory subunit REGULATORY PARTICLE

AAA-ATPASE6 (RPT6). As such, XopJ inhibits NPR1

degradation and compromises anti-bacterial immunity in

pepper (Üstün et al. 2013; Ustun and Bornke 2015).

The toxin victorin produced by the necrotrophic fungal

pathogen Cochliobolus victoriae can suppress the activity

of TRX-h5, a thioredoxin that regulates the redox status in

plants (Sweat and Wolpert 2007). By inhibiting the redox

reduction of NPR1, victorin may suppress SA-mediated

defense via interfering with NPR1 relocation from cytosol

to the nucleus. However, C. victoriae does not seem to take

advantage of NPR1 manipulation by victorin as a virulence

strategy. Rather, as a necrotrophic pathogen, C. victoriae

uses victorin to induce plant cell death by hijacking the

hypersensitive response triggered by LOV1, a resistance

(R) protein that is activated when TRX-h5 is disturbed

(Sweat and Wolpert 2007; Lorang et al. 2012). Indeed, C.
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victoriae only causes disease on Arabidopsis ecotypes that

carry LOV1 (Lorang et al. 2004). Nonetheless, victorin

represents a novel strategy of pathogen manipulation of

NPR1.

Toxins and effectors targeting jasmonate signaling

JA is the major defense hormone against necrotrophs and

herbivores. Although the ability to suppress JA signaling

has been implicated in some herbivores (Zarate et al. 2007;

Bruessow et al. 2010; Glas et al. 2014), the responsible

molecules or underlying mechanisms are unknown. On the

contrary, many virulence factors produced by biotrophic or

hemibitrophic pathogens take advantage of the antagonism

between JA and SA pathways and activate JA signaling to

promote infection (Fig. 1).

Jasmonic acid signaling is repressed by a group of

proteins collectively known as the JASMONATE ZIM-

DOMAIN proteins (JAZs) (Staswick 2008). Inside the

nucleus, JAZs directly associates with the JA-responsive

transcription factors and repress their functions (Pauwels

et al. 2010; Shyu et al. 2012). Upon activation by pathogen

perception or tissue damage, JA is synthesized from lino-

lenic acid via 12-oxo-phytodienoic acid (OPDA) as the

intermediate in plastids and conjugated with isoleucine to

generate the bioactive form JA-Ile (Staswick and Tiryaki

2004; Fonseca et al. 2009). High levels of JA-Ile promote

the formation of a receptor complex consisting of JAZs, the

F-box protein COI1, and inositol pentakisphosphate.

Association with COI1 leads to proteasomal degradation of

JAZs, thereby de-repressing JA signaling (Thines et al.

2007; Melotto et al. 2008; Sheard et al. 2010).

The toxin coronatine (COR) produced by the bacterial

pathogen P. syringae pv. tomato strain DC3000

(PtoDC3000) is by far the best studied example of viru-

lence factors that can manipulate the JA pathway. Struc-

turally mimicking JA-Ile, COR is *1000 fold more

effective in inducing the degradation of JAZs and acts as a

robust inducer of JA signaling (Katsir et al. 2008). Plants

respond to bacterial invasion by closing stomata in order to

inhibit pathogen entry into the apoplastic space. Activation

of JA signaling by COR promotes the entry of PtoDC3000

into leaf tissues by re-opening the closed stomata (Melotto

et al. 2006). In addition, COR inhibits SA accumulation in

plant cells, likely also through its activation of JA signaling

(Zheng et al. 2012).

A COR-like compound, coronafacic acid (CFA)-L-Ile,

is produced by various pathogenic Streptomyces species

that cause potato scab disease (Bignell et al. 2010). CFA-L-

Ile is required for the full virulence of Streptomyces; fur-

thermore, application of CFA-L-Ile can induce hyper-

trophic outgrowths on potato, suggesting that this toxin

may contribute to disease symptom development (Fyans

et al. 2015). Although COR can also induce a similar

phenotype on potato, whether the virulence function of

CFA-L-Ile during Streptomyces infection is achieved

through JA mimicking is unknown.

