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Abstract

Robust Scheduling for Queueing Networks

by

Ramtin Pedarsani

Doctor of Philosophy in Engineering–Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Jean Walrand, Chair

Queueing networks are used to model complicated processing environments such as
data centers, call centers, transportation networks, health systems, etc. A queueing
network consists of multiple interconnected queues with some routing structure, and
a set of servers that have different and possibly overlapping capabilities in processing
tasks (jobs) of different queues. One of the most important challenges in designing
processing systems is to come up with a low-complexity and efficient scheduling policy.

In this thesis, we consider the problem of robust scheduling for various types of
processing networks. We call a policy robust if it does not depend on system parameters
such as arrival and service rates. A major challenge in designing efficient scheduling
policies for new large-scale processing networks is the lack of reliable estimates of system
parameters; thus, designing a robust scheduling policy is of great practical interest.
We develop a novel methodology for designing robust scheduling policies for queueing
networks. The key idea of our design is to use the queue-length changes information to
learn the right allocation of service resources to different tasks by stochastic gradient
projection method. Our scheduling policy is oblivious to the knowledge of arrival rates
and service rates of tasks in the network. Further, we propose a new fork-join processing
network for scheduling jobs that are represented as directed acyclic graphs. We apply
our robust scheduling policy to this fork-join network, and prove rate stability of the
network under some mild assumptions.

Next, we consider the stability of open multiclass queueing networks under longest-
queue (LQ) scheduling. LQ scheduling is of great practical interest since (a) it requires
only local decisions per group of queues; (b) the policy is robust to knowledge of arrival
rates, service rates and routing probabilities of the network. Throughput-optimality
of LQ scheduling policy for open multiclass queueing network is still an open problem.
We resolve the open problem for a special case of multiclass queueing networks with
two servers that can each process two queues, and show that LQ is indeed throughput-
optimal.
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Finally, we consider transportation networks that can be well modeled by queueing
networks. We abstractly model a network of signalized intersections regulated by fixed-
time controls as a deterministic queueing network with periodic arrival and service
rates. This system is characterized by a delay-differential equation. We show that
there exists a unique periodic trajectory of queue-lengths, and every trajectory or
solution of the system converges to this periodic trajectory, independent of the initial
conditions.



i

To my beloved parents Nahid and Mohammadreza.



ii

Contents

Contents ii

1 Introduction 1
1.1 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Robust Scheduling for Flexible Processing Networks 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Scheduling DAGs with Flexible Servers . . . . . . . . . . . . . . . . . . 8
2.3 Flexible Queueing Network . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Non-cooperative servers . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Towards Analyzing the Delay Performance . . . . . . . . . . . . . . . . 31
2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Stability of Multiclass Queueing Networks under Longest-Queue
Scheduling 48
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Problem Definition and Network Model . . . . . . . . . . . . . . . . . . 50
3.3 LQ Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 LDQ Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Analysis of Fixed-time Control 72
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Single Queue without Routing . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Network of Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4 Periodic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Conclusion and Future Work 86
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography 89



iii

Acknowledgments

First and foremost, I would like to express my sincerest gratitude to my advisor, Prof.
Jean Walrand, who has greatly supported me during my Ph.D. studies. Without his
guidance and persistent help this thesis would not have been possible. Jean’s thorough
insight in research and his brilliance in connecting deep mathematical notions with
practical engineering ideas have always amazed me. He was not only my advisor, but
also a great example of an academic researcher with very positive attitude towards life.
I truly appreciate that he let me explore a variety of problems across different areas.
One simply could not wish for a better or friendlier advisor.

I would like to thank Prof. Pravin Varaiya, with whom I collaborated on the
applications of queueing theory in transportation systems. Chapter 4 of this thesis is
the result of collaboration with Pravin. I learned a lot from his great experience, his
amazing insight, and his attitude towards research.

I have been very fortunate to collaborate with Prof. Kannan Ramchandran. I truly
appreciate his guidance in that project, and his amazing ability to come up with simple
tricks to solve complicated problems.

I would like to thank Prof. Yuan Zhong from Columbia University, who was a post-
doct in UC Berkeley during my second year of studies. Yuan has been very helpful to
me with his knowledge and patience. The second chapter of this thesis is the result of
collaboration with him.

I would next like to thank my thesis committee members, Prof. Venkat Anantharam
and Prof. David Aldous. Venkat provided great feedback and insight during my
research, when we discussed my research problem, or when he attended my talks.

I would also like to thank Mohammad-Ali Maddah-Ali and Urs Niesen, with whom
I collaborated as a summer intern at Bell labs. I had great fun doing research with
them, and learned many things during my internship.

I would like to thank the members of WIFO/BLISS who have been great friends
for me during my studies. Special thanks goes to Kangwook Lee, with whom we had
many hours of fruitful discussion. Kangwook has been an amazing collaborator and
friend.

Thanks to my friends Babak Damavandi, Khashayar Kotobi, Mostafa Khoshnevisan,
Kayvan Samimi, Mohammad Mirhosseini, Amir Hedayat, Nima Anari, Dorsa Sadigh,
and Payam Delgosha who greatly supported me in the past 4 years. Special thanks
goes to Zahra Amini; without her, my Berkeley years would not have been such a
wonderful experience.

Last, but not least, I devote my special thanks to my family. There are no words
that can fully express my gratitude to my parents. This thesis is dedicated with love
to them.



1

Chapter 1

Introduction

We are living in a world of large-scale networks such as data centers, call centers,
manufacturing lines, transportation networks, etc. As an example, a data center can
consist of tens of thousands of servers with overlapping capabilities that can process
thousands of jobs. Given the complexity and scale of these new processing networks,
researchers and engineers face significant challenges in designing efficient scheduling
algorithms. Thus, it is essential to pursue a scientific approach towards this problem.

Queueing network models are widely used for analyzing the performance of large-
scale networked systems. These are networks with multiple interconnected queues
served by a set of servers. Scheduling and load balancing algorithms for queueing
networks need to be designed in such a way that they achieve a large throughput
and small delay. Good algorithms can result in substantial savings in investment and
energy costs. However, designing provably efficient algorithms is complicated because
of the system size, the flexibility of the processing environment, and the variability of
the workload.

This thesis mainly focuses on the design and analysis of simple, scalable, and robust
scheduling policies for queueing networks. We consider various processing networks
that can model different applications such as data centers and transportation systems.
We attempt to design novel robust scheduling policies for these networks, and also
analyze well-known simple scheduling policies. We call a scheduling policy robust if
it does not require knowing the parameters of the network. Although the ultimate
performance metric for scheduling policies is to minimize response times, here our
approach is to design provably throughput-optimal algorithms to avoid intractability
of the problem. The focus of this thesis is on the theoretical and methodological aspects;
the analytical results should then provide useful guidelines for practical systems.

1.1 Contributions of the Thesis

The main contributions of this thesis are as follows.
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• We propose a novel methodology for designing robust policies for processing net-
works. We call a policy robust if it does not depend on system parameters such as
arrival and service rates. Designing robust scheduling policies is of great interest
for modern large-scale processing networks that often lack reliable estimates of
system parameters. The main novelty of our methodology is to use the stochastic
gradient projection method that reacts to queue-length changes in the network
in order to find the right allocation of service resources to different tasks that
need to be processed.

• We propose a new fork-join processing network that attempts to abstractly model
scheduling jobs in data centers and cloud computing. We model the jobs in the
network as directed acyclic graphs (DAGs). A job in our model is divided to a
few smaller tasks, each of them represented by a node of the graph. We assume
there are precedence constraints between tasks that are shown by the edges of
the graph. We design a virtual queueing network that can fully describe the
dynamics of this model, and design a throughput-optimal policy for the virtual
queueing network.

• Stability of longest-queue scheduling for open multiclass queueing networks is a
long-standing open problem. We tackle this problem in this thesis, and show
that for a special case of two servers, each of them serving two queues, longest-
queue scheduling is indeed maximally stable (or throughput-optimal). We also
develop longest-dominating-queue policy, which is a new scheduling policy that
is provably throughput-optimal for acyclic open multiclass queueing networks.

• Transportation network is an important application of queueing networks. We
model a network of signalized intersections regulated by fixed-time (FT) con-
trols as a deterministic queueing network with periodic arrival and service rates.
The dynamics of this system is characterized by a set of delay-differential equa-
tions. In this system, we show that (a) there exists a unique periodic trajectory
of queue-lengths; (b) every trajectory converges to this periodic trajectory, in-
dependent of the initial conditions. The periodic trajectory determines every
possible performance measure of the entire network, such as delay, travel time,
amount of wasted green, etc. Thus, one is able to design optimal FT control for
a network considering only this unique periodic trajectory.

1.2 Related Works

Here we give a brief overview of some popular scheduling policies for different types of
queueing networks. More detailed literature review is provided in each chapter.

DAG Scheduling. There is a large body of literature on the scheduling of jobs which
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can be modeled as DAGs. In the systems literature, researchers have long used DAGs
to model parallel processing in multiprocessors. In the more recent data center liter-
ature, DAGs are used to model data-intensive computations such as MapReduce [22],
Dryad [38], Spark [71], etc. In the analytical literature, researchers have considered
a dynamic problem where DAGs arrive to the system and get scheduled dynamically
over time. The system model for this problem has been mainly called “fork-join” net-
works. In the studied models, there is no flexibility in the system; that is, tasks of jobs
have dedicated servers. Most of the previous works have considered two basic ques-
tions regarding these networks: What are the necessary and sufficient conditions for
stability of the system? Given stability, what is the steady-state expected completion
times of DAGs? See [8, 7, 6, 5] for more details. The flexible DAG scheduling model
that we consider in this thesis is new, and different from all the previous related works.
Moreover, finding a robust policy was not previously considered for DAG scheduling.

Multiclass Queueing Networks. Open multiclass queueing networks are models of
complex processing systems, and are largely studied in the literature [19, 17, 15]. Most
of the works have been concerned about finding a simple throughput-optimal policy for
these networks. For networks of Kelly type, i.e., when the service rate of each server
only depends on the server itself, FIFO scheduling which is a robust policy has been
proved to be throughput-optimal [13, 42]. Head-of-Line processor sharing policy has
also been shown to be throughput-optimal for open multiclass queueing networks [14].
For general processing networks, the only known class of throughput-optimal schedul-
ing policies are Max-Weight type policies [18], which require knowledge of service rates
and routing probabilities in the network. A simple robust policy in open multiclass
queueing networks is serving the longest queue per station, or the longest-queue-first
scheduling policy [50]. The throughput-optimality of this scheduling policy is still an
open problem.

Transportation Networks. In transportation systems, movement of traffic can
be modeled as a queueing network. Signal control policies based on queue-length in-
formation have been extensively studied in the literature [52, 67, 1, 2]. Max-pressure
policy is shown to be provably maximally stable for these networks [67]. Despite the
clear advantages of feedback control policies for a network of signalized intersections,
in the U.S., 90 percent of traffic signals follow fixed time controls, which operate the
signal in a fixed periodic cycle, independent of the traffic state or queue lengths. No
analysis of fixed-time control policy has been done for transportation networks.

1.3 Organization

The rest of this thesis is organized as follows:
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Chapter 2 In this chapter, we propose a novel methodology for designing robust
policies for processing networks. The key idea of our algorithm is to use stochastic
gradient projection method that reacts to queue-length changes in the network in or-
der to find the right allocation of service resources to different tasks. Furthermore, we
propose a new processing network in which a job workflow is modeled abstractly as a
directed acyclic graph (DAG), with nodes representing the tasks, and edges represent-
ing precedence constraints among the tasks. We show the throughput-optimality of
our robust algorithm for this network. The results of this chapter are partly presented
in [58, 60, 59].

Chapter 3 In this chapter, we consider the stability of longest-queue schedul-
ing for open multiclass queueing networks. These are open networks with arbitrary
routing matrix and several disjoint groups of queues in which at most one queue can
be served at a time. Longest-queue scheduling policy is of great practical interest, since
it is robust to all network parameters, and it is local as each server only requires the
queue-length knowledge of its own group for scheduling. We show that longest-queue
scheduling is throughput-optimal for two groups of two queues. We also propose a
new scheduling policy called longest-dominating-queue (LDQ) scheduling, which is ro-
bust but not local. We prove the throughput-optimality of longest-dominating-queue
scheduling when the network topology is acyclic, for an arbitrary number of groups
and queues. The results of this chapter are presented in [57].

Chapter 4 In this chapter, we present an analysis of the traffic dynamics in a
network of signalized intersections. The intersections are regulated by fixed-time con-
trols, all with the same cycle length or period. We model this transportation network
as a queueing network as follows. Vehicles arrive from outside the network at each
queue in a deterministic periodic stream. They take a fixed time to travel along each
link (from one queue to another queue). Vehicles make turns at intersections in fixed
proportions, and eventually leave the network. We show that if the queueing network is
stabilizable, starting at any initial condition, the network state converges to a unique
periodic orbit. Thus, the effect of initial conditions disappears. The results of this
chapter are presented in [53].

Chapter 5 In this chapter, we conclude the thesis by summarizing the results,
and presenting some important future research directions.
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Chapter 2

Robust Scheduling for Flexible
Processing Networks

2.1 Introduction

As modern processing systems (e.g., data centers, hospitals, manufacturing networks)
grow in size and sophistication, their infrastructures become more complicated, and
a key operational challenge in many such systems is efficient scheduling of processing
resources to meet various demands in a timely fashion.

Two common features of modern large-scale processing networks are the following:
a) workflows of interdependent tasks, where the completion of one task will produce
new tasks to be processed in the system, and b) flexibility of processing resources with
overlapping capabilities as well as flexibility of tasks to be processed by multiple servers.
To illustrate these two features, consider the scheduling of a simple Mapreduce job [22]
of word count of the play “Hamlet” in a data center (see Figure 2.1). “Mappers” are
assigned the tasks of word count by Act, producing intermediate results, which are then
aggregated by the “reducer”. In more elaborate workflows, these interdependencies
can be more complicated. Also, there is often considerable overlap in the processing
capabilities of the data center servers, and flexibility on where tasks can be placed [22].
Similarly, in a healthcare facility such as a hospital, an arriving patient may have a
complicated workflow of service/treatment requirements [4], which can also be assigned
to doctors and/or nurses with overlapping capabilities.

In this chapter, we mainly focus on robust scheduling policies. A scheduling policy
decides how server capacities are allocated over time, and it is called robust if the
scheduling decisions are based only on past queue sizes, and do not depend on sys-
tem parameters such as arrival or service rates. Robust scheduling policies are highly
desirable in practice, since (a) parameter estimates are often unreliable, and server
operating conditions can vary over time, rendering earlier estimates obsolete (see e.g.,
[41]); and (b) they use only minimal information and adapt to changes in demands and
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Figure 2.1: Word count of Hamlet in MapReduce

service conditions automatically.

2.1.1 Main Contribution

We provide a theoretical framework of how to design a robust scheduling and capacity
allocation policy, and apply this policy to two different processing networks that we
propose as follows.

(i) We propose a flexible processing network model, in which arriving jobs are mod-
eled as directed acyclic graphs (DAG), with nodes representing tasks, and edges
representing precedence constraints among tasks. Both servers and tasks are flex-
ible, in the sense that each server is capable of serving a (nonempty) subset of
the task types, and each task may be processed by more than one server. The
service rate of a server depends on which task type it is serving.

(ii) We consider a flexible queueing network with probabilistic routing structure,
where a job goes through processing steps in different queues. Both queues and
servers are flexible in the sense that each server is capable of serving a (non-
empty) subset of the queues, and tasks at a queue may be served by more than
one server. Each queue may have one dedicated exogenous arrival process. Upon
service completion, a task may join another queue or leave the network, according
to a general routing matrix.

We design a robust scheduling policy for both networks, and prove that when
service rates can be written as a product of a server-dependent quantity and a task-
dependent quantity, the proposed policy is throughput-optimal1. Our policy is based
on the simple idea of matching incoming flow rates to their respective service rates, and
detecting mismatches using queue size information. If system parameters were known,
a so-called static planning problem [33] can be solved to obtain the optimal allocation

1We are concerned with rate stability. A scheduling policy is throughput-optimal if, under this
policy, the system is stable whenever there exists some policy under which the system is stable.
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of server capacities, which balances flows in the system. Without the knowledge of
system parameters, however, the policy updates the allocation of server capacities
according to changes in queue sizes. Equivalently, our scheduling policy solves the
static planning problem without directly knowing what the parameters are by learning
the right capacity allocation observing only the queues sizes. While our policy uses
the general idea of stochastic gradient descent (see e.g., [11]), a technique that has
been successfully employed in the design of distributed CSMA algorithms for wireless
networks with good performance [39], it has major differences compared to the Q-
CSMA algorithm: (i) Q-CSMA algorithm is a local adaptive distributed algorithm
for maximizing the throughput of wireless networks, but the robust algorithm tries
to adaptively find the right share of server’s capacities for each task in the network;
(ii) Q-CSMA algorithms requires full knowledge of service rates, but our algorithm is
robust to the knowledge of task service rates. Finally, we would like to highlight that
the proposed methodology is applicable to many different types of queueing networks
beyond the two specific networks that are considered here.

2.1.2 Related Works

Scheduling of queueing networks has been studied extensively over several decades. We
do not attempt to provide a comprehensive literature review here; instead, we highlight
some of the literature, which is closer to the two processing networks we consider.

First, our DAG processing model is closely related to classical fork-join networks
(see e.g., [7, 6, 43, 10, 54]). The main difference between the classical models and ours
is that we allow tasks to be flexible, whereas tasks are assigned to dedicated servers
in classical fork-join networks. To the best of our knowledge, the problem of robust
scheduling has not been addressed for the classical fork-join network models. The most
basic question regarding these networks concerns the necessary and sufficient conditions
for stability, that is, for the existence of the steady-state probability distribution of the
underlying Markov process.

Given the stability results, the next natural question is to compute the steady-state
expected completion times of DAGs. Few analytical results are available, except for
the simplest models (see e.g., [28, 27, 49]). Performance bounds on the stationary
expected job completion time have been derived (see e.g., [8, 7, 6, 5]), but for most
models, the tightness of these bounds is not known.

An approach that has proved effective in revealing structural properties of complex
queueing networks is so-called “heavy-traffic analysis”, where the system state is scaled
appropriately and system utilization approaches 1. Works on fork-join networks in this
direction include [54, 55, 68].

Second, the flexible queueing network model is closely related to the system consid-
ered in [3] ([3] also considers setup costs whereas we do not). The policies in [3] make
use of arrival and service rates, and their throughput properties are analyzed using
fluid models, hence their approach is distinct from ours. We would also like to point
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out that our network model includes some well-studied queueing systems as special
cases. In the case where the queues are not flexible, i.e., each queue has a dedicated
server, the system reduces to the open multiclass queueing network (see e.g., [35, 17]).
The version of the system with no routing, i.e., when arriving customers leave the net-
work immediately after service completion, is equivalent to the classical flexible parallel
server system, considered in e.g., [48].

There is considerable interest in the study of robust scheduling algorithms in the
context of parallel server systems. The well-know Gcµ rule (equivalent to a MaxWeight
policy with appropriately chosen weights on queues) has been proved to have good
performance properties (including throughput-optimality) (e.g., [48]), and does not
depend on arrival rates. [9] studies performance properties of LQF, which is robust to
both arrival and service rates, and establishes its throughput-optimality when the so-
called activity graph is a tree. [64] established the throughput-optimality of a priority
discipline in the many-servers regime, also under the condition that the activity graph
is a tree. [24] established the throughput-optimality of LQF under a local pooling
condition.

2.2 Scheduling DAGs with Flexible Servers

2.2.1 System Model

We consider a general flexible fork-join processing network, in which jobs are modeled as
directed acyclic graphs (DAG). Jobs arrive to the system as a set of tasks, among which
there are precedence constraints. Each node of the DAG represents one task type2, and
each (directed) edge of the DAG represents a precedence constraint. More specifically,
we consider M classes of jobs, each of them represented by one DAG structure. Let
Gm = (Vm, Em) be the graph representing the job of class m, 1 ≤ m ≤ M , where Vm
denotes the set of nodes of type-m jobs, and Em the set of edges of the graph. Let
V = ∪Mm=1Vm and E = ∪Mm=1Em. We suppose that each Gm is connected, so that there
is an undirected path between any two nodes of Gm. There is no directed cycle in
any Gm by the definition of DAG. Let the number of nodes of job type m be Km, i.e.
|Vm| = Km. Let the total number of nodes in the network be K. Thus,

∑M
m=1Km = K.

We index the task types in the system by k, 1 ≤ k ≤ K, starting from job type 1 to
M . Thus, task type k belongs to job type m(k) if

m(k)−1∑
m′=1

Km′ < k ≤
m(k)∑
m′=1

Km′ .

We call node k′ a parent of node k, if they belong to same job type m, and (k′, k) ∈ Em.
Let Pk denote the set of parents of node k. In order to start processing a type-k task,

2We will often make use of both the concepts of tasks and task types. To avoid confusion and
overburdening terminology, we will use node synonymously with task type for the rest of the chapter.



CHAPTER 2. ROBUST SCHEDULING FOR FLEXIBLE PROCESSING
NETWORKS 9

1 

2 

3 
4 

T1 

T2 

Figure 2.2: A simple DAG

the processing of all tasks of its parents within the same job should be completed. Node
k is said to be a root of DAG type m(k), if Pk = ∅. We call k′ an ancestor of k if they
belong to the same DAG, and there exists a directed path of edges from k′ to k. Let
Lk be the length of the longest path from the root nodes of the DAG, Gm(k), to node
k. If k is a root node, then Lk = 0.

There are J servers in the processing network. Servers are flexible in the sense that
each server can serve a non-empty set of nodes. Similarly, nodes/task types are also
flexible, so that nodes can be served by a non-empty set of servers. In other words,
servers can have overlap of capabilities in processing a node. For each j, we define Tj
to be the set of nodes that server j is capable of serving. Let Tj = |Tj|. For each k,
let Sk be the set of servers that can serve node k, and let Sk = |Sk|. Without loss of
generality, we also assume that Tj, Sk ≥ 1 for all j and k, so that each server can serve
at least one node, and each node can be served by at least one server.

Example 1. Figure 2.2 illustrates the DAG of one job type that consists of four nodes
{1, 2, 3, 4}. There are two servers 1 and 2. Server 1 can process tasks of types in the
set T1 = {1, 2, 3} and server 2 can process tasks of types in the set T2 = {3, 4}. When
a type-1 task is completed, it “produces” one type-2 task and one type-3 task, both of
which have to be completed before the processing of the type-4 task of the same job
can start.

We consider the system in discrete time. We assume that the arrival process of
type-m jobs is a Bernoulli process with rate λm, 0 < λm < 1; that is, in each time slot,
a new job of type m arrives to the system with probability λm, independently over
time. We assume that the service times are geometrically distributed and independent
of everything else. When server j processes task k, the service completion time has
mean µ−1

kj . Thus, µkj can be interpreted as the service rate of node k when processed
by server j.
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Figure 2.3: Queueing Network of DAG in Figure 2.2

2.2.2 Queueing Network Model for Cooperative Servers

We model our processing system as a queueing network in the following manner. We
maintain one virtual queue of processed tasks that are sent from node k′ to k for each
edge of the DAGs (k′, k) ∈ E . Furthermore, we maintain a virtual queue for the root
nodes of the DAGs. Let χm be the number of root nodes in the graph of job type
m. Then, the queueing network has

∑M
m=1(|Em|+ χm) virtual queues. As an example,

consider the DAG of Figure 2.2. The queueing network of this DAG is shown in Figure
2.3. We maintain 5 virtual queues, one for each edge of the graph, and one virtual
queue for the root node 1.

