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The MI-CLAIM-GEN checklist for generative 
artificial intelligence in health

Brenda Y. Miao, Irene Y. Chen, Christopher Y. K. Williams, Jaysón Davidson, 
Augusto Garcia-Agundez, Shenghuan Sun, Travis Zack, Suchi Saria, Rima Arnaout, 
Giorgio Quer, Hossein J. Sadaei, Ali Torkamani, Brett Beaulieu-Jones, Bin Yu, 
Milena Gianfrancesco, Atul J. Butte, Beau Norgeot & Madhumita Sushil

The MI-CLAIM checklist has been revised 
to take account of new capabilities of large 
language models and other generative artificial 
intelligence tools.

The ‘Minimum information about clinical artificial intelligence mod-
eling’ (MI-CLAIM) checklist1, released in 2020, provided a set of trans-
parent, reproducible reporting guidelines for artificial intelligence 
(AI) modeling studies in medicine. Since then, there have been many 
advances in generative models for clinical AI research2,3, including new 
capabilities of large language models (LLMs), diffusion models, vision 
language models, and other multimodal models.

In response to gaps in standards and best practices for the 
reporting of clinical generative AI research identified by US Executive 
Order 141104 and several emerging national networks for clinical AI 
evaluation5, we began to formalize some of these guidelines by building 
on the original MI-CLAIM checklist. The new checklist, MI-CLAIM-GEN 
(Table 1), aims to address differences in training, evaluation, interpret-
ability, and reproducibility of new generative models compared with 
non-generative (predictive) models.

Part 1: study design
All elements of the study design from the original MI-CLAIM check-
list, including clear descriptions of the research question and cohort 
selection, also apply to generative AI studies. For cohort selection that 
involves unstructured or multimodal data, keyword search terms, regu-
lar expressions, or other selection criteria should be made available. 
If qualitative factors, such as manual chart review, are used to identify 
patient cohorts, these should be detailed and the qualifications of the 
reviewer (such as years of practice or specialty) should be reported. 
We discourage the use of ambiguous language, such as ‘patients diag-
nosed with diabetes’, in favor of more reproducible terms and standard 
ontologies, such as ‘patients with at least two of the following ICD-10 
codes: E11.*, E13.*’.

Datasets used should be representative of the clinical settings 
presented by the research question and any deviations should be 
described in detail. This may include data deidentification, including 
date-shifting for privacy protection, text redaction, which Electronic 
Health Record (EHR) vendor the data was derived from, if the data were 
limited to specific department(s), or other limitations compared with 
real-world settings and patient populations. Sensitivity analyses should 
be performed where appropriate to justify any selection criteria that 
deviate from established guidelines. Specifications for handling miss-
ing data should also be provided, if applicable.

Similar to traditional machine learning, the evaluation of genera-
tive AI studies often involves the use of categorical or continuous data 
labels. The source of the labels, including annotation guidelines and 
inter-annotator agreement for human labels, should be clearly docu-
mented. For unstructured outputs, such as summaries, that do not 
readily map to simple labels, we discuss both automated and human 
evaluation strategies in part 4.

Part 2: data and resource assessment
In addition to new model architectures, reporting on generative clini-
cal models must also include additional information about external 
datasets or tools that a model may interact with through approaches 
such as retrieval augmented generation. We develop checklist items 
to reflect the inclusion of these different components of ‘compound 
AI systems’3 (Fig. 1).

Researchers should be careful of training data memorization, 
known as data leakage or contamination6. Training data may include 
values used for pretraining, fine-tuning, reinforcement learning, or 
other training schemes that update model weights, as well as any exter-
nal datasets or tools for in-context learning.

Prompt engineering or other in-context learning should be per-
formed using a development dataset that is also kept separate from the 
final test dataset. Previous studies have used 5% of the data or around 
100 samples in prompt validation datasets7. Data splits should be per-
formed at the patient level, with all data from each patient only included 
in one of the splits to maintain independence. Although the same valida-
tion dataset should be used for prompt engineering between different 
models, the best prompt selected for each model may vary. As prompt 
engineering is a rapidly evolving field, readers should follow best prac-
tice guidelines laid out by model developers and researchers.

Part 3: baseline model selection
Baseline model comparisons are important to provide controls for 
evaluating model performance. Generative model performance should 
be compared with rigorously selected baseline models, which may 
include other generative models but also non-generative approaches. 
Baseline models may also include previous versions of models and 
open-source model baselines should be included when available.

