
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Routing Along DAGs

Permalink
https://escholarship.org/uc/item/1c5705w4

Author
Liu, Junda

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1c5705w4
https://escholarship.org
http://www.cdlib.org/

Routing Along DAGs

by

Junda Liu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Scott J. Shenker, Chair
Professor Ion Stoica

Professor John Chuang

Fall 2011

Routing Along DAGs

Copyright 2011
by

Junda Liu

1

Abstract

Routing Along DAGs

by

Junda Liu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Scott J. Shenker, Chair

Since the invention of packet switching networks, routing is an important, if not the
most fundamental, component of networking. Over decades, both academia and industry
put huge efforts to improve routing in various scenarios. However, with the explosive growth
of Internet, wide adoption for critical business and services, and new environments like data
center networks, routing has more difficulties to meet the increasingly stringent requirements.

We examine current routing schemes and discover that the problem is more fundamental,
because they rely on many assumptions and trade-offs that are no longer applicable for
today’s networks. Believing that more radical changes are necessary to effectively address
the challenge, we start the design process from scratch, with assumptions, trade-offs and
design philosophies which better reflect the networks of today and tomorrow. The outcome
of the design process is a unified routing framework which utilizes directed acyclic graph
(DAG) as routing topology. And we name it Routing Along DAGs (RAD).

RAD separates route optimization and connectivity maintenance, handles both failures
and congestions, and recovers fast and locally. We explain the details of RAD design and
test its performance on various real world topologies. Then we improve RAD to achieve even
better performance and cover more use cases. With these extensions, RAD becomes both
complete and practical.

i

To my family

ii

Contents

List of Tables v

List of Figures vi

1 Introduction 1
1.1 Motivation . 1

1.1.1 New Challenges . 1
1.2 Previous Efforts . 2
1.3 Unified Framework . 3

1.3.1 Handling Dynamics . 3
1.4 Summary . 4

2 RAD Overview 5
2.1 Review Routing . 5

2.1.1 Choice and Decision . 6
2.1.2 Three Topology Abstracts . 6
2.1.3 Routing’s Goals . 7

2.2 Connectivity . 7
2.2.1 Separate Optimization . 8
2.2.2 Loop-free Topology . 9

2.3 Optimization . 9
2.3.1 Common Practices . 10
2.3.2 Optimization in RAD . 11

2.4 Resilience . 12
2.4.1 Timescales . 12
2.4.2 Global Recomputation . 13
2.4.3 Local Repair . 14

2.5 RAD by An Example . 15
2.5.1 Simple Topology . 15
2.5.2 Computing DAG . 16
2.5.3 Handling Failures . 17

iii

2.5.4 Handling Congestions . 18
2.6 Summary . 18

3 Related Work 21
3.1 Traditional routing: . 21
3.2 Current Practices . 22
3.3 Recent non-DAG research . 23
3.4 Other DAG-based research . 24
3.5 Summary . 24

4 RAD Design 26
4.1 Network Model . 26
4.2 Build DAG . 27

4.2.1 General Algorithm . 27
4.3 Three Rules . 28
4.4 Repair DAG . 30

4.4.1 Proof of Ideal Connectivity . 31
4.5 Maintain DAG . 32
4.6 Distributing load . 33

4.6.1 Proof of Optimal Load Distribution 34
4.6.2 Stability . 37

4.7 Evaluation . 37
4.7.1 Connectivity . 37
4.7.2 Load Distribution . 42

5 Improve RAD 53
5.1 Faster Reversal . 54

5.1.1 Two Planes . 54
5.1.2 Data-Driven Connectivity . 55
5.1.3 DDC Example . 56
5.1.4 Design Details . 57
5.1.5 Ideal Connectivity . 60

5.2 Fewer Reversal . 62
5.2.1 Single Outgoing Node . 63
5.2.2 DAG with Backups . 64
5.2.3 Compute Backups . 64

5.3 Different Communication Patterns . 65
5.3.1 Anycast . 66
5.3.2 Broadcast . 67
5.3.3 Multicast . 67

5.4 Thin DAGs . 67

iv

6 Conclusion 69
6.1 Future Directions . 70

6.1.1 Theory Questions . 70
6.1.2 Practical Questions . 71

Bibliography 74

v

List of Tables

4.1 Topologies Used for Simulations . 38
4.2 Average scope of Shortest Path FIB change and RAD Node Reversal when

link fails . 38
4.3 Average number of messages triggered by link failure, shown as ratio to link-

state’s performance. 38

5.1 Port state and packet actions on port . 58

vi

List of Figures

2.1 A tree and a DAG on a network graph. In the tree, the only path from 4 to
d is 4-2-1. In the DAG, there are four paths: 4-2-d, 4-3-d, 4-3-1-d, and 4-3-2-d. 16

2.2 RAD failure handling mechanism. (a) When link 3 → d fails, node 3 can
instantly start using 3→ 1 or 3→ 2. (b) When link 1→ d fails, node 1 will
reverse link 3→ 1 to 1→ 3. 17

4.1 Percentages of resilient nodes and redundant links in DAGs over various
topologies . 40

4.2 CDF of link-reversal scope under multiple concurrent failures. The x-axis is
the fraction of nodes that experience changes in their Lr(v) as a result of these
failures. 42

4.3 Scope of NR/FIB changes on AS1239 . 43
4.4 Scope of NR/FIB changes on AS1755 . 44
4.5 Scope of NR/FIB changes on Cisco . 45
4.6 Scope of NR/FIB changes on FatTree . 46
4.7 Comparison of RAD to the optimal linear programming solution. The dots

(using the right hand scale) indicate the fraction of links with over 90% utiliza-
tion in the optimal solution (which gives an indication of how heavily loaded
the network is). 47

4.8 RAD and optimal link loads, with links ordered by utilization and λ = 3 . . 48
4.9 RAD and optimal link loads, with links ordered by utilization and λ = 4 . . 49
4.10 3 classes of traffic, RAD vs optimal, on AS1755 50
4.11 Penalty change when link fails: RAD vs optimal sorted by new optimal penalty

value. 51
4.12 Penalty change when traffic bursts: RAD vs optimal sorted by new optimal

penalty value. 52

5.1 Illustration of DDC. (a) normal forwarding. (b) DDC bounce back when
failure happens. 56

5.2 State transition when an O-port receives packet. 58
5.3 State transition when an RI-port receives packet. 59

vii

5.4 Node 1 reverses incoming links when link 1→ v fails. 62
5.5 With added choice, no need to reverse link 3 → 1. But the choice should be

carefully computed to avoid forwarding loops. 63
5.6 Illustration of RAD with anycast. Node 1 and 5 are receivers. (a) Add virtual

node v to the graph. (b) Build DAG rooted at v. 66

6.1 Architecture of distributed router architecture. 73

viii

Acknowledgments

I am grateful to my professors, family and friends for their help and support during my entire
PhD career. My time at Berkeley with the RAD Lab and NetSys Lab was truly an amazing
and invaluable experience. Thanks to Professor Scott Shenker, my advisor, for guiding me
through every aspect of my research. From identifying challenging problems in practice, to
understanding the fundamental limitations, from brainstorming creative ideas, to proposing
innovative approaches with strong reasoning support, Professor Shenker gave me tremendous
guidance and help that I will treasure in my entire life.

My special thanks go to other members of my dissertation committee, Professor Ion
Stoica and John Chuang. Their suggestions and feedbacks help improving my research and
dissertation significantly.

Thank everyone in the RAD Lab and NetSys Lab. I couldn’t have asked for better friends
and collaborators. I enjoyed the discussions and stimulating environment, and learned a lot
from them.

I am also fortunate to collaborate with talented researchers from other universities and re-
search institutions. Thanks to Professor Jennifer Rexford from Princeton University, Michael
Schapira from Hebrew University of Jerusalem, Brighten Godfrey from UIUC. They gener-
ously shared their experience and knowledge, and I appreciate all their help.

I also received great feedbacks from people with industrial relations. Thank Martin
Casado and Teemu Koponen from Nicira Networks, and Amin Vahdat from Google Inc.
They encouraged me to consider more practical requirements and constraints, and helped
shaping the goals of my research.

Finally I would like to thank my parents and wife, for all their support and help in my
life. And thank my daughter, for all the happiness she brought to the family.

1

Chapter 1

Introduction

1.1 Motivation

Routing is arguably the most fundamental aspect of networking, since it answers the basic
question: how do you place the appropriate state in routers or switches so that packets will
travel from source to destination? In the early days, it may be good enough to simply deliver
the packet. But as networks become popular across the world and carry more and more
communications, how to forward packets efficiently becomes another, maybe more important,
task for routing. So routing needs to provide a result that is both correct and optimized.
Seeing its direct impact to the correctness and performance of networking, both academia
and industry put tremendous efforts to improve routing. There is a huge academic literature
on routing, and the commercial world has been honing their routing implementations for
many years. We have seen new routing algorithms, modified schemes for new networks,
improved mechanisms for new requirements, etc. After all this academic and commercial
routing work, one might expect that there would be little new to say about routing.1

1.1.1 New Challenges

However, there are two trends that are driving a new round of routing research. First, net-
works are increasingly used for critical services, so network reliability requirements are now
more stringent (i.e.,“five nines” of reliability is often quoted as an aspirational goal, but
even significantly less ambitious targets are beyond the reach of today’s routing protocols).
Routing, broadly defined, provides reliability in three ways: failure resilience (the ability to
tolerate link failures without having to recompute routes), failure recovery (timely recompu-
tation of routes when required), and load distribution (distributing load across the network

1In this thesis, we focus on intradomain routing. Interdomain routing, with its requirement for policy
autonomy and flexibility, has significantly different routing requirements. We will briefly discuss the potential
of our approach in interdomain routing and point to some pioneer work in Improve RAD chapter.

2

so that no congestion hotspots degrade performance). All three of these mechanisms must
be improved if networks are to meet these demanding performance requirements.

Second, networks are growing at a rapid pace, and a new class of networks — datacenters,
which can have hundreds of thousands of hosts and millions of VMs — are pushing the
scaling limits as never before. Routing algorithms are essentially distributed consistency
algorithms, so their convergence times (for responding to failures and hotspots) and/or the
routing overhead (in terms of the number and size of routing messages) necessarily increase
with size. Beyond being big, datacenters also combine high path diversity with volatile traffic
demands, making multipath routing crucial in achieving full bisection bandwidth.

These two trends demand that routing protocols do a better job (i.e.,be more reliable,
with fewer and shorter outages) of a harder task (i.e.,routing on larger and more complex
networks). This challenge is not limited to a particular networking scenario or layer: it
applies to wide-area networks, enterprise networks, and datacenter networks alike, and at
both layer 2 and layer 3.

1.2 Previous Efforts

As a result, both the commercial world and the academic community have been actively
investigating new routing paradigms. Various rerouting methods, such as Fast Reroute in
Multi-Protocol Label Switching (MPLS), have been available in commercial products for
years; these provide fast failover, improving the reliability of a given path, but are generally
not used for load distribution.2 In the last decade the academic community has produced
myriad multipath routing methods (see [50, 59, 49, 44, 41, 14] for a sampling). These
multipath mechanisms make it easier to spread load, and they can be used by the endpoints
for failure recovery. However, because these new paths are requested by the ends, not by
internal nodes detecting failures, these multipath methods do not provide fast in-network
failover.

These proposed mechanisms significantly improve the reliability of networking, but are
still far from meeting the required reliability goals. This is largely because these recent efforts
are retrofitted on top of the traditional approach to routing, which builds a single path from
the source to the destination, and do not incorporate more effective failure resilience, failure
recovery, and load distribution into the routing’s algorithmic foundations.

More recently, in a series of pioneering publications (see [60, 45, 46, 43, 61, 62]), the re-
search community has begun to explore an entirely new routing paradigm, one that changes
the basic output of routing for a given source-destination pair from a single path to a di-
rected acyclic graph (DAG). DAGs provide multiple paths between the given source and
destination that can be used for both fast failover (thereby improving failure resilience) and
load distribution. DAG-based approaches are hardly new; they were first investigated in the

2An exception, for the datacenter, is ECMP, which does both fast failover and load distribution, but has
limited flexibility.

3

wireless literature in 1983, when a prescient paper by Gafni and Bertsekas [21] proposed an
algorithm to restore connectivity using local recovery methods. This was followed by several
other papers in the wireless literature, though this family of algorithms seems to be out-
of-favor currently. Even in the wired literature, while there was little explicit attention to
DAGs, they were implicitly used in an earlier generation of routing protocols [7, 24, 23, 68].
Despite this earlier interest, it was only recently that the community focused more generally
and intensely on DAG-based schemes for wired intradomain routing.

1.3 Unified Framework

We believe the DAG approach has more potential to explore. One obvious advantage it has
is to unify the failure and congestion handling into one framework. We think this is of value
because, today, routing designs typically achieve failure resilience and load distribution with
two separate and reasonably complicated mechanisms (such as backup paths for resilience
and computing link weights for load distribution), and each are separately overlaid on top
of a basic routing protocol that provides failure recovery. Our RAD approach addresses all
of these issues in a single mechanisms; given how hard it is to manage modern networks,
simplifying routing would be a major improvement. Our performance analysis suggests
that we can achieve this unification while preserving, and in many cases improving, routing
performance.

In achieving this unification, we argue for a different separation of concerns in route com-
putation that is not possible with shortest-path approaches. We focus on loop-prevention as
the highest priority, followed by connectivity, followed by path optimization. Some canoni-
cal routing algorithms like distance-vector invert this order, guaranteeing loop-freeness only
when the shortest paths have been computed.

1.3.1 Handling Dynamics

Routing is easy when networks are static and lightly loaded; one can compute the routing
tables once (without tight time constraints on the computation) and then leave this routing
state unchanged. However, when links fail or become overloaded, a more dynamic response
is required. In fact, the performance of a routing protocol can largely be described in terms
of how quickly and how well it responds to failed or overloaded links.

The quality of the response to failures can be measured by the degree to which connec-
tivity is (or is not) guaranteed. That is, if the failure does not disrupt the connectivity of the
resulting graph, does the routing algorithm ensure that packets will be delivered?

The quality of the response to overloaded links is measured by how effectively the load
is distributed: how large a load can the network carry without a link becoming overloaded?
Note that we are not equating load distribution with load balancing: the goal is to carry

4

more traffic without overload, not to minimize the maximal load on the links.3 While the
latter is mathematically cleaner, the former more directly measures the performance from a
provider’s point of view.

Thus, our goal is to develop routing algorithms that guarantee connectivity in the pres-
ence of failures and maximize the amount of traffic the network can carry without overload.
We also, as noted above, want routing to respond to failures and overloads quickly. When
defining “quickly”, rather than discussing absolute numbers we compare against two different
timescales: local responses (when the network event can be handled locally within the router
or switch detecting the problem) and global recomputations (where the routing algorithm
must be re-run in order to recompute the state in routers). We would ideally like routing
algorithms to guarantee connectivity and maximize the traffic carried without overload, all
while using only local responses. Thus, we want an approach that is both unified and local.

1.4 Summary

Despite decades of research and engineering efforts, routing still has difficulties to meet the
scalability and availability requirements from today’s networks. We argue that more radical
changes are inevitable because many assumptions and trade-offs of current routing schemes
are no longer applicable for the networks of today and tomorrow.

We propose RAD to address this challenge. Built from revised assumptions and design
philosophies, RAD is a unified routing framework that handles both failures and congestion,
reacts locally and scales well. With appealing features and modern design, RAD can be
applied to many different network scenarios and has more potential to meet even more
restrict requirements.

The rest of the dissertation proceeds as follows: Chapter 2 details the design process of
RAD and gives an overview through one example. Chapter 3 reviews related routing efforts
and compares them by different metrics. Chapter 4 explains the details of RAD and shows
the performance evaluation. Chapter 5 discusses improvements and extensions to RAD, and
Chapter 6 concludes with future direction suggestions.

3Overload means when the link can no longer meet a reasonable SLA; depending on the historical bursti-
ness of the load, and the desired SLA, the target utilization could vary widely.

5

Chapter 2

RAD Overview

At first glance, choosing DAG as the routing topology is simply a change of graph concept.
However, the departure is more fundamental. To better explain the differences, we first
detail the design process of RAD in Section 2.1. We start the process by reviewing routing
in packet-switched networks and its three goals: connectivity, optimization and resilience.
For each goal, we analyze its underlying requirements and examine how it is reached by
conventional approaches. Then we explore the design space by carefully reexamining the
assumptions and trade-offs, and making them more applicable for the networks of today and
future. Several high level ideas include:

• Separate optimization and connectivity

• Build explicit loop-free topology

• Allow temporary suboptimal forwarding

• Prefer fast and local recovery

Naturally, the process leads to RAD, a complete and coherent routing framework. We
highlight the advantages of RAD, and provide a simple example in Section 2.5 to illustrate
major components of RAD and describe how they work together to achieve the three goals
of routing.

2.1 Review Routing

In packet-switched networks, every packet carries a hint (bits in packet) for its own delivery.
Common choices of delivery hint include destination MAC address in layer 2 switching
networks, destination IP address in IP networks and pre-defined label in virtual circuit
networks like MPLS. Extra information may also be used to enable finer granularity control
of forwarding and extensions to routing such as source routes, so long as it is supported

6

by the network. By checking the delivery hint in the packet, each router, or Forwarding
Equipment (FE) in general, decides how to do the forwarding on a per-packet basis. These
decisions come from routing. Or more precisely, the role of routing is to provide choices and
make packet forwarding decisions. The choices may be a set of next hop routers and the
decision is simply the chosen one.

2.1.1 Choice and Decision

However, the distinction between choice and decision is often neglected, because conventional
routing provides only one choice1 and the decision is always the same as the choice. Yet the
distinction is important. By separating the two concepts, one can view routing as two
parts: a method to compute choices and a set of rules to pick one, which will enable greater
flexibility and more potential of routing. But there is a challenge. Researchers have been
familiar with the term “topology” and there are no well acknowledged terms to differentiate
choice and decision.