Job identities. In our model, jobs and tasks have distinct identities. This is mainly
motivated by data center applications as well as health systems. For instance, it is
important not to mix up blood samples of different patients in hospital, and to put
pictures on the correct webpage in a data center setting. However, in a car manufac-
turing line, the wheel of the car for example, does not have an identity and can be
installed on any car. An approach to avoid mixing tasks of different jobs is to keep
track of job identities of all tasks present in the system at all times. However, this
requires potentially unbounded memory from the scheduler, since a task could belong
to any one of the previously arrived jobs. Furthermore, it is not clear how to best make
use of such information for designing policies.

We now explain how a job of identity a is processed in the queueing network of
Figure 2.3. When task 1 of job a from queue (0, 1) is processed, tasks 2 and 3 of job a
are sent to queues (1, 2) and (1, 3), respectively. When tasks in queues (1, 2) and (1, 3)
are processed, their results are sent to queues (2, 4) and (3, 4), respectively. Finally,
to process task 4 of job a, one part belonging to job a from queue (2, 4) and one part
belonging to job a from (3, 4) are gathered and processed to finish processing job a.
We emphasize that tasks are identity-aware in the sense that to complete processing
task 4, it is not possible to merge any two parts (belonging to possibly different jobs)
from queues (2, 4) and (3, 4).
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We describe the synchronization issue in our queueing network model if servers
are non-cooperative, through a simple example of DAG shown in Figure 2.2 and its
corresponding queueing network shown in Figure 2.3. Suppose that job a arrives shortly
before job b to the system. Assume that server 1 is much faster than server 2. The
following sequence of events can happen. First, server 1 processes task 1 of job a in
queue (0, 1), and then it processes task 1 of job b in queue (0, 1) while server 2 starts
processing task 3 of job a in queue (1, 3). Server 1 finishes processing task 2 of job a
and the result is sent to queue (2, 4). Then server 1 starts processing task 3 of job b
and sends the result to queue (3, 4) before task 3 of job a is fully processed by server
2. Now the head of the line task of queue (2, 4) belongs to job a and the head of
the line task of queue (3, 4) belongs to job b. Thus, an identity-oblivious policy may
wrongly schedule processing task type 4 by merging the results of jobs a and b from
queues (2, 4) and (3, 4). This problem does not arise if the processing of the tasks are
FIFO. This is the case if the servers cooperate on the same task, adding their service
capacities.

For now, to guarantee synchronization, we consider a simplifying assumption that
servers are cooperative. That is, we assume that servers that work on the same task
type, cooperate on the same head-of-the-line task, adding their service capacities. We
address the non-cooperative case in Section 2.4.

Queue Dynamics. Let Q(k′,k) denote the length of the queue corresponding to edge
(k′, k) and let Q(0,k) denote the length of the queue corresponding to root node k. A
task of type k can be processed if and only if Q(k′,k) > 0 for all k′ ∈ Pk – this is because
servers are cooperative, and tasks are processed in a FIFO manner. Thus, the number
of tasks of node k available to be processed is mink′∈Pk

Q(k′,k), if k is not a root node,
and Q(0,k), if k is a root node. For example, in Figure 2.3, queue (2, 4) has length 2
and queue (3, 4) has length 1, thus there is one task of type 4 available for processing.
When one task of class k is processed, lengths of all queues (k′, k) are decreased by
1, where k′ ∈ Pk, and lengths of all queues (k, i) are increased by 1, where k ∈ Pi.
Therefore, the dynamics of the queueing network is as follows. Let dnk ∈ {0, 1} be the
number of processed tasks of type k at time n, and anm ∈ {0, 1} be the number of jobs
of type m that arrives at time n. If k is a root node of the DAG, then

Qn+1
(0,k) = Qn

(0,k) + anm(k) − dnk ; (2.1)

else,
Qn+1

(k′,k) = Qn
(k′,k) + dnk′ − dnk . (2.2)

Let pkj be the fraction of capacity that server j allocates for processing available tasks
of class k. We define p = [pkj] to be the allocation vector. If server j allocates all its
capacity to different tasks, then

∑
k∈Tj pkj = 1. Thus, an allocation vector p is called

feasible if ∑
k∈Tj

pkj ≤ 1, ∀ 1 ≤ j ≤ J. (2.3)
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We interpret the allocation vector at time n, pn = [pnkj], as randomized scheduling
decisions at time n, in the following manner. First, without loss of generality, the
system parameters can always be re-scaled so that

∑
j∈Sk µkj ≤ 1 for all k, by speeding

up the clock of the system. Now suppose that at time slot n, the allocation vector is
pn. Then, the head-of-the-line task k is served with probability

∑
j∈Sk µkjp

n
kj in that

time slot. Note that
∑

j∈Sk µkjp
n
kj ≤ 1 by our scaling of the service rates.

2.2.3 The Static Planning Problem

In this subsection, we introduce a linear program (LP) that characterizes the capacity
region of the network, defined to be the set of all arrival rate vectors λ where there is
a scheduling policy under which the queueing network of the system is stable3. The
nominal traffic rate to all nodes of job type m in the network is λm. Let ν = [νk] ∈ RK

+

be the set of nominal traffic rate of nodes in the network. Then, νk = λm if m(k) = m,
i.e., if

∑m−1
m′=1Km′ < k ≤

∑m
m′=1Km′ . The LP that characterizes the capacity region

of the network makes sure that the total service capacity allocated to each node in
the network is at least as large as the nominal traffic rate to that node. Thus the LP,
known as the static planning problem [33], is defined as follows.

Minimize ρ (2.4)

subject to νk ≤
∑
j∈Sk

µkjpkj, ∀ 1 ≤ k ≤ K

ρ ≥
∑
k∈Tj

pkj, ∀ 1 ≤ j ≤ J, (2.5)

pkj = 0, if k 6∈ Tj, (2.6)

pkj ≥ 0. (2.7)

Proposition 1. Let the optimal value of the LP be ρ∗. Then ρ∗ ≤ 1 is a necessary
and sufficient condition of rate stability of the system.

The proof of Proposition 1 is provided in Appendix 2.6.1.
By Proposition 1, the capacity region Λ of the network is the set of all λ ∈ RM

+ for
which the corresponding optimal solution ρ∗ to the LP satisfies ρ∗ ≤ 1. More formally,

Λ ,

{
λ ∈ RM

+ : ∃ pkj ≥ 0 such that
∑
k∈Tj

pkj ≤ 1 ∀ j, and νk ≤
∑
j∈Sk

µkjpkj ∀ k

}
.

(2.8)

3As mentioned earlier, the stability condition that we are interested in is rate stability.
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2.2.4 Scheduling Policy Robust to Task Service Rates

Consider the following simplifying assumption.

Assumption 1. For all k and all j ∈ Sk, service rates µkj can be factorized to two
terms: the service rate of the task type, µk, and the service rate or speed of the server,
αj. Thus, µkj = µkαj.

While Assumption 1 appears somewhat restrictive, it covers a variety of important
cases. When αj = 1 for all j, the service rates are task dependent. This case models,
for example, a data center of servers with the same processing speed (possibly of the
same generation and purchased from the same company), but with different software
compatibilities, and possibly hosting overlapping sets of data blocks. The case when
αj’s are different can model the inherent heterogeneous processing speeds of the servers.

We remark that Assumption 1 is crucial for our proposed robust scheduling algo-
rithm to be throughput-optimal. In Section 2.2.6, we provide an example of a simple
network with generic service rates that is unstable under the proposed scheduling pol-
icy. In Section 2.4, we relax this assumption by considering generic service rates, and
we design a Max-Weight type throughput-optimal policy that is not robust to service
rates.

We now propose a scheduling policy with known αj, which is robust to task service
rates µk, and prove that it is throughput-optimal. The idea of our scheduling policy is
quite simple: it reacts to queue size changes by adjusting the service allocation vector
p = [pkj]. Since service rates µkj are factorized to two terms µk and αj, only the sum
pk ,

∑
j∈Sk αjpkj affects the effective service rate for node k. One can consider pk as

the total capacity that all the servers allocate to node k in a time slot. So, with a
slight abuse of notation and terminology, we call p = [pk] the service allocation vector.

To precisely describe our proposed scheduling algorithm, first we introduce some
notation. Let 1{Qn

(k′,k) > 0} be the indicator that the queue corresponding to edge

(k′, k) is non-empty at time n. Let ∆Qn+1
(k′,k) = Qn+1

(k′,k) − Qn
(k′,k) be the size change of

queue (k′, k) from time n to n + 1. Define En
k to be the event that there is a strictly

positive number of type-k tasks to be processed at time n. Thus, En
k = {Qn

(0,k) > 0}
if k is a root node, and En

k = {Qn
(k′,k) > 0, ∀k′ ∈ Pk} if k is not a root node. Also let

1En
k

be the indicator function of event En
k .

Let C ⊆ RK
+ be the polyhedron of feasible service allocation vector p.

C =

{
p ∈ RK : ∃ pkj such that

∑
j∈Sk

αjpkj = pk ∀k, pkj ≥ 0 ∀k, j,
∑
k∈Tj

pkj ≤ 1 ∀j

}
.

(2.9)

For any K-dimensional vector x, let [x]C denote the convex projection of x onto C.
Finally, let {βn} be a positive decreasing sequence with the following properties: (i)
limn→∞ β

n = 0, (ii)
∑∞

n=1 β
n =∞, (iii)

∑∞
n=1(βn)2 <∞, and (iv) limn→∞

1
nβn <∞.
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As we will see in the sequel, a key step of our algorithm is to find an unbiased
estimator of λ − µkpk for all k, based on the current and past queue sizes. Toward
this end, for each node k, we first pick a path of queues from a queue corresponding
to a root node of the DAG to queue (k′, k) for some k′ ∈ Pk. Note that the choice of
this path need not be unique. Let Hk denote the set of queues on this path from a
root node to node k. For example, in the DAG of Figure 2.2, for node 4, we can pick
the path H4 = {(0, 1), (1, 2), (2, 4)}. Then, we use

∑
(i′,i)∈Hk

∆Q(i′,i) as an unbiased
estimate of λ− µkpk. To illustrate the reason behind this estimate, consider the DAG
in Figure 2.3. It is easy to see that

E(∆Qn+1
(0,1) + ∆Qn+1

(1,2) + ∆Qn+1
(2,4)|Q

n
(2,4) > 0, Qn

(3,4) > 0) = λ− µ4p
n
4 .

In general, if Lk = L− 1 for node k (recall that Lk is the length of the longest path
from a root node to k), one picks a path of edges (i0, i1), (i1, i2), . . . , (iL−1, iL), such
that i0 = 0 and iL = k. Then,

E

[
L−1∑
l=0

∆Qn+1
(il,il+1)|1En

k
= 1

]
= (νk − µi1pni11En

i1
) +

L−1∑
l=1

(µilp
n
il
1En

il
− µil+1

pnil+1
1En

il+1
)

= νk − µkpnk1En
k
. (2.10)

Our scheduling algorithm updates the allocation vector pn in each time slot n in
the following manner.

1. We initialize with an arbitrary feasible p0.

2. Update the allocation vector pn as follows.

pn+1
k = [pnk + βn1En

k

∑
(i′,i)∈Hk

∆Qn+1
(i′,i)]C. (2.11)

This completes the description of the algorithm.
We now provide some intuition for the algorithm. As we mentioned, the algorithm

tries to find adaptively the capacity allocated to task k, pk, that balances the nominal
arrival rate and departure rate of queues (k′, k). The nominal traffic of all the queues
of DAG type m is νk(m). Thus, the algorithm tries to find p∗k = νk

µk
, in which case

the nominal service rate of all the queues is p∗kµk = νk. To find an adaptive robust
algorithm, we formulate the following optimization problem.

minimize
1

2

K∑
k=1

(νk − µkpk)2

subject to p ∈ C. (2.12)
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Solving (2.12) by the standard gradient descent algorithm, using step size βn at time
n, leads to the update rule

pn+1
k = [pnk + βnµk(νk − µkpnk)]C. (2.13)

To make the update in (2.13) robust, first we consider a “skewed” update

pn+1
k = [pnk + βn(νk − µkpnk)]C, (2.14)

and second, we use the queue-length changes in (2.10) as an unbiased estimator of the
term νk − µkpnk . This results in the update equation in (2.11). Thus, the update in
(2.11) becomes robust to knowledge of service rates µk and nominal traffic rates νk.
The algorithm is not robust to knowledge of server rates, αj, since the convex set C is
dependent on αj. Thus, the projection requires the knowledge of server speeds αj.

Let us now provide some remarks on the implementation efficiency of the algorithm.
First, the policy is not fully distributed. While the update variables 1En

k

∑
(i′,i)∈Hk

∆Qn+1
(i′,i)

can be computed locally, the projection [·]C requires full knowledge of all these local up-
dates. Second, since Euclidean projection on a polyhedron is a quadratic programming
problem that can be solved efficiently in polynomial time by optimization algorithms
such as the “interior point method” [12], the projection step [·]C can be implemented
efficiently.

The simulation results presented in Subsection 2.2.5 are derived using the described
algorithm. For proof purposes, we make a slight modification to the proposed algo-
rithm. First, we assume that a) the nominal arrival rate of all the tasks νk is strictly
positive, b) there are finitely many servers in the system, and c) all the service rates,
µkj, are finite. Note that assumptions a), b), and c) are trivial assumptions without
losing the generality of the network. Then, there exists ε0 > 0 such that for all k,
νk
µk
≥ ε0. We now suppose that ε0 is known, and consider a variant Cε0 of the convex

set C, defined to be

Cε0 =

{
p ∈ RK : ∃ pkj ≥ 0 such that

∑
j∈Sk

αjpkj = pk ∀k, pk ≥ ε0 ∀k,
∑
k∈Tj

pkj ≤ 1 ∀j

}
.

(2.15)

Note that p∗ ∈ Cε0 . We modify the projection to be on the set Cε0 every time, so that
pn are now updated as

pn+1
k = [pnk + βn1En

k

∑
(i′,i)∈Hk

∆Qn+1
(i′,i)]Cε0 . (2.16)

We remark again that this modification is made only for the purpose of proving
Theorem 1, hence for technical reasons.

The main results of this section are the following two theorems.
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Theorem 1. Let λ ∈ Λ. The allocation vector pn updated by Equation (2.16) converges
to p∗ = [p∗k] almost surely, where p∗k = νk

µk
.

The proof of Theorem 1 is provided in Appendix 2.6.2. Here, we mention three
key steps in the proof. First, we show that the non-stochastic gradient projection
algorithm with the skewed update (2.14) converges. This is not true in general, but
correct here due to the nice property of the objective function in (2.12), which is the
sum of separable quadratic terms. Second, we show that the cumulative stochastic
noise present in the update due to the error in estimating the correct drift is an L2-
bounded martingale. Thus, by martingale convergence theorem the cumulative noise
converges and has a vanishing tail. This shows that after some time the noise becomes
negligible. Finally, we prove that the event that all the queues in the network are
non-empty happens for a positive fraction of time. Intuitively, this suggests that the
algorithm is updating “often enough” to be able to converge. The rigorous justification
makes use of Kronecker’s lemma [25].

Theorem 2. Let λ ∈ Λ. The queueing network representing the DAGs is rate stable
under the proposed scheduling policy, i.e.

lim
n→∞

Qn
(k′,k)

n
= 0, a.s., ∀(k′, k).

The proof of Theorem 2 is provided in Appendix 2.6.3. While proving the theorem
is technically quite involved, the key idea is to use Theorem 1 to prove that the servers
allocate enough cumulative capacity to all the tasks in the network, which itself leads
to rate stability of the network.

2.2.5 Simulations

In this section, we show the simulation results and discuss the performance of the
robust scheduling algorithm. Consider the DAG shown in Figure 2.4. We assume that
the system has 1 type of jobs with arrival rate λ = 1/5. The task service rates are

µ1 = 1, µ2 = 4/3, µ3 = 2, µ4 = 1/2 and µ5 = 2/3.

The server speeds are α1 = 1 and α2 = 1/2, and T1 = {1, 4, 5} and T2 = {2, 3, 4}. The
step size of the algorithm is chosen to be βn = 1

n0.6 and the initial queue lengths are
[0, 0, 0]. From (2.4), one can compute that the capacity region Λ is {λ ≥ 0 : λ ≤ 6

23
}.

First we demonstrate that our proposed algorithm is throughput-optimal and makes
the queues stable. Figure 2.5 illustrates the queue-lengths as a function of time. More-
over, Figure 2.6 shows how vector pn converges to the flow-balancing values as Theorem
1 states. Figure 2.5 suggests that queues in the network become empty infinitely often,
hence are stable. However, the average queue-length is quite large, so the algorithm
suffers from bad delay. The reason is that the allocation vector pn is converging to the
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Figure 2.4: DAG of 5 tasks

Figure 2.5: Queue-lengths vs. time

value that equalizes the arrival and service rates of all the queues. As an example, if
we consider a system with a single-node DAG of arrival rate λ and a single server of
service rate µ, the queueing network reduces to the classical M/M/1 queue. Theorem
1 shows that the service capacity that this queue receives, pn, converges to λ

µ
. It is

known that if the arrival rate of an M/M/1 queue is equal to its service rate, the un-
derlying Markov chain describing the queue-length evolution is null-recurrent, and the
queue suffers from large delay. In the following, we propose a modified version of the
algorithm that reduces the delays.

Modified scheduling algorithm to improve delays. As discussed in the pre-
vious section, the allocation vector pn converges to the value that just equalizes the
arrival rate and the effective service rate that each tasks receives. To improve the delay
of the system, one wants to allocate strictly larger service rate to each task than the
arrival rate. This is possible only if the arrival vector λ is in the interior of the capacity
region. In this case, there exists some δ > 0 and an allocation vector p∗ such that
νk ≤ −δ + µkp

∗
k for all k.
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Figure 2.6: Allocation vector pn vs. time

Thus, assuming that δ is known, we minimize the function

V (p) =
K∑
k=1

(νk + δ − µkp∗k)2,

by stochastic gradient. Similarly to the proof of Theorem 1, one can show that pnk
converges to νk+δ

µk
. With this formulation of the optimization problem, the update

equation for the new scheduling algorithm is

pn+1
k = [pnk + δ + βn1En

k

∑
(i′,i)∈Hk

∆Qn+1
(i′,i)]C,

which is similar to (2.11) with an extra δ-slack.
We consider the same setting and network parameters as the previous section, and

simulate the modified algorithm using δ = 0.03. Figure 2.7 demonstrates a substantial
reduction in the queue-length of queue 4 and the delay performance of the algorithm.
Similar plots can be obtained for queue-lengths of other queues, which we omit to avoid
redundancy.

Time-varying demand and service and bursty arrivals. In Section 2.1, we
mentioned that bursty arrivals as well as time-varying service and arrival rates make
the estimation of parameters of the system very difficult and often inaccurate, and
used this reason as a main motivation for designing robust scheduling policies. How-
ever, the theoretical results are provided for a time-invariant system with memoryless
queues. In this section, we investigate the performance of our proposed algorithm in a
time-varying system with bursty arrivals.

Consider the same DAG structure of previous simulations and the same server rates.
We model the burstiness of demand as follows. At each time slot, a batch of B jobs
arrive to the system with probability λ/B. To simulate a time-varying system, we
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Figure 2.7: Queue-length of queue 4 for the modified algorithm vs. time for δ = 0.03.

Figure 2.8: Queue-length evolution of queue 4 in the time-varying bursty network.

consider two modes of network parameters. In the first mode, arrival rate is λ = 1/5,
and task service rates are

µ1 = 1, µ2 = 4/3, µ3 = 2, µ4 = 1/2 and µ5 = 2/3.

In the second mode, arrival rate is λ = 1/6, and task service rates are

µ1 = 1/2, µ2 = 2, µ3 = 1, µ4 = 2/5 and µ5 = 1.

Note that the capacity region of mode 2 is λ < 3/14. We simulate a network that
changes mode every T time slots.

Figure 2.8 illustrates the queue-length of the queue 4 versus time when the system
has parameters T = 1000 and B = 5, and δ = 0.02. As one expects, the bursty
time-variant system suffers from larger delay. However, as the simulation shows the
plotted queue is still stable, and the gradient algorithm is able to track the changes in
the network parameters.
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Figure 2.9: The X model

2.2.6 Unstable Network with Generic Service Rates

In this subsection, we first describe a simple modified version of the robust algorithm
for the case that service rates are generic.

Define the allocation vector to be p = [pkj]. Similar to before, the algorithm tries to

minimize
∑K

k=1(νk−
∑J

j=1 µkjpkj)
2 using gradient method. Then, a non-robust update

of the allocation vector would be

pn+1
kj = [pnkj + βnµkj(νk −

J∑
j=1

µkjp
n
kj)]C. (2.17)

A robustified version of the update is

pn+1
kj = [pnkj + βn1En

k

∑
(i′,i)∈Hk

∆Qn+1
(i′,i)]C. (2.18)

We now demonstrate that the above modified version of the robust algorithm is not
throughput-optimal via a simple example. We consider a specific queueing network
known in the literature as “X” model [9], shown in Figure 2.9 with generic service rates
µkj that cannot be factorized into 2 factors µk and αj. In our setting, the queueing
network is equivalent to having 2 types of DAGs, each of them consisted of a single task
with different service characteristics. There are 2 servers in the system. The network
parameters are as follows.

λ1 = λ2 = 0.3, µ11 = µ22 = 1/8, and µ12 = µ21 = 3/8.

It is easy to check that a corner point of the stability region is λ1 = 3/8 and λ2 = 3/8,
which is achieved by server 1 always working on task-type 2 and server 2 always working
on task-type 1. Let p = [p11, p12, p21, p22] be the allocation vector for this example.
Then, the update is [

pn+1
1j

pn+1
2j

]
=

[
pn1j + βn1En

1
∆Qn+1

1

pn2j + βn1En
2
∆Qn+1

2

]
C
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Figure 2.10: Unstable queues in X model

Figure 2.11: Allocation vector pn converges to [1/2, 1/2, 1/2, 1/2] in X model.

for j = 1, 2. We remark that the update of the allocation vector is identical for both
servers. Thus, one can predict that the allocation vector converges to pkj = 1/2 for all
k ∈ {1, 2} and j ∈ {1, 2}. The simulation results also show that our scheduling policy
is not stable with these network parameters, since the allocation vector converges to
[1/2, 1/2, 1/2, 1/2]. In this simulation, we set p0

kj = 0.1 for all k and j. In general, the
reason behind converging to a non-optimal allocation vector for generic µkj is that the
skewed gradient projection (after dropping the term µkj from (2.17) to (2.18)) does
not converge, even without noise.

In general, it would be interesting to find out whether there exists a robust schedul-
ing policy that stabilizes the X model. Due to the underlying symmetry of the problem,
it seems plausible that no myopic queue-size policy 4 is throughput-optimal in this ex-
ample.

4These are scheduling policies that are only a function of the current queue sizes of the network.
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2.3 Flexible Queueing Network

In this section, we consider a different queueing network model, and show that our
robust scheduling policy can also be applied to this network.

2.3.1 Network Model

We consider a flexible queueing network with K queues and J servers, and probabilistic
routing. Servers are flexible in the sense that each server can serve a (non-empty) set
of queues. Similarly, tasks in each queue are flexible, so that each queue can be served
by a set of servers. Similar to the DAG scheduling model, for each j, let Tj be the set
of queues that server j can serve, let Tj = |Tj|. For each k, let Sk be the set of servers

that can serve queue k, and let Sk = |Sk|. Clearly,
∑J

j=1 Tj =
∑K

k=1 Sk = S. Without
loss of generality, we assume that each server can serve at least one queue, and each
queue can be served by at least one server.