Any post-processing of model and baseline outputs should be 
described in the methods, including how errors or unexpected outputs 
are handled. If large training datasets are used for baselines models 
compared to zero- or few-shot approaches for generative models, 
researchers should report their performance across various volumes 
of data. Discussion of tradeoffs between compute and cost require-
ments is encouraged to improve understanding of the scalability and 
efficiency of these non-generative models.
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should be reported, along with class distribution, for categorical labels. 
For continuous outputs, such as time saved or changes to patient activ-
ity scores, best practice statistical approaches and reporting should 
be applied, including appropriate estimators for causal effects and 
multiple hypothesis testing.

For unstructured text outputs, automated overlap scoring meth-
ods such as the BLEU and ROUGE scores are commonly used, but these 
do not assess whether the answers are clinically accurate and are often 
poorly correlated with human evaluation on biomedical tasks10,11. They 
also may not be suitable for tasks that lack standard reference docu-
ments, such as document summarization. Semantic scoring methods, 
such as BERT-based scoring methods, panels of similar metrics, or even 
using other generative models for evaluation, may provide more evi-
dence of clinical similarities. However, rigorous evaluation is required 

Part 4A: automated model evaluation
Evaluation metrics for generative models should distinguish between 
metrics that measure ‘overlap accuracy’, which measure proportions 
of overlapping subunits (such as tokens or pixels), ‘semantic accuracy’, 
which compare the meanings of outputs and labels, and ‘clinical utility’, 
which measure how models affect clinical workflows or downstream 
patient outcomes8. We identify best practices for both automated 
and clinical expert evaluations, with a focus on metrics developed to 
handle the complex, unstructured outputs from generative models. 
Continuous evaluation and monitoring of these models will help to 
identify changes in model behavior, including dataset shifts or changes 
to model versions2,9.

Similar to traditional machine learning classification set-ups, 
accuracy, F1 scores (for imbalanced datasets), or other suitable metrics 

Table 1 | MI-CLAIM-GEN checklist for generative AI clinical studies

Section Checklist Changes

Part 1: Study design

The clinical problem in which the model will be employed is clearly detailed in the paper None

The research question is clearly stated None

All cohort selection criteria and study design are detailed in such a way that they can be reproduced by an external 
researcher

Modified

Identify whether the output data type categorical, continuous, or unstructured Modified

The characteristics of the cohorts are detailed in the text and are shown to be representative of real-world clinical settings

Part 2: Resources and 
optimization

Model/application components are clearly detailed including: base model(s) used, embedding model(s), retrieval 
model(s), and other auxiliary models or tools

Modified

The origin of all data sources for model training, finetuning, or inference is described and the original format is detailed in 
the paper

Modified

All data preprocessing for model training, finetuning, or inference is described, including appropriate randomization and 
other transformations

Modified

The independence between training, validation (including for prompt engineering), and test sets has been described, and 
data are split at the patient level

Modified

Parts 3–4: Model 
performance and 
evaluation

The state-of-the-art solution used as a baseline for comparison has been identified and detailed None

The performance comparison between the baseline and the proposed model is presented with the appropriate statistical 
significance

None

Identify what evaluation(s) were performed, and provide clear justifications for the primary metrics used for each 
evaluation; describe whether overlap accuracy, semantic accuracy, and/or clinical utility were assessed

Modified

If applicable, details on human evaluation are described, including any evaluation guidelines, level of experience of 
evaluators, inter-reviewer scores, etc

New

Part 5: Model 
examination

Relevant interpretability techniques, error analysis, and/or other approaches are applied to demonstrate an absence of 
unreasonable risk and brittleness, including a low risk of catastrophic and especially undetected failure

Modified

A discussion of the risk revealed by the examination results is presented with respect to model/algorithm performance None

Describe step(s) taken to discuss, identify, and/or mitigate model biases, privacy and security concerns, and other 
potential harms

New

A discussion and/or assessment of relevant distribution shifts and their impact on the model's performance has been 
provided

None

Recommendations or discussion of post-deployment evaluation have been provided New

Part 6: Reproducibility; 
data and model 
transparency

Choose appropriate tier:
Tier 1: complete sharing of the code and data, including all prompts tested, hyperparameters used, software 
dependencies, model versions, and compute requirements
Tier 2A: complete sharing of the code with synthetic data provided
Tier 2B: complete sharing of the code
Tier 3: no sharing of code or data

Modified

A clinical model card is included summarizing the model capabilities, intended use, descriptions of any dataset or other 
integrations, limitations, potential biases, and risks

New

If applicable, model weights are released to a secure repository with appropriate use agreements New
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before applying these approaches at scale on new, clinical tasks and 
their credibility for the given study must be articulated if used.