2.1.2 Three Topology Abstracts

To be compatible with conventional terms and avoid future confusion, we now introduce
three key topology concepts about routing.

• Network Topology (NT): underlying physical network, often represented by an undi-
rected graph with nodes and links.

• Routing Topology (RT): forwarding choices, the output of routing algorithm and usu-
ally independent per delivery hint.

• Forwarding Topology (FT): forwarding decisions following the selection rules, a subset
of Routing Topology (may also be the same), also delivery hint specific.

The two parts of routing can also be described as how to get RT from NT and how to
decide FT from RT. Take Spanning Tree Protocol as an example. Its Routing Topology is
one single tree, and Forwarding Topology is the same tree. For most IP routing protocols,
the RT is one tree per destination IP address, and FT is also the same as RT. In contrast,
one can imagine a more resilient routing design would create a rich connected RT, not a
single tree, but keep FT as a tree to avoid loops.

1Any multipath methods including ECMP are separately considered and will be discussed in more details
later

7

2.1.3 Routing’s Goals

Most of the time both the users and network operators only care about FT, which directly
impacts the performance of packet delivery. But since FT is a subset of RT, meaning the
decisions are limited by choices, a good RT is crucial to begin with. Therefore routing should
be evaluated by both the choices and decisions it will provide, with specific criteria listed as
follows.

• Correctness: packets should be successfully delivered following the decision on every
forwarding equipment.

• Performance: when packets traverse the network, the time and resources taken should
be small.

• Availability: when choices become invalid due to failures, routing should provide al-
ternate choices so packets can still be forwarded.

Corresponding to the three criteria, routing has three goals: connectivity, optimization
and resilience, respectively. Understanding these goals is fundamental to the design of RAD.
It will also become clear that the design choices made by RAD are a natural outcome of our
insights about how to achieve these goals. In the following sections, we will discuss each goal
in details and highlight the differences and contributions of RAD.

2.2 Connectivity

The goal of connectivity has two folds. First, if node A and B are connected in NT, they
should also be connected in RT. Second, packets sent from A can reach B, and vice versa2.
However, it is not easy to directly measure connectivity by above definition, because it is often
expensive to test for every source-destination pair in the network. To solve this problem, we
first present one key observation of connectivity: “loop-free and keep forwarding guarantee
connectivity”.

• Loop-free: No loops in FT. So any packet that follows the forwarding decision on each
router, hop by hop, will not follows a decision on the same router more than once. It
is possible that the packet visits a router more than once, but as long as the decision
is not the same as before, it is not considered a forwarding loop.

• Keep forwarding: Every router in RT has at least one choice to forward the packet, so
the packet will be sent to next hop router or delivered to destination, and will not be
dropped on router because of no available routes.

The observation is more precisely stated as the following theorem.

2Unless it is physically impossible due to uni-direction links or policy constraints

8

Theorem 1 For any network with finite size, packets will be delivered when both loop-free
and keep forwarding requirements are met.

The theorem shows that loop-free and keep forwarding are sufficient conditions for con-
nectivity, and it is easy to prove that by contradiction.3 In other words, if one routing scheme
has both conditions met, its correctness is guaranteed, even though the performance may be
suboptimal.

2.2.1 Separate Optimization

Separating optimization from connectivity is one significant yet logical change we make in
RAD. Conventional path-based routing does not distinguish the two goals, and actually
achieves connectivity through optimization. More specifically, the loop-free requirement is
implicitly enforced by requiring every router only uses shortest or minimum-cost path, which
is essentially the result of optimization. In other words, path-based routing can only achieve
the connectivity goal and guarantee correctness after optimization process is finished, i.e.
the shortest path is available to routers. If any router violates this and sends packets along
a non-shortest path, it may receive the packets again and create a forwarding loop.

Because both RT and FT are limited to shortest paths, there are several obvious short-
comings and limitations:

• Only some links are included, which limits routing choices and performance potential.

• All routers should agree on the shortest paths, which requires global computation and
synchronization.

• If a metric can not be represented on a per-link basis, such as the resilience of RT, it
can not be included for optimization.

• When link goes up and down, all routers need to be aware of that and re-compute RT
to avoid potential loops.

As we have shown earlier, optimal path is not necessary for connectivity. It just happens
to be the case for conventional routing because it combines two tasks into one. There are
many other means to achieve the loop-free goal. For example, MPLS and various multi-path
routing ideas solve this problem by introducing per-path labels or tags. Typically, the packet
will carry extra bits which can provide more information to make the forwarding decision.
Routers may also update those bits to reflect topology changes, so other routers can learn
that when they receive the packets. For more details, we compare different mechanisms and
discuss advantages and problems in the related work section.

3In almost all practical cases, loop-free and keep forwarding are also necessary conditions for connectiv-
ity. But one might argue if FT has transient loops, some packets may be successfully delivered. Detailed
discussion of such scenarios is not of our current interests, and is left open for future work.

9

2.2.2 Loop-free Topology

We decide in RAD that to achieve the connectivity goal, we will make loop-free explicit and
keep it across topology updates. In other words, loop-free becomes the first and top priority
task throughout the design. Note that we only require loop-free in FT, not RT, which leaves
more design space for sophisticated routing schemes. So a routing may allow loops in RT,
but carefully choses which links to be included in FT to make sure FT is loop-free. One
example would be that RT contains multiple pre-computed back-up links, and the selection
rule is to only use back-up link when primary one fails. More details about this scenario and
our decision of RAD are discussed in the resilience and improve RAD section. To simplify the
discussion, by default we discuss the design which also has a loop-free RT, unless otherwise
specified.

But for undirected graphs, a tree is already the best loop-free topology one can get.
How can RAD improve that? The answer is to use links with directions, so the topology is
essentially a Directed Acyclic Graph (DAG). The DAG is also delivery hint specific, and in
one DAG, each link is used in one direction.4 Using links in one direction per DAG does not
reduce the potential throughput, because the other direction can be used to carry traffic in
other DAGs. In fact, traditional IP routing has per-destination tree, and for packets to the
same destination, any link in the tree is only used in one direction (towards the root). It
would be counter-intuitive and cause loops if both directions are used to send same packets.
The situation is similar for RAD, except that RAD can use more links while keeping loop-free.

Note the correctness does not rely on any specific DAG structure, instead, there are
many different ways to generate the DAG, and the DAGs can be very different. In Section
2.5 RAD by Example, we will show a simple algorithm to create a DAG per destination that
utilizes all links of the network topology, and every router will have at least one choice for
forwarding (most routers have multiple choices).

2.3 Optimization

With connectivity, packets will eventually be delivered, but in practice, there are more
factors to consider. For example, users would want low and consistent in-network latency
among packets, in-order packet delivery and more available bandwidth, so their traffic can
achieve high and stable throughput. On the other hand, network operators would prefer
the packets take less network resources and leave their networks as soon as possible, avoid
local congestion or hot-spot, make sure Service Level Agreement (SLA) is not violated and
forwarding is compliant with policy, and many more economical concerns. Quite often both
network users and operators have similar and compatible preferences, so there is little to
none conflict. But there are also cases where network operators provide tiered services, and

4We will discuss advanced techniques about using links in both directions while keeping loop-free in the
Improve RAD section.

10

push lower priority traffic through longer path to guarantee the performance of high priority
traffic.

Given the nature of optimization, i.e. improving the performance of packet forwarding,
we believe that the following properties are desired:

• Continuous process: Optimization is not a one-time result, but an evolving process
with new inputs and outputs.

• Non-disruptive update: Packet forwarding should not be interrupted when adopting
better choices and decisions.

• Agile reaction: An optimum may become a bad choice when conditions change, so a
fast reaction will reduce the cost of suboptimal.

• Scalable scope: When a local optimization is good enough, there is no need to trigger
a global recomputation.

• Flexible metrics: Support customized metrics and cost functions.

2.3.1 Common Practices

As we discussed earlier, currently the path optimization is done by incorporating many
metrics into a quantitative value, the link weight, and the optimizing process is simply to
find the shortest or min-cost path. This method works because the metrics can include many
factors such as bandwidth, delay and load. The optimization of traffic distribution for QoS
purposes is done in a similar way. A cost function is associated with the utilization of every
link, and the goal is to minimize the total cost.

However, because of its tight integration with connectivity, conventional optimization has
difficulties to provide desired properties mentioned above. Updating new optimal choices
typically requires global action and forwarding is impacted until all routers have the same
agreement of topology. Thus network operators have to make a trade-off between running
network at a suboptimal state and the potential cost of adopting new optimization results,
leading to lower computing frequency and slower event reaction. There are other limitations
as well. For example, the overall resilience of routing topology does not fit into the optimiza-
tion model, because it is inherently a global metric, and can not be broken down to per-link
numbers.

And due to the unavoidable delay of information propagation, the calculated optimal
may already become suboptimal even before it is disseminated to routers, because the traffic
and other factors of the network already changed. Therefore a common assumption of the
approach is the changes are not significant within certain time frame. For ISP networks, it
works without unexpected traffic bursts. But for data center networks, where traffic varies
dramatically and quickly, this approach simply can not provide an efficient result fast enough.

11

2.3.2 Optimization in RAD

In RAD, optimization is separated from connectivity computation and runs in parallel with-
out interference. There are two components included, corresponding to our choice and
decision distinction. First is a global DAG optimizing process which runs periodically to
generate a better DAG, e.g. more link capacity is available and shortest paths are included
in the DAG. This process usually creates a new optimal result when network topology is
changed by operators, so the time scale is relatively slow. When new choices need to be
deployed on routers, packet forwarding is not affected as long as the update order follows
the router ordering in the new DAG. Details will be explained in Section 4.5.

Another optimization component is how to make the best decision from choices, which
happens locally on every router and on a much faster time scale. One intuitive optimization
is simply only using the shortest path, so a tree will be formed towards the destination. But
because the routing topology is a DAG, every router can freely re-distribute traffic across
outgoing links without worrying about forwarding loops. This enables instant reaction to
traffic bursts, and greatly reduces the chances of local congestion.

Changes of traffic are typically more volatile and unpredictable than those of topology,
therefore the second optimization takes effect when traffic changes, effectively keeping the
network running close to optimal. Combining both global and local optimization, RAD
successfully provides the desired properties of optimization and give network operators more
choices to run the network in an optimal state.

When optimal choices are no longer available due to failures or congestions, RAD also
makes it clear that temporary suboptimal packet forwarding is preferred. It means that RAD
will not stop forwarding and wait until a new optimal choice becomes available, instead,
RAD will forward the packets along suboptimal but available choices, and try not to drop
the packet. The reasoning behind this decision is simple. Since dropping a packet means an
infinite forwarding latency, we assume that compare to forwarding along suboptimal choices,
dropping a packet incurs more cost and penalty for both users and network operators. This
assumption holds in most practical scenarios, where the extra latency is comparable.5

One might argue that if the latency exceeds some threshold, the communication ends
may believe the packet is lost and the sender will resend the packet. The users will definitely
benefit from the duplicated packets, but more network resources will be utilized. We believe
that as long as the network capacity allows, network operators would avoid dropping packets
to fulfill the best-effort service. Besides, RAD can run separately by traffic classes. So the
high priority traffic will take all available network capacity for a guaranteed performance,
while low priority takes what is remaining.

5We will discuss how RAD can be easily extended to further reduce the latency in Chapter 5.

12

2.4 Resilience

Network is dynamic, and failure happens. Even though packet-switching networks are de-
signed to handle the dynamics and generally believed to recover well after failures, the
resilience of routing has great room for improvement, because the scale and complexity of
today’s networks have changed dramatically. Besides, as we mentioned in the introduction
section, the uptime and availability requirements are also higher than ever, and will only be
more stringent as networks become a critical infrastructure.

2.4.1 Timescales

In short, routing should react to failures as quickly as possible, and the interruption to
packet forwarding should be minimized. To better analyze the problem, we first discuss four
different timescales of routing actions. The timescales are mostly decided by the scope of the
behavior, and what resources it requires, e.g. ASIC forwarding chip or control CPU. Given
the nature of these scopes and resources, the timescales vary significantly, with several orders
of magnitude difference. Therefore, understanding the different timescales is the first step
to improve routing’s availability.

• Local hardware: if the network event can be handled locally within hardware of the
router or switch detecting the problem. Modern hardware implementations like ASIC
and FPGA can change or update states within microseconds or even lower.

• Local software: if the network event can be handled locally within the router or switch
detecting the problem, but the response requires software processing from the router
or switch. Depending on CPU capacity and computation complexity, the time needed
varies with environments and equipment settings. Based on discussions with vendors,
a common estimate is a couple of milliseconds. So it may already be 1000 times slower
than local hardware reaction.

• Peer response: if the router or switch detecting the problem must contact some peer
entity in order to evoke a response to the problem. We can think of this as a sum of
two local software delays and round trip time between the two routers. The time can
be on the order of 10 to 100 milliseconds. The number will be much smaller in data
center networks, where end to end latency is usually less than one millisecond.

• Global recomputation: if the distributed state must be recomputed when a problem is
detected. Global recomputations take longer as the network grows in size, but in terms
of order of magnitude we can think of this as being on the order of 10s of seconds (or
more).

We also need to add to these timescales the time it takes to detect a problem, which
can vary from low-level signal detection to high-level congestion detection. In some cases,

13

the time to detect a problem will be longer than all but the global recomputation time. In
others, it will be on the same order as a local hardware response. But we argue that no
matter which failure detection case applies, routing itself should never become a bottleneck,
and advances in technologies, like fiber optical, have potential to provide close to real time
failure detection. Therefore we focus on the reaction times of routing itself, assuming failure
has been detected in a timely manner.

The four timescales listed above provide a better design framework for routing resilience.
Following the clear guidance, a resilient routing design should prioritize different actions,
and avoid time consuming global recomputation as much as possible.

Unfortunately, most conventional routing schemes do not have the notion of dramatically
different timescales, and involve global recomputation frequently when reacting to network
dynamics. Such decision works fine in the early days, when the size of network is relatively
small, and the time difference between hardware and software processing is not that signif-
icant. But as networks grow in size and complexity, and new generations of hardware are
deployed, routing should take into account the changes, and evolve with them with better
reacting mechanisms.

2.4.2 Global Recomputation

As discussed in previous section, global recomputation is very time consuming. Since it
significantly impacts routing resilience, one would want to reduce the time it takes. However,
due to the inevitable latency of state propagation, aggressively reducing timers usually leads
to instable routing results, and the computation may have oscillation and never reach a final
consistent result.

Therefore to improve routing availability, the frequency of global recomputation, not the
duration of it, should be reduced first. In other words, the routing design should avoid
invoking this mechanism unless it becomes necessary, i.e. no other reaction method can
handle the situation with acceptable performance. But shortest-path routing generally does
not support this, because if current shortest path is no longer available, the algorithm will
find a new shortest path, which is essentially an optimal result that requires global synchro-
nization. Same analysis applies to any design that always requires optimal states to operate
on.

A common trade-off in various resilient routing proposals is to quickly adopt a subop-
timal (non-shortest) path and restore connectivity as soon as possible. This can improve
the availability because intuitively, finding an optimal choice is more time consuming and
resource expensive than simply finding a usable one. This trade-off is also widely accepted by
industry and appears in many proposed standards like IP Fast Reroute, MPLS backup path,
etc. As discussed in the connectivity section, because they are still path-based approach,
using non-shortest path requires explicit labeling or signaling to make sure all downstream
routers are aware of the change, and avoid forwarding loops. Schemes that use packet la-
beling generally store extra bits into packets, and rewrite or remove them when necessary.

14

Although they may provide good resilient results, the change to data plane implies high cost
for practical deployment.

Although forwarding a packet along a longer path introduces extra latency, it should be a
better choice than dropping the packet, which can be considered as infinite forwarding delay.
But if the extra delay is significant enough that the packet has been resent by the sender,
the benefit of not dropping it becomes negligible. Therefore to make sure the sub-optimal
choices are still good enough for forwarding, path stretch, the ratio between new path and
previous shortest path, is an important criteria to evaluate multi-path proposals.

However, an often neglected metric may have more impact in the overall routing availabil-
ity. Consider a multi-path algorithm that computes two forwarding choices on one router.
Obviously it can withstand any one of it fails. But if both of them fail, the algorithm has
to rerun the computation to generate another two choices. Due to the added complexity in
the algorithm, the computation may take five times more time than a normal shortest path
computation. So this particular multi-path proposal has two fewer recomputations than
shortest path approach, at the cost of much longer down time during recomputation. In
practice, its overall routing availability may be even worse. Therefore, simply pre-compute
multiple choices and reduce the frequency of recomputation only solves part of the problem,
the added complexity and potentially longer computation time should also be considered in
the design.

2.4.3 Local Repair

In RAD, we explore another option to improve resilience: local repair. The first step is
the same as multi-path ideas: computing multiple choices for forwarding. But when all
precomputed choices fail, instead of recomputing new choices, RAD will try to find available
choices locally, i.e. without global message exchanges and computation.

But is this possible?
When we review the connectivity requirement, we learned that loop-free and keep-

forwarding will guarantee packet delivery. Although loop can not be detected locally, if
we start from a loop-free topology, like a DAG, we can devise a mechanism to modify the
topology while keeping its acyclic property. And keep-forwarding basically requires every
router has a choice to forward, which is locally available to the router. When a router no
longer has any choice, the routing topology can be modified in a loop-free way to provide
new choices.

We call the scheme local repair, in that it fixes “stopped-working” topologies without the
requirement for global agreement. Following our timescales discussion, local repair shows
great potential in improving routing availability, because it avoids global recomputation and
can even be implemented in hardware. The comparison with shortest path routing and
multi-path proposals is listed below:

• Shortest path routing:

15

– Initial choices: only one, the shortest path.6

– Failure reaction: always recompute a new shortest path.

• Multi-path proposals:

– Initial choices: multiple, may include non-shortest paths.

– Failure reaction: recompute when no choice is available.