We suppose that each queue has a dedicated exogenous arrival process (with rates
being possibly zero). For each k, suppose that arrivals to queue k form an independent
Bernoulli process with rate λk ∈ [0, 1]. Thus, in each time slot, there is exactly one
arrival to queue k with probability λk, and no arrival with probability 1 − λk. Let
Ak(t) to be the cumulative number of exogenous arrivals to queue k up to time t.
The routing structure of the network is described by the matrix R = [rk′k]1≤k′,k≤K ,
where rk′k denotes the probability that a task from queue k′ joins queue k after service
completion. The random routing is i.i.d. over all time slots. We assume that the
network is open, i.e., all tasks eventually leave the system. This is characterized by the
condition that (I −RT ) is invertible, where I is the identity matrix.

Example 2. To clarify the network model, we consider a flexible queueing network
shown in Figure 2.12. For concreteness, we can think of this system as a multi-tier
application with two flexible servers (the two boxes), and one type of application with
three tiers in succession (the three queues). When a task is processed at queue 2, it will
join queue 3 with probability r23 and it will join queue 1 with probability r21 = 1− r23

(that can be thought of as the failure probability in processing queue 2). This network
is different from the classical open multiclass queueing networks, in that queue 2 can be
served by 2 servers. In this network T1 = {1, 2} and T2 = {2, 3}, S1 = {1}, S2 = {1, 2},
and S3 = {2}.

We assume that several servers can work simultaneously on the same task, so that
their service capacities can be added. This is equivalent to the case of cooperating
servers described in [3]. In each time slot, if a task in queue k is served exclusively by
server j, then the task departs from queue k with probability µkj = µjαj, where µk is
the service rate of queue k and αj is the speed of server j.

The dynamics of the flexible queueing network can be stated as follows. Let Qn
k be

the length of queue k at time n. Let dnk ∈ {0, 1} be the number of tasks that depart
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23ݎ
	21ݎ = 1 − 23ݎ	
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Figure 2.12: Flexible queueing network with 3 queues and 2 servers.

queue k at time n. Let ank ∈ {0, 1} be the number of exogenous arrivals to queue k at
time n. Finally, let 1nk→k′ be the indicator that the task departing queue k at time n
(if any) is destined to queue k′. Then the queue dynamics is

Qn+1
k = Qn

k + ank +
K∑
k′=1

dnk′1
n
k′→k − dnk . (2.19)

Note that E(ank) = λk and E(1nk′→k) = rk′k.
Similar to the DAG scheduling problem, we define the allocation vector p = [pkj]

(of server capacities), and p is called feasible if∑
k∈Tj

pkj ≤ 1, ∀ 1 ≤ j ≤ J. (2.20)

For each j, pkj can be interpreted as the probability that server j decides to work
on queue k. Then, the head-of-the-line task in queue k is served with probability∑

j µkjpkj. Note that
∑

j µkjpkj ≤ 1 by our scaling of the service rates.
We now introduce the linear program (LP) that characterizes the capacity region

of the flexible queueing network. Toward this end, for a given arrival rate vector λ,
we first find the nominal traffic rates ν = [νk]1≤k≤K ∈ RK , where νk is the long-run
average total rate at which tasks arrive to queue k. For each k, νk = λk +

∑K
i=1 νirik.

Thus, we can solve ν in terms of R and λ:

ν = (I −RT )−1λ. (2.21)

Note that Eq. (2.21) is valid, since by definition, (I−RT ) is invertible. The LP is then
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defined as follows.

Minimize ρ (2.22)

subject to νk ≤
∑
j∈Sk

µkjpkj, ∀ 1 ≤ k ≤ K, (2.23)

ρ ≥
∑
k∈Tj

pkj, ∀ 1 ≤ j ≤ J, (2.24)

pkj = 0, if k 6∈ Tj, (2.25)

pkj ≥ 0. (2.26)

Let the optimal value of the LP be ρ∗. Similar to Proposition 1 one can show
that ρ∗ ≤ 1 is a necessary and sufficient condition of system stability. Thus, given
µkj and R, the capacity region Λ of the network is the set of all λ ∈ RK

+ , so that the
corresponding optimal solution ρ∗ to the LP satisfies ρ∗ ≤ 1.

2.3.2 Robust Scheduling Policy

In this section, we propose a robust scheduling policy that is provably throughput-
optimal when the service rates can be written as µkj = µkαj. The policy is robust to
arrival and task service rates, but not robust to routing probabilities of the network
and servers’ speed. The key idea is to use a stochastic gradient projection algorithm
to update the service allocation vector p such that all the flows in the network are
balanced. We first give the precise description of the algorithm, and state the main
theorem. Then, we provide some explanations. We use similar notation as the one
used in Section 2.2.

Since service rates can be factorized to a task-dependent rate and a server-dependent
rate, only the sum pk ,

∑
j αjpkj affects the effective service rate for queue k. So, simi-

lar to the DAG scheduling problem, we call p = [pk] ∈ RK the service allocation vector.
Our scheduling algorithm updates the allocation vector pn in each time slot n in the
following manner.

1. We initialize with an arbitrary feasible p0.

2. Update the allocation vector pn as follows.

pn+1 = [pn + βnẼn(I −RT )−1∆Qn]Cε0 , (2.27)

where Ẽn is a K × K diagonal matrix such that Ẽkk = 1{Qn
k>0} and Cε0 is given in

(2.15).
The main results of this section are the following two theorems.

Theorem 3. Let λ ∈ Λ. The allocation vector pn updated by (2.27) converges to
p∗ = [p∗k] almost surely, where p∗k = νk

µk
.
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The proof of Theorem 3 is almost identical to the proof of Theorem 1. We avoid
repeating the details in the purpose of readability.

Theorem 4. The flexible queueing network is rate stable under the robust scheduling
algorithm specified by the update in (2.27), i.e.

lim
n→∞

Qn
k

n
= 0, ∀k.

The proof of Theorem 4 is provided in Appendix 2.6.4.
The intuition for the update (2.27) is as follows. The algorithm tries to adaptively

find the allocation vector p∗ using a gradient projection method that solves (2.12).
To robustify the algorithm to the knowledge of task service rates, we consider the
“skewed” updates in (2.14). However, the major difference compared to the DAG
scheduling problem is the way we find unbiased estimators of the terms νk−µkpnk . We
use ∆Qn+1, the changes in queue sizes, and routing matrix R, to estimate these terms.
It is easy to show that the kth entry of (I − RT )−1∆Qn+1 is an unbiased estimator
νk − µkpnk , if Qn

k > 0. Define M = diag{µk}. Then,

E(Ẽn(I −RT )−1∆Qn+1|Qn) (2.28)

= Ẽn(I −RT )−1E(∆Qn+1|Qn) (2.29)

= Ẽn(I −RT )−1(λ+RTMẼnpn −MẼnpn) (2.30)

= Ẽnν −MẼnpn (2.31)

= Ẽn(ν −Mpn). (2.32)

Note that matrix Ẽn in update (2.27) ensures that the algorithm updates pnk only
for queues k that are non-empty, since

[
(I −RT )−1∆Qn+1

]
k

is no longer an unbiased
estimator of νk − µkpnk when Qn

k = 0.

2.4 Non-cooperative servers

In Section 2.2, we introduced the DAG scheduling problem, and described the syn-
chronization issue when servers are non-cooperative for the queueing network model
described in Subsection 2.2.2. In Section 2.2, we considered a simplifying assumption
that servers are cooperative to avoid the synchronization problem. In this section,
we relax this assumption, and assume that servers are non-cooperative. Instead, we
propose a different virtual queueing network that guarantees synchronization in the
network.

2.4.1 Virtual Queues for Stages of the Job

We define a stage of a job in the system as the set of tasks belonging to that job that
are waiting to be processed. We associate a virtual queue with each possible stage of a
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Figure 2.13: Queueing Network of Virtual Queues for the DAG in Figure 2.2

job. This resolves the synchronization issue, since there is no processing activity which
requires merging tasks of two or more virtual queues. The following example clarifies
how the network of virtual queues is formed.

Example 3. Consider again the DAG shown in Figure 2.2. We consider 5 virtual
queues corresponding to 5 possibles stages of the job which are: {1, 2, 3, 4}, {2, 3, 4},
{2, 4}, {3, 4}, {4}. The queueing network of these virtual queues is illustrated in Figure
2.13.

Now we formally explain how one forms the network of virtual queues for M types
of jobs. Consider M DAGs, Gm = (Vm, Em), for 1 ≤ m ≤M . We construct M parallel
networks of virtual queues as follows. For each non-empty subset Sm of Vm consider a
virtual queue if and only if for all i ∈ Sm, all the descendants of i are also in Sm. As an
example, subset {1, 3} does not correspond to any virtual queue for the DAG in Figure
2.2, since 2 and 4 are descendants of 1, but not in the subset. Let K ′ be the number of
non-empty subsets that satisfy the mentioned condition. Then, we represent the state
of M types of DAGs by K ′ virtual queues. Clearly, there will be no interaction among
the virtual queues corresponding to different DAGs.

Remark 1. In general, the number of virtual queues corresponding to different stages
of a job with K tasks can grow exponentially in K since each stage denotes a feasible
subset of tasks that require processing. This can significantly increase the complexity of
scheduling policies that try to maximize the throughput of the network. For practical
purposes, it is important to find a queueing network that has low complexity in terms
of the number of virtual queues, while it also resolves the synchronization problem.

2.4.2 Queueing Network based on Additional Precedence
Constraints

In this subsection, we propose another network of virtual queues that ensure the syn-
chronization of different tasks of one job type. The queueing network is formed by
enforcing additional constraints such that the DAG of type m becomes Km nodes in
series. For instance, for the DAG of Figure 2.2, we assume that there is a further con-
straint that task 3 should proceed task 2. Then, the modified DAG will have 4 nodes in
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Figure 2.14: Queueing Network of Virtual Queues for the serialized DAG

series as shown in Figure 2.14. The nice property of this “serialized” job is that there
are only Km stages of the job since the stage of each job can be uniquely determined
by the next task that requires processing. Therefore, the network of virtual queues
has only K queues which decreases substantially the complexity of scheduling policies
for the network of virtual queues. However, it is not clear how these extra precedence
constraints affect the performance of scheduling policies in terms of both throughput
and delay. We provide some preliminary analysis of these effects in Section 2.5.

2.4.3 Throughput-Optimal Policy

In this section, we propose Max-Weight scheduling policy for the network of virtual
queues and show that it is throughput-optimal. Note that Max-Weight policy is not
robust to the service rates. One can easily extend the results in Section 2.2 to find a
robust policy for the virtual queueing networks for the case that µkj = µkαj. However,
in this section we consider generic service rates, and show that Max-Weight policy is
throughput-optimal. We mainly focus on the queueing network mentioned in Subsec-
tion 2.4.1. Serializing tasks of different job types is a special case of these queueing
networks, though it has substantially fewer number of queues. Therefore, the results
provided in this section are also valid for the serialized queueing network mentioned in
Subsection 2.4.2.

Now we describe the dynamics of the virtual queues in the network. When server j
works on task i in a virtual queue corresponding to subset Sm, the result of the process
is sent to the virtual queue corresponding to subset Sm \{i}, and the processing rate is
µij. We call the action of processing task i in virtual queue corresponding to Sm as a
service activity. We denote the collection of different service activities in the network
as A. Let A = |A|. Define the collection of activities that server j can perform as Aj.

As an example, consider the DAG of Figure 2.2 and the corresponding queueing
network of Figure 2.13. Note that T1 = {1, 2, 3} and T2 = {3, 4}. Then, there are 8
activities as follows.

1. Task 1 in virtual queue {1, 2, 3, 4} is served by server 1 with rate µ11.

2. Task 2 in virtual queue {2, 3, 4} is served by server 1 with rate µ21.

3. Task 3 in virtual queue {2, 3, 4} is served by server 1 with rate µ31.

4. Task 3 in virtual queue {2, 3, 4} is served by server 2 with rate µ32.
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5. Task 2 in virtual queue {2, 4} is served by server 1 with rate µ21.

6. Task 3 in virtual queue {3, 4} is served by server 1 with rate µ31.

7. Task 3 in virtual queue {3, 4} is served by server 2 with rate µ32.

8. Task 4 in virtual queue {4} is served by server 2 with rate µ42.

Each activity imposes a departure rate from one queue and an arrival rate to another
queue. For example, activity 1 leads to the length of virtual queue {1, 2, 3, 4} reducing
with rate µ11, and virtual queue {2, 3, 4} increasing with rate µ11, and so on. For the
ease of notation, we index the virtual queues by k′, 1 ≤ k′ ≤ K ′. We define a drift
matrix D = [dk′a] ∈ RK′×A, where dk′a is the rate that virtual queue k′ changes if
activity a is performed. The drift matrix for the above example is presented in (2.33).

D =


−µ11 0 0 0 0 0 0 0
µ11 −µ21 −µ31 −µ32 0 0 0 0
0 0 µ31 µ32 −µ21 0 0 0
0 µ21 0 0 0 −µ31 −µ32 0
0 0 0 0 µ21 µ31 µ32 −µ42

 . (2.33)

Define length-K ′ arrival-rate vector e = [ek′ ] such that ek′ = λm if virtual queue k′

corresponds to the first stage of the m-th job type in which no tasks are yet processed,
and ek′ = 0 otherwise. Now we introduce the LP for this virtual queueing network that
characterizes the capacity region of this network. Let k(a) be the task that is processed
in activity a. Let Aj be the set of activities done by server j. Let q = [qa] ∈ RA be the
allocation vector. The LP is then defined as follows.

Minimize ρ′ (2.34)

subject to e+Dq = 0

ρ′ ≥
∑
a∈Aj

qa, ∀ 1 ≤ j ≤ J, (2.35)

qa ≥ 0, (2.36)

where 0 is the vector of zeros, and for length K ′ vectors x and y, the notation x < y
means that xk′ < yk′ for all k′. The capacity region Λ′ of the virtual queueing network
is the set of all λ (or equivalently the set of corresponding arrival vectors e) for which
the solution of the LP satisfies ρ′ ≤ 1.

The arrival-rate vector λ (equivalently the corresponding arrival-rate vector e) is
in the interior of capacity region if there exists a feasible capacity allocation vector q∗

such that

e+Dq∗ < 0. (2.37)
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Note that at a first glance, it is not clear that the LP corresponding to the queueing
network mentioned in (2.34) is equivalent to the LP that characterizes the capacity
region of the original DAG scheduling problem in (2.4). In the following, we show the
equivalence of these two LPs.

It is clear that introducing additional queues cannot increase the capacity region.
To see this formally, suppose that there exists a λ and feasible q such that ρ′ ≤ 1. Let
A′k be the set of activities in which task k is served. Then, by conservation of flow,
λm(k) =

∑
j:k∈Tj µkj

∑
a∈A′k∩Aj

qa for all k. Now one can choose a feasible allocation

vector p for the original DAG scheduling problem such that pkj =
∑

a∈A′k∩Aj
qa, and

guarantee that ρ ≤ 1. Thus, Λ′ ⊆ Λ, where Λ is the capacity region of the DAG
scheduling problem stated in (2.8). To show that Λ ⊆ Λ′, consider some λ ∈ Λ and its
corresponding allocation vector p. For simplicity, we focus on the example of the DAG
shown in Figure 2.2 and the queueing network shown in Figure 2.13. We propose an
allocation vector q that can support λ as follows. Fix an ordering on the nodes such
that it respects the precedence constraints, for example (1, 2, 3, 4). We design q such
that all the flow goes through the path {1, 2, 3, 4}, {2, 3, 4}, {3, 4}, and {4}. Then, we
have

q1 = p11, q2 = p21, q3 = 0, q4 = 0

q5 = 0, q6 = p31, q7 = p32, q8 = p42.

It is easy to check that q is feasible (as p is feasible), and also it satisfies flow conser-
vation. Thus, Λ ⊆ Λ′.

Now we give a description of the Max-Weight policy for our virtual queueing system.
Given virtual queue-lengths Qn

k′ at time n, Max-Weight policy allocates a service vector
q that is

arg max
q is feasible

−(Qn)TDq,

where Qn = [Qn
k′ ] is the vector of queue-lengths at time n. The Max-Weight policy is

the choice of q that minimizes the drift or rate of the change of a Lyapunov function
V (Qn) =

∑
k′(Q

n
k′)

2. The following example clarifies Max-Weight scheduling in our
network.

Example 4. Consider the network shown in Figure 2.13. Assume that the virtual
queues are indexed by their corresponding subset of tasks. Then, as an example, at
time n, the Max-Weight policy assigns server 1 to task 1 in queue {1, 2, 3, 4} if activity
1 has the largest weight among the activities that server 1 can perform. That is,

µ11[Qn
1234 −Qn

234] > µ21[Qn
234 −Qn

34],

µ11[Qn
1234 −Qn

234] > µ21[Qn
24 −Qn

4 ],

µ11[Qn
1234 −Qn

234] > µ31[Qn
234 −Qn

24],

µ11[Qn
1234 −Qn

234] > µ31[Qn
34 −Qn

4 ].
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The following theorem, similar to Theorem 4 of [18], shows that the Max-Weight
policy is rate stable for all the arrival vectors in the capacity region presented in (2.35),
and it makes the underlying Markov process of the queue-lengths positive recurrent for
all the arrival rate vectors that are in the interior of the capacity region5.

Theorem 5. Max-Weight policy for the network of virtual queues described in Subsec-
tion 2.4.1 is throughput-optimal.

Proof. (Sketch) Let us consider the problem in the fluid model. Details of under what
conditions and why stability of fluid models implies the stability of stochastic system
can be found in [16]. Define the amount of fluid in virtual queue k′ as

Xk′(t) = lim
r→∞

Q
brtc
k′

r
.

Then, the fluid model equations are

X(t) = X(0) + et+DT (t),

where X(t) = [Xk′(t)] is the vector of queue-lengths, Ta(t) is the total time up to t that
activity a is served, and T (t) = [Ta(t)] is the vector of total service times of different
activities. Further equation incurred by Max-Weight policy is that

Ṫ (t) = arg max
q is feasible

−XT (t)Dq.

Now take V (X(t)) = 1
2
XTX as the Lyapunov function. The drift of V (X(t)) is

V̇ (X(t)) = XT (t)(e+DṪ (t))

= XT (t)e−max
q

(
−XT (t)Dq

)
≤ XT (t)(e+Dq∗). (2.38)

Now if e is in the interior of the capacity region, we have

V̇ (X(t)) ≤ XT (t)(e+Dq∗) < 0.

This proves that the fluid model is stable which implies the positive recurrence of the
underlying Markov chain [16]. To prove rate stability, it is sufficient to show that the
fluid model is weakly stable, that is if X(0) = 0, then X(t) = 0 for all t ≥ 0. This is
again a direct result of Equation (2.38) since e+Dq∗ ≤ 0. �

Remark 2. The same analysis goes through for the serialized queueing network pro-
posed in Subsection 2.4.2.

5Positive recurrence of the Markov chain is a stronger notion of stability compared to the weak
notion of rate stability considered in the previous sections.
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2.5 Towards Analyzing the Delay Performance

Given the throughput-optimality of the scheduling policies in preceding sections, it
is natural to consider and compare their delay performance, e.g., the steady-state
expected sojourn time of jobs under the respective policies. However, as one may
expect, the exact delay performance of the general model that we consider is very
difficult to analyze, if not impossible, as other than for very simple examples, the
underlying Markov chain of the system is almost intractable.

In this section, we provide some illustration about the effect of adding precedence
constraints among tasks of a job on the delay of processing jobs. Thus, in order to
get some intuition about the effect of precedence constraints on delay, we simplify our
model and our scheduling policy as follows.

We simplify our model by considering 1 job type that has K identical tasks, and
J identical servers. More precisely, we consider jobs that arrive as a Poisson process
with rate λ. Each job consists of K tasks, and there are J servers. Each task can be
processed by all servers, and requires an independent exponentially distributed service
time with mean 1. We compare job scheduling in the following two extreme cases.
In the first case, which we call the “parallel” system, P , the K tasks of a job can be
processed in parallel; that is, the servers are allowed to work in parallel on two tasks
of the same job. We consider a First-Come-First-Serve (FCFS) scheduling policy. In
the second case, we consider a serial system, S, in which the servers can work only on
one task of a job at a time, and they also do so on a FCFS basis. Thus, the system S
imposes a serial execution of the K tasks of each job; that is, a server must complete
task 1 before it can start task 2, and so on, similar to the virtual queueing network
considered in Subsection 2.4.2.

We define the state of the parallel system to be

Z(P , t) = (X(P , t), Y (P , 1, t), . . . , Y (P , K − 1, t)),

where X(P , t) is the number of jobs in the parallel system at time t, and Y (P , k, t)
is the number of jobs for which k of the K tasks are already completed at time t.
Similarly we define

Z(S, t) = (X(S, t), Y (S, 1, t), . . . , Y (S, K − 1, t)),

where X(S, t) is the number of jobs in the serial system at time t, and Y (S, k, t) is the
number of jobs for which k of the K tasks are already completed at time t. Note that
(Z(P , t), t ≥ 0) and (Z(S, t), t ≥ 0) are Markov processes.

Clearly, the capacity region of the two systems is the following set of arrival rates:
Kλ ≤ J . Indeed, work arrives at the systems at rate Kλ and is performed at rate J
when there is enough work to be processed.

Theorem 6. The Markov process corresponding to the two systems under FCFS schedul-
ing is positive recurrent if λ < J/K.
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Proof. We use Foster-Lyapunov theorem to show the positive recurrence of the Markov
chain. The following analysis holds for both systems. LetW (t) = KX(t)−

∑K−1
k=1 kY (k, t)

denote the number of tasks yet to be processed in the system. Suppose that λ−J/K <
−ε. Then, if w > J ,

E[W (t+ dt)−W (t)|W (t) = w] = Kλdt− Jdt < −Kεdt.

So the drift of the Lyapunov function W (t) is negative outside the bounded set W (t) ≤
J , and the Markov chain is positive recurrent. �

The key result of this section is the following.

Theorem 7. Let DS and DP be the average delays in the two systems. Then,

DS ≤ DP +
2K − 1

ρ
,

where ρ = Kλ
J

is the load of the system.

Remark 3. Theorem 7 shows that the delay in the serial system is approximately the
same as in the parallel system when the load ρ is not small, and K is not large. This
result is of course limited to the case that the servers and tasks are identical, but it
suggests that enforcing additional precedence constraints to a DAG scheduling problem
does not significantly increase the delay when the load of the network is not small.

Proof. To prove the theorem, we use a coupling argument as follows.
The key observation is that when X(t) ≥ J , the J servers are all busy in both

systems, so that they complete a task at the same rate J . We can then couple the task
completion times and the arrivals in the two systems.

Let

W (S, t) = KX(S, t)−
K−1∑
k=1

kY (S, k, t)

be the number of tasks to be completed in the serial system and W (P , t) the corre-
sponding value for the parallel system.

Lemma 1. It is possible to couple the systems so that

W (S, t) ≤ W (P , t) +KJ,∀t ≥ 0.

Proof. Assume W (S, t) = W (P , t) +KJ . Then there are at least J jobs in system S,
so that all its servers are busy. Consequently, the coupling guarantees that if system
P completes a task, so does system S. Hence, in our coupling, it is not possible that
W (S, t) > W (P , t) +KJ . �

A direct consequence is as follows.
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Lemma 2. Let c = 2− 1/K. It is possible to couple the systems so that

X(S, t) ≤ X(P , t) + cJ,∀t ≥ 0.

Proof. Assume X(S, t) > X(P , t) + cJ . Then,

W (S, t)−W (P , t) = K(X(S, t)−X(P , t))

−
K−1∑
k=1

kY (S, k, t) +
K−1∑
k=1

kY (P , k, t)

> KcJ −
K−1∑
k=1

kY (S, k, t)

≥ KcJ − (K − 1)J ≥ J [K(c− 1) + 1]

= KJ,

which contradicts the previous lemma.
In the derivation, we used two observations. First,

K−1∑
k=1

kY (S, k, t) ≤ (K − 1)
K−1∑
k=1

Y (S, k, t)

≤ (K − 1)J.