Part 4B: human model evaluation
Human model evaluation remains the gold-standard for assessing 
semantic accuracy and clinical utility of generative models. As much 
as possible, evaluation should be conducted in a blinded fashion, with 
Turing-like assessments against ground truth values or across multi-
ple metrics to gauge the accuracy, appropriateness, bias, and other 
aspects of model performance10,11. For complex outputs or simulated 
scenarios, objective structured clinical examination (OSCE) type 
evaluations can be considered to assess model performance across 
multiple axes that better reflect real-world clinical encounters or 
workflows9,11. Inter-reviewer variability and any evaluation guidelines 
should be reported. If models are deployed to interactive settings, 
user-provided prompts and any resulting variability should also be 
evaluated and discussed.

Part 5A: explainability and feature importance
Transparency research for generative models remains an active 
field of investigation, and therefore suggestions from the original 
MI-CLAIM checklist to apply best-practice methods, such as local 
explainability approaches (for example, LIME and SHAP), gradi-
ent and attention analyses, probing methods, or counterfactual 
analyses12, are kept. However, these methods should be rigorously 
evaluated when applied to new clinical tasks, particularly because 
previous methods were often developed for models with shorter 
context lengths or less complex tasks. In addition, caution should be 
exercised when interpreting model-generated explanations, which 
do not always align with final outputs, and should not be used as a 
method of explainability13.

Error analysis and sensitivity analysis (ablation tests), including 
prompt sensitivity tests, are also strongly encouraged to provide a 
better understanding of model behavior, particularly if evaluation 
datasets or models are not made publicly available. It is becoming 
increasingly important to understand how generative models may fail 

in clinical settings, which can provide insights into their capabilities 
and limitations beyond accuracy metrics.

Part 5B: bias, privacy and harm assessments
Identifying generative model biases and other potential harms pose 
new challenges for clinical research2,11. The MI-CLAIM-GEN introduces 
new checklist items to report whether studies discuss, identify and/or 
mitigate these and other potential harms.

Models trained on biased data can perpetuate biases in generated 
content, impacting downstream patient care and decision-making. 
Analysis of model performance across diverse patient subgroups and 
data subtypes to identify biases is strongly encouraged. All available 
details about data distribution of any training and evaluation data-
sets should also be reported, including patient sociodemographic 
information, any data imbalance, the timeframe when the data were 
collected, and any changes to best practice medical guidelines during 
this timeframe. To assess cultural and social biases, researchers should 
consider engaging with a diverse set of clinical evaluators. External 
validation to assess model fairness and robustness across different 
data distributions should also be performed if possible.

Models that may be deployed to real-world clinical care settings 
should be assessed with patient-centered approaches that are inclusive 
of diverse cultural and social communities9,11. These models should 
also be scrutinized for up-to-date cybersecurity vulnerabilities, such 
as adversarial prompt injections2, and other potential model harms.

Part 6: end-to-end pipeline replication
Reproducible methods for generative modeling research should enable 
the community to replicate data collection and cohort selection, model 
development and inference, and end-to-end evaluation. New checklist 
items were added to identify the level of transparency presented, with 
separate tiers for reproducible data processing and model training 
or usage.

For data and analytic transparency, all code, dependencies and 
data should be provided in secure, accessible repositories. If full 
real-world datasets cannot be shared, a sample of the raw data, syn-
thetic data or data structures and dictionaries should be provided. 
Model weights should be released and treated with the same care as 
clinical datasets. Use of any synthetic data and strategies for generation 
should follow individual journal guidelines on data reporting. Along 
with datasets used and code used for analysis, all prompts tested should 
be released, along with corresponding results.

Infrastructure, cost and compute requirements to run or develop 
the model should be included as part of the methods. These may include 
the type and quantity of hardware used, the operating system and the 
training time if applicable. For reproducible model development or 
usage, any random seeds used and other hyperparameters should also 
be reported, along with detailed descriptions of model inputs, versions 
and implementation frameworks, especially if code and/or data are not 
provided. External datasets for retrieval augmented generation, base 
model(s) used, embedding model(s), retrieval model(s), and other 
auxiliary models or tools, should also be disclosed (Fig. 1).

