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Expansions of more than 200 CGG repeats (full mutation) in the FMR1 gene give rise to
fragile X syndrome (FXS) through a process that generally involves hypermethylation of
the FMR1 promoter region and gene silencing, resulting in absence of expression of the
encoded protein, FMRP. However, mosaicism with alleles differing in size and extent of
methylation often exist within or between tissues of individuals with FXS. In the current
work, CGG-repeat lengths and methylation status were assessed for eighteen individuals
with FXS, including 13 mosaics, for which peripheral blood cells (PBMCs) and primary
fibroblast cells were available. Our results show that for both PBMCs and fibroblasts,
FMR1 mRNA and FMRP expression are directly correlated with the percent of methylation
of the FMR1 allele. In addition, Full Scale IQ scores were inversely correlated with the
percent methylation and positively correlated with higher FMRP expression. These latter
results point toward a positive impact on cognition for full mutation mosaics with lower
methylation compared to individuals with fully methylated, full mutation alleles. However,
we did not observe a significant reduction in the number of seizures, nor in the severity
of hyperactivity or autism spectrum disorder, among individuals with mosaic genotypes
in the presentation of FXS. These observations suggest that low, but non-zero expression
of FMRP may be sufficient to positively impact cognitive function in individuals with FXS,
with methylation mosaicism (lowered methylation fraction) contributing to a more positive
clinical outcome.

Keywords: mosaicism, fragile X, FMR1, FMRP, methylation, premutation

INTRODUCTION
Fragile X syndrome (FXS) is the most common heritable form
of intellectual disability and is caused by an expansion of a CGG
trinucleotide repeat tract in the 5′ UTR of the FMR1 gene on the X
chromosome. CGG-repeat expansion to greater than 200 repeats
generally leads to DNA methylation(Sutcliffe et al., 1992; Alisch
et al., 2013), aberrant heterochromatinization (Coffee et al., 2002;
Tabolacci et al., 2008), subsequent silencing of the FMR1 gene
(El-Osta, 2002), and consequent loss of the corresponding gene
product, FMRP (Pieretti et al., 1991; Godler et al., 2010). FMRP
is an RNA binding protein that functions as a translational repres-
sor at synapses (Antar and Bassell, 2003; Bagni and Oostra, 2013;
Darnell and Klann, 2013; Sidorov et al., 2013). FMRP is impor-
tant for learning and memory, and its absence is associated with
the characteristic features of FXS, including intellectual disability,
cognitive impairments and behavioral problems, autism spec-
trum disorders (ASD), Attention Deficit Hyperactivity Disorder
(ADHD), seizure, in addition to hyper-responsiveness to sensory
stimuli, hyperactivity, impulsive behavior, gaze aversion and shy-
ness (Hull and Hagerman, 1993; Hagerman, 2002; Smith et al.,

2012; Schneider et al., 2013; Ballinger et al., 2014; Machalicek
et al., 2014; Maurin et al., 2014; Thurman et al., 2014).

Since the mapping of the FMR1 gene to the X chromosome in
1991 (Verkerk et al., 1991), reports have emerged on mosaicism
in both the FMR1 allele size and methylation status within lym-
phocytes as well as between tissue types (Tarleton et al., 1992;
Willems et al., 1992; Wohrle et al., 1992; Hagerman et al., 1994;
Nolin et al., 1994; Dobkin et al., 1996; Taylor et al., 1999; Tassone
et al., 2000a; Han et al., 2006; Govaerts et al., 2007; Hantash et al.,
2010; Pretto et al., 2014). The CGG repeats within the FMR1 gene
predispose it to instability and the occurrence of size mosaicism,
in which individuals present with different CGG repeat allele sizes
such that some cells carry a full mutation allele while others carry
a premutation allele; a situation that is common among individ-
uals with FXS (Loesch et al., 2004; Lokanga et al., 2013). Notably,
Nolin et al. (1994) analyzed a group of affected males with FXS
by Southern Blotting and found 41% to be size mosaic. In addi-
tion to “size” mosaicism, some individuals exhibit “methylation”
mosaicism, in which some cells have fully methylated full muta-
tion alleles while other cells possess unmethylated full mutation
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alleles (Nolin et al., 1994; Tassone et al., 1999b; Genc et al., 2000).
Methylation of the full mutation CGG repeats occurs early in
embryonic development and may play a role in stabilization of
the expanded repeats (Devys et al., 1992; Malter et al., 1997; Eiges
et al., 2007). The hypermethylated state of the fragile X full muta-
tion is found associated locally with histone deacetylation and
chromatin remodeling (Coffee et al., 1999, 2002; El-Osta, 2002;
Alpatov et al., 2014), and with transcriptional silencing of the
gene (Pieretti et al., 1991; Pietrobono et al., 2005; Tabolacci et al.,
2008).