This is the case because every job with a partial number of completed tasks occupies
a server. Second,

K(c− 1) + 1 = K

because c = 2− 1/K.
�

We can now complete the proof of the theorem.
From Little’s result, we have

DS =
E(X(S))

λ

≤ E(X(P)) + cJ

λ

= DP +
cJ

λ
.

�
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2.6 Appendix

2.6.1 Proof of Proposition 1

Consider the queueing network of the system in the fluid limit. (See [16] for more
discussion on the stability of fluid models) The fluid level of queue (k′, k) at time t is

X(k′,k)(t) = lim
r→∞

Q(k′,k)(brtc)
r

.

The fluid limit dynamics is as follows. If k is a root node, then

X(0,k)(t) = X(0,k)(0) + Am(k)(t)−Dk(t),

where Am(k)(t) is the total number of jobs of type m (scaled to the fluid level) that
have arrived to the system until time t. If k is not a root node, then,

X(k′,k)(t) = X(k′,k)(0) +Dk′(t)−Dk(t),

where Dk(t) is the total number of tasks (scaled to the fluid level) of type k processed
up to time t. Suppose that ρ∗ > 1. We show that if X(k′,k)(0) = 0 for all (k′, k), there
exists t0 and (k′, k) such that X(k′,k)(t0) ≥ ε(t0) > 0, which implies that the system is
weakly unstable [17]. In contrary suppose that there exists a scheduling policy that
under that policy for all t ≥ 0 and all (k′, k), X(k′,k)(t) = 0. Pick a regular point6

t1. Then, for all (k′, k), Ẋ(k′,k)(t1) = 0. Since Ȧm(k)(t1) = λm = νk, this implies that

Ḋk(t1) = νk for all the root nodes k. Now considering queues (k′, k) such that nodes
k′ are roots, one gets

Ḋk(t1) = Ḋk′(t1) = νk′ = νk.

Similarly, one can inductively show that for all k, Ḋk(t1) = νk. On the other hand, at
a regular point t1, Ḋk(t1) is exactly the total service capacity allocated to task k at t1.
This implies that there exists pkj at time t1 such that νk =

∑
j∈Sk µkjpkj for all k and

the allocation vector [pkj] is feasible, i.e.
∑

k∈Tj pkj ≤ 1. This contradicts ρ∗ > 1.

Now suppose that ρ∗ ≤ 1, and p∗ = [p∗kj] is an allocation vector that solves the LP.
To prove sufficiency of the condition, consider a generalized head-of-the-line processor
sharing policy that server j works on task k with capacity p∗kj. Then the cumulative
service allocated to task k up to time t is Sk(t) =

∑
j∈Sk µkjp

∗
kjt ≥ νkt. We show that

X(k′,k)(t) = 0 for all t and all (k′, k), if X(k′,k)(0) = 0 for all (k′, k). First consider queue
(0, k) corresponding to a root node. Suppose that X(0,k)(t0) ≥ ε > 0 for some positive

t0 and ε. Then, by continuity of fluid, there exists 0 < t0 < t1 such that Ẋ(0,k) > 0.

However, Ẋ(0,k) = νk −
∑

j∈Sk µkjp
∗
kj ≤ 0, which is a contradiction. Now we show that

X(k′,k)(t) = 0 for all t if k′ is a root node and k is a child of k′. Note that X(0,k′)(t) = 0;

thus, Ḋk′(t) = νk′ = νk. Then, Ẋ(k′,k) = νk −
∑

j∈Sk µkjp
∗
kj ≤ 0. This proves that

X(k′,k)(t) = 0 for all t. One can then inductively complete this proof for all queues
(k′, k).

6We define a point t to be regular if X(k′,k)(t) is differentiable at t for all (k′, k).
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2.6.2 Proof of Theorem 1

Recall the following notation which will be widely used in the proofs.

1{Qn
(k′,k)>0, ∀k′∈Pk} = 1En

k
.

We introduce another notation which is

1En =
K∏
k=1

1En
k
.

Note that event En denotes the event that all the queues are non-empty at time n.

Lemma 3. Given any history Fn at time n, there exists a finite ` and δ0 > 0 such
that P(1En+` = 1|Fn) ≥ δ0 > 0.

Proof. We work with each of the DAGs Gm separately, and construct events so that
all the queues corresponding to Gm have positive lengths after some time `. We can
do this since µkp

n
k will always be no smaller than µkε0 and strictly smaller than 1, so

there is positive probability of serving or not serving a task.
Let Ẽn

k be the event that task k is served at time n, En
k be the event that task k is

not served at time n, and Ên
m be the event that job type m arrives at time n. Consider

a particular DAG Gm. Recall that Lk is the length of the longest path from the root
nodes of the DAG to node k. Let `m = maxk∈Vm Lk + 1. We construct the event E(`m)
that happens with a strictly positive probability, and assures that all the queues at
time n + `m are non-empty. Toward this end, let E(`m) = ∩`m−1

n′=0 C
n′ , where event Cn′

is
Cn′ = Ên′

m ∩{k:Lk≤n′−1} Ẽ
n′

k ∩{k:Lk>n′−1} E
n′

k .

In words, Cn′ is the event that at time n′, there is a job arrival of type m, services of
tasks of class k for k with Lk ≤ n′ − 1, and no service of tasks of class k for k with
Lk > n′ − 1. Now, by construction all the queues are non-empty at time n + ` with a
positive probability. To illustrate how we construct this event, consider the example
of Figure 2.2 and the corresponding queueing network in Figure 2.3. Then, C0 is the
event that there is an arrival to the system, and no service in the network. C1 is the
event that there is a new job arriving, task 1 is served, and tasks 2, 3, and 4 are not
served. Note that there is certainly at least one available task 1 to serve due to C0.
Up to now, certainly queues (0, 1), (1, 2), and (1, 3) are non-empty. C2 is the event
of having a new arrival, service to tasks 1, 2, and 3, and no service to task 4. This
construction assures that after 3 time slots, all the queues are non-empty.

Now for the whole network it is sufficient to take ` = maxm `m. Construct the
events E(`m) for each DAG independently, and freeze the DAG Gm (no service and
no arrivals) from time n + `m to n + `− 1. This construction makes sure that all the
queues in the network are non-empty at time n + ` given any history Fn with some
positive probability δ0. �
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Lemma 4. The following inequality holds.

lim inf
n→∞

1

n

n∑
n′=1

1En′ ≥
δ0

`
> 0, a.s.

Proof. Take a subsequence 1En′` , n′ ≥ 1. We couple the subsequence with an i.i.d.
Bernoulli process Y n′ , n′ ≥ 1 with parameter δ0 as follows. If 1En′` = 0, then Y n′ = 0.
If 1En′` = 1, then Y n′ = 1 with probability

qn′ =
δ0

P(1En′` = 1|F (n′−1)`)
,

and Y n′ = 0 with probability 1 − qn′ . Note that by Lemma 3, qn′ ≤ 1. Y n′ is still
marginally i.i.d. Bernoulli process with parameter δ0. Then, with probability 1,

lim inf
n→∞

1

n

n∑
n′=1

1En′ ≥ lim inf
n→∞

1

n

bn/`c∑
n′=1

1En′`

≥ lim inf
n→∞

1

n

bn/`c∑
n′=1

Y n′ =
δ0

`
.

This completes the proof of Lemma 4. �

Lemma 5. The following equality holds.

lim
n→∞

n∑
n′=1

βn
′
1En′ =∞, a.s.

Proof. From now on we work with the probability-1 event defined in Lemma 4. Con-
sider a sample path in this probability-1 event, and let xn′ = βn

′
1En′ . First note that

xn′ ≥ 0. Thus, by the monotone convergence theorem, the series either converges or
goes to infinity. Suppose that

lim
n→∞

n∑
n′=1

xn′ = s

for some finite s. Define the sequence bn′ = 1
βn′ . Then, by Kronecker’s lemma [25], we

have

lim
n→∞

1

bn

n∑
n′=1

bn′xn′ = 0.

This shows that

lim
n→∞

1

bn

n∑
n′=1

1En′ = 0,
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which results in a contradiction, since limn→∞
1

nβn is finite, and hence by Lemma 4,

lim inf
n→∞

1

bn

n∑
n′=1

1En′ > 0.

�

Now we are ready to prove Theorem 1. Consider the probability-1 event in Lemma
5. Let dn = ‖pn − p∗‖2 and fix ε > 0. We prove that there exists a n0(ε) such that for
all n ≥ n0(ε), dn has the following properties.

(i) If dn < ε, then dn+1 < 3ε.

(ii) If dn ≥ ε then, dn+1 ≤ dn − γn where
∑∞

n=1 γ
n =∞ and γn → 0.

Then property (ii) shows that for some large enough n1 = n1(ε) > n0(ε), dn1 < ε,
and properties (i) and (ii) show that dn < 3ε for n ≥ n1(ε). This is true for all ε > 0,
so dn converges to 0 almost surely.

First we show property (i). Let Un = [Un
k ] ∈ RK be the vector of updates such that

Un+1
k = 1En

k

∑
(i′,i)∈Hk

∆Qn+1
(i′,i).

Note that ‖Un‖2 is bounded by some constant C1 > 0, since the queues length changes
at each time slot are bounded by 1. On the other hand, βn → 0. Thus, one can take

n1(ε) large enough such that for all n ≥ n1(ε), βn ≤
√

ε
2C1

. Then, for n ≥ n1(ε) if

dn < ε,

dn+1 = ‖pn+1 − p∗‖2 (2.39)

= ‖[pn + βnUn+1]Cε − p∗‖2 (2.40)

≤ ‖pn + βnUn+1 − p∗‖2 (2.41)

≤ 2dn + 2(βn)2‖Un+1‖2 < 3ε, (2.42)

where (2.41) is due to the fact that projection to the convex set is non-expansive, and
(2.42) is by Cauchy-Schwarz inequality.

To show property (ii), we make essential use of the fact that the cumulative stochas-
tic noise is a martingale. Let

Zn+1
k = 1En

k
(Un

k − νk + µkp
n
k).

Then, by (2.10),
E
[
Zn+1
k |Fn

]
= 0, ∀k (2.43)
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which shows that Zn is a martingale difference sequence. Now observe that

dn+1 =
K∑
k=1

(pn+1
k − p∗k)2 (2.44)

≤
K∑
k=1

(pnk + βnUn+1
k − p∗k)2 (2.45)

= dn + (βn)2‖Un+1‖2 (2.46)

+ 2βn
K∑
k=1

(pnk − p∗k)(νk − µkpnk + Zn+1
k )1En

k

= dn + (βn)2‖Un+1‖2 (2.47)

+ 2βn
K∑
k=1

(pnk − p∗k)(µk(p∗k − pnk) + Zn+1
k )1En

k

≤ dn + (βn)2C1 −
K∑
k=1

2µkβ
n1En(pnk − p∗k)2 (2.48)

+
K∑
k=1

2βnZn+1
k (pnk − p∗k)1En

k
,

where (2.45) is due to non-expansiveness of projection, and (2.48) is due the facts that
En ⊂ En

k and ‖Un‖2 ≤ C1. Let µ∗ = mink µk. Since
∑K

k=1(pnk − p∗k)2 > ε, the following
choice of γn satisfies dn+1 ≤ dn − γn:

γn = −(βn)2C1 + βn1En2µ∗ε

−
K∑
k=1

2βnZn+1
k (pnk − p∗k)1En

k
.

As βn → 0 as n → ∞, it is easy to see that γn → 0 almost surely. Thus, to complete
the proof of Theorem 1, one needs to show that

∑∞
n=1 γn =∞ almost surely. Toward

this end, note that
∑

n(βn)2 is finite which makes −
∑

n(βn)2C1 bounded. By (2.43),
and the facts that

∑
n(βn)2 <∞ and ‖pn − p∗‖ is bounded for all n, we get that

V n =
n∑

n′=1

K∑
k=1

2βn
′
Zn′+1
k (pn

′

k − p∗k)1En′
k

is an L2-bounded martingale and by the martingale convergence theorem converges to
some bounded random variable almost surely [25]. Finally,

2εµ∗
∞∑
n=1

βn1En =∞, a.s.

by Lemma 5. This completes the proof of Theorem 1.
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2.6.3 Proof of Theorem 2

In this subsection, we provide the proof of Theorem 2. The key idea to prove the rate
stability of queues is to first show that the servers allocate enough cumulative capacity
to all the tasks in the network. This is formalized in Lemma 6. Second, in Lemma 7,
we show that each queue (k′, k) cannot go unstable if task k receives enough service
allocation over time, and the traffic rate coming to these queues is nominal. Finally,
we use these two conditions to show rate stability of all the queues in the network by
mathematical induction.

To prove the theorem, we first introduce some notation. Let Dn
k denote the cumula-

tive number of processed tasks of type k at time n. Recall that dnk is the number of pro-
cessed tasks of type k at time n. Therefore, Dn

k =
∑n

n′=1 d
n′

k . Let Anm =
∑n

n′=1 a
n′
m, 1 ≤

m ≤ M be the cumulative number of jobs of type m that have arrived up to time n.
Then the queue-length dynamic of queue (k′, k) can be written as follows. If k′ 6= 0,
then Qn

(k′,k) = Q0
(k′,k) +Dn

k′ −Dn
k . If k′ = 0, then Qn

(k′,k) = Q0
(k′,k) + Anm(k) −Dn

k .

At time n, the probability that one task is served and departed from queue (k′, k)
is µkp

n
k , if all of the queues (i, k) are non-empty for all i. We define snk to be a random

variable denoting the virtual service that queues (k′, k) have received at time n, whether
there has been an available task k to be processed or not. snk is a Bernoulli random
variable with parameter µkp

n
k . Then, the cumulative service that queues (k′, k) receive

up to time n is Snk =
∑n

n′=1 s
n′

k for all k′. Note that the cumulative service is different
from the cumulative departure. Indeed, dnk = snk1En

k
.

From now on, in the proof of Theorem 2, we consider the probability-1 event that
pn converges to p∗ stated in Theorem 1.

Lemma 6. The following equality holds:

lim
n→∞

Snk
n

= νk, a.s., ∀k. (2.49)

Proof. By Theorem 1, the sequence pnk converges to νk
µk

almost surely. Therefore, for

all the sample paths in the probability-1 event, and for all ε1 > 0, there exists n0(ε1)
such that ‖µkpnk − νk‖ ≤ ε1, for all n > n0(ε1).

Let s̃nk be i.i.d Bernoulli process of parameter νk − ε1. We couple the processes snk
and s̃nk as follows. If snk = 0, then s̃nk = 0. If snk = 1, then s̃nk = 1 with probability νk−ε1

µkp
n
k

,

and s̃nk = 0 with probability 1 − νk−ε1
µkp

n
k

. Note that s̃nk is still marginally i.i.d Bernoulli

process of parameter νk − ε1. Then,

lim inf
n→∞

Snk
n
≥ lim inf

n→∞

∑n
n′=n0(ε1)+1 s

n′

k

n
(2.50)

≥ lim inf
n→∞

∑n
n′=n0(ε1)+1 s̃

n′

k

n
(2.51)

= νk − ε1 a.s., (2.52)
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where (2.51) is by construction of the coupled sequences, and (2.52) is by the strong
law of large numbers.

Let s̄nk be i.i.d Bernoulli process of parameter νk + ε1. We couple the processes snk
and s̄nk as follows. If snk = 1, then s̃nk = 1. If snk = 0, then s̃nk = 0 with probability
1−(νk+ε1)

1−µkpnk
, and s̃nk = 1 with probability 1 − 1−(νk+ε1)

1−µkpnk
. Note that s̄nk is still marginally

i.i.d Bernoulli process of parameter νk + ε1. Then,

lim sup
n→∞

Snk
n
≤ lim sup

n→∞

n0(ε1) +
∑n

n′=n0(ε1)+1 s
n′

k

n
(2.53)

≤ lim sup
n→∞

n0(ε1) +
∑n

n′=n0(ε1)+1 s̄
n′

k

n
(2.54)

= νk + ε1 a.s., (2.55)

where (2.54) is by construction of the coupled sequences, and (2.55) is by the strong
law of large numbers. Letting ε1 → 0, we have

lim inf
n→∞

Snk
n

= lim sup
n→∞

Snk
n

= νk, a.s.

�

Lemma 7. Consider a fixed k and all queues (k′, k) with k′ ∈ Pk. Suppose that

lim
n→∞

Dn
k′

n
= νk, ∀k′ ∈ Pk, a.s. (2.56)

if Pk 6= ∅, and

lim
n→∞

Anm(k)

n
= νk, a.s. (2.57)

if k is a root node. Then,

lim
n→∞

Qn
(k′,k)

n
= 0, a.s.

Proof. Before getting to the details of the proof, note that if k is a root node, then we
readily know that

lim
n→∞

Anm(k)

n
= λm = νk, a.s.

Thus, the lemma states that queues (0, k) are rate stable.
We prove the lemma for the general case that node k is not a root node. Similar

proof holds for the case of root nodes. First, we show that for all pair of queues (i, k)
and (i′, k) such that i, i′ ∈ Pk, we have

lim
n→∞

Qn
(i,k) −Qn

(i′,k)

n
= 0, a.s. (2.58)
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Note that

Qn
(i,k) −Qn

(i′,k)

n
=
Dn
i −Dn

k − (Dn
i′ −Dn

k )

n

=
Dn
i′ −Dn

i

n
.

Then, by (2.56),

lim
n→∞

Dn
i −Dn

i′

n
= νk − νk = 0, a.s.

Second, we show that

lim inf
n→∞

Qn
(k′,k)

n
= 0, a.s.

In contrary suppose that in one realization in the probability-1 event defined by (2.56)
and Lemma 6,

lim inf
n→∞

Qn
(k′,k)

n
> 2ε2, (2.59)

for some ε2 > 0. This implies that in that realization,

lim inf
n→∞

Q0
(k′,k) +Dn

k′ −Dn
k

n
> 2ε2.

By (2.56), the probability that limn→∞
Q0

(k′,k)+D
n
k′

n
= νk is 1. Thus, in that realization

lim sup
n→∞

Dn
k

n
< νk − 2ε2. (2.60)

On the other hand, (2.59) shows that there exists n0(ε2) such that for all n ≥ n0(ε2),

Qn
(k′,k) ≥ 2nε2. (2.61)

Furthermore, (2.58) shows that there exists n1(ε2) such that for all i ∈ Pk and for all
n ≥ n1(ε),

|Qn
(k′,k) −Qn

(i,k)| < nε2. (2.62)

Let n2(ε2) = max(n0(ε2), n1(ε2)). (2.61) and (2.62) imply that for all n ≥ n2(ε2),
Qn

(i,k) ≥ nε2. Now taking n3(ε2) = max(n2(ε2), 1/ε2), we have that all the queues

(i, k), i ∈ Pk are non-empty for n ≥ n3(ε2). Thus, snk = dnk for all n ≥ n3(ε2).
Therefore,

lim sup
n→∞

Snk
n
≤ lim sup

n→∞

n3(ε2) +Dn
k

n

= lim sup
n→∞

Dn
k

n
.
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Thus, by Lemma 6, νk ≤ lim supn→∞
Dn

k

n
which contradicts (2.60). Since this holds for

any ε2 > 0, we conclude that

lim inf
n→∞

Qn
(k′,k)

n
= 0, a.s., (2.63)

for all k′ ∈ Pk.
Third, we show that

lim sup
n→∞

Qn
(k′,k)

n
= 0, a.s.

In contrary suppose that in one realization in the probability-1 event defined by
(2.56), (2.58), and Lemma 6,

lim sup
n→∞

Qn
(k′,k)

n
> 4ε3, (2.64)

for some ε3 > 0. This implies that in that realization Qn
(k′,k) > 4nε3 happens infinitely

often. Moreover, by (2.63), Qn
(k′,k) < 2nε3 happens also infinitely often in that realiza-

tion. On the other hand, by (2.58), there exists some n0(ε3) such that for all n ≥ n0(ε3)
and all i ∈ Pk,

|Qn
(i,k) −Qn

(k′,k)| < nε3. (2.65)

Take N1 = max(n0(ε3), 2
ε3

). Then, there exists N1 ≤ n1(ε3) < n2(ε3) such that

Qn1

(k′,k) ≤ 2n1ε3 and Qn2

(k′,k) ≥ 4n2ε3. In words, n1 +1 is the first time after N1 that
Qn

(k′,k)
n

crosses 2ε3 without going below 2ε3 before exceeding 4ε3. Then, since the queue-length
changes by at most 1 each time slot, queue (k′, k) is non-empty for all n, n1 ≤ n ≤ n2.
Furthermore, for all n, n1 ≤ n ≤ n2 and for all i ∈ Pk, by (2.65),

Qn
(i,k) > Qn

(k′,k) − nε3
≥ 2nε3 − 1− nε3
≥ n1ε3 − 1 ≥ 1.

Thus, all the queues (i, k) are also non-empty for all n in the interval n1 ≤ n ≤ n2.
Consequently, for all n, n1 ≤ n ≤ n2, snk = dnk . Now define a process

Bn
(k′,k) = Dn

k′ − Snk .

Note that by (2.56) and Lemma 6, in the realization of probability-1 event that we
consider,

lim
n→∞

Bn
(k′,k)

n
= νk − νk = 0. (2.66)
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We bound Bn2

(k′,k) as follows.

Bn2

(k′,k) = Bn1

(k′,k) + [Bn2

(k′,k) −B
n1

(k′,k)]

= Bn1

(k′,k) + [Dn2

k′ −D
n1

k′ − (Sn2
k − S

n1
k )]

= Bn1

(k′,k) + [Dn2

k′ −D
n1

k′ − (Dn2
k −D

n1
k )]

= Bn1

(k′,k) + [Qn2
k −Q

n1
k ]

≥ Bn1

(k′,k) + 4ε3n2 − 2ε3n1.

Dividing both sides of the inequality by n2 and subtracting Bn1

(k′,k)/n1, one gets

Bn2

(k′,k)

n2

−
Bn1

(k′,k)

n1

≥
Bn1

(k′,k)

n1

(
n1

n2

− 1) + 4ε3 − 2ε3
n1

n2

.

By (2.66), one can choose a large enough N2 such that for all n ≥ N2, |
Bn

(k′,k)
n
| ≤ 2ε3

3
.

Then, N1 can be chosen as

N1 = max(n0(ε3),
2

ε3
, N2),

and one chooses n1 and n2 accordingly as before. Then, since n1, n2 ≥ N1, one can
write

|
Bn

(k′,k)

n
−
Bn

(k′,k)

n
| ≤ 4ε3

3
. (2.67)

However,
Bn2

(k′,k)

n2

−
Bn1

(k′,k)

n1

≥ 2ε3(
n1

n2

− 1) + 4ε3 − 2ε3
n1

n2

= 2ε3,

which contradicts (2.67). Thus,

lim sup
n→∞

Qn
(k′,k)

n
= 0, a.s.

The result holds for arbitrary k′ ∈ Pk. This completes the proof of Lemma 7. �

Now we are ready to prove Theorem 2. We complete the proof of Theorem 2 by
induction. Recall that Lk is the length of the longest path from the root of the DAG
Gm(k) to node k. If k is a root, Lk = 0. The formal induction goes as follows.

• Basis: All the queues corresponding to root nodes, i.e. all (k′, k) for which
Lk = 0 are rate stable.

• Inductive Step: If all the queues (k′, k) for which Lk ≤ L − 1 are rate stable,
then all the queues (k′, k) for which Lk = L are also rate stable.
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The basis is true by Lemma 7. The inductive step is also easy to show using Lemma 7.
For a particular queue (k′, k) = (iL, iL+1), suppose that Lk = L. Pick a path of edges

(i1, i2), (i2, i3), . . . , (iL, iL+1),

from queue (0, i1) to (k′, k). By assumption of induction, all the queues (il, il+1) are
rate stable for l ≤ L− 1.