• RAD:

– Initial choices: multiple, may include non-shortest paths.

– Failure reaction: Pick next choice if there is any available. Local repair when no
choice is available.

The philosophy of local repair is surprisingly simple: try other neighbor nodes if all pre-
computed choices are not available. Thinking in a DAG way, if one node loses all outgoing
links, it will try to use its incoming links for forwarding. So the direction of the link is
reversed. Observe that if recomputation is triggered, the new computed choice must be one
of those previously incoming links, the local repair mechanism follows the intuition that one
of the remaining neighbor should be able to keep forwarding the packets.

The challenge is how to make sure the process keeps the loop-free property of routing
topology. We will discuss more details and provide proofs in Chapter 4.

2.5 RAD by An Example

In this section we describe how RAD works with a simple example. The description here
is not meant to be comprehensive and detailed, but instead captures the basic mechanisms
of RAD and demonstrate its effectiveness. We first introduce the example topology, then
explain the components of RAD and how they work together to handle failures and conges-
tions. We focus on basic mechanism and leave many design details and proofs for Chapter
4.

2.5.1 Simple Topology

We consider a network topology as shown in Figure 2.1a. There are total five nodes including
the destination and seven links. d is the forwarding destination, and nodes (routers) 1, 2
and 3 are directly connected to d, while node 4 is two hops away and directly connects to
nodes 2 and 3. All links between nodes are undirected, meaning they can carry traffic in
either direction. The link weight can be arbitrary, but for simplicity, we assume it is unit
weight. Therefore the distance can be measured by hop counts.

6ECMP is considered as a multi-path proposal.

16

d

2

3

1

4

(a) Network Topology (b) Tree (c) DAG

d

2

3

1

4

d

2

3

1

4

Figure 2.1: A tree and a DAG on a network graph. In the tree, the only path from 4 to d is
4-2-1. In the DAG, there are four paths: 4-2-d, 4-3-d, 4-3-1-d, and 4-3-2-d.

Figure 2.1b shows how one shortest path tree rooted at d can be constructed. 7 Because
only links along shortest path can be included in the topology, the number of utilized links
is always the number of nodes minus one, so it is four in this case. Only 57% percent of links
are used, and every non-destination node only has one forwarding choice.

But if we compute a DAG, as shown in Figure 2.1c, the situation is different. First,
all links, including those along non-shortest path, can be included in the routing topology,
which means 100% coverage of network links. Given the added links in routing topology,
many nodes have more choices to forward packet. For example, from node 4 to d, there is
only path 4-2-1 in the tree, while in the DAG, there are four of them: 4-2-d, 4-3-d, 4-3-1-d
and 4-3-2-d.

2.5.2 Computing DAG

The first task of RAD is to compute the DAG as its routing topology. We will present
formalized problem statement, general algorithm and proofs in Chapter 4. But here we
show a simplified algorithm that produces good enough result for our topology.

The algorithm start from destination node d, and iterates all its direct neighbor nodes,
1, 2 and 3 in our example. Apparently links between d and its neighbors should have the
direction towards d. Then it iterates over neighbors of d and assigns direction to links by
comparing the id of two ends, pointing to the smaller node. For example, the link between
3 and 1 points to 1. Then nodes that are two hops away, node 4, are considered. Since 4 has

7In this example, node 4 has two shortest paths 4-2-d and 4-3-d, and without ECMP it just picks one of
them: 4-2-d.

17

Figure 2.2: RAD failure handling mechanism. (a) When link 3→ d fails, node 3 can instantly
start using 3 → 1 or 3 → 2. (b) When link 1 → d fails, node 1 will reverse link 3 → 1 to
1→ 3.

two neighbors 2 and 3, and both of them are directly connected to d, the link goes from 4
to 2 or 3. After this computation, we get the DAG as shown in Figure 2.1c.

2.5.3 Handling Failures

When link fails, the first resilient mechanism of RAD is to switch to another choice. For
example, when link 3 → d fails, node 3 can instantly start using link 3 → 1 and path 3-
1-d for packet forwarding, as shown in Figure 2.2(a). Similarly, node 4 can tolerate either
link 4 → 2 or 4 → 3 failure, and pick another one immediately. The advantage of RAD is
that such decision changes can be completely local, without having to notify other nodes
the path has been changed. The reason is that the routing topology is loop-free (a DAG),
therefore choosing any subset of the topology will remain acyclic. And as long as there is
no forwarding loop and every node has a choice, the packet will be delivered. Recall that
local hardware reaction can be one million times faster than global recomputation, there is
no doubt that local repair can greatly improve routing resiliency.

But what if a failure that removes all choices? For example, in our example topology,
node 1 only has one choice 1→ d, because it is directly connected to d and has the smallest
id number. If link 1→ d fails, most multi-path proposals will require a new round of global
computation, but RAD has a different mechanism, local repair. Instead of recomputing a
new DAG from the changed network topology, RAD will reverse the link 3 → 1 to 1 → 3,

18

then node 1 has a usable choice, although may be not optimal, to forward packets, as shown
in Figure 2.2(b). The basic rule is when a node has no outgoing links, it will reverse all
incoming links to outgoing. In our simple example, the connectivity for node 1 is quickly
restored by reversing link 3 → 1 to 1 → 3. And node 3 still has link 3 → d and 3 → 2
to forward packets. Therefore the connectivity of routing is repaired by local action among
node 1 and 3, with no global message exchanges or route recomputation.

2.5.4 Handling Congestions

Traffic in the network may change dramatically. RAD adopts a responsive load distributing
method to deal with unexpected traffic bursts. For instance, if link 3→ d becomes congested,
node 3 can offload excessive traffic to link 3 → 2 and 3 → 1. Unlike conventional traffic
engineering approaches, RAD does not try to minimize a cost function on every router.
Instead, the load distributing rule is simply:

• Keep sending along a link if its utilization is below certain threshold

• Offload to next available link which has capacity

• Notify upstream nodes if all links are congested

We will show later that such simple and local load distributing method can provide close
to optimal traffic engineering results.

2.6 Summary

Current routing protocols typically use a path-oriented approach. That is, for each destina-
tion they compute a tree of paths spanning all the nodes and converging on the destination,
providing a path between each source and destination that can be realized with destination-
based routing tables. In the case of L2 technologies, these trees are often a single spanning
tree. It is the path-based nature of current routing that creates the need for global recompu-
tation, because every time a link fails or becomes overloaded the paths traversing that link
must be recomputed. Most of the techniques described above that improve reliability do so
by giving routers/switches8 (or edge devices) access to more than one path, but they do so
in a limited manner (in that they typically compute a small number of alternatives, often
using ad hoc techniques). Here, we propose a routing paradigm that makes multiple paths
an inherent part of the paradigm, which allows us to reason about it formally and implement
it cleanly.

8Our discussion applies to both L2 and L3, but for convenience in what follows we will refer only to
routers, not switches.

19

Simply put, we propose that the basic computational output of routing algorithms not
be a tree of paths but instead be a spanning directed acyclic graph (DAG). That is, for each
destination the routing algorithm computes a DAG that spans all nodes and provides each
source at least one path (and typically more) towards the destination. This approach of
Routing Along DAGs (RAD) intrinsically provides a set of paths, rather than a single path,
from each source to each destination. And switching between paths is a local decision.

At the end of the RAD routing computation, each router has one or more outgoing ports
for each destination. These routers can unilaterally choose which outgoing port to use, based
on local failure or load information, since there is no chance that these independent choices
will result in loops. Because these choices can be made locally by each router, RAD does
not require signaling bits in the packet header, or participation from the network edge, to
select paths. ECMP has this property as well, but is restricted to choosing among equal
cost paths. For example, unlike the DAG of Fig. 2.1(c), ECMP would not use links 3 → 1
and 3 → 2. This aspect of RAD can therefore be seen as a generalization of ECMP that,
as we shall see, has substantially better resilience and load distribution than ECMP in most
networks. In addition, if the DAG becomes disconnected due to failures, RAD can modify the
DAG structure using local link-reversing responses (which we describe more details later) to
restore connectivity (if possible; and detect disconnection if not); this feature of RAD is not
foreshadowed by ECMP. All of this is provided by an algorithm that is closer in complexity
and communication overhead to distance-vector than link-state or path-vector.

More conceptually, RAD separates the task of responding to failures and congestion,
which RAD does locally, from the task of responding to managed topology changes and route
optimization (i.e., the addition or deletion of links), which requires a DAG recomputation
to fully accommodate. This is appropriate, since these two categories of events, failures and
topology changes, occur on very different time scales. Thus, RAD does what needs to be
done rapidly (failure recovery and load balancing) on a purely local basis, and does what
needs to be done globally (computing the DAG) on much slower time scales. The slow rate
of global recomputations of the DAG, enabled by the use of local recovery, gives RAD much
lower control overhead than standard approaches.

Aside from intellectual contributions, RAD also has several features that are appealing
in practical deployment:

• No proprietary packet labeling or signaling. Therefore its implementation does not
require expensive changes to data plane. RAD also has greater deployment flexibility
because it does not depend on specific layer or packet header format.

• Handle bursty traffic locally and effectively. Currently networks usually run with low
link utilization, to reserve enough capacity absorbing bursty traffic. But with RAD,
network links can have a higher utilization, with much efficient use of resources, and
still be able to avoid link congestion.

• Modular components. Just like modern operating systems, the design of RAD is mod-

20

ular. It enables great flexibility and can adapt to many different usage scenarios with
ease.

21

Chapter 3

Related Work

Since our efforts improve routing in many fundamental aspects, we do not intend to
give a comprehensive overview of all the routing work that is related to what we describe
here. Instead, we briefly explain traditional routing methods, then review three threads
of work: current practice, recent non-DAG research, and DAG-based approaches. These
three categories cover routing improvements over time, research efforts that share similar
motivations with us, and proposals that also leverage DAG to solve problems.

3.1 Traditional routing:

How does the traditional routing paradigm deal with failed and overloaded links? Every
time a link fails, all paths traversing this link must be recomputed (via a global route recom-
putation), leading to a temporary service outage and a burst of control traffic. Moreover, in
cases such as spanning tree protocols the recomputation breaks paths that were previously
working.

Early attempts to distribute load via load-dependent routing led to unfortunate oscil-
lations [39], so traditional routing algorithms are not load-dependent. Instead, load distri-
bution is traditionally done by adjusting link weights and then doing a global route recom-
putation (often the link weights are adjusted with the goal of minimizing the maximal link
utilization) [19].

Thus, for both failures and overloaded links, traditional routing methods lead to global
route recomputations. Global recomputation scales (either in terms of overhead or latency)
with the size of the system (in some cases nonlinearly). Thus, if we are to help routing meet
the dual demands of larger networks and shorter outages, we must find a way for routing to
react to failures and congestion without global route recomputation.1

1Designs like the Rapid Spanning Tree Protocol (RSTP) [2] provide much faster convergence than stan-
dard Spanning Tree Protocols, but the resulting outages are still unacceptable for large networks with
stringent performance requirements.

22

3.2 Current Practices

Both the commercial world and the academic community have been actively investigating
new routing paradigms. There have been many routing enhancements that deal with failure-
recovery and load-distribution, and have been applied to production networks. Various
rerouting methods (such as MPLS Fast Reroute) have been available in commercial products
for years; these provide fast failover and improve the reliability of a given path.

• MPLS: MPLS Fast Reroute [56] avoids recomputation by providing a rapid local re-
sponse to failures wherever there is an alternate route set up at the router that detects
the failure (and a non-local response when the backup path is remote from the failure
site). These backup paths provide resilience to single failures, but cannot guarantee
connectivity with multiple failures. They are also somewhat cumbersome to manage,
in that all but the simplest backup functionality (backing up a single link or node)
requires manual configuration.

MPLS Fast Reroute is currently the most widely deployed method for traffic protection
in the WAN. It provides fast failover (sub-50ms failure recovery), but not load balancing
or error recovery (that is, if the backup path also fails, Fast Reroute cannot by itself
restore connectivity).

MPLS also allows operators to set up multiple paths and then split the load over those
paths. This gives only a limited ability to direct traffic (since it must be over one of
the preconfigured paths).

• ECMP: Equal-Cost Multi-Path (ECMP) allows a switch or router to split traffic among
multiple outgoing shortest paths.2 This supports both failure recovery and load-
distribution, but the alternate paths used must be shortest paths (and thus must be
exactly the same length), which is limiting in irregular topologies (but fine in standard
CLOS topologies). By adjusting link weights one can effectively use ECMP in more
general topologies, but this requires global route recomputation.

ECMP is a multipath routing scheme that bears some similarity to RAD, in that it
provides quick failover and load distribution. However, it is limited to cases where
paths have exactly the same cost, and even then can only split traffic evenly over these
paths; this works well for very symmetric datacenter topologies but is impractical for
WANs and other irregular topologies. Moreover, ECMP itself does not provide error
recovery, it must be paired with a standard routing mechanism.

• Multiple Spanning Trees: This approach computes multiple spanning trees and gives
switches a choice of which tree to use. This can be reasonably effective against single
link failures, but current implementations (which use only a few trees) do not guarantee
connectivity (when the graph remains connected).

2We consider Link Aggregation (LA) to be just a special case of ECMP.

23

Thus, both ECMP and Fast Reroute are similar to portions of the RAD approach, but
neither represents a comprehensive algorithm like RAD. First, it requires careful planning
and deployment, which involves strategically selecting routers that will act as Points of
Local Repair (PLR). This is obviously dependent on the given topology, and thus there
can be no universally correct way to select PLRs, which makes deployment perilous as it
leaves the intricate task of optimization up to the network operator. Then, FRR’s “one-
to-one backup” scheme requires impractically much state on the PLRs, as they need to
store a backup information for each Label Switched Path (LSP). On the other hand, the
alternative “facility backup” sacrifices load distribution flexibility for state, as it reroutes all
the protected traffic the same way. Moreover, FRR is only a local protection mechanism,
and a separate mechanism is required to compute primary paths.

3.3 Recent non-DAG research

In the last decade the academic community has produced myriad multipath routing methods
(see [50, 59, 49, 44, 41, 14] for a sampling) to improve routing. These multipath mechanisms
make it easier to spread load, and they can be used by the endpoints for failure recovery.

• Multipath routing: This approach precomputes several paths and allows sources (or
edge routers/switches) to change paths; in terms of precomputing paths, it is a gener-
alization of MPLS Fast Reroute. Several multipath computation algorithms have been
proposed (in contrast to the manual configuration approach often used for MPLS), but
most do not guarantee connectivity under all failure scenarios that leave the graph
connected [50, 73, 74].

• Packet marking: There have been some schemes (such as [47]) that, by altering the
forwarding behavior of switches and putting marks in the packet, can guarantee con-
nectivity in the face of arbitrary failures (as long as the graph remains connected).
However, these require a major change to IP, and do not address load distribution.

• Better load distribution: there are some recent proposals, such as TeXCP, that greatly
improve load distribution, but do not give rapid response (shorter than round-trip
time) to failures [38, 34].

The work in [66] proposes a technique for joint failure recovery and traffic engineering, by
splitting traffic over multiple precomputed paths between each pair of edge routers. However,
the solution relies on path-level failure detection (slower than the link-level mechanisms used
in RAD) and the routers must store state for each path (rather than the more compact DAG
representation in RAD). SPAIN [51] supports multipath routing in data centers through
multiple precomputed spanning trees, with end hosts splitting traffic over the multiple paths.
However, the state in the switches grows linearly with the number of paths, with one Virtual

24

LAN (VLAN) per spanning tree. In addition, SPAIN relies on the end hosts to balance load
and detect failures in an end-to-end fashion.

3.4 Other DAG-based research

The most relevant work here is that of Gafni and Bertsekas, who were first to prove the
failure-recovery properties of the node-reversal algorithms. Similar reversal techniques were
explored in LMR [15] and TORA [57]. These papers focused on the error-recovery aspects of
the approach, but did not study load-distribution nor examine the failure-resilience properties
in any depth.

More recently there has been a mini-surge of DAG-based research. Protection Routing
[45] optimizes “protectability” (fraction of nodes that will not be disconnected by any single
link failure) by carefully constructing an appropriate DAG (with some nondirectional links
to be used only for backup paths). The work also explores the load distribution properties
of routing along the DAG. O2 [61] was an earlier work that chose a DAG that optimized
the probability of finding a working path between any source-destination pair at any given
time. Several related pieces of work have somewhat different optimality goals: DIV-R [60]
attempted to equalize the number of output ports on all nodes, MRC [44] and MARA [55]
optimized the number of paths provided for all source-destination pairs. All these proposals
shared the same general goal of maximizing robustness while guaranteeing loop-freeness. In
most cases, the optimization boils down to a careful ordering of the nodes to produce an
appropriate DAG. Some of this research also looked at load distribution.

Our approach differs in that we don’t optimize the DAG itself but instead construct a
DAG that performs adequately well under normal conditions and rely on the rapid reversal
process to restore connectivity when needed. That is, we prefer to keep the DAG construction
algorithm simple and rely on our local failure recovery method as needed. In addition, we
devote more focus to the load distribution properties, comparing against the optimal load
balancing scheme in a variety of conditions and extending it to multiple classes of service.

3.5 Summary

There is no doubt that these innovations have greatly improved routing. In fact, one might
say that, put together, they have made the reliability of current networks acceptable for
all but the most stringent requirements. However, there are three problems with accepting
these developments as the “final word” in routing:

First, most of these routing improvements have been proposed for a particular context
(i.e.,multiple spanning trees for L2, MPLS for WANs, etc.), whereas the twin challenges
of failure recovery and load distribution hold across all of these contexts. It would be far
better to have a unified framework for dealing with these challenges rather than a collection

25

of narrowly targeted solutions.3

Second, these techniques typically provide a limited degree of failure resilience (i.e.,they
can protect against most single failures, but not multiple failures) which might be sufficient
today, but would not scale to more stringent requirements. There isn’t a clear “upgrade
path” for making these techniques more general (i.e.,it isn’t clear how to scalably improve
Fast Reroute to provide strict connectivity guarantees).