Drawing from best practices set out for all model development, 
the checklist also includes a section to report clinical model cards14 or 
labels15 that summarize the model capabilities, intended use, train-
ing data and limitations, potential biases, and model risks (Fig. 2). 
While the MI-CLAIM-GEN checklist summarizes whether the current 
clinical generative AI study has been conducted and reported using 
best-practice recommendations, model cards provide additional 

Output

In-context learning

Reinforcement learning

Supervised finetuning

Pretraining

Post processing External tools

Component type

External augmentation

Training (no model 
weight updates)

Training (model 
weight updates)

Fig. 1 | Components of model training and inference to report for end to end 
replication. Independent datasets and data splits (validation, test) used during 
any stage of model training should all be reported. This includes any data used for 
in-context learning, such as databases used for retrieval augmented generation 
or any prompt engineering performed. Any post-processing, including external 
tool usage, should also be reported. Models merging multiple, existing models 
should provide components for each model.
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Model Summary Model name:  Sepsis-GPT Developer: MI-CLAIM Health 

FDA Clearance: N/A Last updated: June 20, 2024  Version: 1.0 

Intended usage

Validation and performance

Warnings

Development

Other information

CitationDatasetCohort sizeF1 (Management)AUC (Diagnosis)Validation type

doi:####Link 11,0000.560.83Internal (retrospective)

NANANANANAInternal (prospective)

doi:####Link 22,5000.630.68External (retrospective)

• Pretrained model: Clinical-T5 (derived from T5-Base)
• Pretraining dataset description: Further pretrained on MIMIC-III and -IV clinical notes
• Fine-tuning

• Method: Supervised fine-tuning using labeled clinical notes, vital signs, and laboratory data
• Dataset: 50,000 emergency department visits with confirmed sepsis diagnoses and severity 

labels derived from electronic health records
• Target: Binary sepsis diagnosis and multiclass severity assessment

• Prompt engineering
• Method:  Few-shot learning with 3 random examples of clinical notes and corresponding 

diagnoses/severity assessments
• Dataset: Curated set of representative clinical note snippets from 100 patients with 

annotations
• Target: Accuracy of diagnosis and severity assessment, minimizing false negatives

• External tools
• Sepsis-3 diagnostic criteria, SOFA score calculator, antibiotic recommendation engine

• Citation: Placeholder et al. Sepsis-GPT model for sepsis diagnosis using real-world clinical data. 2024.  
• License: MIT license

• Primary clinical metric: Accuracy of sepsis diagnosis and appropriateness of management 
recommendations

• Continuous monitoring recommendations: Weekly review of a random sample of 50 model 
outputs by a clinical expert to assess the quality, appropriateness, and bias 

• Risks resulting from bias findings: Potential underdiagnosis in patients from underrepresented 
racial/ethnic groups.  

• Risks resulting from clinical findings: False negative diagnoses could lead to delayed treatment; 
false positives could lead to overtreatment.  

• Other known or suspected risks within the intended domain: Model may underperform on cases 
with incomplete data or atypical presentations.  

• Indication for use: Assisting emergency physicians in diagnosing and managing patients with 
suspected sepsis.

• Out-of-scope uses (contraindications): Not intended for use in patients under 18 years old, 
pregnant women, or those with immunocompromised conditions.

Fig. 2 | Components of a clinical model card. An example model card, formatted 
as a clinical ‘model facts’ label15, for a fictional model created to assist in clinical 
decision support around sepsis diagnosis and management. The clinical model 

card should provide a summary of how a model was developed, intended use, 
out-of-scope uses, performance, limitations, and recommendations for safe 
deployment. SOFA, sequential organ failure assessment.
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transparency around model development, intended uses, and known 
limitations to support the appropriate use of these models in future 
research or deployment.

The MI-CLAIM-GEN checklist can be found on Github at the fol-
lowing link: https://github.com/BMiao10/MI-CLAIM-GEN. We welcome 
continuous community feedback as the generative modeling landscape 
evolves, and provide this space as a community forum for readers to 
identify and engage with best-practice approaches within each section 
of the MI-CLAIM-GEN checklist.
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