Unmethylated alleles from the premutation to full muta-
tion range are virtually transcriptionally active; specifically 2–10
fold overexpressed (Tassone et al., 2000a; Kenneson et al., 2001;
Peprah et al., 2010). Overexpression of expanded CGG-repeat
alleles is currently believed to lead to “toxicity” of the FMR1
mRNA (Hagerman, 2013; Pretto et al., 2014). However, because
expanded CGG-repeat alleles are translated with reduced effi-
ciency (Kenneson et al., 2001; Primerano et al., 2002; Brouwer
et al., 2007; Ludwig et al., 2011) FMRP expression is negatively
correlated with the CGG repeat number particularly in the upper
premutation and full size range (Ludwig et al., 2014; Pretto
et al., 2014). Thus, FMR1 and FMRP expression in a mosaic
background could add complexity to the clinical presentation
and widen the spectrum of involvement in FXS mosaics. This
expectation stems from observations of inter- and intra-tissue
FMR1 methylation and size mosaicism in premutation carriers
and a correlation between methylation and the number of clin-
ical symptoms in a group of premutation carriers with alleles
partially methylated (Allingham-Hawkins et al., 1996; Tassone
et al., 1999b; Pretto et al., 2014). In addition, while somatic size
or methylation mosaicism is not considered as part of a prognos-
tic evaluation, several reports suggest that mosaicism can impact
the penetrance of the disorder and that the methylation status of
full mutation mosaics affects cognitive functioning (McConkie-
Rosell et al., 1993; Hagerman et al., 1994; Schmucker et al., 1996;
Wohrle et al., 1998; Helderman-van den Enden et al., 1999).
Specifically, McConkie-Rosell et al. (1993), studied a fragile X
family with 6 brothers and found that the degree of phenotypic
expression of FXS correlates with the degree of FMR1 methyla-
tion. The effect of the methylation status was likely due to the
overall FMRP levels, since there is a correlation between methyla-
tion status and FMRP production (de Vries et al., 1996; Tassone
et al., 1999b). A large study of 318 families (2253 individuals)
reported that 12% of full mutation males and 6% of females
exhibited mosaicism (Rousseau et al., 1994). Notably, a study of
46 males with FXS under 20 years of age was assessed for develop-
ment of communication, self-care, socialization and motor skills
as a function of presence or absence of mosaicism. They reported
that adaptive skills development was 2–4 times greater in mosaic
cases than in cases with a full mutation suggesting that phenotypic
severity can be influenced by the presence of mosaicism (Cohen
et al., 1996).

Additional cases of methylation mosaicism have also been
reported and support the notion that cognitive function neg-
atively correlate with both the length of CGG repeats and the
methylation status (Merenstein et al., 1994; Mueller et al., 1995;
Smeets et al., 1995; Schmucker et al., 1996; Wohrle et al., 1998;

Helderman-van den Enden et al., 1999; Han et al., 2006; Loesch
et al., 2012). Methylation mosaicism has also been associated
with higher IQ scores and lower phenotypic presentation in post-
pubescent males when compared to males with fully methylated
full mutations (Merenstein et al., 1996) and a direct correlation
between methylation status and FMRP levels has been demon-
strated before (de Vries et al., 1996; Tassone et al., 1999a; Godler
et al., 2010; Loesch et al., 2012; Pretto et al., 2014).