Third, the reason why we don’t know how to “upgrade” most of these techniques is that
we don’t have an intellectual framework for attacking these problems in their full generality.
Backup paths are an extremely useful technique, but they don’t provide a different way of
thinking about routing that leads to more general solutions.

3However, proposals like TRILL [4] suggest a trend where the techniques at L2 and L3 are becoming
more similar.

26

Chapter 4

RAD Design

In this chapter we describe the details of RAD design. More specifically, RAD has the
following components:

• Build initial DAG: compute a DAG for one destination and make sure every router
other than the destination has at least one forwarding choice. A preferred property is
to include all shortest paths.

• Repair DAG upon failures: when DAG can not provide connectivity for packet forward-
ing due to failures, i.e. routing topology is disconnected, locally modify the topology
to restore connectivity.

• Optimize DAG: continuous and slower timescale optimization of the DAG topology, to
include new shortest paths, increase overall capacity etc.

• Distribute load: spread traffic across multiple choices to avoid congested link.

We start from the model for network and define terms for RAD. Then for each component,
we first introduce the intuition and a skeleton of design, then we fill in more details and theory
proofs to complete the picture. Various cases are also discussed to ensure the design is valid
and robust. Since the DAG is independent per every destination, we focus on one destination
in the following text, unless specified otherwise.

4.1 Network Model

Consider a network with nodes r ∈ R (either routers or switches, but in what follows we
will use the term router), connected by symmetric links (although our approach can be
generalized to asymmetric links), which provide routing for some set of destinations. The

27

routing tables for each destination v are computed independently, so in what follows we focus
on a particular destination v.1 We denote the neighbors of node r by N(r).

Network topology is modeled by undirected graph G, while routing topology is a DAG
D. Because v is the only node in D that has no outgoing links, we name such D rooted at
v, or v oriented. In RAD, the DAG always contains all functioning links, so routing merely
consists of choosing the direction of each link. Each node has an identifier i that is invariant,
and a routing metric d that is adjusted by the routing algorithm. The direction of a link
connecting two nodes is determined by the relative values of the routing metrics: links point
from the node with a higher d towards the node with the lower d, and if the d’s are the
same then the tie is broken by the identifier. In short, every node associates with a value
d.i value, and comparing the d.i of a link’s two endpoints determines its direction. The fact
that these comparisons are transitive guarantees the directed graph is acyclic.

A node r has a set of outgoing links (or ports) Or and a set of incoming links (or ports)
Ir, with every one of r’s links/ports in one of these two sets. When the value of d is changed,
then the membership of these set would be altered if some of the links are “reversed”.

4.2 Build DAG

The problem statement is listed below:

• Given undirected graph G and one of its nodes v

• Find a direction assign for every link in G

• So that the resulting graph is a DAG, and v is the only node that has no outgoing
links

4.2.1 General Algorithm

Define a strict order < on nodes, so that node v has the lowest order, while every other node
has at least one neighbor with a lower order than itself. In graph terms below:

• For any node d 6= v, v < d

• For any node d 6= v, min(N(d)) < d

1Destinations could be an individual host (as in L2) or a prefix; in ISP networks where IP prefixes are
disseminated using a different protocol — such as iBGP — and the IGP is only used to compute routes
between the various routers, the destination can be a destination IP prefix or a set of prefixes reachable
from one edge router. RAD could even use an approach similar to TRILL [4] and LISP [18] in which the
core routing design provides switch-to-switch delivery, and an auxiliary mapping function determines which
switch a host is attached to.

28

For link (i, j), assign direction following node ordering, i.e. link points from higher order
node to lower order one.

• If i < j, link points to i, j → i

• If j < i, link points to j, i→ j

Now we explain why above algorithm produces a DAG rooted at v. First, all neighbors
of v will have the link points toward it. So v only has incoming links. Second, for any other
node, because at least one neighbor has a smaller order than itself, there is at least one
outgoing link towards that neighbor.

4.3 Three Rules

A simplified version of our algorithm, call it SRAD, is defined by three rules (the first two
of which are simplified versions of the Gafni-Bertsekas algorithm [21]):

• Connectivity (Node Reversal): if a link fails, leaving a node without any outgoing
ports, the node then immediately resets its metric as follows:

dnewr = 1 +MAXs∈N(r)[ds]

Note that this causes all of its links (which must be incoming for node reversal to be
invoked) to reverse to become outgoing.

• Optimization (Healing): at periodic intervals, a node will adjust its label as follows:

dnewr = 1 +MINs∈N(r)[ds]

This brings the routing label into harmony with those of its neighbors. After sufficient
iterations, the metrics will reflect the shortest path distances in the network. Think of
this as a slow-motion distance-vector routing algorithm, with lazy updating of routes.2

• Load distribution (Local Congestion Avoidance): if all of the outgoing links are con-
gested, the node sends a congestion message across its incoming links. The upstream
nodes then attempt to redirect some of their traffic to their other outgoing links,
thereby lightening the load on the congested node. This definition applies to traffic
across all destinations (i.e.,the load distribution algorithm does not just consider traffic
to a particular destination, it considers all traffic flowing out on each link).

We now explain how these three simple rules define a routing algorithm that provides
failure resilience, failure recovery, and load distribution.

2One could generalize this step to arbitrary link metrics, but for convenience here and in the rest of the
paper we focus on fewest-hop-count paths.

29

Failure resilience SRAD constructs a DAG which uses every link in the graph, each only
used in one direction. This DAG contains all shortest paths; that is, for a particular node,
the DAG contains all shortest paths from that node to the destination. It also contains many
nonshortest paths.

The fact that the DAG is acyclic means that each node can independently choose which
of its outgoing links to use for forwarding a packet; any set of these independent choices will
reliably deliver the packet to the destination. Thus, for any node with multiple outgoing
ports for a particular destination, it can withstand a failure to any single one of them by
merely using the other outgoing links. Later we show, for various network topologies, how
many nodes have greater than one outgoing link.

Failure recovery Whenever a failure removes the last outgoing link from a node, the node
reversal procedure will, when iteratively applied, restore connectivity (unless that portion
of the graph has been disconnected from the destination). By iteratively applied, we mean
that when one node does a node reversal (NR), it may cause another node to do so, and so
on. The result is the following theorem taken from [21]. (We sketch the proof of this result
in Section 4.4, and direct the reader to [21] for the complete proof):

Theorem 2 Given an arbitrary set of failures, and an arbitrary set of initial metric values
dr, the node reversal process in the component of the network still connected to the destination
will terminate in a finite number of iterations and all nodes in that component will have paths
to the destination.

This shows that no matter what the set of failures, or the initial conditions of the metric
values, the node reversal process will reconnect the network. This is why RAD does not
need to be based on a more traditional global route computation algorithm; instead, the
node reversal process is sufficient to establish connectivity. As we shall see in Section 4.7,
this allows RAD to recover many failures locally, while still guaranteeing connectivity.

More generally, connectivity will be re-established in a minimal number of steps. That
is, among the many other paths being set up by the node reversal process, some of which
are not shortest paths, the shortest path to connectivity for the nodes reversing themselves
is created by a series of node reversals.

Load distribution While the load distribution algorithm is defined for all traffic, irre-
spective of destination, we can only theoretically analyze it when all traffic is destined for a
particular destination. For the case where all traffic is destined for the same destination v,
we define a local congestion-avoiding algorithm as one in which each router, upon detecting
an overloaded outgoing link, diverts excess traffic to other uncongested outgoing links, if
such uncongested links exist. If all outgoing links are congested, the node sends a congestion
message upstream through all of its incoming links, telling these nodes to redirect some of

30

their traffic elsewhere. We can show that merely avoiding congestion locally leads to optimal
throughput (see Section 4.6 for the proof):

Theorem 3 In our simple model, any local congestion-avoiding algorithm will maximize
throughput.

4.4 Repair DAG

Here we improve the SRAD algorithm in a few small ways to enhance its behavior. First,
we note that (as observed in [21]) the naive node reversal algorithm can cause repeated link
reversals: if node r reverses, and this causes node s to reverse, then the link between r and
s will be reversed twice in a short time. This is because in SRAD, a node always try all its
neighbors to re-establish connectivity, including nodes lost their own connectivity and did
the reversal. In order to suppress these spurious link reversals, we introduce ”generation” to
give a global maximum when a node starts reversal. The amended link reversal algorithm
is as follows. For each node r, we assign both a metric dr and a generation gr. So the
value associates with every node is defined as g.d.i, where g means the topology generation
identifier, d and i are distance and node id respectively. The directions of links are determined
by a comparison of g.d.i, and the adjustment algorithm is:

• Node Reversal: Whenever a node is left without any outgoing ports, the node then
immediately resets its metric as follows:

gnewr = 1 +MINs∈N(r)[gs]

dnewr =


MINs∈N(r), gs=gnew

r
[ds]− 1

ifthereiss ∈ N(r) s.t. gs = gnewr

D, otherwise

where D should be a small multiple of the longest path in the network.

• Healing: at periodic intervals, a node that has a neighbor with generation 0, will adjust
its label as follows:

gnewr = 0

dnewr = 1 +MINs∈N(r), gs=0 [ds]

Theorem 2 still holds, so this slight modfication changes nothing essential about the algo-
rithm but reduces the number of link reversals. The node reversal step is very similar to
”partial reversal” of [21] except that we set the metric to D. This value does not affect
the behavior of node reversals (as all metrics in a new generation are computed relative to
the first metric in that generation), however larger values result in a faster healing process.

31

Intuitively, this is analogous to the behavior of distance vector - it takes more iterations if
several neighboring nodes have too small a metric than if they have too high a metric. The
intuition behind the healing step is that we bring all generations back to zero and follow the
basic healing process within generation zero. Note that because a destination’s generation
is always zero, there will always be a node that can heal.

Second, if the network becomes disconnected, the RAD algorithm will continue node
reversals indefinitely, trying to re-establish connectivity. The TORA design [57] proposes
a complicated disconnection detection algorithm (whose proof of correctness has not been
published), but here we opt for the much simpler approach of placing a TTL on link reversals.
The node initiating the reversal (i.e.,a node that is reversing because of a failure, not because
a neighboring node reversed its links) creates a unique ID for the reversal, and this ID is
carried along as other nodes have to reverse because of this original reversal. Every time this
reversal is passed on, the TTL counter is incremented. By choosing a TTL that is several
multiples of the diameter of the network, the node reversal process will be terminated only
after any possible connectivity has been found.

Third, if a node only has one physical link, then when that link fails the node is obviously
disconnected. To prevent RAD from trying to establish connectivity in vain, nodes that are
singly connected (in the underlying topology) signal this to their neighbor, so that when
that link goes down no node reversal process is initiated.

Lastly, in the definition of the algorithm we implicitly assumed that reversing a link was
an atomic action. In reality, it will take some time for a router to change its forwarding
tables; this could cause the case where two nodes disagree on the direction of a link. To
prevent this, whenever a node signals a link reversal to its neighboring node, it does so
through the following handshake procedure: node r informs node s that the link between
them should be reversed (by sending it its updated g.d.i value) but does not forward packets
to s yet (instead, packets are dropped until at least one of the link reversals is completed);
node s removes the link to r as an outgoing link for that destination, and then confirms the
link reversal to r; r then considers the link to s to be an outgoing link to the destination
and can send packets to it.

All of these changes are straightforward, and do not change the basic nature of the
algorithm but remove some practical problems.

4.4.1 Proof of Ideal Connectivity

Below we prove that given an arbitrary set of failures, the link reversal process in the com-
ponent of the network still connected to the destination will terminate in a finite number of
iterations and all nodes in that component will have paths to the destination.

Consider G = (V,
−→
E) as the DAG rooted in a destination dst. Remove a set of edges

(due to link failures), and denote the resulting graph G′ = (V,
−→
E ′). For each node v, let f(v)

be the hopcount from v to dst in the undirected graph G′. If v is not in the same component

32

with dst, f(v) is undefined.
We now show, using an inductive argument, that each node v that is in the same com-

ponent with dst in G′, will be connected to the destination following a finite number of
iterations.
Induction base case: Neighbors of dst in G′ = (V,

−→
E ′) have f(v) = 1, and they all have

valid paths to dst. So, neighbors of dst in G′ are trivially connected to dst after a finite
number of link reversals.
Induction step: Observe that if any node with f(v) = i has valid paths to dst in G′, then
any node with f(v) = i+ 1 needs at most one link reversal to connect to d.

So, by induction, all nodes in the same component with dst connect to d after a finite
number of link reversals.

Then we prove the second part, that is, if a node starts link reversal due to adjacent link
failure, denoted by a, and it belongs to a different component, a detects the disconnection
when all its links are reversed again.

It is equivalent to prove a will have all its links reversed again if and only if it belongs to
a different component.

First, if a belongs to a different component, all other nodes in the component will not
stop link reversal process because none of them has valid paths to dst. So all outgoing links
of a after its link reversal will be reversed again by the other end.

If a is in the same component as dst, there exists a path from a to dst, and every link
along the path will be reversed at most once. So a has at least one link remains outgoing.

4.5 Maintain DAG

Notice that the Healing step in SRAD, which finds shortest paths, is not used for any of
these properties. That is, finding shortest paths is not a necessary component of the RAD
algorithm, but merely a useful but optional optimization. This reflects the fact that RAD’s
separation of concerns which is very different from traditional routing algorithms, for which
finding shortest paths is the first, not the last, consideration.

Why is the Healing step included? After a series of node reversals, the DAG no longer
contains all shortest paths. Every node that is topologically connected to the destination is
also connected via the DAG, but some of the shortest paths may not be in the DAG. The
Healing step helps restore these shortest paths to the DAG by iteratively bringing the routing
metric into alignment with the true topological distances. One should think of Healing as
being run in the background, moving the DAG back towards one which contains all shortest
paths.

Notice that SRAD uses one algorithm to quickly establish connectivity (the node reversal
step), and another to optimize the resulting paths (the healing step). The node reversal
algorithm is guaranteed to avoid loops: more specifically, at no time during the running
of SRAD are the forwarding tables such that there is a loop. This is because at all times

33

the direction of the links is determined by a global ordering of the nodes, and any global
ordering will prevent cycles. The job of the node reversal algorithm is to find an ordering
that provides connectivity. The job of healing is to adjust this ordering so that it includes all
shortest paths (and it does so by driving the labels dr to reflect the shortest path distances).
Thus, the hierarchy of concerns in RAD is:

• Loop avoidance: built in to the definition of link directions, never violated.

• Connectivity: achieved by the node reversal algorithm, which is run whenever a node
gets disconnected and terminates only when connectivity is achieved.

• Shortest paths: achieved by repeated applications of the Healing process.

In contrast, the classical distance vector routing model reverses this hierarchy. The first
job of the routing algorithm is to find shortest paths, and only when these paths are shortest
does the algorithm guarantee that connectivity is achieved and no loops are present. Thus,
cycles may be created during the iteration of the algorithm before convergence has been
reached. Much of the work that has gone into producing loop-free distance-vector algorithms
implicitly involve a DAG, but in the generic distance-vector algorithms loops can be created.
Moreover, the fact that connectivity is not guaranteed until these optimal paths have been
computed (i.e.,the algorithm has fully converged) means that restoring connectivity may
take a while.

In SRAD, the node reversal process can more quickly establish connectivity without
having to worry about cycles, and the healing process can come along later to improve the
DAG. We believe that this separation of concerns is an important one, and is similar in spirit
to that advocated in consensus routing [37].

4.6 Distributing load

In terms of congestion, a node considers all traffic (not just traffic to a specific destination)
and the actions below are not specific to individual destinations. As in SRAD, the basic
load distribution scheme is twofold:

• When one outgoing link is congested, the node attempts to spread the traffic to un-
congested output links (the congestion applied to all flows passing through that link,
and the node can decide which traffic to move).

• When all outgoing links are congested, the node sends a congestion message to one or
more of its neighbors. These neighbors treat this message as if that link were congested,
and try to spread some of their load to other uncongested links.

34

In our implementation of RAD, these congestion signals are triggered when the utilization
is above some threshold and contain an explicit request for the receiving router to reduce
traffic by a certain percentage.

Note that this load distribution approach does not attempt to minimize maximum utiliza-
tion (which is what we call load balancing), it merely attempts to avoid congestion (which is
what we call load distribution). Each approach has its advantages; load balancing minimizes
the maximal load on links, while load distribution allows the network to use the shortest
paths until they become congested, and only takes nonshortest paths as needed.

When we discuss the performace of our load distribution scheme, we compare against an
optimal load balancer which maximizes a particular utility function we use to measure the
“goodness” of the traffic distribution. The RAD load distribution approach is not tuned to
optimize this, or any other, utility function; it merely avoids overloaded links. Thus, one
might not expect the RAD load distribution method to work particularly well at this opti-
mization task. However, we find that RAD performs surprisingly well despite its ignorance.

4.6.1 Proof of Optimal Load Distribution

We consider a simplified network model described by the following definitions. The network
is a DAG G = (V,

−→
E) rooted in a destination d. There are n source nodes s1, . . . , sn, and

each has a demand demi ∈ R+ (amount of traffic it wishes to send). Each edge −→e ∈ E has
capacity ce ∈ R+.

Definition 1 (flow patterns) A flow pattern is a function f :
−→
E × [n]→ R+, such that:

• Edge capacities are not exceeded:
∀e ∈ −→E , Σi∈[n]f(e, i) ≤ ce.

• Demands are not exceeded:
∀si, Σe|e=(si,v)f(e, i) ≤ demi.

• Incoming traffic equals outgoing traffic: ∀v 6= d ∈ V , ∀si 6= v, Σe|e=(u,v)f(e, i) =
Σe|e=(v,u)f(e, i).

Definition 2 (link utilization) Let f be a flow pattern. For every edge e ∈ −→E , e’s uti-
lization in f , f(e), is defined as f(e) = Σi∈[n]f(e, i).

