
UCLA
Technical Reports

Title
RedCooper: Hardware Sensor Enabled Variability Software Testbed for Lifetime Energy 
Constrained Application

Permalink
https://escholarship.org/uc/item/1c21g217

Authors
Agarwal, Yuvraj
Bishop, Alex
Chan, Tuck-Boon
et al.

Publication Date
2014-06-02

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1c21g217
https://escholarship.org/uc/item/1c21g217#author
https://escholarship.org
http://www.cdlib.org/


1

RedCooper: Hardware Sensor Enabled Variability
Software Testbed for Lifetime Energy Constrained

Application
Yuvraj Agarwal†, Alex Bishop†, Tuck-Boon Chan†, Matt Fotjik‡, Puneet Gupta∗, Andrew B. Kahng†,
Liangzhen Lai∗, Paul Martin∗, Mani Srivastava∗, Dennis Sylvester‡, Lucas Wanner∗ and Bing Zhang∗

UCLA∗, UCSD†, University of Michigan‡

E-mails: liangzhen@ucla.edu

Abstract—Conventional hardware uses overdesigned mar-
gins to guardband against variability, which incurs significant
amounts of power and performance overhead. If the varia-
tions can be captured and exposed to the higher levels (e.g.,
system/software levels), the margin can be reduced or even
eliminated through opportunistic hardware/software adaptation.
In this paper, we present our end-to-end implementation of an
software testbed with built-in hardware sensors and adaptive
software. The measurement results show that using our novel
performance sensor, Design-Dependent Ring-Oscillator (DDRO),
can reduce the mean delay estimation errors by up to 35%
(from 2.5% to 1.5%) compared to using generic inverter-based
ring-oscillator. By utilizing the sensing infrastructure on our
RedCooper testbed, a demonstration shows that the hardware
and software adaptation can achieve up to 2.7X total active
time increase for lifetime energy constrained, as compared to
sensorless system.

I. INTRODUCTION

As semiconductor manufacturing process advances and fea-
ture size shrinks, hardware sees an increasing amount of
variability. Performance variation and power variation are the
two major manifestations of hardware variability. Conventional
approaches use overdesign and guardbands for the variations,
which leaves increasing amounts of power and performance
potential untapped.

If the variations can be captured and exposed to the higher
levels of stacks (e.g., system and software levels), the margin
can be reduced or even eliminated through opportunistic
hardware/software adaptation [1]. For example, a processor
typically has some margin on its operating frequency to
guarantee correct functionality across the worst-case process,
voltage and temperature (PVT) variations. The margin can
be reduced if we can estimate the processor’s performance
through on-chip performance monitors (e.g., ring-oscillators).
When the performance monitor reports an estimation better
than worst-case, which is likely, we can operate the processor
at a higher frequency. Alternatively, we can utilize the “better
than worst-case” scenario by lowering the supply voltage for
power reduction.

In addition to hardware adaptations enabled by perfor-
mance sensors, software adaptation can also help eliminate the
overdesigned guardband. For example, [2] proposes software
duty-cycling for lifetime energy constrained embedded sensing

applications. By exposing system’s current power consumption
information to the software, the application can dynamically
adjust its duty cycle rates (i.e., ratio of chips active time to its
lifetime) so that overall quality of service (QoS), as determined
by system active time, can be optimized within pre-specified
energy budget and lifetime requirements.

There are three major issues in the implementation of such
an adaptive system: 1).How to design efficient and accurate
sensors to capture the hardware variability signature? 2). How
to expose the hardware sensors to the system and software? 3).
How can the system and software adapt to the sensed hardware
variability?

In this work, we present our end-to-end implementation of
such systems which addresses the above implementation issues
by:

• We implement a testchip of Design-Dependent Ring-
Oscillator (DDRO), a systematic way of designing and
leveraging multiple replica monitors. The silicon mea-
surement results show that using multiple DDROs can
reduce the mean delay estimation errors by up to 35%
(from 2.5% to 1.5%) compared to using generic inverter-
based ring-oscillator.

• We implement a testbed RedCooper based on our
testchip, which offers the sensing infrastructure, and more
importantly, capability of exposing the sensor readings to
the software.

• We demonstrate an adaptive duty-cycling application
based on a embedded operating system running on
RedCooper testbed. Our demonstration shows that the
hardware and software adaptation can achieve up to 2.7X
total active time increase for lifetime energy constrained,
as compared to sensorless system.