In this study we have investigated the expression of FMR1
and FMRP in peripheral blood mononuclear cells (PBMCs) and
fibroblast cells derived from FMR1 full mutation and mosaic
subjects. We report on inter- and intra-tissue mosaicism in eigh-
teen individuals with FXS, 13 of whom were methylation and/or
size mosaics, for which peripheral blood cells (PBMCs) and pri-
mary fibroblast cells were available. Using simple linear regression
analysis we also investigated the genotype/phenotype relationship
including clinical measures such as IQ, seizures, ASD, and ADHD.

MATERIALS AND METHODS
SUBJECTS
Individuals were recruited through the MIND Institute Fragile X
Research and Treatment Center. Participants provided informed
consent according to protocols approved by the UC Davis
Institutional Review Board. Eighteen participants with the
FXS mutation, belonging to three mutational categories, were
included in this study: fully methylated, full mutation males
(n = 2) and females (n = 3); males (n = 12) and females (n = 1)
with methylation and size mosaicism. Individuals who were size
mosaics and/or methylation mosaics were combined for the pur-
pose of molecular analysis in a mosaic group. Ages ranged from
13 to 73 years (mean ± SD = 31 ± 18 years).

CLINICAL MEASURES
Clinical assessment of participants included the domains of FSIQ,
ASD, ADHD, perseveration, tantrums, anxiety, and seizures.
Cognitive testing was carried out with standardized IQ mea-
sures as indicated in Table 1 (Mullen and American Guidance
Service, 1995; Wechsler, 1997, 2009; Psychological Corporation,
2002; Wechsler et al., 2008); ASD was assessed with the Autism
Diagnostic Observation Scale (ADOS) using a module that
was developmentally appropriate (Derogatis, 1994; Lord, 2002);
ADHD was determined by clinical assessment (Swanson et al.,
2001) along with a history of perseverations, tantrums and anxi-
ety (Derogatis, 1994).

PBMC ISOLATION
Whole blood was collected in Cell Preparation Tube (CPT)
vacutainers with sodium citrate (Becton Dickinson) and cen-
trifuged according the manufacturer’s recommendations to sep-
arate mononuclear cells from whole blood. PBMCs were washed
with Dulbecco’s phosphate buffered saline (PBS) and frozen
in RPMI 1640 media with 10% fetal bovine serum and 10%
dimethyl sulfoxide.

FIBROBLAST CELL LINES
Explants of ∼3-mm dermal biopsies were minced and placed
in a 100-mm TC-treated tissue culture dish (Corning Life
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Science, USA) with a small drop of Fibroblast medium [Gibco
AmnioMAX-C100 Basal Medium supplemented with 15%
AmnioMAX-C100 Supplement (Invitrogen, Carlsbad, CA, USA).
Dishes were incubated at 37◦C in a humidified 5% CO2 atmo-
sphere and media was replaced every 3–4 days. Fibroblast out-
growths were harvested by trypsinization, transferred into a
new dish with a modified Fibroblast Medium (1:1 solution of
Gibco AmnioMAX-C100 supplemented with 15% AmnioMAX-
C100 Supplement (Invitrogen, Carlsbad, CA, USA) and RPMI-
1640 Basal Medium supplemented with 10% fetal bovine serum
(Invitrogen), 1X Primocin (Invitrogen), 1% non-essential amino
acids (Invitrogen), with media exchange every 3–4 days and
allowed to reach 90% confluence prior to splitting. Fibroblast cul-
tures were passaged no more than 3 times prior to collection for
DNA, RNA, or protein extracts isolation or cryopreservation.

CGG REPEAT LENGTH
DNA from PBMCs or primary fibroblast cell lines was isolated
using Gentra Puregene Blood Kit (Qiagen, Valencia, CA). DNA
was analyzed by Southern Blot as previously described to establish
CGG repeat length, percentage of CpG methylated FMR1 alle-
les, and, in females, activation ratio was also determined (Tassone
et al., 1999a, 2008). CGG repeat length was also measured by PCR
amplification followed by capillary electrophoresis, as previously
described (Chen et al., 2010; Filipovic-Sadic et al., 2010).