Anm(k) −Dn
iL

= Anm(k) −Dn
i1

+
L−1∑
l=1

(Dn
il
−Dn

il+1
)

= Qn
(0,i1) −Q0

(0,i1) +
L−1∑
l=1

(Qn
(il,il+1) −Q0

(il,il+1)).

Therefore,

lim
n→∞

Dn
iL

n
= lim

n→∞

[Anm(k)

n
−
Qn

(0,i1) −Q0
(0,i1)

n

−
L−1∑
l=1

(Qn
(il,il+1) −Q0

(il,il+1))

n

]
= λm = νk, a.s.

Now since limn→∞
Dn

k′
n

= νk a.s., by Lemma 7, (k′, k) is rate stable. This completes the
proof of the induction step and as a result the proof of Theorem 2.

2.6.4 Proof of Theorem 4

Let Dn
k denote the cumulative number of tasks that have departed queue k by and

including time n: Dn
k =

∑n
n′=1 d

n′

k . Define snk to be a random variable denoting the
virtual service that queue k receives at time n, whether the queue has been empty or
not. snk is a Bernoulli random variable with parameter µkp

n
k . Note that dnk = snk1Qn

k>0.
Define the cumulative service that queue k has received up to time n to be Snk =∑n

n′=1 s
n
k .

Lemma 8. The following equality holds:

lim
n→∞

∑n
n′=1 s

n′

k 1n
′

k→k′

n
= νkrkk′ , a.s., ∀k, k′. (2.68)

Proof. First note that the sequence of random variables 1n
′

k→k′ is i.i.d. Bernoulli-
distributed with parameter rkk′ , and independent of the sequence sn

′

k . Now by Theorem
3, the sequence µkp

n′

k converges to νk almost surely. Thus, in this probability-1 event,
for all ε4 > 0, there exists n0(ε4) such that ‖µkpn

′

k − νk‖ ≤ ε4 for all n′ > n0(ε4).
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Let wnk be i.i.d Bernoulli process of parameter (νk−ε4)rkk′ . We couple the processes
snk1

n
k→k′ and wnk as follows. If snk = 0, then wnk = 0. If snk = 1, then wnk = 1nk→k′ with

probability νk−ε4
µkp

n
k

, and wnk = 0 with probability 1 − νk−ε4
µkp

n
k

. wnk is still marginally i.i.d.

Bernoulli process of parameter (νk − ε4)rkk′ . Then,

lim inf
n→∞

∑n
n′=1 s

n′

k 1n
′

k→k′

n
≥ lim inf

n→∞

∑n
n′=n0(ε4)+1w

n′

k

n
= (νk − ε4)rkk′ a.s.

Now we couple the processes snk1
n
k→k′ and vnk , where vnk is i.i.d Bernoulli process of

parameter (νk − ε4)rkk′ . If snk = 1, then vnk = 1nk→k′ . If snk = 0, then vnk = 1nk→k′ with

probability 1−(νk+ε4)
1−µkpnk

, and vnk = 0 with probability 1− 1−(νk+ε4)
1−µkpnk

rkk′ . v
n
k is still marginally

i.i.d. Bernoulli process of parameter (νk + ε4)rkk′ . Then,

lim sup
n→∞

∑n
n′=1 s

n′

k 1n
′

k→k′

n
≤ lim sup

n→∞

∑n
n′=n0(ε4)+1 v

n′

k

n

= (νk + ε4)rkk′ a.s.

The proof is complete by letting ε4 → 0. �

Now we are ready to complete the proof of the theorem. Observe that

Qn
k = Q0

k + Ank +
n∑

n′=1

K∑
k′=1

dn
′

k′1
n′

k′→k −Dn
k

≤ Q0
k + Ank +

n∑
n′=1

K∑
k′=1

sn
′

k′1
n′

k′→k −Dn
k .

So it is enough to show that

lim
n→∞

Ank +
∑n

n′=1

∑K
k′=1 s

n′

k′1
n′

k′→k −Dn
k

n
= 0.

First, we show that

lim inf
n→∞

Ank +
∑n

n′=1

∑K
k′=1 s

n′

k′1
n′

k′→k −Dn
k

n
= 0, a.s.

In contrary suppose that in a realization,

lim inf
n→∞

Ank +
∑n

n′=1

∑K
k′=1 s

n′

k′1
n′

k′→k −Dn
k

n
> ε5,
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for some ε5 > 0. Then, using Lemma 8 and the fact that limn→∞
An

k

n
= λk, we have

lim sup
n→∞

Dn
k

n
< λk +

K∑
k′=1

νk′rk′k − ε5 = νk − ε5. (2.69)

On the other hand, lim infn→∞
Qn

k

n
> ε5 implies that there exists n0(ε5) > 1

ε5
such that

for all n > n0(ε5), Qn
k ≥ ε5n, or in words, the queue is non-empty after n0(ε5). Thus,

sn
′

k = dn
′

k for n′ > n0. Therefore,

lim sup
n→∞

Snk
n
≤ lim sup

n→∞

n0 +Dn
k

n

= lim sup
n→∞

Dn
k

n
.

Now by Lemma 6, lim supn→∞
Sn
k

n
= νk ≤ lim supn→∞

Dn
k

n
which contradicts (2.69).7

Since this holds for any ε5 > 0, we conclude that

lim inf
n→∞

Qn
k

n
= 0, a.s. (2.70)

Second, we show that

lim sup
n→∞

Ank +
∑n

n′=1

∑K
k′=1 s

n′

k′1
n′

k′→k −Dn
k

n
= 0, a.s.

Suppose that in a realization

lim sup
n→∞

Ank +
∑n

n′=1

∑K
k′=1 s

n′

k′1
n′

k′→k −Dn
k

n
> 2ε6,

for some ε6 > 0. This implies that in this realization, Qn
k > 2ε6n happens infinitely

often and

lim sup
n→∞

Ank +
∑n

n′=1

∑K
k′=1 s

n′

k′1
n′

k′→k −Dn
k

n
> 2ε6

in that realization. Moreover, by (2.70), for any ε6 > 0, Qn
k < ε6n happens infinitely

often with probability 1. Let N2 ≥ 2
ε6

. Then, there exist N2 ≤ n3 < n4 such that
Qn3
k ≤ ε6n3 and Qn4

k ≥ 2ε6n4 and queue k is non-empty between time n3 and n4.
Define a process

B̃n
k = Ank +

n∑
n′=1

K∑
k′=1

sn
′

k′1
n′

k′→k − Snk .

7The lemma is also valid for the flexible queueing network, and the proof does not change.
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Then,

B̃n4
k = B̃n3

k + [B̃n4
k − B̃

n3
k ] (2.71)

≥ B̃n3
k +Qn4

k −Q
n3
k (2.72)

≥ B̃n3
k + 2ε6n4 − ε6n3. (2.73)

(2.72) is due to the following.

B̃n4
k − B̃

n3
k

= An4
k − A

n3
k +

n4∑
n′=n3+1

K∑
k′=1

sn
′

k′1
n′

k′→k − (Sn4
k − S

n3
k )

≥ An4
k − A

n3
k +

n4∑
n′=n3+1

K∑
k′=1

dn
′

k′1
n′

k′→k − (Sn4
k − S

n3
k )

= An4
k − A

n3
k +

n4∑
n′=n3+1

K∑
k′=1

dn
′

k′1
n′

k′→k − (Dn4
k −D

n3
k ) (2.74)

= Qn4
k −Q

n3
k .

(2.74) is true since queue k is non-empty between time n3 and n4. Now (2.73) implies
that

B̃n4
k

n4

− B̃n3
k

n3

≥ B̃n3
k

n3

(
n3

n4

− 1) + 2ε6 − ε6
n3

n4

.

By Lemma 6 we know that

lim
n→∞

B̃n
k

n
= 0 a.s.,

so one can choose N2 large enough such that for all n ≥ N2, |B̃n
k /n| ≤ ε6/3. Then,

|B̃
n4
k

n4

− B̃n3
k

n3

| ≤ 2ε6
3
. (2.75)

However, since
B̃

n3
k

n3
≤ ε6 and n3

n4
< 1,

B̃n4
k

n4

− B̃n3
k

n3

≥ ε6(
n3

n4

− 1) + 2ε6 − ε6
n3

n4

= ε6,

which contradicts (2.75). Thus,

lim sup
n→∞

Ank +
∑n

n′=1

∑K
k′=1 s

n′

k′1
n′

k′→k −Dn
k

n
= 0, a.s.,

which completes the proof Theorem 4.
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Chapter 3

Stability of Multiclass Queueing
Networks under Longest-Queue
Scheduling

3.1 Introduction

In Chapter 2, we considered the problem of how to design robust scheduling policies.
Specifically, we focused on two different network models: fork-join network for process-
ing DAGs and flexible queueing network. As mentioned before, it is of great practical
interest to find scheduling policies that are simple, robust, and local. A natural low-
complexity scheduling algorithm is longest-queue (LQ) scheduling, studied in [65], [50]
and [24], which we discuss in this chapter in detail.

In this chapter, we consider a simpler network model: the open multiclass queueing
network [34], [46], [17]. These are queueing networks with disjoint groups of queues
that cannot be scheduled simultaneously, and therefore, they are special cases of flexible
queueing networks studied in Chapter 2, Section 2.3. More specifically, each queue in
this network can be only served by 1 server, so the jobs in the queues are not flexible.

In general, we know that the utilization being less than one for each server is
necessary but not sufficient for the stability of a queueing network. This condition
specifies that work arrives at each server at rate less than one. In [46], Lu and Kumar
provided an example of a network (Figure 3.1) with priority scheduling that is unstable
despite satisfying the utilization condition. The priority is given to queue 2 in group
1 and to queue 3 in group 2. To see this, assume that µ1 > µ3 and µ4 > µ2 and
that queue 3 is initially empty while queue 2 is not. Group 1 serves queue 2, so that
queue 1 is not served and queue 3 remains empty. Eventually, queue 2 becomes empty
and queues 1 and 3 get served until queue 3 becomes empty (because µ1 > µ3). At
that time, queues 4 and 2 get served, until queue 2 becomes empty (because µ4 > µ2).
Thus, queues 2 and 3 are never served together. Consequently, they form a virtual
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Figure 3.1: Lu-Kumar network

group and the system cannot be stable unless the utilization of that virtual group is
less than one, which is an additional condition not implied by the original utilization
condition. For more details about the proofs, see Lemma 4.1.2 in [17].

If priority is given to the last buffer in each group (queues 2 and 4) or first buffer
in each group (queues 1 and 3), the network is stable. It is shown in [20, 45, 44]
that, for a re-entrant line, the last-buffer-first-serve and first-buffer-first serve discipline
with pre-emption is throughput-optimal. Max-Weight scheduling, proposed in [66, 18],
is known to be throughput-optimal for flexible queueing networks; thus, it is also
throughput-optimal for open multiclass queueing networks. However, Max-Weight
scheduling suffers from dependency on the knowledge of all of the service rates and
routing probabilities. Furthermore, scheduling decisions per server can not be done
locally, and the knowledge of the queue-lengths in the network can be required.

In this chapter, we analyze the stability of the queueing networks under LQ schedul-
ing policy using their fluid model. The fluid model converts a stochastic system into a
deterministic system, based on the functional strong law of large numbers, [47, 16, 63,
17, 15]. Under weak assumptions, the stability of the fluid model implies the stability
of the queueing network.

There has been relatively little work on the stability of LQ scheduling in the lit-
erature. We can mainly mention the following papers. In [24], Dimakis and Wal-
rand identify new sufficient conditions for longest-queue-first (LQF) scheduling to be
throughput-optimal. They combine properties of diffusion-scaled path functionals and
local fluid limits into a sharper characterization of stability. See also [40] for a variation
on the first order sufficient condition of that paper (resource pooling). In [9], Bahar-
ian and Tezcan consider LQF scheduling for parallel server systems. It is shown that
the nominal traffic condition is sufficient to prove stability if the underlying graph of
the parallel server system is a tree. Furthermore, additional drift conditions are pro-
vided for the stability of a special parallel server system known as X-model (see Figure
2.9). The network model that we consider is different from all the previous work on
LQ scheduling. In fact, throughput-optimality of LQ scheduling for open multiclass
queueing networks is still and open problem.
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In addition to LQ scheduling, we propose a new scheduling policy called longest-
dominating-queue (LDQ) in Section 3.4. This policy is closely related to LQ scheduling.
According to this policy, none of the queues that feed a larger maximum-length queue
in the network is served. Among those queues that are not dominated by a maximum-
length queue in the network, the longest one is scheduled. We use the fluid model
and show that the maximum of the queue lengths is a Lyapunov function to prove the
stability of LDQ scheduling in a general network which is an acyclic graph.

The rest of this chapter is organized as follows. In Section 3.2, we provide the
precise network model and problem formulation. In Section 3.3, we focus on the LQ
scheduling and prove that it is throughput-optimal for multiclass queueing networks
with two groups of two queues. In Section 3.4, we propose the LDQ scheduling and
prove that this new policy is maximally stable if the network topology is acyclic. We
provide simulation results and examples, which show that when there is a cycle in the
network, LDQ may not be stable.

3.2 Problem Definition and Network Model

In this section, we first introduce open multiclass queueing networks. We discuss the
fluid model to analyze the stability of the queueing network. We also provide the
utilization condition or capacity region of the network.

3.2.1 Network Model

We consider a network with K queues and a routing matrix RK×K . The entry rik is the
probability that a job goes to queue k upon leaving queue i . Therefore, a job leaves
the network upon leaving queue i with probability 1 −

∑
k rik. In each queue, jobs

are served in their order of arrival. A queueing network is “acyclic” if a job cannot
visit any queue more than once; that is, if there exists no finite sequence of queues
(i1, i2, . . . , i`, i1) such that ri1i2ri2i3 · · · ri`i1 > 0.

The random length of queue i at time t ≥ 0 is X̄i(t), the vector of service rates
of the queues is µ = [µ1, µ2, . . . , µK ]T , and the vector of arrival rates to the queues is
λ = [λ1, λ2, . . . , λK ]T . The arrival processes to the queues are independent stationary
ergodic processes. In this network, not all the queues can be served at the same time.
The queues are partitioned into J disjoint groups {Gj}Jj=1 and only one queue can be
served in each group at a time. Let Kj = |Gj|, so that K1 +K2 + · · ·+KJ = K. Figure
3.2 illustrates a multiclass queueing network with 2 groups of two queues: G1 = {1, 2}
and G2 = {3, 4}.

We assume the network is open, i.e., all the jobs eventually leave the network. Since
the network is open,

Q = I +
∞∑
k=1

(RT )k = (I −RT )−1
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Figure 3.2: Multiclass queueing network with two groups of two queues

is a finite positive matrix. So, the matrix (I −RT ) is invertible.
The service disciplines that we consider are independent of λ, µ and R. The goal is

to analyze the stability of this network when the utilization conditions stated in Section
3.2.2 hold. Let X̄i(t) be the length of queue i at time t and T̄i(t) be the random total
amount of time that queue i has been scheduled up to time t. We use the fluid model to
analyze the stability of the network. The fluid model is described by a set of differential

equations as follows. Let Xi(t) = limr→∞
X̄i(rt)
r

be the fluid level of queue i at time t,

and let Ti(t) = limr→∞
T̄i(rt)
r

be the cumulative amount of time that queue i is served
up to time t in the fluid model. Then the fluid model equations are

Xk(t) = Xk(0) + λkt− µkTk(t) +
K∑
i=1

rikµiTi(t), k = 1, . . . , K. (3.1)

The fluid model is stable if there exits some δ > 0 such that, for each fluid solution
with ‖X(0)‖ ≤ 1, one has ‖X(t)‖ = 0 for t > δ. Under weak conditions, the stability of
the fluid model implies the stability of the queueing network (e.g., the Harris recurrence
of a Markov model in the case of renewal arrival processes, i.i.d. service times and
Markov routing). See [16, 17] for a discussion of such results.

3.2.2 Utilization Condition

First we introduce some notation. Let V and W be matrices of size L×N ; then V � W
means vij ≤ wij, for i = 1, . . . , L and j = 1, . . . , N . Also, 1L and 0L stand for column
vectors of 1’s and 0’s with length L, respectively and 0L×N stands for the L×N matrix
of all 0 entries.

Define the drift matrix D of the network by

D = M(R− I), (3.2)

where M = diag{µ}. Since Q := (I −RT )−1 is a positive matrix, one has

D−T = −M−1Q � 0K×K . (3.3)
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Furthermore, let the vector of nominal traffic of the queues be ν = [ν1, ν2, . . . , νK ]T .
We have

νi = λi +
K∑
k=1

rkiνk.

In matrix form,

ν = (I −RT )−1λ. (3.4)

By Proposition 2.5.3. in [17], the utilization conditions of the network are∑
i∈Gj

νi
µi
< 1, ∀j = 1, . . . J. (3.5)

They express that work for each group arrives at the network at rate less than one.
Using (3.3) and (3.4), we find an equivalent stability conditions which is that

ẽTj D
−Tλ + 1 > 0 for all j = 1, . . . , J , where ẽj is a column vector of length K corre-

sponding to group j such that component i of ẽj is ẽj(i) = 1{i∈Gj}.

3.3 LQ Scheduling

In this section, we first provide a brief review of Filippov’s theory for differential equa-
tions with discontinuous right-hand side. Then, we define LQ scheduling policy and
analyze it in the fluid model. We show that LQ scheduling is throughput-optimal in
the queueing network with two groups of two queues. We provide two different proofs.
The first proof uses Filippov’s theory to investigate the possible trajectories of the
state and show that they can only go to zero. The second proof is based on finding a
piece-wise linear Lyapunov function for the system.

3.3.1 Review of Filippov’s Theory for Differential Equations
with Discontinuous Right-Hand Side

In this subsection, we review Filippov’s theory [26, 23] about solutions of differential
equations with discontinuous right-hand side. In Subsection 3.3.2, we will see that the
fluid limit equations of LQ scheduling are piece-wise smooth differential equations. We
describe Filippov’s theory in the following simple case. Let h ∈ C2 : Rn → R be a
function with continuous first and second derivatives. Let H1 and H2 be subspaces in
Rn, and let Hb be a hypersurface such that Rn = H1 ∪H2 ∪Hb is partitioned into H1,
H2 and Hb. The hypersurface is defined by a function h(x):

Hb = {x ∈ Rn|h(x) = 0}.
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Then, subspaces H1 and H2 are defined as

H1 = {x ∈ Rn|h(x) < 0},
H2 = {x ∈ Rn|h(x) > 0}.

Consider the nonlinear system

ẋ = f(x) =

{
f1(x), x ∈ H1,
f2(x), x ∈ H2.

Assume that the system is piece-wise smooth in the sense that fi(x) ∈ C1 is contin-
uously differentiable in Hi, but does not extend smoothly over the boundary. The
function f(x) is not defined for x ∈ Hb. Filippov’s theory states that under some mild
conditions the solution to the differential equation is unique and f(x) at the boundary
is uniquely determined by a convex combination of f1 and f2:

f(x) = (1− p(x))f1(x) + p(x)f2(x), p ∈ [0, 1], x ∈ Hb.

This is known as Filippov convex method. Let n(x) be the normal to the hypersurface
Hb directing towards H1. Suppose that fi(x) ∈ C1, h(x) ∈ C2. The solution to the
differential equation is unique in 2 of the following 3 cases. In case 1, at x ∈ Hb,
(nT (x)f1(x))(nT (x)f2(x)) > 0. Then, x leaves Hb and enters H1 if nT (x)f1(x) >
0, and enters H2 if nT (x)f1(x) < 0. The intuitive reason behind the uniqueness of
solution in this case is that both vector fields, f1 and f2, direct towards one subspace.
This is known as transversal intersection. In case 2, (nT (x)f1(x))(nT (x)f2(x)) < 0
and nT (x)f1(x) < 0. Then, we have a so-called attractive sliding mode through x.
Furthermore,

p(x) =
nT (x)f1(x)

nT (x)(f1(x)− f2(x))
.

The intuitive reason behind the uniqueness of solution in this case is that when the
trajectory is in a neighborhood of x, both vector fields direct towards the boundary
hypersurface. In case 3, (nT (x)f1(x))(nT (x)f2(x)) < 0 and nT (x)f1(x) > 0. This is
called a repulsive sliding mode and does not lead to uniqueness in solution. However,
the repulsive sliding mode cannot occur in real physical systems [26]. The intuitive
reason behind this is that even though in theory there exists a convex combination of
the vector fields which lead to sliding of the trajectory on the hypersurface, the sliding
mode is unstable in the sense that if a solution is in a neighborhood of x it will enter
one of the hypersurfaces without crossing the boundary. Finally, if nT (x)f1(x) = 0
(nT (x)f2(x) = 0), then p(x) = 0 (p(x) = 1). Figure 3.3 illustrates Filippov’s theory.

3.3.2 LQ Scheduling for Multiclass Queueing Networks

In this subsection, we provide the fluid model equations for LQ scheduling. Under this
discipline, the longest queue in each group is served. To break ties, we can use a static
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Figure 3.3: Illustration of Filippov’s theory: (a) transversal intersection: nTf1 and
nTf2 have the same sign, and the trajectory crosses the intersection and enters H1;
(b) attractive sliding mode: nTf1 < 0 and nTf2 > 0, and the trajectory slides on
the boundary; (c) repulsive sliding mode: nTf1 > 0 and nTf2 < 0. In this case, the
solution is not unique. The trajectory can slide on the boundary, or enters any of the
subspaces. The reason that the sliding mode is not attractive is that a solution which
starts in a neighborhood of x leaves the intersection.

priority scheduling among the maximum queues, or serve any of the maximum-length
queues randomly. As we will see, the fluid model equations of the queueing network
under LQ scheduling is a piece-wise affine dynamical system. More precisely, one has
Ẋ = a if X ∈ S, where a is a constant drift vector and S is a subspace of RK

+ which is
specified by the set of longest queues in each group. We define different states for the
dynamical system which corresponds to different subspaces in which the drift vector
is uniquely defined. Furthermore, we prove Lemma 11 that explicitly determines this
constant drift vector for different states of the system.

Let Sj(t) be the set of queues with maximum length in group j and |Sj(t)| = Lj at
time t. If all the queues in group Gj are empty1, we use the convention that Sj = ∅.
Define S(t) = ∪jSj(t) and |S(t)| = L =

∑
j Lj. LQ scheduling corresponds to the fluid

limit defined by (3.1) together with ∑
i∈Sj

Ṫi(t) = 1

∑
i∈Gj\Sj

Ṫi(t) = 0, (3.6)

which states that the server in each group spends all its time serving the longest queues.
The main result of this chapter is the following theorem.

1By empty queue in the fluid model, we mean a zero fluid level queue.
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Theorem 8. The multiclass queueing network in Figure 3.2, with two groups of two
queues, is stable under LQ scheduling if the utilization conditions stated in (3.5) hold.

The rest of this section establishes the proof of Theorem 8. Note that the stability
of multiclass queueing networks with more than two groups of two queues under LQ
scheduling is still an open question.