Acting as effective virulence factors, COR-like toxins

are only produced by a small number of bacterial patho-

gens (for example, most P. syringae isolates do not pro-

duce COR) (Volksch and Weingart 1998; Hwang et al.

2005); therefore, it is not surprising to find additional

pathogen strategies for JA manipulation. In particular,

several type III effectors from P. syringae have recently

been shown to directly or indirectly promote JAZ degra-

dation. HopZ1a possesses an acetyltransferase activity and

directly interacts with multiple JAZs in Arabidopsis and

soybean. Acetylation of JAZs by HopZ1a promotes their

degradation in a COI1-dependent manner and activates JA

signaling (Jiang et al. 2013). Another P. syringae effector

that activates JA signaling is HopX1, which acts as a

cysteine protease and directly hydrolyzes JAZs in Ara-

bidopsis (Gimenez-Ibanez et al. 2014). Recently, a third

type III effector AvrB was shown to induce JAZs degra-

dation, but through an indirect mechanism (Zhou et al.

2015). Similar to COR, HopZ1a and AvrB are also able to

inhibit stomatal defense and promote bacterial entry to

apoplastic space (Ma et al. 2015; Zhou et al. 2015). The

findings that multiple virulence factors, including both

toxins and effectors, manipulate the same host targets

highlight the importance of JA pathway as a virulence

target.

Manipulation of jasmonate signaling to promote

pathogen dissemination

Many bacterial and viral pathogens depend on insect vec-

tors for transmission. Since JA is a major defense hormone

against insects, these pathogens have evolved strategies to

suppress JA accumulation and/or signaling in order to

promote their dissemination.

Phytoplasmas are bacterial pathogens that depend on

phloem-feeding leafhoppers for transmission. The Aster

Yellows phytoplasma strain Witches’ Broom (AY-WB)

produces a Sec-secreted effector called SAP11, which

destabilizes the TEOSINTE BRANCHED1, CYCLOI-

DEA, PROLIFERATING CELL FACTORS (TCP) class of

transcription factors in Arabidopsis (Ikeda and Ohme-

Takagi 2014). Among them, TCP4 activates the expression

of JA biosynthetic gene LIPOXYGENASE 2 (LOX2)

(Schommer et al. 2008). AY-WB infection or SAP11

expression in Arabidopsis led to reduced LOX2 expression

and JA levels; as a result, the fecundity of leafhoppers was

increased and the transmission of AY-WB was enhanced

(Sugio et al. 2011). TENGU is another phytoplasma Sec-

secreted effector that has been shown to suppress JA
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accumulation. TENGU represses the expression of two

auxin-response factors ARF6 and ARF8 (Hoshi et al.

2009), which positively regulate JA biosynthesis (Reeves

et al. 2012). It has been postulated that, similar to SAP11,

TENGU may also facilitate leafhopper feeding, and hence

phytoplasma transmission, by manipulating the JA path-

way (Minato et al. 2014).

A similar scenario exists in the interaction between

tomato yellow leaf curl China virus (TYLCCNV) and its

whitefly vector. TYLCCNV produces bC1 as a virulence

factor to suppress anti-herbivore volatile emission and pro-

mote whitefly survival (Jiu et al. 2007; Zhang et al. 2012).

bC1 acts as a mimic of the plant regulator ASYMMETRIC

LEAVES 2 (AS2) (Yang et al. 2008), which inhibits JA

signaling (Nurmberg et al. 2007). In addition, bC1 also

inhibits the dimerization of MYC2, a JA-responsive tran-

scription factor required for the activation of the terpene

synthetic gene TERPENE SYNTHASE 10 (TPS10) (Li et al.

2014). Interestingly, AS2 and MYC2 seem to regulate dis-

tinct subsets of JA-responsive genes (Li et al. 2014). As

such, bC1 suppresses JA signaling to favor viral transmis-

sion by simultaneously manipulating two targets that regu-

late the JA response (Jiu et al. 2007; Zhang et al. 2012).