FMR1 mRNA EXPRESSION LEVELS
Whole blood was collected in Tempus vacutainers (Applied
Biosystems, Foster City, CA) and processed to isolate total RNA.
Fibroblast cell total RNA was isolated using Trizol (Qiagen,
Valencia, CA). Total RNA was reverse transcribed into cDNA,
quantitative real time PCR (qRT-PCR) was performed on cDNA
template to determine FMR1 mRNA levels. FMR1 mRNA levels
were reported in relative abundance compared to reference gene
β-glucoronidase (GUS). Details of the qRT-PCR methodology are
as previously described (Tassone et al., 2000b).

FMRP EXPRESSION LEVELS BY WESTERN BLOT ANALYSIS
PBMCs and fibroblast cells were thawed on ice and gently pel-
leted at 5000 rpm for 5 min. Cell pellets were lysed with rapid
shaking at 70◦C using a thermomixer (Eppendorf) for 20 min.
Lysis buffer contained 0.125 M Tris HCL (pH 6.8), 2% SDS, 10%
Glycerol, and 5% BME. The samples were cooled to room temper-
ature and centrifuged at 13,000 rpm in a benchtop centrifuge for
10 min after which the protein extracts were transferred to clean
microcentrifuge tubes. Protein concentrations were measured
using the Detergent Compatible Protein Assay RC/DC (Bio-Rad
Laboratories Inc., United States). Proteins (10 μg) were sepa-
rated by electrophoresis in Any KD Criterion TGX Gels (Bio-Rad
Laboratories Inc., United States) in 1X Tris/Glycine/SDS buffer
and transferred overnight at 4◦C, 30 volts, to 0.2 μm nitrocel-
lulose membranes (Bio-Rad Laboratories Inc., Germany) in 1X
Tris/Glycine/SDS buffer containing 10% methanol. The mem-
branes were blocked using Licor blocking buffer (Licor) with 50%
1X PBS for 1 h and hybridized overnight at 4◦C with 1:10,000
chicken anti-GAPDH (Millipore) and 1:5000 mouse anti-FMRP
(Chemicon, Millipore). Membranes were washed with 1X PBST

and hybridized with secondary antibodies for 1 h at room tem-
perature (1:25,000 goat anti-chicken IRDye 800CW and 1:20,000
goat anti-mouse IRDye 680LT; Licor). Membranes were washed
in 1X PBST and finally 1X PBS prior to being imaged using Licor
Odyssey System with Image Studio Version 2.1 (Licor).

STATISTICAL ANALYSIS
FMR1 expression was compared between groups, adjusting for
percent methylation, using a multiple regression model including
group and percent methylation. Percent methylation values indi-
cating >95% were converted to 95% for use in analysis. FMRP
expression was compared between groups using one-way analy-
sis of variance. FMR1 expression, FMRP expression, IQ, numbers
of clinical features, and percent methylation were correlated with
each other using simple linear regression. FMRP expression was
correlated with FMR1 expression, adjusting for percent methy-
lation, using multiple linear regression analysis. FMR1 data and
FMRP expression were log-transformed prior to analysis when-
ever they were used as the response variable in a linear model.
Analyses were conducted using R, version 3.0.3 (Team, 2014).

RESULTS
CLINICAL HISTORY OF TWO REPRESENTATIVE CASES
The group of patients examined in this study consists of 18
subjects that presented with clinical characteristics of FXS and
molecularly with size or methylation mosaicism. The clinical
history of two of the 18 cases is described in detail below.