Definition 3 (constrained edges, paths) We say that an edge e ∈ −→E is constrained in
a flow pattern f if f(e) = ce (i.e., the edge is fully utilized). We say that a path P in G is
constrained in a flow pattern f if one of the edges on P is constrained in f .

Definition 4 (throughputs, satisfaction) We define si’s throughput in flow pattern f ,
αi(f), to be
Σe|e=(si,v)f(e, i). If αi(f) < demi we say that si is not satisfied in f .

35

We now define two natural local properties of flow patterns: local optimality and congestion-
avoidance. Intuitively, these two properties correspond to natural requirements from any flow
allocation (load balancing) algorithm: (1) that, in the outcome of the algorithm, no source
node be able to get more throughput simply by transmitting at a higher rate (sending more
flow), and (2) that if a source node encounters congestion along its path, and has an alter-
native, uncongested, path, it make use of it.

Definition 5 (locally-optimal flows) Flow pattern f is locally-optimal if, for every source
node si that is not satisfied in f , there is no path P from si to d that is not constrained in f .

Definition 6 (congestion-avoiding flows) Flow pattern f is congestion-avoiding if, for
every dource node si, there are no two paths P and Q from si to d such that P is constrained
in f , and Q is not.

Informally, global optimality of a flow pattern means that the sum of sources’ throughputs
is maximized.

Definition 7 (globally optimal flow patterns) Flow pattern f is globally optimal if
there is no flow pattern f ′ such that Σi∈[n]αi(f

′) > Σi∈[n]αi(f).

We can now state and prove the result.

Theorem 4 If a flow pattern is locally-optimal and congestion-avoiding then it is globally
optimal.

Proof 1 Let f be a flow pattern that is locally-optimal and congestion-avoiding. By con-
tradiction, we assume that f is not globally optimal. We now reduce our problem to a
single-source-single-destination max-flow problem as follows:

1. Network. Construct a network G′ = (V ′,
−→
E
′
), where V ′ = V ∪ {s}, and

−→
E
′

= V ′2

(i.e., G′ is a complete graph).

2. Edge capacities. Each edge e ∈ −→E has a capacity of c′e = ce in G′. For every i ∈ [n],
the edge e = (s, si) has capacity c′e = demi. All other edges have capacity c′e = 0.

3. Flow. We define the flow f ′ : E → R+ from s to d as follows: For every i ∈ [n],
f(s, si) = αi(f), and f(si, s) = −αi(f). For every u such that u 6= si for all i’s,
f ′(s, u) = f ′(u, s) = 0. For every other edge e = (u, v) ∈ V 2, f ′(u, v) = f(u, v) −
f(v, u), where f(e) is defined to be 0 if e /∈ −→E .

Observation 4.6.1 By our definition of flow pattern (Def. 1), and the construction of f ′,
it holds that f ′ has the following required properties of flows:

36

• Capacity constraints. f ′(e) ≤ c′e for every e ∈ −→E
′
.

• Skew symmetry. ∀(u, v) ∈ −→E
′
, f ′(u, v) = −f ′(v, u).

• Flow conservation. ∀u 6= s, d ∈ V ,
Σv 6=u∈V ′f ′(u, v) = 0.

Observation 4.6.2 f ′ is a maximum flow in G′ iff f is globally optimal in G.

Hence, our assumption that f is not globally optimal implies that f ′ is not a maximum
flow in G′.

The residual network and max-flow min-cut. We now consider the residual network
for f ′, denoted by R(f ′), obtained from G′ by setting the capacity of each edge e ∈ −→E

′
to be

its residual capacity c′e − f ′(e). By the max-flow min-cut theorem, f ′ is a maximum flow in
G′ iff there is no augmenting path in R(f ′), that is, a no path from s to d in R(f ′) such that
every edge on that path has positive capacity in R(f ′). Therefore, the fact that f ′ is not a
maximum flow implies the existence of an augmenting path P must exist in R(f ′).

Let P be the path s = qo, q1, . . . , qk = d.

Lemma 4.6.3 For every 1 ≤ j ≤ k − 1, there is a path from qj to d in G that is uncon-
strained by f .

Proof 2 Consider the edge e = (qk−1, qk). Observe that because qk = d, and the construction
of f ′, it must be that e has positive capacity in R(f ′) because f(e) < ce. Hence, there is an
unconstrained path in G leading from qk−1 to d (specifically, the direct path (qk−1, qk)).

Now, consider the edge e = (qk−2, qk−1). By definition of P , this edge, too, has positive
capacity in R(f ′). Observe that, by the construction of f ′, this can only happen in one of
two cases: (1) f(e) < c(e), and (2) f(qk−1, qk−2) > 0. In case (1), because qk−2 has an
unconstrained edge to qk−1 in G, and qk−1 has an unconstrained path to d in G, we have that
qk−2 also has an unconstrained path to d in G. In case (2), since qk−1 has an unconstrained
path to d in G, and is sending traffic through qk−1 in f , the fact that f is congestion-avoiding
implies that qk−1 must also have an unconstrained path to d in G. The lemma now follows
from applying the same argument to qk−3, qk−4, etc.

To conclude the proof, consider the edge (qo, q1). Because this edge in on P it must have
positive capacity in R(f ′). Observe that, because q0 = s, and the construction of f ′, this can
only happen if q1 is some source node si that is not satisfied in f . However, by the above
lemma, q1 has an unconstrained path to d in G — a contradiction to the local optimality of
f .

37

4.6.2 Stability

In the traffic engineering literature, stability is usually defined as the ability to reach a
steady state, i.e. the utilization of every link does not change, under constant network traffic.
Because of its practical impact on network operation, stability is a major concern of many
load distributing algorithms. From the literature, one can easily discover that approaches
that adopt global optimization seldom have stability issue, while adaptive schemes usually
have more difficulties to avoid oscillation. However, the root cause is not whether a method is
local or adaptive, but quite often, they try to do local optimization. When local optimizations
generate conflicting results, the decisions affect each other asynchronously, hence the unstable
state. As a comparison, ECMP always spreads load evenly across multiple choices, and does
not suffer from the oscillation problem.

The load distributing method of RAD follows a similar principle: avoid local optimization.
Instead of minimizing link utilization or reduce some sophisticated penalty function, RAD
merely avoids congestion, i.e. offloads excessive traffic to another choice. The utilization of
previously congested link also stays close to the threshold that triggers offloading. 3 Since
the mechanism does not actively reduce load on links, the load distributing results are similar
to ECMP with weights on links, i.e. unequal but deterministic load among links.

4.7 Evaluation

We now describe our experiment results, for which we used 6 ISP topologies and 3 datacenter
topologies as shown in Table 4.1.

For datacenter topologies, we picked the classical 3-tier hierarchical topology recom-
mended by Cisco Inc. ([11]) as well as two different topologies from recent proposals: Fat-
Tree ([6]) and VL2 ([28]). While all three datacenter topologies are highly symmetric, there
is little similarity beyond that. Cisco topology has a small core of high-end routers. VL2
topology has a much larger and denser core. While FatTree topology separates aggregation
switches into pods.

We analyze five aspects of RAD’s performance: resilience, scope of link reversal, load-
distribution, control traffic, and dynamic response.

4.7.1 Connectivity

Outdegree and local resilience The question we ask first is: how often can RAD recover
locally from a single link failure by using another outgoing link?4 We know that there
must be some occasions when a single failure disconnects a node (and forces it to initiate a

3An analogy for the mechanism is filling multiple buckets with water, and the rule is not using a new
bucket until all used buckets are full.

4In answering this question, we ignore the nodes that are physically connected by a single link, because
there is no way routing can help them.

38

Topology Nodes Edges Avg. degree
AS1221 83 131 3.16
AS1239 361 1479 8.19
AS1755 111 234 4.22
AS3257 151 288 3.81
AS3967 91 180 3.96
AS7018 382 1299 6.80
Cisco 76 160 4.21

FatTree 80 256 6.40
VL2 88 256 5.82

Table 4.1: Topologies Used for Simulations

Topology SP FIB DAG NR
AS1221 10.21 7.19
AS1239 41.43 2.09
AS1755 19.92 10.88
AS3257 21.18 9.64
AS3967 26.18 10.94
AS7018 32.10 2.92
Cisco 22.63 1.05

FatTree 33.12 8.12
VL2 10.80 0.57

Table 4.2: Average scope of Shortest Path FIB change and RAD Node Reversal when link
fails

Topology DV RAD
AS1239 2.26 0.02
AS1755 0.88 0.11
Cisco 0.02 0.02

FatTree 0.32 0.13

Table 4.3: Average number of messages triggered by link failure, shown as ratio to link-state’s
performance.

node reversal) because, as mentioned earlier, for each DAG there is at least one node with
DAG outdegree one. Figure 4.1 shows for each topology and averaged over all DAGs (i.e.,a

39

separate DAG per destination), the percentage of resilient nodes (outdegree bigger than one),
and “redundant” links (whose failure does not trigger a node reversal). In the two larger
ISP topologies (AS1239 and AS7018), over 90% of the nodes are resilient and over 95% of
the links are redundant. In the other four ISP topologies, the resilient node percentage is
between 60% and 65%, while the redundant link percentage is roughly 80%. The datacenter
topologies Cisco and VL2 have over 97% resilient nodes and redundant links. In contrast,
FatTree has only about 30% resilient nodes, mainly because in any particular FatTree pod
all aggregation layer switches have outdegree one to each destination edge switch.

(Free) Failure Resilience Before showing how much failure resilience is free, we would
like to note that “recovery resilience” is completely free. By “recovery resilience” we mean
that link recovery should not disrupt communication. In RAD, this is obviously the case -
when a link comes up, it is added to the DAG without affecting anything else. In traditional
routing protocols, however, link recovery can cause path recomputation, temporary loops,
and packet losses.

Turning to failure recovery, we ask how often can RAD recover from a link failure locally
(because there is another outgoing link present) and how often does a node have to initiate
node reversal? As mentioned earlier, any DAG has at least one node with outdegree one,
but how many other nodes are vulnerable to a single link failure?5

Figure 4.1 shows the percentage of resilient nodes (those with outdegree bigger than one),
and redundant links (those whose failure does not trigger node reversal). The data for each
topology has been averaged over all DAGs - one DAG per destination.

Among ISP topologies, two large ones (AS1239 and AS7018) have over 90% resilient
nodes and over 95% redundant links In the other four topologies, the node percentage varies
between 60% and 65%, and link percentage stays around 80%. Among datacenter topologies,
Cisco and VL2 both have node and link percentages greater than 97%. In contrast, FatTree
has roughly 30% of nodes with outdegree one in each DAG because in any FatTree pod
all aggregation layer switches have a single link to the destination’s edge switch. Also note
that these numbers were produced with RADs simple DAG construction. It is possible to
construct DAGs with even higher failure resilience.

Scope of failure recovery We now investigate the impact of single failures in a different
way; when a link fails, how many nodes need to respond? For RAD we measure how many
nodes had to invoke a reversal. To benchmark these results, we compare against shortest-
path routing, where we measure the number of nodes whose outgoing port changed (we
denote this as a change in the FIB). In datacenter topologies, because they use ECMP, we
include all cases where the ECMP group changes (the set of shortest path ports). This is not

5In answering this question, we ignore the nodes that are physically connected by a single link, because
there is no way routing can help them.

40

 0

 20

 40

 60

 80

 100

AS1221 AS1755 AS3257 AS3967 AS1239 AS7018 Cisco FatTree VL2

resilient node
resilient link

Figure 4.1: Percentages of resilient nodes and redundant links in DAGs over various
topologies

an entirely fair comparison, because node reversals and FIB changes are somewhat different,
but they both measure the scope of response in some way.

Note the scope only includes nodes that need to make changes to its RIB or FIB, which
is independent of how messages are exchanged. So the scope analysis also applies to link
state routing, e.g. although the message is broadcasted to every node, only a fraction of the
nodes actually need to make changes to RIB or FIB.

Now we consider when link fails, how many nodes need to be aware of this failure and
update their RIB/FIB accordingly. The scope of failure events is important to verify RAD’s
scalablility, and the scope of node reversal determines RAD’s recovery time.

We compare to shortest path routing and compute all pairs shortest paths for every
topology. After a link failure, if a node has a different distance to some destination, we add
it to the set of nodes that have RIB change. If the node also needs to use a different link to
reach the destination, we add it to the set of FIB change nodes. In datacenter topologies,
because ECMP is used explicitly, if a node changes an ECMP group after a failure, we also
consider it as a FIB change. Note the scope only includes nodes that need to make changes to
its RIB or FIB, which is independent of how messages are exchanged. So the scope analysis

41

also applies to link state routing, e.g. although the message is broadcasted to every node,
only a fraction of the nodes actually need to make changes to RIB or FIB.

In RAD, if a node has its available outgoing ports changed, we add it to RIB change
set, and if the node needs to use a different outgoing port, it is added to FIB change set.
Particularly if a node has no outgoing ports available, it will start node reversal. So the set
of nodes that do reversal is a subset of nodes that have FIB changed, which is a subset of
nodes that have RIB changed.

First, we show the percentage of nodes responding averaged over all single link failures
in Table 4.2, where RAD’s scope is always much less than shortest-path (although, again,
these two quantities are not directly comparable). These average results give some idea of
general trends, but they hide the distributions. An examination of the scope distributions
in Figure 4.3-4.6, where the link events are ordered in terms of the percentage of responding
nodes, shows a variety of behaviors. On the large ISP 1239, most events created very few
node reversals, but the tail of the distribution had over 30% of the nodes responding. For
the smaller ISP 1755, the distribution of node reversals is much smoother. On Cisco, RAD
caused very few node reversals, whereas for FatTree there were more (due to its poorer
connectivity).

To summarize, the average scope of RIB/FIB changes varies with topology, but RAD
always has many failures that require little recovery. For failures that disconnect a large
fraction of nodes, both RAD and shortest path routing need to involve more nodes for
recovery. That is, RAD finds the cases where failures can be recovered locally, but both
RAD and shortest path have cases where failures are nonlocal.

Scope of Link Reversal: While each individual link-reversal is a local decision, the pro-
cess can cascade to other routers (but does so at hardware speeds, so packets are not dropped
while this process is ongoing). In fact, the process continues until connectivity is established
or a disconnection is confirmed. A natural question is how far does this cascading process
go before connectivity is re-established. We investigated this question on our four topologies
under multiple failure conditions (either one random failure, or two random failures, or five
random failures) by measuring the number of nodes whose Lr(v) was changed for any v.

The various graphs in Figure 4.2 have significantly different behavior. At one extreme,
the link reversals on AS1239 and the Cisco topology are of limited scope under all conditions.
At the other extreme, the link reversals on the Fat-Tree and AS1755 spread significantly more
widely.

Messages We have not precisely defined the message exchanges in RAD, so we can’t make
any precise statements about its control overhead. However, if we assume a node reversal
is a single message, we can give a rough estimate of how it compares to standard distance-
vector and link-state routing algorithms in terms of the messages sent when responding to
a failure. In link-state, if we assume that link updates are sent with maximum efficiency,

42

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Event scope (fraction of nodes)

AS1239

1 failed link
2 failed links
5 failed links

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Event scope (fraction of nodes)

AS1755

1 failed link
2 failed links
5 failed links

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Event scope (fraction of nodes)

Cisco

1 failed link
2 failed links
5 failed links

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Event scope (fraction of nodes)

FatTree8

1 failed link
2 failed links
5 failed links

Figure 4.2: CDF of link-reversal scope under multiple concurrent failures. The x-axis is the
fraction of nodes that experience changes in their Lr(v) as a result of these failures.

it takes N − 1 messages to reach all N nodes in the network. We consider four sample
networks and randomly fail links, one at a time. In Table 4.3 we show the ratio of messages
in distance-vector to that in link-state, and similarly the ratio of control messages in RAD
to that in link-state, over all four topologies.

On the Cisco network, both distance-vector and RAD require very few messages, because
there are so many alternate paths available, and on the FatTree RAD shows an improvement
ratio of only 2.5. However, on the more irregular AS networks, RAD outperforms distance-
vector significantly, with 10% messages on AS1755 and only 1% messages on AS1239.

4.7.2 Load Distribution

We now investigate how RAD can distribute load by first comparing it to an optimal load
balancing algorithm and then looking at RAD’s performance in the face of network load and
topology changes.

43

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000 1200 1400 1600

N
od

e
pe

rc
en

ta
ge

Sorted events

SP FIB
DDC

Figure 4.3: Scope of NR/FIB changes on AS1239

RAD vs. Optimal We evaluate RAD’s ability to distribute load by comparing it to an
“optimal” load balancing algorithm that uses a linear programming model from the traffic
engineering literature (e.g. [19]). This model assigns a penalty for various usage levels on
each link, with the penalties rising steeply as the link becomes overloaded; the load balancing
mechanism arranges the traffic so as to minimize the total penalty. In order to make the
optimization problem tractable, links are allowed to carry more than 100% of their capacity
(but at a heavy penalty). Note that RAD was designed merely to distribute load when links
get overloaded; for instance, it does not try to balance the load on two outgoing links as
long as neither is overloaded. Moreover, RAD is not trying to minimize some given utility
function, whereas the optimal algorithm is. Nonetheless, we ran several experiments to
measure how close to optimal RAD’s load distributions are.

We use the same 9 topologies for our experiments and set each link’s capacity to 10k units.
For the load model, we had each source sending to a random destination at a constant rate
chosen uniformly randomly between 1 and 1000. To investigate load balancing at different
load levels, we used a traffic matrix λT where T is the original traffic matrix and 1 ≤ λ ≤ 4.
To get a sense of how much the network is actually loaded with a given traffic load, we
measured the fraction of links that had over 90% utilization in the optimal solution.