Manipulation of ethylene levels by pathogens

to promote infection

Together with JA, ethylene (ET) has been shown to regu-

late defense against necrotrophs (Thomma et al. 1999). As

a gaseous hormone, ET is widely produced by many

microorganisms including plant pathogens. For example,

the bacterial pathogen P. syringae and Ralstonia solana-

cearum, as well as the fungal pathogen B. cinerea, can all

produce ET (Weingart and Volksch 1997; Cristescu et al.

2002; Valls et al. 2006). Furthermore, the ability to pro-

duce ET is correlated with the full virulence of P. syringae

strains on soybean and common bean (Weingart et al.

2001), indicating a potential virulence function of ET

production in these pathogens.

An effector that can manipulate the ET pathway has

been identified from the bacterial pathogen Xanthomonas

euvesicatoria. XopD targets the tomato transcription factor

SlERF4, which is involved in ET synthesis. Acting as a

SUMO protease, XopD desumoylates SlERF4, promoting

its degradation through the 26S proteasome. Consistently,

silencing of SIERF4 led to reduced ET accumulation and

enhanced susceptibility of tomato to X. euvesicatoria (Kim

et al. 2013). In addition, XopD delays chlorosis develop-

ment on tomato leaves infected with X. euvesicatoria,

which is likely due to its inhibitory effect on ET production

(Kim et al. 2008, 2013). It is postulated that the modulation

of ET-regulated senescence benefits bacterial proliferation

by extending the infection period.

Manipulation of the abscisic acid pathway

by pathogens

More recently, abscisic acid (ABA), which has been

extensively studied in plant response to abiotic stresses, is

also implicated in defense responses. ABA acts as a negative

regulator of defense against biotrophs (Cao et al. 2011),

possibly due to its antagonistic effect on SA signaling

(Audenaert et al. 2002; Xu et al. 2013). For example,

exogenous application of ABA in rice significantly reduced

the expression of two key regulators of SA-dependent

defense signaling, WRKY45 and OsNPR1, leading to

hypersusceptibility to fungal infection (Jiang et al. 2010).

A couple of type III effectors produced by the bacterial

pathogen P. syringae have been suggested to activate the

ABA pathway during infection. AvrPtoB induces the

expression of the ABA biosynthetic gene 9-CIS-EPOX-

YCAROTENOID DIOXYGENASE 3 (NCED3) and enhan-

ces ABA accumulation in Arabidopsis (de Torres-Zabala

et al. 2007). Since AvrPtoB has been extensively charac-

terized as a kinase inhibitor and directly targets receptor

kinases (Shan et al. 2008; Cheng et al. 2011), its effect on

ABA synthesis is likely indirect. Another type III effector

HopAM1 also affects ABA signaling. Arabidopsis

expressing HopAM1 exhibits increased sensitivity to ABA

and enhanced susceptibility to bacterial infection (Goel

et al. 2008). Although the correlation between these two

observed phenotypes remains unclear, it is noteworthy that

the hypersensitive response is associated with inhibited

vascular water movement into the infection site. A drop in

water potential presumably deprives the water supply that

is required for bacteria to proliferate (Wright and Beattie

2004; Freeman and Beattie 2009). Interestingly, the viru-

lence effect of HopAM1 was more prominent when the

host plants were under water stress (Goel et al. 2008). It is

intriguing to postulate that HopAM1 may create a

microenvironment with higher water availability through

its manipulation of ABA signaling in order to promote

bacterial infection. Since the direct plant target(s) of

HopAM1 is unknown, the potential mechanism by which

HopAM1 modulates ABA signaling to benefit infection

remains unclear.