Case 14 is a 58 year old male with a history of learning prob-
lems and shyness in childhood. He was dyslexic, and had difficulty
reading and writing. On evaluation at age 55, he demonstrated
psychotic symptoms on the Structured Clinical Interview for
DSM IV (SCID) with both visual and auditory delusions. He was
also subthreshold for agorophobia. He has developed a neuropa-
thy in the last year with pain, numbness, and tingling in both his
hands and in his feet, with burning pain in his feet particularly
evident during the past few months. He trips frequently, but has
not reported ataxia or tremor by history or by examination. His
family history includes a mother who was a premutation carrier
with dementia, tremor, and ataxia. His brother has FXTAS, his sis-
ter has FXS, and his daughter is a premutation carrier with a son
affected with FXS. On molecular testing, he displays substantial
somatic instability (size mosaicism) as evidenced by a broad range
of CGG repeat alleles more so in PBMCs compared to fibrob-
lasts (Figures 1H,I). He also has methylation mosaicism in both
PBMCs and fibroblasts (Figure 1G) with most of the cells carry-
ing unmethylated alleles in both PBMCs (63%) and fibroblasts
(79%), although the CGG repeat sizes were larger in the fibrob-
lasts (Table 1). FMR1 mRNA levels were over two-fold higher
than normal (2.19 ± 0.01; mean FMR1 mRNA in controls = 1.42
± 0.26; Tassone et al., 2000b) in PBMCs, and but slightly lower
compared to normals in fibroblasts (0.29 ± 0.06; mean in FMR1
mRNA in controls = 0.40 ± 0.08; Garcia-Arocena, 2010). His
FMRP expression levels were low; approximately 10% of normal
in PBMCs and in fibroblasts, likely due to inefficient translation
of large expanded alleles.

Case 17 presented at 20 years of age with a history of a normal
pregnancy; but with delayed development, hypotonia, ADHD,
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FIGURE 1 | Methylation status and CGG size instability. Southern blots
(SB) and electrophoregrams in four representative cases of full mutation
mosaic males, cases 10, 11, 14 and 17 are illustrated. The SB analysis (left,
A,D,G,J) demonstrates differences in FMR1 percent of methylation when
comparing peripheral blood lymphocytes (PBMCs) to primary cultured
fibroblasts (Fibroblasts). See also Table 1. M = 1 Kb DNA size ladder marker;

C1, normal female, negative control and C2, full mutation male, positive
control. The electrophoregrams show CGG instability as illustrated by the
presence of serial peaks, each representing single distinct alleles, with
differences between PBMCs (B,E,H,K) and fibroblasts (C,F,I,L). The X axis
marks the size of the alleles in base pairs. The Y-axis marks the fluorescence
intensity of each allele.

shyness, and social anxiety during early childhood. He also had
seizures documented by EEG during his first 2 years, and night
terrors during his first 5 years. He has characteristic FXS behav-
iors including intermittent poor eye contact, tactile defensiveness,
social anxiety, sensitivity to stimuli, and perseveration. However,
he does not have tantrums or aggression. He has had a joint
dislocation of his toe, and right exotropia. He has a large head
circumference (>99%) with mild obesity. His ears are large and
prominent with cupping bilaterally, his fingers are hyperextensi-
ble and his skin is soft and velvet-like, although striae are present
over his lateral chest and abdomen. He has flat feet with a mod-
erate degree of pronation. He has a high arched palate, and
macroorchidism with a testicular volume of 50 mL bilaterally. He
was able to tandem walk without difficulty, which is unusual for
a man with FXS. He is higher functioning than most adult males
with FXS since his FSIQ is in the borderline to low normal range:
WAIS-III FSIQ is 79; performance IQ 78; and verbal IQ is 83, with
a verbal comprehension score of 93, perceptional organization

of 70, working memory of 69, and perceptional speed of 79. At
the molecular level, he showed size mosaicism in PBMCs and
fibroblasts with a premutation allele of 65 CGG repeats and full
mutation alleles present in a small percent of PBMC cells (<5%),
but much higher than in fibroblast cells (49%) (Figures 1J,K;
Table 1). FMR1 mRNA levels were over 2-fold higher than normal
both in PBMCs and in fibroblasts (Table 1). Within the mosaic
group, he showed a higher FMRP expression in both tissues likely
due to the premutation allele of 65 CGG repeat present in over
50% of the cells (Table 1).