Figure 4.7 shows the results on four topologies, two ISPs and two datacenters. On the

44

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 50 100 150 200 250

N
od

e
pe

rc
en

ta
ge

Sorted events

SP FIB
DDC

Figure 4.4: Scope of NR/FIB changes on AS1755

AS1239 topology, RAD tracks the optimal solution quite well. It similarly does well on the
AS1755 topology, although under high loads (when over 8% of the links are over 90% utilized)
the gap becomes significant. On the Cisco topology RAD tracks the optimal even under high
loads (as many as 20% of the links highly loaded) presumably because there isn’t much path
diversity available so both the optimal solution and RAD are highly constrained. It is only on
the FatTree topology where RAD significantly departs from the optimal solution. This gap
occurs because the FatTree topology provides a wealth of alternate paths with lengths much
longer than shortest paths; RAD simply does not explore these paths, while the optimal
solution manages to locate the underloaded edge links and utilize them. Note that such
paths are typically disallowed to avoid loops, as seen in [6] and [53]. Also, the fraction of
overloaded links is extremely small, so that while RAD is suboptimal, it is succeeding in its
goal of avoiding overloaded links.

Figures 4.8 and 4.9 show the distribution of link utilizations produced by RAD and the
optimal load distribution for λ = 3 and λ = 4 on the AS1755 topology (similar patterns
are observed in other ISP topologies). RAD’s curve follows the optimal one very closely
and, more importantly, RAD’s curve almost overlaps the optimal curve for highly loaded
links. This suggests that RAD does not produce more highly loaded links than the optimal
solution, it merely doesn’t spread the load among the more lightly loaded links in the same

45

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160

N
od

e
pe

rc
en

ta
ge

Sorted events

SP FIB
RAD NR

Figure 4.5: Scope of NR/FIB changes on Cisco

way that the optimal solution does. Also visible in the curve is the fact that the optimal
solution is carefully tuned to the particular utility function; the optimal solution has many
links at load levels where the utility function changes slope (the horizontal plateaus in the
optimal curve correspond to inflection points in the penalty function), while RAD produces
a smooth distribution.

Traffic classes In this set of experiments we separated traffic into three classes of
First we change the optimization model to assign class dependent penalty functions: On

link l, may need a table for all the notations

• Latency sensitive: pl = C ∗ φ(tl) + a ∗ φ(t)

• Bandwidth sensitive: p = φ(t)

• Best effort: p = b ∗ φ(t)

We also change the traffic to include 10% latency sensitive traffic, 40% bandwidth sen-
sitive and half best effort. Then the traffic is scaled up to four times original, when the
optimal solution overloads a link. Figure 4.10 shows RAD with its local load distribution

46

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

N
od

e
pe

rc
en

ta
ge

Sorted events

SP FIB
RAD NR

Figure 4.6: Scope of NR/FIB changes on FatTree

mechanism provides close to optimal results, and the difference is within 10% (the same is
true for AS1239 topology) , even when penalty explodes due to links are overloaded.

Network Dynamics If the traffic matrix and network topology are static, optimal so-
lutions can distribute load very well, but once the traffic matrix changes or links fail, the
precomputed distribution can cause significant congestion. The usual practice is to recom-
pute the optimal solution after the change6. However, such offline calculations take time
while, in contrast, RAD’s local mechanisms can react to the change instantaneously.

We evaluate two types of network dynamics: link failures (Figure 4.11) and bursts in
demand (Figure 4.12). Both experiments were performed on the AS1755 topology under
the traffic matrix described above with λ = 3. This load generates the link utilization
shown in Figure 4.8. For link failure experiments, we randomly picked a link that carries
some traffic and removed it from the graph. We then recomputed the penalty using the
optimal algorithm and RAD. For demand burst experiments, we randomly picked a flow
and increased its demand by a number of units picked uniformly from [1500, 2500], thus

6There is abundant literature on precomputing routing that behaves reasonably well in dynamic networks
(e.g. [72], [10]), however their static nature still results in significant performance degradation (30% - 90%)
even when only one or two links fail.

47

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 1 1.5 2 2.5 3 3.5 4 4.5 5
 0

 0.01

 0.02

 0.03

 0.04

C
os

t F
un

ct
io

n

Traffic scale

AS1239

Optimal
RAD

Overload links

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 1 2 3 4 5 6
 0

 0.02

 0.04

 0.06

 0.08

 0.1

C
os

t F
un

ct
io

n

Traffic scale

AS1755

Optimal
RAD

Overload links

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 1 2 3 4 5 6 7 8 9 10
 0

 0.05

 0.1

 0.15

 0.2

 0.25

C
os

t F
un

ct
io

n

Traffic scale

Cisco

Optimal
RAD

Overload links

 0
 100
 200
 300
 400
 500
 600
 700

 1 2 3 4 5 6 7 8 9 10
 0

 0.002

 0.004

 0.006

C
os

t F
un

ct
io

n

Traffic scale

FatTree

Optimal
RAD

Overload links

Figure 4.7: Comparison of RAD to the optimal linear programming solution. The dots
(using the right hand scale) indicate the fraction of links with over 90% utilization in the
optimal solution (which gives an indication of how heavily loaded the network is).

increasing the demand on average by a factor of 2.33.
Figures 4.11 and 4.12 show a representative sample of events comparing RAD’s perfor-

mance versus the reoptimized optimal solution (i.e.,the optimal solution that is computed
after the change event). In all cases, RAD is very close to the optimal with the average
difference of 7.8% for link failure experiments and 7.1% for demand burst experiments. Note
that RAD is able to achieve these results with a purely local algorithm that distributes load
but does not balance it, knows nothing about the penalty function, and does not require
centralized recomputation.

While performing these experiments, we measured how many times each node adjusts
the load distribution among its outgoing links. In no experiment did any node adjust its
distribution more than 10 times and the average number of adjustments was less than half
that. This suggests that RAD’s load distribution does not suffer from slow convergence or

48

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 50 100 150 200 250 300 350 400 450 500

lo
ad

 o
n

lin
k

link sorted by load

LP
RAD

Figure 4.8: RAD and optimal link loads, with links ordered by utilization and λ = 3

oscillations.
Finally, we compare RAD’s characteristics with that of traditional routing approaches

following a link recovery event. While handling a link recovery event, traditional routing
approaches can create transient loops that disrupts communication ([20], [70]). RAD, on the
other hand, simply adds a recovered link to the DAG without causing any disruptions. This
is because of the hierarchy of concerns; loop-freeness is always preserved, even under change
events.

49

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50 100 150 200 250 300 350 400 450 500

lo
ad

 o
n

lin
k

link sorted by load

LP
RAD

Link capacity

Figure 4.9: RAD and optimal link loads, with links ordered by utilization and λ = 4

50

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 1.5 2 2.5 3 3.5 4

C
os

t F
un

ct
io

n

Traffic scale

Optimal
RAD

Figure 4.10: 3 classes of traffic, RAD vs optimal, on AS1755

51

 0

 200000

 400000

 600000

 800000

 1e+06

 0 2 4 6 8 10 12 14

Pe
na

lty

Link failures events

Optimal
RAD

Figure 4.11: Penalty change when link fails: RAD vs optimal sorted by new optimal penalty
value.

52

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 2 4 6 8 10 12 14

Pe
na

lty

Traffic burst events

Optimal
RAD

Figure 4.12: Penalty change when traffic bursts: RAD vs optimal sorted by new optimal
penalty value.

53

Chapter 5

Improve RAD

In previous chapter, we have shown that RAD works well on various topologies. It is
clear that compared with conventional approaches, RAD has smaller event scope and faster
recovery. But can it perform even better?

In this chapter, we focus on how to improve RAD and achieve even better performance
and more use cases. First, we analyze the time needed for recovery, and realize the control
message exchanges, even only between neighboring routers, may slow down the process. Fol-
lowing the same local reaction principles, we devise a data packet driven recovery mechanism
which provides same connectivity guarantee without explicit control message exchanges. It
leverage the data packet as implicit signal and therefore can run on the speed of data for-
warding.

Another improvement effort to reduce recovery time is to reduce event scope and reactions
even further. So the perspective is not performing the actions faster, but invoking fewer
actions. We found that although the DAG structure can provide multiple forwarding choices
for many routers, due to the loop-free nature however, there is at least one router has only one
single outgoing link. This means that if that particular link fails, the router has to go through
the reversal process. The solution is to pre-compute backup choices, and the challenge is
to keep the forwarding loop-free. By leveraging another locally available information, the
ingress port of the data packet, we have managed to keep a loop-free forwarding with more
choices.

We then seek more use cases and scenarios that will benefit from RAD. First, the for-
warding pattern is extended from unicast only to include anycast, multicast and broadcast.
Then we consider feedbacks from network operators about vanilla RAD and better under-
stand their requirements and preferences. More specifically, they want more control over
the forwarding in the networks, and also need to provide tiered services and set priorities
for different traffic. We extend RAD to support all these new challenges with little to none
modifications.

54

5.1 Faster Reversal

Following our timescale discussion in Chapter 2, even for the same local reaction, if control
CPU and software are required to be involved, the process may be much slower than local
hardware reaction. Observing that the local repair mechanism of RAD only require local
states and information exchanges between neighboring routers, we believe it has the potential
to run even faster, with local hardware reactions.

5.1.1 Two Planes

But first, we need to build some background. Networking researchers often refer to two
“planes” in networks. The data plane forwards packets based on the packet header and
local forwarding state in the router (such as a FIB). The control plane is responsible for
providing that forwarding state. By setting the forwarding state appropriately, the control
plane enables networks to achieve connectivity (forwarding tables provide end-to-end paths),
route optimization (choosing shortest or otherwise desirable paths), load distribution (links
are not overloaded), and other network control goals.

The data plane is typically implemented in hardware and the control plane is typically
implemented in software. However, the fundamental distinction between the two planes is
not how they are implemented but instead lies in what state they use and what state they
change. The data plane only uses forwarding state local to the router in making its decisions,
and does not change this state.1 The control plane typically uses external state — obtained
from a distributed algorithm such as a routing protocol — to set the forwarding state. As
a result, the two planes operate at very different speeds: for instance, on a 10gbps link,
a 1500byte packet is sent in 1.2µsec while exchanging control plane messages takes on the
order of 50msec or more (according to vendors we’ve spoken with) and global convergence
of the dataplane can take many seconds.

In the naive version of this two-plane approach, the network can recover from failure
(i.e.,restore connectivity) only after the control plane has computed a new set of paths
and installed the associated state in all routers. The disparity in timescales between packet
forwarding and control plane convergence means that failures often lead to unacceptably long
outages. To alleviate this, the control plane is now often assigned the task of precomputing
failover paths; when a failure occurs, the dataplane utilizes this additional state to guide
the forwarding of the packet. This approach works for a given failure scenario as long as an
appropriate backup path has been established, but the degree of resilience achievable with
a reasonable number of precomputed backup paths is quite limited (though perhaps enough
for most network requirements). More recently, researchers have been developing methods
for computing multiple paths between each source and destination; the end host chooses an

1We consider state that tells the router which of its connected links are up to be local configuration state;
it is not derived from either the control plane or data plane, but can be changed by local detection of the
link.

55

alternate path when the primary goes down. This approach suffers from the same limited
(but perhaps sufficient) degree of resilience, and also requires a downtime of roughly the
round-trip-time in the network, which (if the path has any significant speed-of-light latency)
is quite long compared to data plane timescales.

This raises the question of whether there is any way to extend the data plane so that one
can achieve ideal connectivity, where by ideal connectivity we mean that packets are delivered
as long as the network remains connected. Through some simple counterexamples, we have
proven that the answer is no: if the forwarding state remains constant (i.e.,the control plane
has not yet had a chance to recompute the forwarding state) one cannot always achieve ideal
connectivity. We omit the formal statement and proof here, but the intuition is obvious:
if you allow no state changes in the router (other than knowing which local links are up),
and no rewriting of packet headers (as in [48, 47]), then there is no way that local state
could compensate for any arbitrary set of connectivity-preserving failures. Given that this
impossibility result precludes achieving ideal connectivity solely using the data plane, we
must then ask: can we find a way to achieve ideal connectivity on a timescale much less than
that of the control plane?

5.1.2 Data-Driven Connectivity

The timescale of the control plane is so large because it must deal with situations where
changes far from a router will have an impact on its state (e.g.,it must check remote state to
see if the shortest path has changed). However, one can ask if there is a much smaller class of
forwarding state changes, ones that depend only on nearby information, that could support
ideal connectivity. To this end, we propose the idea of data-driven connectivity (DDC), which
maintains connectivity by allowing simple changes in forwarding state predicated only on
the destination address and incoming port of an incoming packet. The DDC state changes
we allow are those that are simple enough to be easily done at packet rates with revised
hardware (and, in current routers, can be done quickly in software).

The advantage of the DDC paradigm is that it leaves the general control requirements
which require globally distributed algorithms (such as optimizing routes, detecting discon-
nections, and distributing load) to be handled by the control plane, and moves connectivity
maintenance, which has simple semantics, to DDC. DDC has, at worst, a much faster time
scale than the control plane, and with new hardware can keep up with the data plane.

In this section we apply this approach to the general problem of intradomain routing
(whether it be datacenter, WAN, or enterprise) at either layer 2 or layer 3. The only as-
sumption we make is that all forwarding decisions are made on exact-match lookups (whether
it be over MAC addresses or IP addresses/prefixes).2 In what follows, we will refer to ad-
dresses as the unit of exact match and nodes as the forwarding element (whether it be a

2This assumption is not essential to the correctness of our algorithm, but it removes the possibility that a
change in one address’ route causes a much larger rewriting of the forwarding state (as can happen in LPM),
which is a slow process.

56

Figure 5.1: Illustration of DDC. (a) normal forwarding. (b) DDC bounce back when failure
happens.

switch or a router). Because of the exact match requirement, one can consider the forward-
ing state for each address independently, so we typically consider only how DDC updates
the forwarding state for a single address (because the state change is driven by the arrival
of a single packet, and it is that packet’s destination address that determines which address’
forwarding state will be updated).

DDC maintains connectivity via simple changes to local forwarding state, predicated only
on the destination address and incoming port of an incoming packet. We first give a brief
overview of how DDC works, followed by a more detailed description and a brief sketch of
its correctness.

5.1.3 DDC Example

Consider a network modeled as an undirected graph G = (N,E), where N is the set of nodes,
and E is the set of links. In what follows, we only consider the forwarding state associated
with a unique destination node v, and packets addressed to that destination. The forwarding
state at each node other than v (which is initialized by the control plane) specifies which
links it should use to reach v. Directed edges in Figure 5.1(a) illustrate the forwarding state
in a simple example, e.g.,node 3 forwards packets (destined to node v) to either node 1 or
node 2. If node i forwards packets through next-hop node j, we call link (i, j) an outgoing

57

link for i, and an incoming link for j.3 Let In and On be the sets of incoming and outgoing
links (respectively) at node n. When node n’s outgoing link fails, that link is immediately
removed from n’s set of outgoing links On. In Figure 5.1(a), I2 = {3, 4} and O2 = {v}.

Intuitively, in DDC, a router should send out a received packet along an outgoing link as
long as such a link exists, and “bounce back” the packet to the sending neighbor otherwise.
To wit, when a packet destined to v arrives at node n, the following two steps are executed:

Update: If the packet arrived on an incoming link, no updates are needed. If it arrived on
an outgoing link, remove that link from On and place it in In.
Forward: If On is not empty, forward the packet along one of the available outgoing links.
If On is empty, forward packet back through the incoming link from which it arrived.

Consider Figure 5.1(b). When node 2 loses its outgoing link (2, v) due to link failure it
immediately removes the link from O2, which then becomes empty. When a packet destined
to v arrives at 2 from nodes 3 or 4, it sends it back through the same incoming link (“bouncing
it back”). Once node 3 receives a packet from 2, it removes the outgoing link (3, 2) from O3

and send the packet through its other outgoing link (3, 1). Similarly, once node 4 receives
a packet from 2 it removes its outgoing link to 2 from O4 and send that packet through its
other outgoing link.

Note how node 2’s “bounce back mechanism” prevents on-the-fly packets from being
dropped, and that after 3 and 4 remove (3, 2) and (4, 2) from their outgoing link sets this
bounce back is no longer needed. It is also obvious DDC works without global commu-
nication. Instead, nodes’ actions under DDC are fast and simple, and are based on local
information only. However, what if multiple nodes need to bounce back? In order to en-
sure connectivity, we need to augment this basic algorithm to prevent On from remaining
empty. We next extend the basic idea to a complete design. This will require a more detailed
description; in what follows, we assume all packets are destined for v. 4

5.1.4 Design Details

Because forwarding state is local, we choose to refer to ports (which are local) rather than
links (which are shared between the two endpoints). We define four types of ports: incoming
ports (I-ports), outgoing ports (O-ports), reversed incoming ports (RI-ports), and reversed
outgoing ports (RO-ports).

3For convenience we assume that all links are either incoming or outgoing (as opposed to unused), as it
makes our later state transition diagrams easier.

4Destinations could be an individual host (as in L2) or a prefix; in ISP networks where IP prefixes are
disseminated using a different protocol — such as iBGP — and the IGP is only used to compute routes
between the various routers, the destination can be a destination IP prefix or a set of prefixes reachable
from one edge router. One could also use an approach similar to TRILL [4] and LISP [18] in which the
core routing design provides switch-to-switch delivery, and an auxiliary mapping function determines which
switch a host is attached to.

58

Port State Possible Packet Actions

Incoming Receive
Reversed Incoming Bounce back and send out

Outgoing Send out and receive
Reversed Outgoing Receive

Table 5.1: Port state and packet actions on port

Figure 5.2: State transition when an O-port receives packet.

Initially, all ports are either incoming ports (I-ports), through which packets are received,
or outgoing ports (O-ports) through which packets are sent out. In the example described
in Figure 5.1, the port connecting node 3 to node 4 is an I-port whereas the port connecting
node 3 to node 1 is an O-port. Thus, I-ports and O-ports capture “normal” behavior, and
the network is initialized in a state where all ports are in one of these categories.