Define the function f(t) as follows.

f : [0,∞)→ RJ , f(t) = [max
i
{Xi}i∈G1 , . . . ,max

i
{Xi}i∈GJ ]T . (3.7)

Then, ḟ(t) is the vector of drifts of maximum-length queues in the J groups.
An outline of the proof for stability of LQ scheduling in multiclass queueing net-

works with two groups of two queues is as follows. The drifts of queues with maximum
length in one group are equal at a regular point by Lemma 9. A regular point is a value
of t ∈ [0,∞) at which f(t) in (3.7) is differentiable in all of its components. In Lemma
11, we show that the vector of drifts of maximum-length queues in different groups
is strictly negative in at least one of its components. More precisely, if t is a regular
point, ḟ(t) has a constant component i determined by S(t) such that ḟi(t) ≤ −ε(S(t))
for some ε(S(t)) > 0 if |X(t)| > 0. This implies that S(t) cannot remain constant as
t→∞ unless X(t) = 0 (See Lemma 12). However, this is not enough to prove stabil-
ity, as S(t) can in principle travel around different states forever. We will show that
there is no loop in the trajectory of S(t), and this implies that S(t) reaches the state
in which all the queues are empty, and S(t) remains in the absorbing “zero” state. A
formal proof of this claim is given in Lemma 15. In this state, Ṫi = νi/µi is acceptable
by Equation (3.5) and leads to Ẋi = 0, ∀i, 1 ≤ i ≤ K. Since the zero state is feasible,
S(t) remains in this state for a positive amount of time. Now since no new maximum
will appear in the network in the zero state, the fluid limit equations will not change,
and S(t) remains in this absorbing state forever.

Note that S(t) goes from one state to another when a new queue appears in the set
of maxima in one group. If in state S, |Sj| ≤ 1 for all j, the groups are either empty
or have a unique maximum-length queue. Then, the right-hand side of the differential
equation is uniquely determined, and can be easily calculated. If there are multiple
maxima in one or more groups, the state corresponds to the boundary of two subspaces,
and whether this state is feasible (the trajectory slides on this boundary) or the state
is not feasible (the trajectory leaves the boundary and enters one subspace) can be
determined by Filippov’s theory. This will be clarified in the following example.

Example: Consider the Lu-Kumar network (Figure 1) in the fluid limit. For this
network, the discontinuity of the right-hand side of the differential equation is on two
hyperplanes: Σ1 = {X : X1 = X2}, Σ2 = {X : X3 = X4}. The right-hand side of the
differential equation has no ambiguity in the following subspaces: H1 = {X : X1 >
X2, X3 > X4} which implies Ẋ = f1 = [λ−µ1, 0, µ1−µ3, µ3], H2 = {X : X1 < X2, X3 >
X4} which implies Ẋ = f2 = [λ,−µ2,−µ3, µ3], H3 = {X : X1 > X2, X3 < X4} which
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implies Ẋ = f3 = [λ − µ1, µ4, µ1,−µ4], and H4 = {X : X1 < X2, X3 < X4} which
implies Ẋ = f4 = [λ, µ4 − µ2, 0,−µ4]. Now let Hb = {X : X1 = X2, X4 > X3} ⊂ Σ1 be
the boundary of H3 and H4. Then, n = [1,−1, 0, 0]T . Using Filippov theory, we have

nTf3 = λ− µ1 − µ4 < 0,

by utilization condition, and

nTf4 = λ− µ4 + µ2.

Thus, if µ4 ≤ µ2 + λ, then we have a sliding mode, or equivalently a feasible state
(1, 2, 4). If µ4 > µ2 + λ, then we have a transversal intersection. Equivalently, state
(1, 2, 4) is not feasible and X crosses the boundary and goes to H4 or state (2, 4).

In the queueing network setting, Filippov’s result is equivalent to server 1 using
time-sharing to schedule queues 1 and 2 and keeping them equal. The time-sharing
equation is

λ− µ1Ṫ1 = µ4 − µ2(1− Ṫ1).

Thus, state (1, 2, 4) is feasible if 0 ≤ Ṫ1 ≤ 1, since a feasible time-sharing can keep
the queues 1 and 2 equal. Solving the time-sharing equation for Ṫ1 leads to the same
feasibility condition that µ4 ≤ µ2 + λ. Note that the convex combination of f1 and f2

is exactly server 1 using time-sharing to schedule queues 1 and 2. Now assume that
X(t) first lies in H3, and then hits the boundary Hb (state (1, 2, 4)). Below, we will
show the two possible transitions for the sliding mode and transversal intersection as

(1, 4)→ (1, 2, 4) and (1, 4)→ (1, 2, 4)0 → (2, 4),

respectively, where (1, 2, 4)0 indicates that (1, 2, 4) is not feasible, so it is not visited
for a positive amount of time.

Remark 4. Note that in general for two or more sliding surfaces, Filippov theory
might not lead to uniqueness. For example consider two hypersurfaces h1(x) = 0 and
h2(x) = 0 and 4 subspaces that are trivially defined by hi(x) = 0, i = 1, 2. Let
fj, j = 1, 2, 3, 4 be the right-hand side of differential equations for the 4 subspaces.
Then, in the boundary h1(x) = 0 and h2(x) = 0, in general one has f(x) =

∑4
j=1 pjfj(x)

and
∑

j pj = 1. To have a sliding motion, one needs to have nT1 f = 0 and nT2 f = 0.
These equations give 3 equations and 4 unknowns. However, in a queueing network the
convex combination is constrained by the capacity of each server. That is

∑
i∈Gj Ṫi = 1.

The extra equation is enough to lead to a unique solution.

As mentioned, LQ scheduling leads to a piece-wise affine dynamical system. Thus,
when X(t) lies in the interior of a subspace of Rn

+ defined by the maxima in each group
or equivalently in one state, t is regular, as the drift vector is a constant uniquely
defined. The only possible non-regular points of the system are times t that X(t)
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hits a boundary of subspaces or equivalently changes state. Therefore, if St remains
constant in [t, t+ ε] for some ε > 0, then t is a regular point as f(t) is differentiable at
t.

Now we provide two Lemmas from [20] with a short proof sketch.

Lemma 9. At a regular point t, Ẋi(t) = Ẋj(t) if i and j are in the set of maxima of
same group.

Proof. Since i and j are in the same group and both in the set of maxima, Xi = Xj.
Thus, if t is a regular point, Xi and Xj are differentiable and Ẋi(t) = Ẋj(t). �

Lemma 10. Consider one arbitrary queue i and assume that t is a regular point such
that Xi(t) = 0. Let νin be the total arrival rate and νout be the departure rate of queue
i at time t. Then νin = νout.

Proof. Since t is regular and Xi(t) = 0, Xi is differentiable at t and Ẋi(t) = 0. This
proves that νin = νout. �

Lemma 11. Suppose that the network is non-empty; that is, maxiXi(t) > 0. At a
regular point t, α , ḟ(t) cannot be a non-negative vector. Furthermore, at each state
S, the drift vector α is uniquely determined by the state S, and is independent of the
queue-lengths.

Proof. First, for ease of notation we prove the lemma for the case that all the groups
are non-empty. Define matrix EL×J as the following.

E = [e1, e2, . . . , eJ ] (3.8)

where ej is the column vector of length L defined as follows:

ej = [0∑j−1
k=1 Lk

,1Lj
,0∑J

k=j+1 Lk
]T . (3.9)

Recall that L = |S| and Lj = |Sj|. Let DL = [dik]i,k∈S, ṪL = [Ṫi]i∈S and λL = [λi]i∈S
be the corresponding drift matrix, time-sharing vector and arrival vector to S, the set
of maximum length queues. By the fluid model equations (3.1) and Lemma 9, we have
the following matrix equation:[

−(DL)T E
ET 0J×J

] [
ṪL
α

]
=

[
λL
1J

]
. (3.10)

This is a simple representation of Equations (3.1) and (3.6) in matrix form which
will be clarified in the following example.

Example: Consider the Lu-Kumar network in Figure 1 and S = (1, 2, 4). Then,

DL =

 −µ1 0 0
0 −µ2 0
0 µ4 −µ4

 ,
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λL = [λ, 0, 0]T , and ṪL = [Ṫ1, Ṫ2, Ṫ4]T . The matrix equation ET ṪL + 0 × α = 1J is
exactly Equation 3.6 for the two groups, and −(DL)T ṪL+Eα = λL is exactly Equation
3.1.

Solving Equation (3.10) using the block inverse formula, we have

α = (ET (DL)−TE)−1
(
ET (DL)−TλL + 1J

)
. (3.11)

A careful observation shows that ET (DL)−TλL + 1J is a positive vector, by the
stability condition of these subset of queues which is a weaker condition than the
stability condition of the whole network.

In Section 3.2.2, we showed that D−T is a negative matrix. DL has the same
properties as D so, ET (DL)−TE is also a negative matrix. Now since ET (DL)−TEα is
a positive vector, α cannot be a non-negative vector. Furthermore, by longest-queue
scheduling, the time-sharing vector ṪL is a constant only depending on S; thus, α(S)
is independent of the queue sizes.

If some groups are empty, the network is reduced to a smaller network for which
the above proof still holds, since the utilization condition for the subset of non-empty
groups is weaker than the utilization condition of the whole network. For instance,
if group 2 in Lu-Kumar network of Figure 3.1 is empty, the network reduces to two
queues (1 and 2) in series, and one can similarly show that for this sub-network, the
constant drift vector α is non-negative. �

Lemma 11 shows that some non-zero maxima must decrease, so that S(t) cannot
remain in any state but the zero state which is the only absorbing state.

Lemma 12. There do not exist a non-zero state S and some t0 ≥ 0 such that S(t) = S
for all t ≥ t0.

Proof. Suppose that S(t) = S for all t ≥ t0 and S is non-empty. Then, by Lemma
11, there exists some j such that for t ≥ t0, αj(t) = ḟj(t) = −ε for some ε > 0. This
implies that the maximum queue-length in group j goes to −∞ as t→∞, which is a
contradiction. �

Lemma 13. Suppose that S(t) switches from a feasible state S(1) to a feasible state
S(2) at time t0; that is, there exists an arbitrarily small ε > 0, S(t0 − ε) = S(1) and
S(t0 + ε) = S(2). Let S∆ = S(1) \ S(2). Then, if i ∈ S∆ and i ∈ Gj, the maxima of Gj
have positive drift in state S(2), unless S

(2)
j = S(2) ∩ Gj = ∅.

Proof. If i ∈ S∆ and S
(2)
j 6= ∅, queue i is removed from the set of maxima of group j

after transition to state S(2). This requires that, in state S(2), queue i has a smaller
drift than the other maxima in its group. To see this formally, let k ∈ S

(2)
j . Let

t1 = inf{t > t0 : S(t) 6= S(2)}. Then, S(t) = S(2) for t ∈ (t0, t1) for some t1 > t0 since
S(2) is a feasible state by assumption. Then, Xi(t0) = Xk(t0) by continuity of fluid.
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Now, suppose that Ẋi(t) ≥ Ẋk(t) in the interval t ∈ (t0, t0 + ε) for some 0 < ε < t1− t0.

This contradicts the assumption that i /∈ S(2). Thus, Ẋi(t) < Ẋk(t),∀k ∈ S
(2)
j for

t ∈ (t0, t1). This is due to the fact that in every state the queue-length drifts are
constants that are uniquely determined by that state, so Ẋi(t) is a constant independent
of t for t ∈ (t0, t1) for all i. Now, since queue i is not served, one has Ẋi(t) ≥ 0 for
t ∈ (t0, t1). Consequently, the drift of the maxima in group j is positive in state
S(2). �

We are now ready to prove the following result.

Lemma 14. Under the stability conditions, there is no loop in the trajectories of the
state diagram of the network with two groups of two queues.

Proof. We prove the lemma by contradiction. To have a loop in the state diagram,
there are three possible scenarios.

Scenario I: There is an empty group in one of the states in the loop.
Without loss of generality, we can consider this state to be (1, ∅) or (1, 2, ∅).
To show that this is not possible, we first show that (1, 2, ∅) cannot be feasible. To

see this, assume that (1, 2, ∅) is feasible. If (1, 2, ∅) is feasible, then group 1 has negative
drift by Lemma 11. Thus, next S(t) visits the absorbing (∅, ∅), which contradicts the
existence of the loop. Hence, (1, 2, ∅) is not feasible and (1, ∅) must be the feasible
state with an empty group in the loop.

Second, we claim that (1, 2, 3, 4) cannot be feasible. Assume that it is. One then
has the following transitions starting from (1, ∅):

(1, ∅)→ (1, 2, ∅)0 → (1, 2, 3, 4).

In (1, 2, 3, 4), the drift of group 2 is positive since it was previously empty. So queues
3 and 4 are necessarily increasing. Thus, group 1 has negative drift and next becomes
empty. We claim that the next feasible state is then (∅, 3, 4). Indeed, if that state is
not feasible, the next feasible state would then be (∅, 3) (without loss of generality).
But, in that state, queue 3 must decrease (since group 1 has a zero drift and one of
the groups must have a negative drift, by Lemma 11), and the other queue 4 does not
decrease, which is not possible. Thus, the next transitions must be

(1, 2, 3, 4)→ (∅, 3, 4)→ (∅, ∅),

which contradicts the existence of a loop.
Third, we show that S(t) must go to the zero state. Indeed, we have the following

transitions:
(1, ∅)→ (1, 2, ∅)0 → (1, 2, 3, 4)0.

The next state is either (1, 2, 3) or (1, 2, 4). To see this, first note that if one of
queues 1 or 2 are removed from the set of maxima, by Lemma 13, group 1 has positive



CHAPTER 3. STABILITY OF MULTICLASS QUEUEING NETWORKS UNDER
LONGEST-QUEUE SCHEDULING 60

drift in the next state. On the other hand, since group 2 was previously empty, it
necessarily has a positive drift in the next state. Since both of the groups cannot have
a positive drift, this is a contradiction and it follows that 1 and 2 remain in the set of
maxima, and group 1 has negative drift. Therefore, without loss of generality we can
consider the next transition to be to (1, 2, 3), i.e., we have the following transitions:

(1, ∅)→ (1, 2, ∅)0 → (1, 2, 3, 4)0 → (1, 2, 3). (3.12)

Next, group 1 becomes empty and S(t) visits (∅, 3). After some time, queues 3 and
4 become equal, as 3 has negative drift, so S(t) visits (∅, 3, 4). We claim that (∅, 3, 4)
must be feasible. If this state is non-feasible, S(t) visits (1, 2, 3, 4)0. Thus, the next
transition is to (1, 2, 3) by (3.12). However, this is not possible since in this state, group
1 has negative drift. Since group 1 is empty in (∅, 3, 4), it cannot have a negative drift
in the next state. This shows that (∅, 3, 4) is feasible. Since (∅, 3, 4) is feasible, group 2
has negative drift by Lemma 11 and the next state is the zero state, which contradicts
the existence of a loop.

Scenario II: None of the states in the loop has an empty group and there is a
state of cardinality 3 in the loop. Note that a feasible state (1, 2, 3, 4) cannot be in the
loop since from that state one of the groups becomes empty. Without loss of generality
suppose that this state is S(1) = (1, 2, 3) and the next transition happens when queue
4 appears in the set of maxima.

Case 1: The drift of queue 3 at S(1) is positive, so necessarily drifts of 1 and 2 are
equal and negative by Lemma 11. Therefore, the state can only go to S(2) = (1, 2, 4)
with drift of 4 positive and drifts of 1 and 2 negative by Lemma 13. From this point,
no new maximum can appear until group 1 goes empty since Ẋ4 > Ẋ3 > 0 by Lemma
13 and we are back to Scenario I.

Case 2: The drift of queue 3 at S(1) is negative. The next state cannot be (1, 2, 3, 4),
so S(t) can either go to (1, 2, 4) with Ẋ4 > 0 in which we are in the same situation as
Case 1, or Ẋ3 = Ẋ4 < 0, and one of the queues 1 or 2 (for example queue 2) is removed
from the set of maxima. Note that by Lemma 13, queues 3 and 4 remain equal while
having negative drift. From this point, no new maximum can appear until group 2
goes empty since Ẋ1 > Ẋ2 > 0 and we are back to Scenario I.

Scenario III: All of the states in the loop are of cardinality 2. Obviously, not all
the maxima of a state can change at time t. So for example from S = (1, 3), the next
state cannot be S = (2, 4). Now we consider 3 cases:

Case 1: There is a loop of length 2. Without loss of generality we can consider the
loop to be (1, 3) → (1, 4) → (1, 3). But at state (1, 4), it is not possible that queue 3
appears again as the new maximum since Ẋ4 > Ẋ3 > 0. So there is no loop of length
2 in the state diagram.

Case 2: There is a loop of length 3. Without loss of generality we can consider
the loop to be (1, 3) → (1, 4) → (2, 4) → (1, 3). But clearly the last transition in the
loop is not valid. So there is no loop of length 3.
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Figure 3.4: Loop in the state diagram

Figure 3.5: Loop in the state diagram

Case 3: There is a loop of length 4. Without loss of generality we can consider the
loop to be (1, 3)→ (1, 4)→ (2, 4)→ (2, 3)→ (1, 3). We cannot rule out this case just
by inspection like the previous cases. Note that in each of these states the drift of one
group is positive and the other one negative S(t) cannot go to a state of cardinality
where one maximum is removed and both of the drifts are negative by Lemma 13. A
careful observation shows that the sign of the drifts of each group should change in
every jump. If not, as we can see in Figure 3.4, the last jump (2, 3) → (1, 3) is not
valid by Lemma 13.

The last possible case that we have to investigate is the loop with the drifts shown
in Figure 3.5.

The possibility of this loop happening cannot be rejected just by inspection. We
write the exact conditions leading to each transition which is an inequality; then sum
them up and reach a contradiction. The transition (↑ 1, 3 ↓)→ (↓ 1, 4 ↑) implies that
state S = (1, 3, 4) is not feasible. Indeed solving equation Ẋ3 = Ẋ4, where

Ẋ3 = λ3 − µ3Ṫ3 + µ1r13 + µ3Ṫ3r33 + µ4(1− Ṫ3)r43

Ẋ4 = λ4 − µ4(1− Ṫ3) + µ1r14 + µ3Ṫ3r34 + µ4(1− Ṫ3)r44,

leads to Ṫ3 < 0 which is not acceptable. So for Ṫ3 = 0, Ẋ3 < Ẋ4 and the following
condition is obtained.

λ4 − µ4 + µ1r14 − λ3 − µ1r13 − µ4r43 + µ4r44 > 0. (3.13)
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Similarly, for the other 3 transitions we obtain 3 inequalities which are the following:

λ2 − µ2 + µ4r42 − λ1 − µ4r41 − µ2r21 + µ2r22 > 0 (3.14)

λ3 − µ3 + µ2r23 − λ4 − µ2r24 − µ3r34 + µ3r33 > 0 (3.15)

λ1 − µ1 + µ3r13 − λ2 − µ3r32 − µ1r12 + µ1r11 > 0. (3.16)

Adding inequalities (3.13) to (3.16), we have

− µ1(1− r11 + r12 + r13 − r14)− µ2(1 + r21 − r22 + r23 − r24)

− µ3(1− r31 + r32 − r33 + r34)− µ4(1 + r41 − r42 + r43 − r44) > 0,

which is clearly not true so we reach a contradiction and the proof of the lemma is
complete.

�

The immediate result of Lemma 14 is that S(t) will reach the zero state after a
finite time since S(t) cannot travel around a finite state diagram without making a
loop and reaching the zero state.

Lemma 15. Suppose that S(t) reaches the zero state from a non-zero state. Then,
S(t) remains in the absorbing zero state.

Proof. Without loss of generality, suppose that the zero state is reached from the
feasible state (1, 2, ∅). Note that one can have a case that the zero state is reached
from the feasible state (1, 2, 3, 4) if the initial condition and the network is designed
such that both groups have negative drift in (1, 2, 3, 4) and the queues become empty
exactly at the same time. Nevertheless, the following proof also holds for this rare case.
By Lemma 11, group 1 has negative drift in state (1, 2, ∅). Thus, S(t) visits the set
(∅, ∅)0. If this state is feasible, there will be no change in the dynamics of the system
so it is absorbing. In this case, Ṫi = νi

µi
. In contrary, suppose that (∅, ∅) is not feasible.

Then, S(t) visits (1, 2, 3, 4)0 or (∅, 3, 4)0 at time t0. By Lemma 11, at least one of the
groups has negative drift in these states (if they are feasible) or the next non-empty
feasible state. But this is not possible by continuity and non-negativity of the fluid
since Xi(t) = 0, ∀i. To see this, without loss of generality assume that group 1 has
negative drift at the next feasible state, and queue 1 belongs to the maxima of group
1. Then, for arbitrarily small ε > 0, we have Ẋ(t0 + ε) < 0 while X(t0) = 0, which is
not possible. �

Remark 5. Note that in Lu-Kumar network (Figure 1) with priority scheduling and
priorities given to states 2 and 3, the zero state is not feasible. First, it is not true that
the zero state will be reached from a non-zero state. Indeed, it is shown that if the
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Figure 3.6: Trajectories of fluid in Lu-Kumar network

initial fluid level is non-zero, the zero state is never reached. Second, since queues 2
and 3 are never served at the same time, there is an extra condition that Ṫ2 + Ṫ3 ≤ 1.
In words, queues 2 and 3 form a virtual group. Thus, Ṫi = νi

µi
can be non-feasible in

general.

We show the simulation results for the Lu-Kumar network (Figure 3.1) in the fluid
limit. In the simulation, service rates are µ = [3, 1, 1, 1]T , and arrival rate is λ = 0.4.
Initial queue-lengths is X(0) = [40, 30, 20, 10]T . Figure 3.6 shows the trajectories of the
fluid in different queues versus time. As we can see, first the queue-lengths in different
groups become equal. Then group 1 goes empty, and from that point drift of group 2
is negative until it is empty.

3.3.3 Second Proof of Theorem 8

The key idea for the second proof is to find a piece-wise linear Lyapunov function. Let
W (t) = M−1QX(t) = −D−TX(t). Note that QX(t) denotes the vector of potential
fluid level for each queue at time t, and Wi(t) is the potential work to be done at queue
i at time t. Let

a =
µ−1

1 (q13 + q14) + µ−1
2 (q23 + q24)

µ−1
3 (q33 + q34) + µ−1

4 (q43 + q44)
, (3.17)

and

b =
µ−1

1 (q11 + q12) + µ−1
2 (q21 + q22)

µ−1
3 (q31 + q32) + µ−1

4 (q41 + q42)
, (3.18)

where Q = [qij]. In Lemma 16, we show that a ≤ b. Let β ∈ [a, b]. We show that

V (X) = max(f1, f2), (3.19)
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where f1 = W1 +W2 = ẽT1W and f2 = β[W3 +W4] = βẽT2W , is a Lyapunov function.

Lemma 16. The following inequality holds:

a ≤ b, (3.20)

where a is given in (3.17) and b is given in (3.18).

Proof. It is enough to show the following 4 inequalities:

(q11 + q12)(q33 + q34) ≥ (q13 + q14)(q31 + q32) (3.21)

(q11 + q12)(q43 + q44) ≥ (q13 + q14)(q41 + q42) (3.22)

(q21 + q22)(q33 + q34) ≥ (q23 + q24)(q31 + q32) (3.23)

(q21 + q22)(q43 + q44) ≥ (q23 + q24)(q41 + q42). (3.24)

We prove (3.21). The proof of (3.22)–(3.24) is identical with change of indices.
Recall that Q = (I − RT )−1. I − R is an M-matrix [61]. That is, I − R has

non-negative diagonal entries, non-positive off-diagonal entries, and the sum of entries
of each row is non-negative. M-matrices have positive principal minors [61]; thus,
det(I − R) is strictly positive, as the network is open. The following equality can be
computed:

det

(√
det(I −R)

[
q11 + q12 q13 + q14

q31 + q32 q33 + q34

])
= (1 + r21 − r22)(1 + r43 − r44) + (r23 − r24)(r42 − r41). (3.25)

It is now sufficient to show that the right-hand side of the above equality is non-
negative. This can be shown as follows.

(1 + r21 − r22)(1 + r43 − r44) + (r23 − r24)(r42 − r41)

≥ (1− r22)(1− r44)− (r23 + r24)(r42 + r41) ≥ 0.