DIFFERENCES IN METHYLATION AND SIZE MOSAICISM OCCUR
BETWEEN PBMCs AND FIBROBLASTS
Southern Blot and PCR analyses were used to determine the
methylation status and the CGG repeat size of the FMR1 allele
in both PBMC and fibroblast samples from individuals with FXS
(males, n = 14 and females, n = 4) (Table 1). Among the FXS
cases, three females had both a normal allele and a full mutation
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allele in both tissues (Cases 1–3, Table 1) while one female had
size and methylation mosaicism that differed between PBMCs
and fibroblasts (Case 4, Table 1). Two males with FXS showed
fully methylated full mutation alleles (Cases 5 and 7), while
the remaining 12 (Table 1) were methylation or size mosaics in
both PBMCs and/or fibroblasts. The percent of methylation and
the CGG size varied between PBMCs and fibroblast cells in the
majority of cases (Table 1). Variations in CGG size and methy-
lation status, as observed by Southern Blot and PCR assay, for 4
representative cases are shown in Figure 1.

In the methylation mosaic males, the CGG size of the
unmethylated alleles spanned the full mutation range in all indi-
viduals; in some cases alleles within the premutation and nor-
mal range were present, particularly in the PBMCs (Table 1).
However, it was not possible to estimate the molecular contribu-
tion and the consequent potential clinical outcome due to any
single allele present in the sample. Although the observed dif-
ferences in methylation were variable between individuals and
involved both differences in percent of methylation and allele size,
the percent of methylation was consistently higher in the majority
of the fibroblast cells. The activation ratio, expressing the percent
of cells carrying the normal allele on the active X chromosome,
was higher in PBMCs than fibroblast cells for three of the four

female cases (Cases 1–3) while the remaining female (Case 4) had
approximately the same activation ratio between cell types (0.46
in PBMCs, 0.55 in fibroblast cells) (Supplementary Figure 1). The
higher activation ratio in Cases 1–3, and thus the higher propor-
tion of normal alleles on the active X chromosome, likely reflects
the FMR1 mRNA levels observed in the PBMCs of these indi-
viduals closer to the levels observed in normal controls (mean
FMR1mRNA in controls = 1.42 ± 0.26; Tassone et al., 2000b).
However, the FMRP levels were less than 50% of the control
levels for both PBMCs and fibroblasts (mean FMRP in control
PBMCs = 0.17 ± 0.06; mean FMRP in control fibroblasts = 1.2 ±
0.02; data not shown) (Table 1).

FMR1 mRNA AND FMRP EXPRESSION LEVELS ARE HIGHER IN
INDIVIDUALS WITH MOSAICISM
FMR1 mRNA levels adjusted for percent methylation were com-
pared between the three mutational groups, namely males with
full mutations, females with full mutations and individuals with
mosaicism (methylation and size male and female mosaics,
n = 13). FMR1 mRNA levels measured by qRT-PCR varied
between 0 and 5.75 (mean 1.79). As previously reported (Tassone
et al., 2000a), FMR1 mRNA levels were higher in both tissues
in mosaics than in full mutation males (Table 1; Figures 2A,B).

FIGURE 2 | FMR1 gene expression. Boxplots show FMR1 expression in
PBMCs (A) and fibroblasts (B) for full mutation females, full mutation
males and mosaic individuals as measured by qRT-PCR relative to a
reference gene (Gus). The line across each box represents the group
median. Outliers are shown as circles. Scatterplots of FMR1 mRNA

expression levels (y-axis) as a function of percent methylation (x-axis)
show single data points demonstrating decrease FMR1 mRNA
expression with increased methylation in PBMC’s (C) and in fibroblasts
(D). Circles represent observed data. The solid line shows the linear
regression fit.
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A correlation between FMR1 mRNA expression and percent of
methylation in PBMCs (Figure 2C) and fibroblasts (Figure 2D)
showed a decrease in FMR1 expression with increased methy-
lation using simple linear regression. FMRP expression between
the three mutational categories showed a 5.1 fold-greater FMRP
expression in the mosaic group compared to the full muta-
tion males in PBMCs (Figure 3A) (although this was not sta-
tistically significant, P = 0.199) and significantly higher in the
female group compared to full mutations (p < 0.001). FMRP
was 37.0-fold greater in mosaic males and females than in
full mutation males (P = 0.001) in fibroblast cells (Figure 3B).
FMRP expression in PBMCs and fibroblasts decreased signifi-
cantly with increasing percent methylation (P = 0.001 and p =
0.02 respectively; Figures 3C,D).