In the presence of failures, packets in DDC must occasionally be “bounced back”; to do
so, the corresponding ports must be “reversed” so that packets can travel in the opposite
direction than dictated by their original I-port or O-port designation. To handle such “re-
versal” situations, we introduce the categories of reversed incoming ports (RI-ports), and
reversed outgoing ports (RO-ports). At the DDC level, the following transitions are allowed:
I to RI, RI to I, O to RO, and RO to O. The only way an I-port can become an O-port,
or vice-versa, is through actions of the control plane (which we discuss in the next section).
However, the DDC transitions are sufficient to guarantee connectivity. We now describe

59

Figure 5.3: State transition when an RI-port receives packet.

these transitions in greater depth.
We define four types of ports: the first two capture “normal” behavior, incoming ports

(I-ports), outgoing ports (O-ports); the latter two capture “reversal” situations, reversed
incoming ports (RI-ports), and reversed outgoing ports (RO-ports). At the DDC level, the
following transitions are allowed: I to RI, RI to I, O to RO, and RO to O. The only way an
I-port can become an O-port, or vice-versa, is through actions of the control plane (which we
discuss in the next section). However, as we show below, the DDC transitions are sufficient
to guarantee connectivity.

The O-RO and I-RI transitions are simple: RI-ports are (originally) incoming ports along
which the node “bounces back” an incoming packet, and RO-ports are (originally) outgoing
ports along which the node receives an incoming packet. The transitions from RO to O, and
RI to I, are more complicated and the associated state-diagrams are shown in Figures 5.2
and 5.3.

60

To illustrate these scenarios, consider a node i that has a single port which is an RO-port.
When a packet arrives along this RO-port, i has no choice but to bounce it back through
the same port, with the hope that the receiving neighbor j is able to forward the packet
towards the destination. According to our rules (see Figure 5.2), i must make its single port
an O-port again, hence the term “re-reverse”. Observe that as i received the packet from
j through an RO-port it must be that i’s packet will reach j through j’s RI-port. At this
point j should, if possible, send to another RI-port or O-port. The transition is illustrated
in Figure 5.3. Now, consider the case that j only has RI ports. Intuitively, we wish to avoid
the problematic scenario that j bounce the packet back to i, making i’s port an RO-port
again, driving i to reverse its port and make it an O-port again (see Figure 5.2), and so on.

To achieve this, a timeout described in Figure 5.3 is introduced to detect re-reverse at
node j. When node j receives a packet from i through an RI-port, it will set an internal
timeout, e.g., 0.1 seconds, and bounce the packet back to i. When the same packet reaches
j again from i after the timeout has expired, j will turn that RI-port into I-port and will
forward the packet through a different RI-port (see Figure 5.3). To avoid false positives in
the detection of re-reverse, the timeout should be at least 2×Dlink+DDDC , where Dlink is
the link delay and DDDC is the time it takes a node to implement the DDC rules upon the
receipt of a packet. The timeout should also not be much bidder than this value so as to
avoid unnecessary bounce backs when re-reverse happens.

Because at this time, the node on the other end of the link, call it m, is not aware of any
difference and may still keep sending. m will not change any state until it receives packet
from its O-port. Therefore all on-the-fly packets will be bounced back and sent to another
O-port of m if possible, and after that n will not receive packet directly from m. But if m
has to re-reverse, n will receive packet after the timeout, and realize m has no path to deliver
the packet. So n will accept the re-reverse by setting port state from RI to I, and then try
to send to other ports that can be used to send out packets.

Every singly connected node will go through the process should it receive packet on its
only O-port. In practice, it is easy to avoid such inefficiency in the first place by suppressing
reversal if the other end of the link has degree 1. However, it is also possible that a richly
connected node has no I-port, then the re-reverse is necessary to restore its connectivity if
all its O-ports become RO-ports.

5.1.5 Ideal Connectivity

DDC achieves ideal connectivity, in the sense that so long as a set of network failures does
not disconnect a node n from the destination v, packets from n are delivered to v. More
specifically, we can prove the following:

Theorem 5 Let Ḡ be a network graph obtained from G via the removal of a subset of the
links in E. For every node n that has some route to the destination v in Ḡ it holds that
under DDC every packet sent from i to v is guaranteed to reach v.

61

Observe that the fact that packets are never dropped follows immediately from our DDC
forwarding rules (a packet is always either bounced back or forwarded through another port).
To establish Theorem 5, we are left with proving that packets never enter endless loops, and
thus always reach v eventually. Our proof of this claim is similar in spirit to the correctness
proof for the algorithm in [21], and the key idea is showing inductively that the claim holds
for a gradually expanding set of nodes in v’s connectivity component in Ḡ.

DDC may seem too simple to be able to provide ideal connectivity and going through
all corner cases to show it works is apparently not feasible. Here we present an induction
inspired proof for DDC and ideal connectivity.

Proof:
Because every link in G is used in one direction to reach d, those links with direction

form a Directed Acyclic Graph (DAG). Let G be the network graph and let D be the DAG
prior to failures. Now, consider the graph G’ obtained from G after removing failed links.
Our aim is to prove that every node that has some route to the unique destination d in G’
will be connected to d after the DDC process. The proof iteratively constructs a set of ”good
nodes”; a good node is a node that, from some point in time, has a forwarding path to the
destination d. We show that the set of good nodes eventually contains all nodes that have
some route to d in G’, thus establishing our claim.

Initialize the set of good nodes to contain d, and all nodes that are directly connected to
d in D. Observe that every node that is 1-hop away from d in G’ was also directly connected
to d in D and so that node will never lose connectivity to d. Now, consider a node i that is
connected to a good node. We handle 3 cases:

1) Node i is connected to a good node in D. Observe that in this case i will never
disconnect from d (as the good node that it is connected to will never disconnect from d).
Add i to the set of good nodes.

2) Node i is not connected to a good node in D and reverses all of its incoming links at
some point in the process. As D utlizes every edge in G (in one direction), if i is not connected
to a neighboring good node that good node is connected to i. So, when i reverses all incoming
links it will connect to the neighboring good node and remain connected thereafter. Add i
to the set of good nodes.

3) Node i is not connected to a good node in D and, at no point in time reverses all
of its incoming links. Observe that in this case, i must be connected to a node that also
never reverses its incoming links. That node, in turn, is also connected to such a node, etc.
Following this sequence of nodes we either reach d (in which case we’re done), or end up
with a loop—a contradiction to the fact that D is acyclic! Add i and all other nodes in this
sequence of nodes to the set of good nodes.

Via this process we are gradually placing all nodes in d’s connectivity component in G’
in the set of good nodes. The theorem holds.

62

Figure 5.4: Node 1 reverses incoming links when link 1→ v fails.

5.2 Fewer Reversal

The local repair process will automatically stop as soon as every router has forwarding
choices. But it is still desirable to further reduce the number of reversals, or avoid reversal
completely. In this section, we discuss possibilities of how connectivity can be provided with
fewer reversals.

We first review the single link vulnerability of DAG, which is unfortunately an inherent
property and can not be removed. Then we illustrate how adding extra forwarding choices
can avoid link reversal through an example. We generalize the approach and propose a
new network model to describe the new kind of graphs. We also provide one algorithm to
compute the needed choices.

63

Figure 5.5: With added choice, no need to reverse link 3 → 1. But the choice should be
carefully computed to avoid forwarding loops.

5.2.1 Single Outgoing Node

Although many nodes in the DAG have multiple outgoing links, at least one node has only
a single choice. Such a node is vulnerable to a single link failure (as noted in [45]).5

Recall that the destination node in the DAG is the only node that has no outgoing links.
If we remove the destination node and all its incoming links from the DAG graph G, the
resulting graph D is a subgraph of the original graph, so D is also a DAG. For any DAG, it
is well known that there must be a node that has no outgoing links. Denote it o in DAG D.
Since o is not the destination node, it must have at least one outgoing link in original graph
G. Because after removing destination node and adjacent links o has no outgoing links, we
know that o is a neighbor node of the destination, and o only has one outgoing link in G.

The same conclusion can also be drawn from the perspective of node ordering. Because
a DAG corresponds to an ordering among nodes, and the link direction follows the ordering,

5It is obvious that if the node is also singly connected in network topology, i.e. only has one neighbor,
there is little to improve.

64

the node that is closest to destination will only have one outgoing link towards destination,
and its other links are all incoming links.

5.2.2 DAG with Backups

One can compute backup paths (using an additional routing table that determines where to
send packets that come in along the reverse direction of a link, somewhat as in [42]) such
that every node has at least two outgoing links, and there are no cycles (as long as these
backup paths are not used when the normal links are available).

By adding backup paths to DAG, we can avoid certain reversals and make failure reactions
even faster. This is different from previously discussed DDC, in that it just enhances existing
DAG structure, and still requires RAD reversals for the connectivity guarantee.

Figure 5.4 and 5.5 illustrate how DAG with backups can avoid reversals. With a DAG
computed as Figure 5.4(a), when link 1→ v fails, node 1 will reverse its two incoming links:
3→ 1 and 2→ 1. Then node 2 and 3 will react accordingly.

But if we add one backup choice for node 1, indicating that if link 1→ v is not available,
send packets to node 2, there is no need for reversal. Forwarding rules on node 2 is as follows:

• If packet comes from node 1, send to v directly

• Send packet to v or node 1

Note it is possible that node 2 sends packet to 1 and then receives it back, as discussed in
chapter 2, we do not consider it a forwarding loop, because after node 2 receives the packet,
it will send to v directly.

However, if the backup choice is link 1 → 3, there will be a problem. Because after the
packet is received by node 2, it has no idea node 1 can not reach v directly anymore, and
may forward packet to 1. Then a loop is formed by traversing nodes 1-3-2-1.

5.2.3 Compute Backups

Below we describe a general algorithm to compute backups for singly outgoing nodes in the
DAG.

Let G = (V,E) be an undirected graph without self loops in which the set of vertices
V (G) consists of n source nodes {1, 2, . . . , n} and a destination node d 6∈ {1, 2, . . . , n}. Each
source node i has a forwarding function fd

i . Let N(i) = {i}∪ {j such that (i, j) ∈ E}. That
is, N(i) contains all neighbors of i in G and i itself. The domain of the forwarding function
fd
i is N(i), and the range of fd

i is 2N(i)−{i}. The value fd
i (j) is the set of neighbors of i to

which i can forward a packet destined to d if i receives that packet from its neighbor j (the
case in which j 6= i) or if the packet originates at i (the case in which j = i). We call an
n-tuple fd = (fd

1 , f
d
2 , . . . , f

d
n) of forwarding functions a forwarding pattern.

65

We want the packet-forwarding scheme that source nodes use to route traffic to d to be
loop-free, that is, we want to avoid forwarding loops in which packets traverse the same links
over and over again. We also want the packet-forwarding scheme to be such that all packets
eventually reach the destination node d. Consider a forwarding pattern fd.

1. Initialization. ∀(i, j) ∈ E, fd
i (j) := ∅.

2. DAG construction. Construct a DAG D (e.g., using BFS/DFS) that is rooted in
d and such that ∀(u, v) ∈ E(G), (u, v) ∈ E(D) or (v, u) ∈ E(D). Observe that D
induces the following partial order <D over V ; ∀i, j ∈ V , i <D j iff there is a route
from j to i in D.

3. DAG-based forwarding rules. ∀i ∈ V , FD(i) := {i} ∪ {j such that (i, j) ∈ D}
(that is, FD

i is the set of all nodes to which i has a directed edge in D, and i itself).
∀k ∈ Ni, f

d
i (k) := FD

i .

4. Installing additional forwarding rules. While there exists a node that is 2-
connected to d in G, but is not 2-connected to d in fd = (fd

1 , . . . , f
d
n), do:

• Choose i to be a minimal node (under <D) that is 2-connected to d in G, but is
not 2-connected to d in fd = (fd

1 , . . . , f
d
n).

• Choose j to be a minimal node (under <D) such that (1) i <D j and (2) ∃s ∈ V
such that (j, s) ∈ D and iDs.

• Choose a simple route from j to i in D, R = (j = a1, a2 . . . , ak = i).

• r := k − 1.

• While (r > 1) and (fd
ir(ir+1) = ∅) do:

– fd
ir(ir+1) := {ir−1}

– r := r − 1

• If r = 1, then fd
j (a2) := {s}.

5.3 Different Communication Patterns

The current set of RAD proposals only consider unicast delivery. RAD can be simply
extended to provide highly resilient anycast (the same way unicast routing automatically
supports anycast). Broadcast can be achieved by following the reversed direction of every
link in the DAG. The broadcast packet is guaranteed to reach every node as long as the
network is connected. Comparing with a tree-based broadcast, there are E − N + 1 more
broadcast packets sent between nodes, where E,N are the number of links and nodes in
the broadcast domain respectively. Multicast can be supported with pruning non-member

66

Figure 5.6: Illustration of RAD with anycast. Node 1 and 5 are receivers. (a) Add virtual
node v to the graph. (b) Build DAG rooted at v.

routers. But if one builds multicast delivery over unicast paths (as is typically done) then
multicast will benefit from the increased reliability of RAD’s unicast paths, and there may
be no need for RAD to support multicast directly.

5.3.1 Anycast

Anycast defines a group of potential receivers, and considers the packet is successfully de-
livered when it is received by any one of them. For IP anycast, the destination IP address
is usually the same for all receivers. RAD can support anycast without modification. The
only difference is how the initial DAG is built. We adopt a common technique in graph
research, which is adding virtual node to existing graph and connecting it to several nodes
in the graph.

Figure 5.6 shows an example. In the original graph, node 1 and 5 are the receivers of the
anycast group. Add virtual node v to the graph, and connects it to node 1 and 5, shown
as dashed lines in Figure 5.6(a). Then we build a DAG with node v as destination. The
result is shown in Figure 5.6(b). Anycast packets will be forwarded along the directed links,

67

therefore they will be delivered to either node 1 or node 5.
In general, we will add a virtual node connecting to all receivers in the anycast group,

and build a DAG with the virtual node as destination. This way anycast can benefit from
many nice features of RAD, and have resilient forwarding.

5.3.2 Broadcast

First of all, broadcast is never a scalable communication pattern. Flooding message or
packet to every router in the network is both expensive and inefficient. But we do not want
to mandate how people are using the network, because in certain circumstances, broadcast
may be an acceptable solution. Just like currently broadcast packets are sent in the reversed
direction of the forwarding tree, RAD can support broadcast packets by sending them in
the reversed direction of DAG links, i.e. receive from an outgoing link and send to incoming
links. If resiliency is preferred, broadcast packets can be sent to all incoming links, at the
cost of many duplicates. Or packets can also be only sent along shortest paths in the DAG,
so it will generate fewer duplicates but may have packet loss if link fails during forwarding.

5.3.3 Multicast

The support for multicast is similar to broadcast, with pruning non-member routers to
improve efficiency. We can leverage existing group management protocols like Protocol-
Independent Multicast Dense Mode (PIM-DM) and Sparse Mode (PIM-SM) and remove
non-member routers from the DAG. So it will provide a “slim” DAG which has better
resiliency than single multicast tree.

5.4 Thin DAGs

RAD is designed to deliver the packet whenever it is possible. In practice, however, network
operators may prefer more control over packet forwarding and better visibility of router
updates. But RAD by itself does not support the trade-off between connectivity and con-
trollability.

Another challenge is source control. A recent trend in routing research is to give sources
(or edge routers) control over routing. RAD handles link failure and congestion inside the
network, so it flies in the face of this recent trend towards source control.

The extension to above questions is what we call “thin” DAGs, DAGs that are defined
around a given default path that protect against any individual failed link. Instead of building
a DAG that uses all available links, we can build multiple thinner DAGs and switch between
them. This is essentially the idea of multi-path routing, with path replaced by DAG.

For example, MPLS currently has Label Switching Path (LSP) which dictates an end-
to-end path. With RAD and thin-DAG, the LSP can become Label Switching DAG (LSD),

68

which handles link failure and congestion to a certain degree, then network operators can
switch to a different LSD for better resiliency or load distribution.

Source control can also be supported by adding the chosen DAG identifier into data
packets. So the source can decide which DAG to use, and change it when necessary. Our
preliminary efforts are presented in paper Slick Packets [54].

69

Chapter 6

Conclusion

In this thesis, we presented a new routing framework: Routing Along DAGs. We start
from the challenges of today’s networks and first understand how they impact routing, the
fundamental function of any network. High availability and scalability are identified as
the two key requirements for routing. Although they are not completely new, we realize
conventional approaches have difficulties to meet all the stringent requirements today and
tomorrow. Instead of tweaking existing methods or making incremental improvements, we
analyze conventional routing mechanisms and argue that they have inherent problems that
limit their performance in large and complicated networks. More importantly, the assump-
tions about network, and trade-offs of their designs, all require a review and should be
changed appropriately to reflect what we have today and tomorrow.

The revised assumptions and design trade-offs lead to RAD, a complete and coherent
routing framework, which can meet even more strict scalability and availability requirements.
The most notable design philosophies of RAD include: separate optimization and connec-
tivity, build explicit loop-free topology and prefer fast and local recovery. We test RAD on
various ISP and data center topologies, and show that its performance is consistently better
than traditional methods.

Then we recognize several aspects of RAD that have more potential and continue im-
proving its performance, functionality and applicable scenarios. All these improvements
follow the same design principles and extend the RAD framework. Based on feedbacks from
network operators, we also acknowledge that compared to guaranteed connectivity, which
is more appealing in theory, more controllable and visible recovery choices are preferred in
many practical cases. RAD is flexible to adapt to these new challenges and provide good
performance with little modification.

Overall, we also showed the evolution of the design of RAD:

• Start from reviewing shortcomings of conventional mechanisms and current improve-
ments

• Analyze bottlenecks, discover and understand the root causes

70

• Propose new designs based on revised assumptions and trade-offs

• Review the interoperability with existing mechanisms

• Iterate the design with improvements and extensions, all based on feedbacks in practice

6.1 Future Directions

We believe RAD is just a first step into the new routing paradigm, and what we have done and
presented is only a small fraction of the design space. There are more to explore, and many
interesting questions to answer. We roughly categorize future directions into two groups:
theory and practice. Questions and directions in the theory group focus on the abstract
network model, and are related to graph properties, like connectivity and resilience. The
practice group includes more practical concerns, which consider actual hardware platform,
deployment and operation, and are more related to implementation.