Although clear evidence demonstrating pathogen factors

directly targeting the ABA pathway for virulence is lack-

ing, various pathogenic fungi produce ABA themselves

(Dorffling et al. 1984; Jiang et al. 2010). For example,

ABA was found in the hyphae of the rice blast pathogen

Magnaporthe grisea (Jiang et al. 2010) and several other

fungal pathogens including B. cinerea, Fusarium oxyspo-

rum and Rhizoctonia solani (Dorffling et al. 1984). Further

studies are needed to address the role of the fungi-origi-

nated ABA in potential suppression of SA-dependent

defense during infection.
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Effectors targeting the growth hormones

to indirectly regulate defense

In addition to the ‘‘stress’’ hormone (SA, JA and ET),

another group of hormones, including auxin, cytokinin

(CK), gibberellin (GA) and brassinosteroid (BR), have been

traditionally known as ‘‘growth’’ hormones based on their

prominent regulatory role in plant growth and development.

Due to extensive crosstalk among hormonal pathways, vir-

ulence factors can indirectly suppress plant defense by

manipulating the growth hormones. In parallel, pathogens

can directly benefit from the modulation of growth hormonal

pathways, independent of defense suppression. For example,

specific pathogens, such as the gall-forming bacteria, hijack

hormonal regulation of plant growth to induce tumorigenesis

and acquire shelter and nutrients. Morphological changes

due to disturbed homeostasis of growth hormones could also

facilitate pathogen dissemination.

Toxins and effectors suppress plant defense

by modulating the auxin pathway

Auxin is the first and most-studied plant hormone that

affects almost all aspects of growth and development

(Chandler and Werr 2015; Salehin et al. 2015; Schaller

et al. 2015). In general, auxin affects plant immunity by

acting as a negative regulator (Ludwig-Muller 2015;

Naseem et al. 2015). Such an effect is likely achieved

through antagonism of auxin signaling on the SA pathway.

For example, overexpression of an auxin receptor AUXIN

SIGNALING F- BOX PROTEINS 1 (AFB1) led to reduced

SA accumulation and enhanced susceptibility during

PtoDC3000 infection (Robert-Seilaniantz et al. 2011).

Furthermore, overexpression of the auxin biosynthetic gene

YUCCA1 (YUC1) in SA-deficient plants can further pro-

mote infection, suggesting that auxin also impacts defense

output in a SA-independent manner (Mutka et al. 2013).

As a negative regulator of defense response, auxin sig-

naling is repressed during infection. For example, percep-

tion of bacterial and oomycete PAMPs induces the

accumulation of microRNA393 (miR393) in Arabidopsis

and soybean, respectively (Navarro et al. 2006; Wong et al.

2014). miR393 contributes to PTI by repressing auxin

signaling through its inhibitory effect on the expression of

auxin receptors (Navarro et al. 2006). Furthermore, several

effectors, such as the bacterial type III effector HopT1-1

produced by P. syringae (Navarro et al. 2008) and the

oomycete effector PSR1 produced by P. sojae, have been

shown to suppress the miRNA pathway (Qiao et al. 2013,

2015). These effectors may promote infection by activating

auxin signaling and suppressing PTI.

An important strategy to perturb auxin homeostasis is to

produce auxin-like molecules, which is quite common in

plant pathogens and non-pathogenic microorganisms

associating with plants (Manulis et al. 1994; Glickmann

et al. 1998; Robert-Seilaniantz et al. 2007). Certain P.

syringae isolates encode the IAA-conjugation enzyme

IAA-LYSINE SYNTHASE (IAAL), which is under the

control of a pathogenicity-associated sigma factor. Impor-

tantly, deletion of iaaL led to reduced virulence, supporting

a role of IAA synthesis during P. syringae infection

(Castillo-Lizardo et al. 2015).

Auxin accumulation and transport can be manipulated

via the virulence activities of effectors. The P. syringae

type III effector AvrRpt2 promotes auxin biosynthesis

(Chen et al. 2007) and induces auxin-responsive gene

expression by enhancing the proteasomal degradation of

AUXIN/INDOLE ACETIC ACID (AUX/IAA) proteins,

the key negative regulators of auxin signaling (Cui et al.

2013). Another P. syringae type III effector HopM1 asso-

ciates with ADP ribosylation factor (ARF) guanine

nucleotide exchange factor 5 in Arabidopsis (aka AtMIN7)

and promotes its degradation. As AtMIN7 is involved in

recycling the auxin-efflux carrier PINFORMED (PIN1)

(Tanaka et al. 2013), HopM1 may disrupt polar auxin

transport and increase plant susceptibility (Nomura et al.