FMRP EXPRESSION LEVELS CORRELATE WITH IQ
Participants FSIQ decreased significantly with increased FMR1
methylation in both PBMCs (P = 0.022) and fibroblasts (P =
0.02) (Figures 4A,B) while the IQ increased significantly
with increasing FMRP expression in fibroblasts (P = 0.028)
(Figure 4D) while a similar trend, although not statistically
significant, was observed in PBMCs (P = 0.118) (Figure 4C).
Notably, the plots in Figures 4A,B show a wide scatter likely
due to the large range of unmethylated CGG allele sizes,

particularly in individuals with mosaicism (Table 1). Both CGG
allele size and the methylation status affect the FMRP expres-
sion levels, which ultimately can influence the severity of the
phenotype.

MOLECULAR MEASURES DO NOT CORRELATE WITH THE NUMBER OF
CLINICAL FEATURES PRESENT
In order to determine whether the percent of methylation in
FMR1 correlated with clinical presentation we examined the rela-
tionship between methylation and number of clinical features
that were diagnosed by their physician as reported in their medi-
cal records. Scores for severity of symptoms were not considered
in our evaluation; only the presence or absence of each fea-
ture was taken into consideration. Clinical diagnoses used in this
study included ASD, ADHD, perseveration, tantrums, anxiety,
and seizures. A minimum of one (n = 2) and a maximum of
five (n = 4) clinical features out of six considered were observed
in the 18 participants for which this clinical information was
available. Out of the 18 individuals with FXS, 50% (n = 9) pre-
sented with ASD. The number of clinical features was not signifi-
cantly associated with percent methylation in either PMBCs (P =
0.926) or fibroblasts (P = 0.803). In addition, FMRP expres-
sion did not significantly correlate with the number of clinical
features.

FIGURE 3 | FMRP expression. Boxplots show semi-quantitative measures
of FMRP expression in PBMCs (A) and fibroblasts (B) for control
individuals, full mutation females, full mutation males, and mosaic
individuals as detected by Western Blot analysis. The line across each
box represents the group median and outliers are shown as circles.

Scatterplots show single data points for FMRP expression (y-axis) as a
function of percent of methylation in PBMCs (C) and fibroblasts (D),
illustrating an inverse association between FMRP levels and percent of
methylation and in both cases, a dramatic loss of FMRP expression in
highly methylated alleles.
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FIGURE 4 | FMR1 methylation and FMRP are associated with FSIQ

scores as measured by Stanford Binet-5, WISC, WAIS-III, Weschler,

and WPPSI-III Standardized tests. Scatterplots show IQ scores (y-axis)
as a function of percent methylation (x-axis) in PBMCs (A) and
fibroblasts (B), demonstrating a significant correlation between lower IQ
and greater percent of methylation in both cell types. Circles represent

observed data and the solid line shows the linear regression fit.
Similarly, scatterplots of IQ scores (y-axis) as a function of FMRP
expression show that lower IQs significantly correlate with reduced
FMRP expression in fibroblasts (D) and a similar trend can be observed
in PBMCs (C). Circles represent observed data, the solid line shows
the linear regression fit.

DISCUSSION
Reports of methylation and size mosaicism have been observed in
a large proportion of individuals with a full mutation (McConkie-
Rosell et al., 1993; Nolin et al., 1994; Genc et al., 2000; Tassone
et al., 2000a; Loesch et al., 2012; Pretto et al., 2014). However,
despite the fact that mosaics can produce some FMRP, depend-
ing on the methylation and the CGG allele size, they usually
present with developmental delay. This is likely due to the limited
amount of FMRP present, due both to lowered gene expres-
sion and the difficulty in translating residual mRNA with the
expanded CGG repeat (Primerano et al., 2002; Ludwig et al., 2011,
2014). Alternatively, because DNA testing is normally performed
in PBMCs, the results may not accurately reflect the mutation
pattern in other tissues. Mosaicism in different tissues has been
investigated and reported in several studies (Genc et al., 2000;
Bonarrigo et al., 2014; Pretto et al., 2014), which have reported
similarities across tissues in some cases and extreme difference in
mosaicism in others. Thus, it is difficult to predict on an indi-
vidual basis whether mosaicism observed in blood will reflect
the pattern in other tissues, particularly brain, and therefore the
patterns of clinical involvement/severity. However, the studies
in general show association between mosaicism and prognosis

(Merenstein et al., 1994; Mueller et al., 1995; Smeets et al., 1995;
Dobkin et al., 1996; Schmucker et al., 1996; Wohrle et al., 1998;
Helderman-van den Enden et al., 1999; Genc et al., 2000; Han
et al., 2006; Govaerts et al., 2007; Loesch et al., 2012; Pretto et al.,
2014).