The last inequality is due to the facts 1− r22 ≥ r23 + r24 and 1− r44 ≥ r42 + r41. This
completes the proof of the lemma. �

Now we show that V (X) is a Lyapunov function. First, it is clear that V (X) = 0
if and only if X = 0. We show that at a regular point t, V̇ (t) ≤ −δ if X(t) 6= 0 for
some δ > 0 by considering 3 different cases. A time t is regular if each component of
X(t) is differentiable at time t, and function V (X(t)) is differentiable at time t.

• Case 1: Suppose that f1(t) > 0 and f2(t) > 0. The fluid model equation in (3.1)
can be written in vector form as

X(t) = X(0) + λt+DTT (t) (3.26)
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Then,
ḟ1(t) = ẽT1M

−1Q(λ+DT Ṫ (t)) = −ẽT1D
−Tλ− 1 ≤ −ε,

by the utilization condition and the fact that Ṫ1 + Ṫ2 = 1 since LQ scheduling is
work-conserving. Similarly,

ḟ2(t) = −ẽT2D
−Tλ− 1 ≤ −ε.

Thus, ḟ(t) ≤ −ε in this case.

• Case 2: Suppose that group 1 is empty, and group 2 is non-empty. That is,
X1(t) = X2(t) = 0 and X(t) 6= 0. Then, similar to case 1, one can show that
ḟ2(t) ≤ −ε. However, ḟ1(t) is not necessarily strictly negative. Thus, we need
to show that at all regular points t in case 2, either ḟ1(t) < 0 or f2(t) ≥ f1(t)
(or both). Since X1(t) = X2(t) = 0, one can write f1(t) = c1X3(t) + c2X4(t)
and f2(t) = c3X3(t) + c4X4(t) for some positive constants ci, i = 1, 2, 3, 4. We
re-write f1 in the following two expressions.

f1 =
c1

c3

f2 + (c2 −
c1c4

c3

)X4 (3.27)

f1 =
c2

c4

f2 + (c1 −
c2c3

c4

)X3. (3.28)

Recall that under LQ scheduling, Ṫ3 = 1 and Ṫ4 = 0 if X3 > X4, which implies
that Ẋ3 < 0 and Ẋ4 ≥ 0 in case 2, since ḟ2 = c3Ẋ3 + c4Ẋ4 < 0. Similarly, by LQ
scheduling X4 > X3 implies that Ṫ4 = 1, Ṫ3 = 0, Ẋ4 < 0, and Ẋ3 ≥ 0 in case 2.
Now suppose that c1c4 < c2c3. Then, we expand f1 according to (3.27). Then,
X4 > X3 implies that ḟ1 < − c1

c3
ε. We show that if X3 ≥ X4, f2 ≥ f1 in this case

as follows. Fixing X4 ≥ 0, the function

f2

f1

=
c3X3 + c4X4

c1X3 + c2X4

is increasing in X3 since c1c4 < c2c3 by assumption. Thus,

inf
X3: X4≤X3

f2

f1

is achieved when X3 = X4. Therefore, it is enough to show that f2 ≥ f1 when
X3 = X4. When X1 = X2 = 0 and X3 = X4, we have

f2

f1

=
β[µ−1

3 (q33 + q34) + µ−1
4 (q43 + q44)]

µ−1
1 (q13 + q14) + µ−1

2 (q23 + q24)
=
β

a
≥ 1. (3.29)

In the above derivation, we used (3.17) and the fact that β ∈ [a, b].
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Similarly, suppose that c1c4 > c2c3. Then, we expand f1 according to (3.28).
Then, X3 > X4 implies that ḟ1 < − c2

c4
ε. We show that if X4 ≥ X3, f2 ≥ f1 in

this case as follows. Fixing X3 ≥ 0, the function

f2

f1

=
c3X3 + c4X4

c1X3 + c2X4

is increasing in X4 since c1c4 > c2c3 by assumption. Then,

inf
X4: X3≤X4

f2

f1

is achieved when X4 = X3. Therefore, it is enough to show that f2 ≥ f1 when
X3 = X4, which is already shown in (3.29).

Finally, supposing that c1c4 = c2c3, f1/f2 = c1/c3. Thus,

ḟ1 =
c1

c3

ḟ2 ≤ −
c1

c3

ε.

• Case 3: Suppose that group 2 is empty, and group 1 is non-empty. Then, ḟ1(t) ≤
−ε. Similar to case 2, we need to show that either ḟ2(t) < 0 or f1(t) ≥ f2(t)
(or both). Since in case 3, X3 = X4 = 0, one can write f1 = c′1X1 + c′2X2 and
f2 = c′3X1 + c′4X2 for some positive constants c′i, i = 1, 2, 3, 4. We have

f2 =
c′3
c′1
f1 + (c′4 −

c′3c
′
2

c′1
)X2 (3.30)

f2 =
c′4
c′2
f1 + (c′3 −

c′4c
′
1

c′2
)X1. (3.31)

Similar to case 2, by LQ scheduling, X1 > X2 implies that Ẋ1 < 0 and Ẋ2 ≥ 0.
Also, X2 > X1 implies that Ẋ2 < 0 and Ẋ1 ≥ 0. Now suppose that c′1c

′
4 > c′2c

′
3.

Then, X2 > X1 implies that ḟ2 < − c′3
c′1
ε due to (3.30). We show that if X1 ≥ X2,

f1 ≥ f2. Fixing X2 ≥ 0, the function

f1

f2

=
c′1X1 + c′2X2

c′3X1 + c′4X2

is increasing in X1 since c′1c
′
4 > c′2c

′
3. Thus,

inf
X1:X1≥X2

f1

f2

is achieved when X1 = X2. Therefore, it is enough to show that f1 ≥ f2 when
X1 = X2. When X3 = X4 = 0 and X1 = X2, we have

f1

f2

=
µ−1

1 (q11 + q12) + µ−1
2 (q21 + q22)

β[µ−1
3 (q33 + q34) + µ−1

4 (q41 + q42)]
=
b

β
≥ 1. (3.32)
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In the above derivation, we used (3.18) and the fact that β ∈ [a, b].

Similarly, suppose that c′1c
′
4 < c′2c

′
3. Then, X1 > X2 implies that ḟ2 < − c′4

c′2
ε due

to (3.31). We show that if X2 ≥ X1, f1 ≥ f2. Fixing X1 ≥ 0, the function f1
f2

is
increasing in X2 since c′2c

′
3 > c′1c

′
4. Then,

inf
X2: X1≤X2

f1

f2

is achieved when X2 = X1. Therefore, it is enough to show that f1 ≥ f2 when
X1 = X2, which is already shown in (3.32).

Finally, supposing that c′1c
′
4 = c′2c

′
3, f1/f2 = c′1/c

′
3. Thus,

ḟ2 =
c′3
c′1
ḟ1 ≤ −

c′3
c′1
ε.

Now taking

δ = min(ε,
c1

c3

ε,
c2

c4

ε,
c′3
c′1
ε,
c′4
c′2
ε) > 0,

we have V̇ (t) ≤ −δ. This completes the proof of Theorem 8.

3.4 LDQ Scheduling

3.4.1 Policy

In each group, we define a queue to be “dominating” if it is belongs to the set of longest
queues in the network, or if it cannot feed a longest queue in the network. Let S̄ ′ be
the set of global maxima in the network. For each group j, the dominating set D̄j is
defined to be

D̄j = {i ∈ Gj : ris = 0 if X̄i < X̄s, ∀s ∈ S̄ ′}.
The scheduling policy is to serve the longest queue in D̄j. If D̄j = ∅, do not serve

any queues from group j. As an example, see Figure 3.7, where queue 3 is the maximum
with length 30. Since jobs leaving both queues 1 and 2 can be destined to queue 3,
D̄1 = ∅ and D̄2 = {3, 4}, so no queues in group 1 is served, and queue 3 in group 2
is served. As we can see, while the policy is not work-conserving, it always serves the
queue with maximum-length in the network. The policy is robust to the knowledge of
service rates and exact values of routing probabilities. The draw-back in comparison
with LQ scheduling is that it needs global knowledge of queue lengths and the topology
of the network.

The main result of this section is the following theorem.

Theorem 9. A multiclass queueing networks is stable under LDQ scheduling if the
utilization conditions stated in (3.5) hold and the network is acyclic.
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Figure 3.7: LDQ is not work-conserving

3.4.2 Proof of Theorem 9

We analyze the fluid model of the system under longest-dominating-queue scheduling
policy. Let

S ′ = {i : Xi = max
k
Xk}

be the set of maximum-length (maximum fluid level) queues in the network, and let
|S ′| = L′. Let

Dj = {i ∈ Gj : ris = 0 if Xi < Xs,∀s ∈ S ′}

be the set of dominating queues in group j in the fluid model. Let

S̃j = {i : i ∈ Dj, Xi = max
k∈Dj

Xk}

be the set of longest dominating queues in group j. Define a subset of groups J ⊆
{1, 2, . . . , J} as follows:

J = {j|∃i ∈ Gj ∩ S ′ such that ris = 0,∀s ∈ S ′}.

In words, J is the set of groups that have a globally maximum-length queue which
does not feed another globally maximum-length queue. The scheduling policy implies
that

∑
i∈S̃j

Ṫi(t) = 1, if j ∈ J , (3.33)

∑
i∈S̃j

Ṫi(t) ≤ 1, if j /∈ J , (3.34)

∑
i∈Gj\S̃j

Ṫi(t) = 0. (3.35)
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The fluid model equations for this policy are the one stated in (3.1) together with
(3.33)–(3.35).

We prove Theorem 9 using the Lyapunov function V (X) = maxi{Xi}. Let S ′j =
Gj ∩ S ′ be the set of maximum-length (maximum fluid level) queues in group j. At
time t, if L′ = 1, that is the queue with maximum fluid level is unique, V̇ (X(t)) is
clearly negative. Here is a proof. Let S ′ = {i}. Then, Ṫi = 1. Moreover, no jobs will be
scheduled destined to the queue with maximum length in the network (not necessarily
the maximum in one group). Thus, V̇ (X(t)) = λi − µi < 0. We prove that if the
maximum is not unique, in a regular point the drift of the set of maxima are equal and
negative. Suppose that L′ > 1. In a regular point, by Lemma 9, the drifts of all the
queues in S ′ are equal. Since there is no flow to the sub-network of queues in S ′ coming
from other queues, we can only consider this sub-network to analyze the drift of the
Lyapunov function. Let the corresponding drift matrix and arrival vectors to set S ′ be
DL′ and λL′ . Suppose that J ′ groups (J ′ ≤ J) have queues in S ′ so S ′ = ∪J ′j=1S

′
j (with

some abuse of notation due to relabelling the J ′ groups by 1 to J ′). Let L′j = |S ′j|. In a

regular point t, the drift of the queues in this sub-network S ′ are all equal to V̇ (t) = α.

Lemma 17. If the network is non-empty, V̇ (t) = α < 0.

Proof. Define matrix EL′×J ′ as the following.

E = [e1, e2, . . . , eJ ′ ], (3.36)

where ej is a column vector of length L′.

ej = [0∑j−1
k=1 L

′
k
,1L′j ,0

∑J′
k=j+1 L

′
k
]T (3.37)

The matrix equation will be[
−D′L E
ET 0J ′×J ′

] [
ṪL′
α1J ′

]
=

[
λL′
tJ ′ ,

]
(3.38)

where vector tJ ′ = [tj], tj =
∑

i∈S′j
Ṫi ≤ 1. By (3.33), at least one of the elements of

tJ ′ is equal to 1, if the network topology is acyclic. The reason is that the sub-network
certainly has a flow that is leaving the sub-network via an “output” queue. Note that
if there is a cycle in the network, such a queue may not exist. (See Figure 3.8) The
group which contains the “output” queue, let’s say group j∗, has the property that
j∗ ∈ J ; thus,

∑
i∈S′

j∗
Ṫi = 1.

Solving Equation (3.38) using block inverse formula, we have

α1J ′ = (ETDL′
−TE)−1

(
ETDL′

−TλL′ + tJ ′
)
. (3.39)

The vector
(
ETDL

−TλL′ + tJ ′
)

is positive in at least one element corresponding
to group j∗ by the stability condition of this sub-network. (which is a weaker condi-
tion than the stability condition of the whole network) We have already proved that
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Figure 3.8: No output queue in a cycle

Figure 3.9: LDQ in a cycle

ETDL′
−TE is a negative matrix. Now since ETDL′

−TE(α1J ′) is not a negative vector,
α cannot be non-negative.

�

Consequently, V (X) is a Lyapunov function and proof of Theorem 9 is complete.
The simulation results show that the network shown in Figure 3.8 is indeed unstable

under LDQ scheduling. In this simulation all the service rates are 1, and the arrival
rate is 0.2. The result is shown in Figure 3.9. As one can see, first all the queues
become equal but then do not go to 0 and remain constant in this example.

The basic intuition behind this fact is the following. Consider the simple case of
Figure 3.10. We have one queue in each group so no scheduling is needed. However,
LDQ serves only one of the queues at a time, and they are virtually in the same group.
Consequently, LDQ is not throughput-optimal if we have a cycle in the network.

In the end, we see some simulation results for the Lu-Kumar network under LDQ
scheduling. The network topology is acyclic so we expect LDQ to be stable. Simulation
results shown in Figure 3.11 verifies this. In this simulation, all the service rates are 1,
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Figure 3.10: A simple cycle

and the arrival rate is 0.4. As one can see, first all the queues become equal and then
go to 0 together.

Figure 3.11: LDQ in Lu-Kumar network
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Chapter 4

Analysis of Fixed-time Control

In the previous chapters, we addressed the problem of how to design a simple and
robust scheduling policy for various types of queueing networks, and analyzed the
performance of different policies. In this chapter, we focus on transportation systems,
a particular application of queueing networks. We do not try to design a control for
this queueing network; instead, we analyze a well-known policy in transportation that
is the fixed-time (FT) control. We first introduce and motivate the problem in Section
4.1. In Section 4.2, we consider a single queue, and present the main theoretical results
for this simple case. In Section 4.3, we generalize the results for a single queue to
the queueing network. Results for the case of periodic demand and FT control are
presented in Section 4.4.

4.1 Introduction

Traffic in an urban network is determined by intersection signal control and the pattern
of demand. The movement of vehicles is often modeled as a queueing network as, for
example, in [56, 52]. Roughly speaking, a vehicle arrives from outside the network at
an entry link; travels along a link at a fixed speed; at the end of the link it arrives at
an intersection, and joins a queue of vehicles for the next link in its path; the queue
is served at a specified service rate when that movement is actuated by the signal;
eventually the vehicle leaves the network.

In the U.S. 90 percent of traffic signals follow fixed time (FT) controls, which
operate the signal in a fixed periodic cycle, independent of the traffic state. Despite
its practical importance, little attention has been paid to understanding how traffic
behaves under FT control. Published work has studied queues at a single, isolated
intersection, as in [51]. The steady state optimal control of single intersections is
studied in [37, 32, 30]. The latter work derives the optimal control settings required
to minimize different objectives including queueing delays, but does not address the
effect of initial conditions on solution trajectories or their convergence. [29, 30] analyze
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oversaturated intersections and [67] inroduces an adaptive control for undersaturated
networks. But neither work analyzes the behavior of solution trajectories. Signal timing
tools used by traffic engineers often employ empirical models [69] in combination with
simulations, assuming steady state conditions. But the absence of theory establishing
convergence to a unique steady state calls into question whether the traffic flows achieve
the performance for which these signals are tuned.

We analyze vehicle movement under two assumptions: first, all the signals have a
fixed time (FT) control with the same cycle time or period T ; second, vehicles from
outside enter the network in periodic streams with the same period. Periodic demands
include constant demands, which is the assumption in commercial packages used to
design FT controls. Also, if there are intersections with FT controls with different
cycles T1, · · · , Tk, they are all periodic with the same period T = lcm{T1, · · · , Tk}.

The state of the signalized network at any time t consists of x(t), the vector of all
queue lengths, together with the position of all vehicles that are traveling along a link
but have not yet reached a queue. We consider a continuous-time system, and vehicles
as a fluid instead of as discrete entities. As a result the evolution of the network is
described by a delay-differential equation, in which the delay comes from the travel time
of a vehicle as it moves from one queue to the next. In an actual transportation network,
the arrival and service processes are stochastic. However, an exact analysis of queue-
length processes in a stochastic queueing network is very difficult, if not impossible;
except for very simple examples such as an isolated intersection, the underlying Markov
chain of the system is intractable. Therefore, we consider deterministic arrival and
service processes.

Our main contribution is to show that there is a unique periodic trajectory x∗(t)
of the queue length vector to which every trajectory x(t) converges; moreover, in case
individual vehicles do not circulate in loops, the convergence is in finite time. The
periodic orbit determines every possible performance measure, such as delay, travel
time, amount of wasted green, and signal progression quality, see [21]. An outstanding
open problem is to calculate this periodic orbit without simulation. If this can be done,
one would have a computational procedure to design the FT control for a network that
optimizes any performance measure.

Our results have some independent mathematical interest. The delay-differential
equation is not Lipschitz, and existence and uniqueness of a solution is established using
the reflection map of queueing theory [36, 70]. The differential equation is periodic
(with period T ), and the existence of a periodic orbit is proved using the Poincare
map. The global stability of this periodic orbit depends on a monotonicity property
reminiscent of that in freeway models [31].
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4.2 Single Queue without Routing

Time is continuous, t ≥ 0. The length or size of a single queue x(t), t ≥ 0, evolves as

ẋ(t) = e(t)− b(t), (4.1)

with arrivals e(t) ≥ 0, departures b(t), t ≥ 0, and initial queue x(0) = x0 ≥ 0. Arrivals
e(t) are exogenously specified. There is a specified service rate c(t) ≥ 0, t ≥ 0, so
departures are given by

b(t) =


c(t), if x(t) > 0,
∈ [0, c(t)], if x(t) = 0,
0, if x(t) < 0.

(4.2)

Express the departure process as

b(t) = c(t)− y(t), t ≥ 0, (4.3)

so y(t) is the rate at which service is unused. From (4.2),

y(t) ≥ 0, and x(t)y(t) = 0, ∀t.

Rewrite (4.1) as
ẋ(t) = [e(t)− c(t)] + y(t),

or in functional form as
x = u+ v, (4.4)

in which

u(t) = x0 +

∫ t

0

[e(s)− c(s)]ds and v(t) =

∫ t

0

y(s)ds. (4.5)

Then x, v satisfy

x(t) ≥ 0, v(t) ≥ 0, v(0) = 0, y(t) = v̇(t) ≥ 0, and x(t)v̇(t) = 0, ∀t. (4.6)

Observe that v(t) has an interpretation as the cumulative unused service (wasted
green).

Fact 1 and Theorem 10 are immediate consequences of [36, Theorem 1].

Fact 1. Suppose x, b satisfy (4.1)-(4.2). Define u, v by (4.3) and (4.5). Then (4.4) and
(4.6) hold. Conversely, suppose u, v, x satisfy (4.4)-(4.6). Define b(t) by (4.3). Then
(4.1)-(4.2) hold.
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Proof. Suppose x, b satisfy (4.1)-(4.2) and define u, v by (4.3) and (4.5). Then (4.5)
implies (4.4) and (4.2) implies (4.6). Conversely suppose (4.4)-(4.6) hold. Define b(t)
by (4.3). Then, by (4.4),

ẋ(t) = u̇(t) + y(t) = e(t)− c(t) + y(t) = e(t)− b(t),

so (4.1) holds. Moreover, by (4.6), x(t) > 0 implies y(t) = c(t)−b(t) = 0, so b(t) = c(t).
If x(t) = 0, t ∈ (t1, t2), ẋ(t) = 0, 0 ≤ y(t) = c(t)− e(t) ≤ c(t) and b(t) = c(t)− y(t) =
e(t) ≤ c(t). This proves (4.2). �

Theorem 10. Fix continuous function u with u(0) = x0 ≥ 0. There exist unique
continuous functions x, v satisfying (4.4)-(4.6). The functions v = ψ(u) and x = φ(u)
are continuous (in sup norm) and given by

v(t) = sup{[u(s)]− | 0 ≤ s ≤ t}, with [z]− = max{−z, 0}, (4.7)

x(t) = u(t) + sup{[u(s)]− | 0 ≤ s ≤ t}. (4.8)

Proof. Fix continuous u with u(0) = x0 ≥ 0.
Existence Define

v(t) = sup
0≤s≤t

[u(s)]− and x(t) = u(t) + v(t). (4.9)

Then (4.4) holds. v(0) = [x0]− = 0 and v is increasing. Further, x(t) ≥ 0, since
x(t) = u(t) + sup0≤s≤t[u(s)]− ≥ 0 if u(t) ≥ 0, and x(t) ≥ u(t) + [−u(t)] ≥ 0 if
u(t) < 0. Suppose v̇(t) > 0. Then v(t) = sup0≤s≤t[u(s)]− = [u(t)]− = −u(t), so
v(t) + u(t) = 0 = x(t). This proves (4.6).
Uniqueness Consider any solution

q = u+ w, q ≥ 0, w ≥ 0, w(0) = 0, ẇ ≥ 0, and qẇ = 0. (4.10)

Since w ≥ 0 and increasing,

w(t) = [q(t)− u(t)] = sup
0≤s≤t

[q(s)− u(s)] ≥ sup
0≤s≤t

[u(s)]− = v(t).

If w(t) > v(t), then there is t0 < t with w(t0) > v(t0) and ẇ(t0) > 0. But then

q(t0) = w(t0) + u(t0) > v(t0) + u(t0) = x(t0) ≥ 0.

So q(t0) > 0 and ẇ(t0) > 0, which contradicts (4.10). So w(t) = v(t) for all t.
Continuity Suppose v = ψ(u) and v′ = ψ(u′), and sup0≤s≤t |u(s)− u′(s)| < ε. Then

sup
0≤s≤t

[u(s)]− ≤ sup
0≤s≤t

[u′(s)]− + ε,

and so |v(t)− v′(t)| < ε. Hence ψ is continuous and so is φ. �
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Corollary 1 describes a useful monotonicity property.

Corollary 1. (Monotonicity) (a) If u ≤ u′ (pointwise), then v = ψ(u) ≥ v′ = ψ(u′) .
(b) If x0 ≤ x′0, e(t) ≤ e′(t) and c(t) = c′(t), for all t, x(t) ≤ x′(t) and b(t) ≤ b′(t), for
all t.

Proof. (a) If u ≤ u′, [u(s)]− ≥ [u′(s)]−, and so v ≥ v′,
(b) It is enough to show that x(0) = x′(0) implies x(t) ≤ x′(t) for small t. If x(0) =
x′(0) > 0 then, from (4.1)-(4.2),

ẋ(t) = e(t)− c(t) ≤ e′(t)− c′(t) = ẋ′(t),

so x(t) ≤ x′(t) for small t.
If x(0) = x′(0) = 0, recall that

u(t) =

∫ t

0

[e(s)− c(s)]ds, u′(t) =

∫ t

0

[e′(s)− c′(s)]ds.

Then u̇(t) ≤ u̇′(t) and

x(t) = u(t) + sup
0≤s≤t

[u(s)]− = u(t) + [u(s)]− for some s.

If u(s) < 0,

x(t) =

∫ t

0

u̇(τ)dτ −
∫ s

0

u̇(τ)dτ =

∫ t

s

u̇(τ)dτ

≤
∫ t

s

u̇′(τ)dτ =

∫ t

0

u̇′(τ)dτ −
∫ s

0

u̇′(τ)dτ

≤ u′(t) + sup
0≤s≤t

[u′(s)]− = x′(t).

If u(s) ≥ 0 for s ≤ t, then x(t) = u(t) ≤ u′(t) = x′(t).
Lastly, if x′(t) > 0 then from (4.2) b′(t) = c′(t) = c(t) ≥ b(t) and if x′(t) = x(t) = 0,

t ∈ (t1, t2), ẋ(t) = ẋ′(t) = 0, so from (4.2),

b(t) = e(t) ≤ e′(t) = b′(t).