2006). Auxin transport can also be disrupted by the

hemibiotrophic oomycete pathogen Phytophthora parasit-

ica through the function of PSE1, which affects the

expression of the auxin efflux carriers PIN4 and PIN7

(Evangelisti et al. 2013). In this way, PSE1 may facilitate

Phytophthora infection by disrupting auxin physiology.

Auxin signaling can also be manipulated by viruses. The

replicase protein of tobacco mosaic virus (TMV) interacts

with the AUX/IAA protein PHYTOCHROME-ASSO-

CIATED PROTEIN 1 (PAP1) and induces its accumula-

tion in the cytoplasm; consequently, the expression of

auxin-responsive genes is repressed due to decreased levels

of nuclear-localized PAP1. Importantly, a TMV replicase

mutant strain with diminished interaction with PAP1

exhibited reduced viral titer in plants, suggesting that the

inhibition of auxin signaling is an important virulence

mechanism of TMV (Padmanabhan et al. 2005, 2006,

2008).

Modulation of the cytokinin pathway to suppress

plant defense

Cytokinin regulates defense response in a dosage-depen-

dent manner. Strong activation of CK signaling leads to

increased SA levels and confers resistance to biotrophs; on

the contrary, subtle or weak activation of CK signaling

suppresses PTI, likely in an SA-independent manner (Hann

et al. 2014). CK accumulation can be modulated by the

type III effector HopQ1, which belongs to a conserved

effector family that is produced by a variety of bacterial
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pathogens including Pseudomonas spp., Xanthomonas spp.

and Ralstonia spp. (Hann et al. 2014). HopQ1 possesses a

hydrolase activity that can catalyze the conversion of CK

precursors to active forms. As a result, HopQ1 expression

in Arabidopsis led to elevated accumulation of CK and

hypersusceptibility to bacterial infection. Interestingly,

exogenous applications of low doses of CK repressed the

transcription of the PAMP-receptor gene FLAGELLIN

SENSING 2 (FLS2), indicating that HopQ1 dampens PTI

by suppressing PRR expression (Hann et al. 2014).

Effectors that potentially manipulate

the brassinosteroid pathway

As a relatively young hormone, brassinosteroid (BR) has

been shown to regulate a wide array of developmental

processes and stress responses (Kong et al. 2012; Zhu et al.

2013; De Bruyne et al. 2014). Indeed, BR signaling has

been reported to regulate plant defense both positively

(Chinchilla et al. 2007; Heese et al. 2007) and negatively

(De Vleesschauwer et al. 2012; Nahar et al. 2013). Current

studies of BR-mediated regulation in defense are centered

on the BRI1 ASSOCIATED RECEPTOR KINASE 1

(BAK1/SERK3). Originally identified as a co-receptor of

the BR receptor BRASSINOSTEROID INSENSITIVE 1

(BRI1) (Li et al. 2002; Nam and Li 2002), BAK1 was later

discovered to associate with multiple PRRs and play an

essential role in ligand binding and PTI signaling (Chin-

chilla et al. 2007; Heese et al. 2007; Sun et al. 2013).

Remarkably, several bacteria effectors directly target

BAK1 and suppress PTI. The first examples of BAK1-

manipulating type III effectors are AvrPto and AvrPtoB of

P. syringae (Shan et al. 2008; Cheng et al. 2011). By

suppressing the kinase activity of BAK1 and PRRs (Shan

et al. 2008; Xiang et al. 2008; Cheng et al. 2011), AvrPto

and AvrPtoB play an essential role in bacterial infection,

primarily by disrupting PTI signaling. Two additional type

III effectors, HopF2 produced by P. syringae and Xoo2875

produced by the rice pathogen Xanthomonas oryzae pv.

oryzae (Xoo), can also associate with BAK1 in Arabidopsis

and rice respectively (Yamaguchi et al. 2013; Zhou et al.