In the current study the impact of mosaicism was assessed in
18 individuals with a full mutation by comparing molecular mea-
sures in both PBMC and fibroblast cells. In several cases CGG
allele sizes and their corresponding FMR1 and FMRP expres-
sion was similar between PBMC and fibroblast samples, how-
ever, noticeable differences in CGG size allele distribution were
observed in the majority of cases (Table 1) likely contributing to
the variations observed in the phenotypic presentation of FXS.
Percent of methylation was in general lower in the PBMCs than in
fibroblasts. Notably, the mRNA expression was higher in PBMCs
suggesting that the unmethylated alleles even in the full muta-
tion range are actively transcribed (Tassone et al., 2000). Although
an excess in transcription, producing higher than normal lev-
els of mRNA was observed for many of the subjects included
in this study, these are long expanded alleles, which are ineffi-
ciently translated to FMRP (Primerano et al., 2002; Loesch et al.,
2004; Peprah et al., 2010). Thus, it is not surprising that some
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individuals exhibited elevated FMR1 mRNA but not lower FMRP
levels.

The fully-methylated, full mutation males and those mosaics
with a higher percent of cells carrying a methylated allele had an
IQ rating under 70, within the range of intellectual disability, as
is common in FXS. Higher IQ scores were observed in mosaics
with less methylation (Table 1). This data suggest that low FMRP
levels are biologically critical, and small increases in its expression
may have a significant impact on cognitive function. Alternatively,
it is also possible that different methylation and consequently
different FMRP levels may exist in neural tissues. We found
no significant correlation between percent of unmethylated alle-
les and the number of clinical phenotypes present, suggesting
the importance of the genetic background, in addition to the
presence of a full mutation in the complexity of the clinical
phenotype.

As expected, the IQ was in the borderline range for females as
the FXS phenotype in females is normally milder than that of FXS
in males due the normal, active allele expressing FMRP at normal
levels. The activation ratio, which reflects random X inactivation,
was measured in the full mutation females in both PMBCs and
fibroblasts, revealing inter-tissue difference that can have a bio-
logical and ultimately a clinical impact on a full mutation female
(Table 1). Higher activation ratios are favorable, as they indicate
more normal alleles being expressed. Because activation ratios
vary between tissue types, measurements from PBMC or fibrob-
last samples may not reflect what may be present in clinically
relevant tissue types such as brain.

In all cases the presence of full mutation alleles contributed to
a lower IQ and perhaps to the higher incidence of ASD (50%)
observed in these individuals.

Although mosaic individuals can have milder cognitive
involvement, they can be at risk for developing FXTAS if their
FMR1 mRNA levels are elevated as suggested from cases pre-
viously reported in the literature (Loesch et al., 2012; Pretto
et al., 2013, 2014; Santa Maria et al., 2013). In addition, indi-
viduals with both lowered FMRP and elevated FMR1 mRNA can
also be at greater risk for psychotic symptoms (Schneider et al.,
2013).

One limitation of this study is represented by the small number
of subjects (n = 18), particularly due to the wide range of CGG
size and methylation, for which both PBMCs and primary fibrob-
lasts were available. The results presented in this study, may have
clinical relevance, as a detailed molecular diagnosis (including
information about methylation status, FMR1mRNA and FMRP
levels) could provide additional information and guide to clin-
icians and expectations for the family of a patient with FXS.
However, it also underlines the complexity of the disorders with
many molecular facets, including CGG repeat size, methylation,
FMRP expression, and intra-tissue mosaicism that can lead to
the broad spectrum of clinical involvement in FXS, particularly
in those with mosaicism.
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