�

Corollary 2. Suppose
∫ t

0
[e(s) − c(s)]ds → −∞ as t → ∞. Consider two solutions

x, x′ of (4.4) with
x(t) = u(t) + v(t), x′(t) = u′(t) + v′(t).

Then there exists T ∗ such that x(t) = x′(t), t > T ∗.
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Proof. Suppose u(0) = x0 < x′0 = u′(0). By Corollary 1, x(t) ≤ x′(t) for all t. Suppose
x(t) < x′(t) for all t. Then x′(t) > 0 for all t and so from (4.6) v′(t) = 0 for all t, but
then x′(t) = u′(t) = x′0 +

∫ t
0
[e(s) − c(s)]ds → −∞, which contradicts x′(t) ≥ 0. So

there exists T ∗ such that x(T ∗) = x′(T ∗), and then x(t) = x′(t) for t ≥ T ∗. �

Remark 6. The condition ∫ t

0

[c(s)− e(s)]ds→∞,

holds if on average the service rate exceeds the arrival rate by some ε > 0. In turn,
Corollary 2 says that the effect of initial condition x0 disappears after a finite time.

Theorem 11. Suppose u̇(t) is periodic with period T , and
∫ T

0
u̇(t)dt < 0. Then there

is a unique periodic trajectory z with period T such that

z(t) = u(t) + v(t).

Every solution of
x(t) = u′(t) + v′(t), (4.11)

coincides with z(t) after some finite time. There exists t0 ∈ [0, T ] such that z(t0) = 0,
i.e. the queue will be cleared in each period.

Proof. Consider the Poincare map F : x(0) 7→ x(T ) and the iterates x(nT ) = F n(x(0)).
Take x(0) = 0. Clearly, x(T ) ≥ x(0) = 0. Hence, by monotonicity,

x(0) ≤ x(T ) ≤ x(2T ) ≤ · · · .

Since
∫ T

0
u̇(t)dt < 0, the queue length is bounded. Since the sequence is bounded and

increasing, it converges. The uniqueness and convergence in finite time are immediate
results of Corollary 2. Finally, we show that the queue will be cleared in each period.
Let z be the unique periodic trajectory. If z(t) = u(t)+v(t) > 0 for all t, then v(t) = 0
for all t, and since u(t) → −∞, z(t) → −∞, but z(t) ≥ 0. So z(t0) = 0 for some
t0. �

Example 5. Consider a single link with constant arrival rate e(t) = 1. The cycle
time is 1, and the periodic saturation rate is c(t) = 3 for 0 ≤ t ≤ 0.5, and c(t) = 0
for 0.5 < t < 1. Thus within each cycle the signal is green for time 0.5, and red for
time 0.5. During green, 3 vehicles can depart per unit time. Figure 4.1 shows the
unique periodic orbit (solid line) starting at x(0) = 0.5 and another trajectory (dashed
line) starting at x(0) = 1.5, which coincides with the periodic orbit after t = 1.5. Also
shown are the two associated departure processes b(t), which also coincide after t = 1.5.
Figure 4.2 shows the trajectories of u(t), v(t) and y(t) for the two solutions.
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Figure 4.1: A single queue with constant arrival rate, e(t) = 1; periodic service rate
c(t) with period 1; two solutions converge at t = 1.5.

Figure 4.2: Trajectories of u(t), v(t) and y(t) for the two solutions of Example 5.

Figure 4.3: Evolution of x(i)(t).

4.3 Network of Queues

Figure 4.3 will help establish notation for the network. A fraction r(j, i) of vehicles
leaving queue j will travel along link (j, i) and join queue i after time τ(j, i), t Vehicles
join queue i at rate a(i) either from outside the network at rate e(i) or after being routed



CHAPTER 4. ANALYSIS OF FIXED-TIME CONTROL 79

from another queue. It is assumed that each queue has infinite storage capacity.
Hence the queueing equations for the network in Figure 4.3 are

ẋ(i)(t) = a(i)(t)− b(i)(t), t ≥ 0,

a(i)(t) = e(i)(t) +
∑
j

b(j)(t− τ(j, i))r(j, i),

b(i)(t) =


c(i)(t), if x(i)(t) > 0,
∈ [0, c(i)(t)], if x(i)(t) = 0,
0, if x(i)(t) < 0.

Above c(i)(t) is the saturation flow or service rate at which queue i is served.
Express the departure process as

b(i)(t) = c(i)(t)− y(i)(t), t ≥ 0. (4.12)

Then y(i)(t) ∈ [0, c(i)(t)] is the unused service rate,

y(i)(t) ≥ 0, and x(i)(t)y(i)(t) ≡ 0. (4.13)

Rewrite the system equations as

ẋ(i)(t) = e(i)(t)− c(i)(t) +
∑
j

b(j)(t− τ(j, i))r(j, i) + y(i)(t), (4.14)

or in functional form as

x(i) = u(i) + v(i), (4.15)

in which

u(i)(t) = x(i)(0) +

∫ t

0

{e(i)(s)− c(i)(s) +
∑
j

b(j)(s− τ(j, i))r(j, i)}ds, (4.16)

b(j)(s) = c(j)(s)− y(j)(s) (4.17)

v(i)(t) =

∫ t

0

y(i)(s)ds. (4.18)

Fix the external arrivals and saturation flows, {e(i)(t), c(i)(t), t ≥ 0}. Suppose 0 <
τ = min{τ(i, j)} ≤ τ̄ = max{τ(i, j)}. Fix initial conditions

x(i)(0) ≥ 0 and {b(i)(s) ≥ 0, s ∈ [−τ̄ , 0]}. (4.19)

This determines u(i)(s), s ∈ [0, τ ]. By Theorem 10, there exist unique {x(i)(t), v(i)(t)}
satisfying (4.13)-(4.14) for t ∈ [0, τ ]. In turn this fixes new initial conditions at time τ
similar to (4.19):

{x(i)(τ) ≥ 0} and {b(i)(s) = c(i)(s)− y(i)(s) ≥ 0, s ∈ [−τ̄ + τ, τ ]},

so that again by Theorem 10 the solution can be extended to [τ, 2τ ]. Proceeding step
wise in this way leads to the next result.
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Theorem 12. Fix arrivals {e(i)(t)}, saturation rates {c(i)(t)}, and routing ratios
{r(i, j)}. Fix initial conditions {x(i)(0) ≥ 0}, {b(i)(s), s ∈ [−τ̄ , 0]}. Then there are
unique functions {x(i)(t), b(i)(t), v(i)(t), t ≥ 0} satisfying (4.12)-(4.14).

Corollary 3. (Monotonicity) Suppose x(i)(0) ≤ x′(i)(0), 0 ≤ b(i)(s) ≤ b′(i)(s), s ∈
[−τ̄ , 0], e(i)(t) ≤ e′(i)(t), c(i)(t) = c′(i)(t), t ≥ 0. Then x(i)(t) ≤ x′(i)(t), b(i)(t) ≤
b′(i)(t), u(i)(t) ≤ u′(i)(t), v(i)(t) ≥ v′(i)(t), all t.

Proof. The result follows by applying Corollary 1 successively over [0, τ ], [τ, 2τ ], · · · �

Corollary 4. With the same notation and hypothesis as in Corollary 3, suppose
e(i)(t) = e′(i)(t), and define z(i)(t) = x′(i)(t)− x(i)(t). Then

ẋ(i)(t) = e(i)(t)− b(i)(t) +
∑

b(j)(t− τ(j, i))r(j, i),

ẋ′(i)(t) = e′(i)(t)− b′(i)(t) +
∑

b′(j)(t− τ(j, i))r(j, i),

ż(i)(t) = −[b′(i)(t)− b(i)(t)] +
∑

[b′(j)(t− τ(j, i))− b(j)(t− τ(j, i))]r(j, i).

Then z(i)(t) ≥ 0 for all t.

4.4 Periodic Solution

We now consider FT control. Suppose that the external arrivals e(i)(t) and saturation
flow rates c(i)(t) are all periodic with the same period T . Let

ē(i) =
1

T

∫ T

0

e(i)(t)dt, c̄(i) =
1

T

∫ T

0

c(i)(t)dt. (4.20)

We establish a necessary condition for the existence of a periodic solution to (4.12)-
(4.14) with period T . Let

b̄(i) =
1

T

∫ T

0

b(i)(t)dt =
1

T

∫ T

0

b(i)(t− τ(i, j))dt, ȳ(i) =
1

T

∫ T

0

y(i)(t)dt. (4.21)

Using this notation in (4.14), and integrating over [0, T ] for a periodic solution x gives

0 = x(i)(T )− x(i)(0) = ē(i)− c̄(i) +
∑
j

b̄(j)r(j, i) + ȳ(i)

= ē(i)− c̄(i) +
∑
j

c̄(j)r(j, i) + ȳ(i)−
∑
j

ȳ(j)r(j, i),

or, in vector form, denoting the routing matrix R = {r(i, j)},

0 = ē− [I −RT ]c̄+ [I −RT ]ȳ.
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Since every vehicle eventually leaves, [I − RT ]−1 = I + RT + R2T + · · · ≥ 0 exists and
so the preceding condition becomes

0 = [I −RT ]−1ē− c̄+ ȳ, (4.22)

so, for a periodic solution to exist, one must have

c̄ = [I −RT ]−1ē+ ȳ ≥ [I −RT ]−1ē.

We impose the slightly stronger stability condition: there exists ε > 0 such that

c̄ > [I −RT ]−1ē+ ε1, (4.23)

which says that on average the service rate for each queue exceeds the total arrival
rate.

Remark 7. In the non-periodic case the stability condition (4.23) may be replaced by∫ NT

0

c(t)dt > [I −RT ]−1

∫ NT

0

e(t)dt+ εNT1, for all N, for some ε > 0. (4.24)

Lemmas 18 and 19 hold under this stability condition.

Lemma 18. Every trajectory x(t) of vehicle queue lengths is bounded.

Proof. Let x, u, v, y be a solution of (4.15)-(4.18). Then

ẋ(t) = e(t)− c(t) +RT b(t) + y(t) + δ(t), (4.25)

in which
δ(i)(t) =

∑
j

[b(j)(t− τ(j, i))− b(j)(t)]r(j, i).

So ∫ t

s

δ(i)(r)dr =
∑
j

r(j, i)
[ ∫ s

s−τ(j,i)

b(j)(s)−
∫ t

t−τ(j,i)

b(j)(s)
]
ds.

Since τ(j, i) ≤ τ̄ , and b(j)(s) ≤ c(j)(s) is bounded, it follows that |
∫ t
s
δ(r)dr| is bounded

for all s, t. So |
∫ t
s
δ(r)dr| ≤ d1 for some constant d.

We show that if x(i)(t0) > NT c̄(i), then x(i)(t0 + NT ) − x(i)(t0) < 0 for some
constant N > d

Tε
. This is sufficient to show that x(i)(t) is bounded, since the queue-

length change per period is bounded. Suppose that x(i)(t0) > NT c̄(i). Since x(i)(t +
T ) − x(i)(t) ≥ −T c̄(i), so x(i)(t) > 0 for t0 ≤ t ≤ t0 + NT and y(i)(t) = 0 for
t0 ≤ t ≤ t0 +NT . Integrating both sides of (4.25) gives

x(i)(t+NT )− x(i)(t) ≤ NT ē(i) +NT
∑
j

r(j, i)c̄(j)−NT c̄(i) + d (4.26)

≤ −NTε+ d < 0, (4.27)

in which (4.26) uses the fact that b̄(j) ≤ c̄(j) and (4.27) follows from the stability
condition and the inequality N > d

Tε
. �
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4.4.1 Effect of Initial Conditions

Suppose the stability condition (4.23) holds. By Lemma 18 the queue lengths are
bounded, so from (4.26) ∫ t

0

y(r)dr →∞,

component wise. Thus the cumulative unused service at every queue is unbounded.
This implies that, independent of the service discipline (whether first in first out or
something else), so long as the discipline is work conserving (i.e., a queue is served if it
is non-empty, see (4.2)), every vehicle in the initial condition will eventually leave the
network.

The state of the network at time t is the pair (x(t), β(t)) where β(t) is the history
of departures over time [t − τ̄ , t], i.e., β(t) is the function: s ∈ [t − τ̄ , t] 7→ b(s).
We want to show that trajectories starting from two different initial conditions, say
(x(0), β(0)) and (x′(0), β′(0)), will eventually converge. Because of the monotonicity
property, Corollary 3, we may take one of the initial conditions to be zero.

Lemma 19. Let x(t), β(t) be the trajectory starting from (x(0), β(0)), and let z(t), β′(t)
be the trajectory starting from (0, 0). Then the two trajectories converge:

lim
t→∞
|x(t)− z(t)| → 0, and lim

t→∞
sup

s∈[t−τ̄ ,t]
[

∫ s

0

[b(r)− b′(r)]dr → 0, (4.28)

Proof. The proof relies on an intuitive argument. Consider the trajectory (x(t), β(t)).
Color the vehicles in the initial state (x(0), β(0)) red, and color all vehicles entering the
network after time 0, black. In each queue there will be black and red vehicles. Change
the service discipline in each queue so that all black vehicles are served ahead of every
red vehicle. Then the red vehicles do not interfere with the movement of black vehicles
and so the number of black vehicles in the queues and along the links will be identical
to (z(t), β′(t)). On the other hand the total number (red plus black) vehicles in the
queues and along the links will be identical to (x(t), β(t)). Because of the stability
condition, every vehicle in the initial queue x(0) will eventually leave the network, that
is x(t)− z(t)→ 0, as t→∞. But then the second part of (4.28) follows. �

Remark 8. Suppose the arrivals and service processes, e and c, are stochastic and the
stability condition (4.24) holds almost surely. Then the effect of the initial state on
the queue length process will disappear over time since (4.28) will hold almost surely
along every sample path.

4.4.2 Existence of Periodic Solutions

We prove the existence of a unique periodic solution to which all trajectories converge.
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Theorem 13. There exists a unique periodic state trajectory (x∗, β∗), with period T ,
to which every trajectory converges.

Proof. Consider the Poincare map F : (x(0), β(0)) 7→ (x(T ), β(T )) and the iterates
(x(nT ), β(nT )) = F (x((n − 1)T, β((n − 1)T )). Take x(0) = 0, β(0) = 0. Then by
monotonicity (x(T ) ≥ x(0) = 0, β(T ) ≥ β(0) = 0), and hence by repeatedly using
monotonicity we get:

x(0) ≤ x(T ) ≤ x(2T ) ≤ · · · , β(0) ≤ β(T ) ≤ β(2T ) ≤ · · · .

Thus this sequence of states is increasing. By Lemma 18 the sequence is bounded, so it
converges to the state say (x∗, β∗). By Theorem 10, F is continuous, so F ((x∗, β∗)) =
(x∗, β∗), and the trajectory from this state is periodic with period T . �

Corollary 5. In the periodic trajectory x∗ every queue clears in each period, i.e., for
each i there exists ti ∈ [0, T ] such that x(i)(ti) = 0. In each period, the cumulative
unused service is ȳ = c̄− [I −RT ]−1ē.

Proof. If x(i)(t) > 0 for t ∈ [0, T ], y(i)(t) = 0 for t ∈ [0, T ] and so ȳ(i) = 0, which
contradicts the stability condition (4.22), (4.23). �

4.4.3 Finite Time Convergence

Theorem 14. Suppose every vehicle leaves after visiting at most K queues. Then
every trajectory converges to the periodic trajectory in finite time.

Proof. Revisit the proof of Lemma 19. Consider the trajectory (x(t), β(t)) starting in
the initial state (x(0), β(0)). Color the vehicles in the initial state red, and the vehicles
arriving after time 0, black. Color all vehicles in the state starting in state (0, 0), black.
The red vehicles will potentially be served infinitely often in each queue and so they
will all be gone after a finite time. At that time the two trajectories wil coincide and
will agree with the periodic trajectory. �

Example 6. If vehicles can circulate indefinitely, convergence may take infinite time.
Figure 4.4 shows a network with a single queue with initial size x(0) = x0 and periodic
service rate c(t) with period 1, c(t) = 1 for 0 ≤ t ≤ 1/2 and c(t) = 0 for 1/2 < t ≤ 1.
One-half (r = 1/2) of the departing vehicles return for service after travel time τ = 1/2;
the other vehicles leave. Suppose x0 < 1/2. Then all vehicles will depart by time x0,
one-half of them will leave and one-half or x0/2 will re-enter the queue during time
[1/2, 1/2+x0]. Since the service rate is 0 until time 1, so x(t) = x0/2, 1/2+x0 < t < 1.
At time 1, the queue is x0/2 and there is no vehicle traveling in the link. By induction,
we have x(n) = (1/2)nx0, so convergence takes infinite time.
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Figure 4.4: Vehicles recirculate (left); periodic service rate (right, top); queue x(t)
(right, bottom).

Example 7. From the periodic trajectory one can calculate performance measures
such as average delay. In Figure 4.5 the departure process b(t) of Figure 3.2 is the
arrival process at the next intersection with the service rate c1(t) and queue x1(t) ≡ 0
or service rate c2(t) and queue x2(t). The average delay per vehicle at the second

Figure 4.5: Departures b(t) of Figure 3.2 enter an intersection with service rate c1(t)
or c2(t).

intersection therefore is∫ 1

0

x1(t)dt = 0, or

∫ 1

0

x2(t) =
23

48
≈ 0.48.

Hence, depending on the offset of the second signal, the average delay at the second
intersection can take any value in [0, 0.48]. The average delay in the first intersection
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with constant arrival can be calculated from the plot of x(t) in Figure 3.2 as∫ 1

0

x(t)dt =
3

16
≈ 0.19.

4.4.4 Discussion on Finite Storage Capacity

In the discussion so far it has been assumed that every queue has infinite storage
capacity so service is never blocked. We now modify this assumption. Suppose queue
i has storage capacity ξ(i). This means that if x(i)(t) reaches ξ(i), additional vehicles
cannot be accommodated and service to queues upstream of queue i is blocked. More
precisely, the service rate for queue i is changed from c(i)(t) to c(i)(t)s(i)(t) in which

s(i)(t) =

{
1, if x(j)(t) < ξ(j) for all j such that r(i, j) > 0,
0, if x(j)(t) = ξ(j) for some j such that r(i, j) > 0.

(4.29)

The system equations (4.14)-(4.18) remain the same except that c(i)(t) is everywhere
replaced by c(i)(t)× s(i)(t). The formulation (4.29) implies that service from i to k is
blocked even if x(k)(t) < ξ(k). This is a kind of first in first out assumption. We can
avoid this by positing a separate queue for each movement as in [67]. The example
below is unaffected in either case.

The possibility of blocking can destroy the previous results. We can see this by
examining again the single queue system of Figure 4.4. Suppose that the queue has
a storage capacity ξ = 1. In this case the effective service rate is c(t) × s(t) and
s(t) = 1(x(t) < 1). Suppose e(t) = 0 for all t, and x(t0) = 1. Then x(t) = 1 and
b(t) = 0, for t ≥ t0 for all t, and the system is in gridlock. If x(t0) = 0, then x(t) = 0,
for t ≥ t0 is another solution.

Suppose there is a constant arrival e(t) = ē < 1/4. If ξ =∞, the stability condition
(4.23) holds and there will be a periodic solution, x∗. Suppose maxt x

∗(t) = ξ̄. If the
storage capacity ξ > ξ̄, then x∗ is also a solution.

Above, the service rate c(i)(t)× s(i)(t) is state-dependent and so the results above
do not apply. In actuated traffic control, as opposed to FT control, the service rate
indeed depends on the traffic state, so studying (4.14) for state-dependent service,
c(i, x(t), t), is important. The fundamental results on existence and monotonicity in
case that c(i, x, t) is Lipschitz in x are obtained in [62].
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we considered the problem of how to design an efficient, simple and
robust scheduling policy for various queueing networks. We also analyzed the perfor-
mance of two simple well-known scheduling policies: longest-queue scheduling policy
for multiclass queueing networks and fixed-time control policy for transportation net-
works.

We proposed a new fork-join queueing network for scheduling jobs that are repre-
sented as directed acyclic graphs to abstractly model job scheduling in data centers
and other complicated processing networks. We further developed a novel methodology
for designing robust scheduling policies for these queueing networks. The key idea of
our design is to use the queue-length changes information to learn the correct server’s
capacity allocation by stochastic gradient projection method. Our scheduling policy is
oblivious to the knowledge of arrival rates and service rates of tasks in the network.

Longest-queue scheduling policy is a robust and local scheduling policy that is of
great practical interest for its simplicity. In this policy, each server works on the longest
queue that the server can serve at each time. Unfortunately, the throughput-optimality
of longest-queue scheduling is still open for multiclass queueing network, which is a well-
known and well-studied network model in queueing theory. In this thesis, we tackled
this open problem and resolved it for a special case that the network has two servers,
and each server can serve two queues.

Finally, we focused on transportation network as an important application of queue-
ing networks. We modeled a network of signalized intersections as a queueing network.
In most cases, these signals are controlled by fixed-time policies. We analyzed this
queueing network under the fixed-time scheduling policy, and showed that every solu-
tion of the system converges to a unique periodic solution, independent of the initial
condition.
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5.2 Future Research Directions

There are many interesting future research directions of this work. In the remainder of
this chapter, we categorize them into two topics and provide a brief overview of them.

5.2.1 Designing Robust Scheduling Policies

In Chapter 2, we designed a robust policy for the case that µkj, the service rate of task
k served by server j, can be factorized to two terms: µkj = µkαj. One future research
direction is to find a robust scheduling policy for generic service rates, which cannot
be necessary factorized to a task-dependent rate and a server-dependent rate.

Further, in Chapter 2, we designed a policy that required the knowledge of the
queue-lengths in the network at the current time slot, and at the previous time slot.
A future direction is to investigate whether there exists a throughput-optimal policy
which is only dependent on the queue-size information in the network in the current
state.

In the case of flexible queueing networks, we proposed a scheduling policy that is
robust to arrival and service rates, but it requires the knowledge of routing probabilities
in the network. An interesting future research direction is to design a scheduling policy
that is oblivious to the routing structure of the network.

A natural robust scheduling policy is to serve the longest queue per server. This
policy is fully local and oblivious to all network parameters. Even for simple net-
work models such as multiclass queueing networks, whether longest-queue scheduling
is throughput-optimal or not is still an open problem. Resolving this open problem
can be of great intellectual and practical interest.

5.2.2 Transportation Networks

In Chapter 4, we considered a transportation network and showed that under fixed-time
control there is a unique periodic trajectory, which is globally asymptotically stable,
that is, every trajectory converges to this periodic trajectory. From the periodic trajec-
tory one can easily calculate every possible performance measure such as delay, travel
time, amount of time service is wasted, and progression quality. Thus, an important
question for future research is to find an algorithm to calculate the periodic orbit with-
out simulation. Another question is to study the behavior of traffic in networks in
which the service rate is state-dependent. [67] has an interesting conjecture that if the
control is a function of the queue-lengths, there will again be a unique asymptotically
stable trajectory.

There are many other possible future research directions in transportation net-
works. A major difficulty in designing efficient signal control policies in a network
of intersections is the switching cost, that is an all-red signal for the intersection due
to safety reasons. The switching cost significantly complicates the design of efficient
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controls not only for a network of intersections, but also for a single intersection. One
future direction is to investigate the effects of switching cost on different scheduling
policies, and design a simple efficient signal control in the presence of switching cost.
Another technical difficulty that rises in transportation networks is the existence of
non-negligible delay on the links of the network. Exploring how these link delays can
affect well-known throughput-optimal policies such as Max-pressure policy can be of
great interest.
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