2014); however, how HopF2 and Xoo2875 may manipulate

BAK1 function remains to be elucidated.

A challenge to dissect the contribution of BR to defense

response is the dual roles of BAK1 in both PTI and BR

signaling (Albrecht et al. 2012; Belkhadir et al. 2012). In

addition, BAK1 has also been shown to act as a co-receptor

for PEP RECEPTOR1 (PEPR1), which is involved in the

perception of damage-associated molecular patterns

(DAMPs) (Schulze et al. 2010). Provided the diverse roles

of BAK1 in distinctive signaling pathways, whether these

BAK1-targeting effectors benefit infection through a

potential disruption of BR signaling, as well as other

pathways such as the DAMP signaling, requires careful

investigation. Furthermore, BR signaling has been pro-

posed to negatively regulate immunity through a role in

regulating growth/defense tradeoff (Lozano-Duran and

Zipfel 2015). Therefore, it is possible that pathogens may

benefit from manipulating BR signaling through targeting

components not directly involved in PTI.

Pathogen hijacking growth hormone homeostasis

to enhance nutrient acquisition

In addition to defense suppression, pathogens gain addi-

tional benefits from disturbing growth hormone home-

ostasis (Fig. 2). One of the benefits is nutrient allocation

into infected tissues for sustained pathogen proliferation.

Many pathogens produce cytokinins (CKs) to facilitate

translocation of nutrients into infected sites. These areas

are known as ‘‘green islands’’ because they exhibit delayed

senescence and support continuous growth of the pathogen

population (Walters and McRoberts 2006; Walters et al.

2008).

Gall-forming bacteria are well-known for their ability to

produce CK. For example, the bacterial pathogen

Rhodococcus fascians produces a mixture of six different

CK mimics. Genes involved in CK biosynthesis and

metabolism are encoded on a large linear plasmid pFiD188,

and the loss of pFiD188 rendered the bacterium unable to

cause disease (Crespi et al. 1992; Radhika et al. 2015).

However, introduction of one CK biosynthesis gene cluster

into this avirulent mutant failed to complement the

Fig. 2 Effectors interfering with growth hormones cytokinin and

auxin to acquire shelter and nutrients, as well as to facilitate pathogen

dissemination
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phenotype (Crespi et al. 1992). Therefore, it is likely that

various forms of CKs produced by R. fascians work

together to facilitate infection (Depuydt et al. 2009a; Pertry

et al. 2009, 2010). Interestingly, high levels of sugar and

amino acids are accumulated in R. fascians-induced galls;

these nutrients are presumably resulted from the production

of CKs by R. fascians to support bacterial proliferation

(Depuydt et al. 2009b).

The crown gall disease pathogens Agrobacterium spp.

carry auxin and CK biosynthetic genes within the T-DNA

region, which are incorporated into the genome of suscep-

tible plants to induce tumorigenesis (Schroder et al. 1984;

Thomashow et al. 1986). Moreover, additional Agrobacteria

proteins contribute to gall formation by fine-tuning hor-

monal flux and the ratio between auxin and CK. For

examples, gene 5 acts as an auxin antagonist and regulates

auxin responsiveness through an autoregulatory loop (Kor-

ber et al. 1991); Atu6002 interferes with the perception of

auxin in tumor-forming cells (Lacroix et al. 2014); and 6b

affects the localization of auxin, and possibly CK, in tumor

cells (Takahashi et al. 2013). It is proposed that these pro-

teins function together to promote shoot formation on galls,

which extends the lifespan of infected hosts and safeguards a

stable food source for the bacterium.

Plant pathogenic nematodes are also known to produce

effectors, which can promote infection through the

manipulation of the hormonal pathways (Mitchum et al.

2013). Cyst nematodes induce the formation of specialized

feeding structures known as syncytia in plant roots. Syn-

cytia are formed by fusions of neighboring root cells and

serve as nutrient sinks for the nematodes. Beet cyst

nematode produces an effector Hs1907C, which interacts

with the AUXIN INFLUX CARRIER (LAX3) and poten-

tially directs the influx of auxin into root cells (Lee et al.