6.1.1 Theory Questions

We have shown in the thesis that precomputed DAG combined with local repair mechanism
can achieve ideal connectivity, i.e. routing and forwarding topology are connected as long as
underlying network topology is connected. Then seeing the limitation of DAG, we introduce
a method to leverage incoming port of the packet, which is also a local information available
to the router, to improve failure recovery performance. These experiences lead us to believe
that local reaction has more possibilities to be studied.

• Ingress port in forwarding model. The ingress port of the received packet has been
readily available since the beginning of packet switching, but is unfortunately neglected
in almost all forwarding model abstractions. Common enhancements to vanilla des-
tination based forwarding usually employ proprietary packet labeling schemes, which
will introduce overhead in forwarding hardware, complicate packet header and pro-
cessing, and generally imply higher barrier and cost for adoption. The ingress port, on
the other hand, is a local information available to the router, agnostic to layers and
packet formats, and easy to implement. Then the question is how much extra hint the
ingress port can carry. It will be interesting to see new designs that consider network
topology characteristics and packet forwarding together, and leverage the ingress port
information to learn what has changed in the network.

• A list or set of egress ports. Now we consider the choices for forwarding. One abstrac-
tion can be a list of candidate egress ports, and the decision is simply to pick the first
available one. However, more sophisticated schemes can be developed following the
concepts of choices and decision, i.e. routing topology and forwarding topology. The

71

strategy of picking which egress port to use may also incorporate more intelligence.
The egress ports can also be optimized for different criteria, such as latency, through-
put etc. How to maintain the set of egress ports to keep loop-free forwarding and
improve failure resilience and network capacity, is another topic worth discovering.

Another appealing feature of RAD is local and dynamic updates driven by control mes-
sages or data packets, which can be categorized as a local repairing mechanism without global
synchronization and computation. Local and dynamic routing changes definitely has more
potential in improving failure resilience and routing performance. We list several interesting
questions below:

• Static routing. Instead of dynamic route updates, a completely static set of routing
choices is appealing to network operators in many ways, including forwarding control,
debugging, visibility etc. Unfortunately we have demoed that static routing without
packet labeling can not guarantee loop-free and connectivity even on some simple
topologies. But the resilience performance may be really close to the optimal, so in
practice, operators may be willing to accept the slightly less than ideal connectivity
to get more confidence in the control of packet forwarding. There may also be a class
of topologies which supports static routing very well. It would be possible to derive a
new metric or property for network topologies to describe how well static routing can
perform. The practical impact would be an additional guidance to network design in
scenarios like data center networks, where the topologies are carefully designed and
controlled by operators.

• K-failure resilience in N-connected graphs. It is not fully exploited how properties
of network topology, i.e. the undirected graph, affects failure resilience performance.
Challenging questions include: given a graph that is N-connected, how a routing scheme
provides K-failure (concurrent removal of K links) resilience, what would be the rela-
tionship between K and N, and what extra information or mechanisms would be needed
to improve K. Although we did some initial study, the full extent of these questions
require more theoretical thoughts and would attract interests from researchers in other
fields.

6.1.2 Practical Questions

Throughout the discussion of RAD and its extensions, we consider the router will behave
as one consistent unit, e.g. all the actions will be performed as atomic. This may pose a
challenge for modern distributed router architecture.

• Accurate hardware model. A typical component layout of high end routers is shown in
Figure 6.1. The router usually consists of multiple line cards and a backplane, through
which line cards communicate with each other. The line cards may be configured

72

differently. A data forwarding card will contain switching fabric chip and companion
processor chips for state updates, while a control card may only have powerful proces-
sors to compute routes etc. When a control card needs to update forwarding states on
other line cards, it will send commands through the backplane. Therefore the router
itself is a distributed communication system.

• Distributed system and synchronization. Based on our discussions with hardware ven-
dors, the signal latency on backplane is very small, so most of the time line cards are
considered to be in consistent states. But because the backplane is designed to be high
throughput and low latency, the mechanism is relatively simple, and any change to it
may incur formidable costs. On the other hand, since each forwarding line card keeps
its own copy of the forwarding table, it is possible to leverage the distributed nature
to solve other challenges like scalability.

• Minimal requirement. Another unanswered question in this thesis is how RAD will
perform if the consistency on one router is not strict. In other words, if the atomic
requirement is loosened, will RAD still keep the loop-free and many other nice features?
If not, to what extent or in which particular cases that RAD and its various extensions
will have problems? We believe it will encourage research efforts that better track
today’s hardware progress, and may potentially change the graph model for network
research completely.

• More software, more control. Even the switching fabric, which is definitely considered
hardware in the network community, has code running on top of it to control different
behaviors and state transitions. Given that most of RAD operations only need locally
available information or states, the implementation of RAD may benefit from the
advances in IC technology and does not require ASIC changes, well-known to be both
time consuming and capital expensive. A semi-software implementation also enables
faster iteration of improvements and better interacts with other components.

73

Figure 6.1: Architecture of distributed router architecture.

74

Bibliography

[1] Extending Networking into the Virtualization Layer. http://openvswitch.org/.

[2] IEEE 802.1W Rapid Reconfiguration of Spanning Tree.
http://www.ieee802.org/1/pages/802.1w.html.

[3] Open Cirrus. http://opencirrus.org/.

[4] Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability State-
ment (RFC 5556). http://www.ietf.org/rfc/rfc5556.txt.

[5] INFOCOM 2009. 28th IEEE International Conference on Computer Communications,
Joint Conference of the IEEE Computer and Communications Societies, 19-25 April
2009, Rio de Janeiro, Brazil. IEEE, 2009.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network
architecture. In SIGCOMM, 2008.

[7] R. Albrightson, JJ Garcia-Luna-Aceves, and J. Boyle. EIGRP-a fast routing protocol
based on distance vectors. In Proc. Networld/Interop, volume 94, 1994.

[8] Ashok Anand, Archit Gupta, Aditya Akella, Srinivasan Seshan, and Scott Shenker.
Packet caches on routers: the implications of universal redundant traffic elimination. In
SIGCOMM, 2008.

[9] David G. Andersen, Hari Balakrishnan, Nick Feamster, Teemu Koponen, Daekyeong
Moon, and Scott Shenker. Accountable internet protocol (AIP). In SIGCOMM, 2008.

[10] David Applegate and Edith Cohen. Making intra-domain routing robust to changing
and uncertain traffic demands: understanding fundamental tradeoffs. In SIGCOMM,
2003.

[11] M. Arregoces and M. Portolani. Data center fundamentals. Cisco Press, 2003.

[12] C. Busch, S. Surapaneni, and S. Tirthapura. Analysis of link reversal routing algorithms
for mobile ad hoc networks. In SPAA, 2003.

75

[13] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman Shaikh, and
Jacobus van der Merwe. Design and implementation of a routing control platform. In
NSDI ’05, 2005.

[14] T. Cicic, AF Hansen, A. Kvalbein, M. Hartmann, R. Martin, M. Menth, S. Gjessing,
and O. Lysne. Relaxed multiple routing configurations: IP fast reroute for single and
correlated failures. Network and Service Management, IEEE Transactions on, 6(1):1–14,
2009.

[15] M. Scott Corson and Anthony Ephremides. A distributed routing algorithm for mobile
wireless networks. Wireless Networks, 1(1):61–81, 1995.

[16] Jonathan D. Ellithorpe, Zhangxi Tan, and Randy H. Katz. Internet-in-a-box: emulating
datacenter network architectures using fpgas. In DAC ’09: Proceedings of the 46th
Annual Design Automation Conference, 2009.

[17] Andrey Ermolinskiy and Scott Shenker. Reducing Transient Disconnectivity using
Anomaly-Cognizant Forwarding. In HotNets, 2008.

[18] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. Locator/ID Separation Protocol
(LISP). IETF Draft, 2009.

[19] B. Fortz and M. Thorup. Increasing internet capacity using local search. Computational
Optimization and Applications, 29(1):13–48, 2004.

[20] Pierre François and Olivier Bonaventure. Avoiding transient loops during the conver-
gence of link-state routing protocols. IEEE/ACM Trans. Netw., 15(6):1280–1292, 2007.

[21] Eli M. Gafni, Dimitri, and P. Bertsekas. Distributed algorithms for generating loop-free
routes in networks with frequently changing topology. IEEE Transactions on Commu-
nications, 1981.

[22] Igor Ganichev, Dai BIn, Philip Brighten Godfrey, and Scott
Shenker. YAMR: Yet Another Multipath Routing Protocol.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-150.pdf.

[23] J.J. Garcia-Luna-Aceves and W.T. Zaumen. Area-based, loop-free internet routing. In
INFOCOM’94. Networking for Global Communications., 13th Proceedings IEEE, pages
1000–1008. IEEE, 2002.

[24] JJ Garcia-Lunes-Aceves. Loop-free routing using diffusing computations. IEEE/ACM
Transactions on Networking (TON), 1(1):130–141, 1993.

[25] Brighten Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica. Pathlet routing. In
SIGCOMM, 2009.

76

[26] P. B. Godfrey, S. Shenker, and I. Stoica. Pathlet Routing. In HotNets, 2008.

[27] P. Brighten Godfrey, Matthew Caesar, Ian Haken, Scott Shenker, and Ion Stoica. Stable
Internet Route Selection. http://www.cs.uiuc.edu/homes/pbg/papers/srs-nanog40.pdf.

[28] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz,
P. Patel, and S. Sengupta. VL2: A Scalable and Flexible Data Center Network. In
SIGCOMM, 2009.

[29] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz,
P. Patel, and S. Sengupta. VL2: A Scalable and Flexible Data Center Network. In
SIGCOMM, 2009.

[30] A. Greenberg, P. Lahiri, D.A. Maltz, P. Patel, and S. Sengupta. Towards a next gener-
ation data center architecture: Scalability and commoditization. In PRESTO, 2008.

[31] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers, Jennifer Rexford,
Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang. A Clean Slate 4D Approach to
Network Control and Management. In ACM SIGCOMM Computer Communication
Review, 2005.

[32] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker.
NOX: towards an operating system for networks. CCR, 38(3), 2008.

[33] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. DCell: A Scalable and Fault-
Tolerant Network Structure for Data Centers. In SIGCOMM, 2009.

[34] Jiayue He, Martin Suchara, Ma’ayan Bresler, Jennifer Rexford, and Mung Chiang.
Rethinking Internet traffic management: From multiple decompositions to a practical
protocol. In Proc. ACM SIGCOMM CoNext Conference, December 2007.

[35] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992.

[36] W. Jiang, R. Zhang-Shen, J. Rexford, and M. Chiang. Cooperative content distribution
and traffic engineering in an ISP network. In SIGMETRICS, 2009.

[37] John P. John, Ethan Katz-Bassett, Arvind Krishnamurthy, Thomas Anderson, and
Arun Venkataramani. Consensus routing: the internet as a distributed system. In
Proceedings of the 5th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI’08, pages 351–364, Berkeley, CA, USA, 2008. USENIX Association.

[38] S. Kandula, D. Katabi, B. Davie, and A. Charney. TeXCP: Responsive yet stable traffic
engineering. In SIGCOMM, 2005.

77

[39] Atul Khanna and John Zinky. The Revised ARPANET Routing Metric. In SIGCOMM,
pages 45–56, 1989.

[40] Changhoon Kim, Matthew Caesar, and Jennifer Rexford. Floodless in seattle: a scalable
ethernet architecture for large enterprises. In SIGCOMM, New York, NY, USA, 2008.

[41] S. Kini, S. Ramasubramanian, A. Kvalbein, and A.F. Hansen. Fast recovery from dual
link failures in IP networks. In INFOCOM 2009, IEEE, pages 1368–1376. IEEE, 2009.

[42] N. Kushman, S. Kandula, D. Katabi, and B. Maggs. R-BGP: Staying connected in a
connected world. In NSDI, 2007.

[43] A. Kvalbein, C. Dovrolis, and C. Muthu. Multipath load-adaptive routing: putting the
emphasis on robustness and simplicity. In Network Protocols, 2009. ICNP 2009. 17th
IEEE International Conference on, pages 203–212. IEEE, 2009.

[44] A. Kvalbein, AF Hansen, T. Cicic, S. Gjessing, and O. Lysne. Fast IP network recovery
using multiple routing configurations. In INFOCOM 2006. 25th IEEE International
Conference on Computer Communications. Proceedings, pages 1–11. IEEE, 2007.

[45] K.W. Kwong, L. Gao, R. Guérin, and Z.L. Zhang. On the feasibility and efficacy of
protection routing in IP networks. In INFOCOM, 2010 Proceedings IEEE, pages 1–9.
IEEE, 2010.

[46] K.W. Kwong, R. Guérin, A. Shaikh, and S. Tao. Balancing performance, robustness and
flexibility in routing systems. Network and Service Management, IEEE Transactions
on, 7(3):186–199, 2010.

[47] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker, and I. Stoica.
Achieving convergence-free routing using failure-carrying packets. In SIGCOMM, 2007.

[48] S.S. Lor, R. Landa, and M. Rio. Packet re-cycling: eliminating packet losses due to
network failures. In Proceedings of the Ninth ACM SIGCOMM Workshop on Hot Topics
in Networks, page 2. ACM, 2010.

[49] M. Menth and R. Martin. Network resilience through multi-topology routing. In The
5th International Workshop on Design of Reliable Communication Networks, pages 271–
277.

[50] Murtaza Motiwala, Megan Elmore, Nick Feamster, and Santosh Vempala. Path splicing.
In SIGCOMM, 2008.

[51] Jayaram Mudigonda, Praveen Yalagandula, Mohammad Al-Fares, and Jeffrey C. Mogul.
SPAIN: COTS data-center ethernet for multipathing over arbitrary topologies. In Proc.
Networked Systems Design and Implementation, April 2010.

78

[52] A. Myers, E. Ng, and H. Zhang. Rethinking the service model: Scaling Ethernet to a
million nodes. In HotNets, 2004.

[53] R.N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan, V. Sub-
ramanya, and A. Vahdat. PortLand: A Scalable Fault-Tolerant Layer 2 Data Center
Network Fabric. In SIGCOMM, 2009.

[54] G.T.K. Nguyen, R. Agarwal, J. Liu, M. Caesar, P.B. Godfrey, and S. Shenker. Slick
packets. In Proc. SIGMETRICS, 2011.

[55] Yasuhiro Ohara, Shinji Imahori, and Rodney Van Meter. Mara: Maximum alternative
routing algorithm. In INFOCOM [5], pages 298–306.

[56] P. Pan, G. Swallow, and A. Atlas. RFC 4090 Fast Reroute Extensions to RSVP-TE for
LSP Tunnels. May 2005.

[57] V.D. Park and M.S. Corson. A Highly Adaptive Distributed Routing Algorithm for
Mobile Wireless Networks. In INFOCOM, 1997.

[58] C.E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-vector
routing (DSDV) for mobile computers. CCR, 24(4), 1994.

[59] P. Psenak, S. Mirtorabi, A. Roy, and L. Nguyen. P. Pillay-Esnault,” Multi-Topology
(MT) Routing in OSPF (RFC 4915). http://www.ietf.org/rfc/rfc4915.txt.

[60] S. Ray, R. Guérin, K.W. Kwong, and R. Sofia. Always acyclic distributed path compu-
tation. IEEE/ACM Transactions on Networking (ToN), 18(1):307–319, 2010.

[61] C. Reichert, Y. Glickmann, and T. Magedanz. Two routing algorithms for failure protec-
tion in IP networks. In Computers and Communications, 2005. ISCC 2005. Proceedings.
10th IEEE Symposium on, pages 97–102. IEEE, 2005.

[62] C. Reichert and T. Magedanz. Topology requirements for resilient IP networks. In MMB
& PGTS 2004: 12th GI/ITG Conference on Measuring, Modelling, and Evaluation
of Computer and Communication Systems (MMB) together with 3rd Polish-German
Teletraffic Symposium (PGTS), September 12-15, 2004, Dresden, Germany, page 379.
Margret Schneider, 2004.

[63] M. Shand and S. Bryant. IP Fast Reroute Framework. IETF Draft, 2007.

[64] S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh. Viking: a multi-spanning-tree
Ethernet architecture for metropolitan area and cluster networks. In INFOCOM, 2004.

[65] Martin Suchara, Dahai Xu, Robert Doverspike, David Johnson, and Jennifer Rexford.
Simple failure resilient load balancing. preprint, 2009.

79

[66] Martin Suchara, Dahai Xu, Robert Doverspike, David Johnson, and Jennifer Rexford.
Network architecture for joint failure recovery and traffic engineering. In Proc. ACM
SIGMETRICS, June 2011.

[67] Miia Vainio. Link reversal routing. preprint.

[68] S. Vutukury and J.J. Garcia-Luna-Aceves. MDVA: A distance-vector multipath rout-
ing protocol. In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, volume 1, pages 557–564.
IEEE, 2002.

[69] F. Wang and L. Gao. On inferring and characterizing internet routing policies. In IMC,
2003.

[70] Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin Gao, and Randy Bush. A measure-
ment study on the impact of routing events on end-to-end internet path performance.
In SIGCOMM, 2006.

[71] Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin Gao, and Randy Bush. A measure-
ment study on the impact of routing events on end-to-end internet path performance.
In SIGCOMM, 2006.

[72] Hao Wang, Haiyong Xie 0002, Lili Qiu, Yang Richard Yang, Yin Zhang, and Albert G.
Greenberg. Cope: traffic engineering in dynamic networks. In SIGCOMM, 2006.

[73] Wen Xu and Jennifer Rexford. MIRO: Multi-path Interdomain ROuting. In SIGCOMM,
2006.

[74] Xiaowei Yang and David Wetherall. Source selectable path diversity via routing deflec-
tions. In SIGCOMM, 2006.