2011). Auxin can then induce lateral root formation and the

production of cell wall-modifying enzymes (Swarup et al.

2008), which facilitate syncytia development. Interestingly,

transgenic plants expressing Hs1907C are more resistant to

cyst nematodes. A possible explanation is that the overall

disturbance of auxin flux in roots may reduce the amount of

auxin available for the nematode-feeding sites (Swarup

et al. 2008; Lee et al. 2011). If this is true, spatial

expression of effector disrupting hormonal homeostasis

would be pivotal in determining the outcome of infection.

Effectors manipulate growth hormones to promote

dissemination

The last step to complete an infection cycle is the dis-

semination of pathogens to new hosts. Several type III

effectors known as TRANSCRIPTION ACTIVATOR-

LIKE effectors (TALEs) are produced by Xanthomonas

spp. to promote bacterial dissemination by directly

activating growth hormone-responsive genes in plant hosts.

AvrBs3 from X. campestris activates the expression of the

transcription factor Upa20 in pepper that regulates auxin-

responsive genes. Among them, an expansin-like gene

induces hypertrophy of mesophyll cells, which may

enhance bacterial release from lesions (Marois et al. 2002;

Kay et al. 2007). Similarly, two TALEs, PthA2 and PthA4,

produced by the citrus canker pathogen X. citri were shown

to induce genes involved in ET, GA and auxin signaling

pathways. Even though the biological significance of the

elevated expression of these genes requires further inves-

tigation, gene ontology enrichment analysis suggested that

these genes may be associated with cell wall modifications

(Pereira et al. 2014), which promote the development of

canker pustules (Cernadas and Benedetti 2009). Therefore,

PthA2 and PthA4 may contribute to canker formation and

facilitate bacterial dissemination to infect new hosts.

Conclusions and future perspectives

Constantly challenged by potential pathogens in the envi-

ronment, failure to mount an effective defense response is

fatal to plants. Plant hormones have profound impact on

immunity, not only through the canonical ‘‘defense’’ hor-

mones, but also through the ‘‘growth’’ hormones, which

exhibit bifurcated functions in modulating defense as well

as regulating resource allocation (Huot et al. 2014). During

the co-evolutionary arms race with their hosts, pathogens

have evolved sophisticated strategies to maximize fitness in

plants. Therefore, it is not surprising that the plant hormone

network has been repeatedly identified as targets of a broad

range of pathogens. Although most studies have focused on

defense suppression, hijacking the nutrient allocation sys-

tem and disturbing growth-defense tradeoff is of critical

importance to pathogenesis. Therefore, pathogen manipu-

lation of growth hormonal signaling for benefits indepen-

dent of suppressing immunity cannot be overlooked.

Even though the distinctive roles of SA and JA in reg-

ulating defense to biotrophs and necrotrophs have gener-

ally been accepted, contradictory findings were also

reported. Such discrepancies may be attributed to the use of

transgenic plants or hormone analogs in simplified labo-

ratory studies. It is likely that endogenous hormone levels

during natural infections hardly fluctuate to a level resulted

from experimental manipulations. Since hormonal regula-

tion is a dynamic process with intricate crosstalk, cautions

need to be taken when interpreting data from experiments

involving extensive perturbation of the network. Changes

in nutrient requirement and virulence strategies at different

infection stages should also be considered as determining

factors to understand specific manipulation of hormonal

pathways by a particular pathogen.
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Finally, many plant-associating microorganisms

including pathogens and symbionts are shown to directly

produce plant hormones. Currently, it is not well under-

stood how these additional hormonal signals generated

from the phytobiome may impact plant physiology and

pathogen infection. Furthermore, symbiotic organisms can

also produce effectors to modulate plant hormonal network

and foster colonization (Plett et al. 2014). Studies of

effectors from symbiotic microbes and the roles of

microbe-originated hormones will provide new insight into

our understanding of plant-microbe interactions.
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