The rest of the paper is organized as follows: Section II
describes our implementation of DDRO testchip and present
the silicon measurement results. Section III describes the
variability-aware software duty-cycling methodology. Sec-
tion IV explains our board implementation of the RedCooper
testbed. Section V presents our software implementation and
the demonstration of application running on the testbed with
both hardware and software adaptations. We conclude the
paper in Section VI.



2

II. DDRO TESTCHIP IMPLEMENTATION AND RESULTS

There are in general two classes of performance monitors:
in situ monitors and replica monitors. In situ monitors directly
probe/measure the delay of the actual circuit paths. Thus,
implementation of in situ monitors requires changes in the
original design. Conversely, replica monitors are stand-alone
circuits which are designed to mimic the delay behavior of
the original circuit under variations. They are in general non-
intrusive, but with limited accuracy. [3]

To accurately estimate the circuit delay, replica monitors
should be designed with respect to the timing behavior of
the actual circuits. We know that the circuit’s delay is de-
termined by delay of the slowest path, i.e., critical path.
Due to variations and different path structures, there are a
number of potential critical paths and they might behave
differently under variations. The motivation of DDRO is shown
in Fig. 1, in which each dot represents the delta delay of
one critical path under variations of supply voltage (y-axis)
and temperature (x-axis). Since the path delay sensitivities
form natural clusters, multiple DDROs can be designed to
match these clusters correspondingly. A final delay estimation
is made by leveraging all DDROs’ results. Detailed design
and estimation methods are described in [3]. A flow chart
illustration of DDRO design methodology is shown in Fig. 2.

To validate the DDRO-based performance monitoring, we
implement a testchip using a 45nm IBM SOI technology
with dual-Vth libraries. The testchip has an ARM Cortex-M3
microprocessor with DDROs. Five DDROs are synthesized
using the method described in [3].

To control DDRO oscillation, a NAND (or AND) gate is
added in each RO as shown in the schematic in Fig. 4. An
on-chip digital counter is used to obtain the RO frequencies.
For comparison, we also implemented inverter-based ROs. The
testchip layout and die photo are shown in Fig. 3.

The measurement of the processor Fmax is done through
running a test program. Since ROs are of different length and
nominal delay, we normalized them across all 15 chips, e.g.,
if RO1 delay on chip A is 10% slower than mean delay of
RO1 across all chips, it will estimate the processor delay to be
10% slower than mean delay of processors across all chips.
The testchip measurement results are shown in Fig. 5. The
silicon measurement results show that using multiple DDROs
can reduce the mean delay estimation errors by up to 35%
(from 2.5% to 1.5%) compared to using generic inverter-based
ROs.

III. VARIABILITY-AWARE SOFTWARE DUTY-CYCLING

For battery-powered embedded sensing system, the total
lifetime energy is usually constrained. In order to meet the
lifetime requirements, one particularly common power man-
agement techniques is duty cycling, where the system is at
default in a sleep state and woken up periodically to attend
to pending tasks and events. A system with higher duty cycle
may, for example, sample sensors for longer intervals or at
higher rates, increasing data quality. A typical application-level
goal is to maximize quality of data through higher duty cycles,

Fig. 1. DDRO Motivation: each dot represents delta delay of a critical path
under variations. The critical path delay sensitivities form natural clusters.
The paths are extracted from Cortex-M3 microprocessor. Delay values are
simulated using SPICE.

Fig. 2. Overview of DDRO design methodology.

Fig. 3. DDRO Testchip die photo (left) and layout illustration (right).

Fig. 4. RO schematics for the RO block. Each RO is connected to a
NAND/AND gate followed by a 12-stage frequency divider. A digital counter
is used to measure the RO frequency.



3

Fig. 5. DDRO Results: RVT stands for RO using regular Vth inverters and
HVT stands for RO using high Vth inverters. Mixed VT stands for RO using
both type of inverters.

while meeting a lifetime goal. Conventional approach deter-
mines duty cycles by either worst-case power specifications or
datasheet power values, which may be heavily guardbanded. If
the system’s power consumption can be measured and exposed
to the software, the application may be able to adapt its duty
cycle rate and increase its QoS opportunistically according to
the hardware power consumption status.

For example, for a fixed lifetime energy budget E and spec-
ified targeting lifetime constraints L, the software duty cycle
rate DC can be calculated through the following equation:

PA · DC+PS · (1 − DC) =
E

L

DC =
E − L · PS

L · (PA − PS)

(1)

where PA and PS are the active and sleep power consumption
respectively. By determining PA and PS on a per-instance
basis, the duty cycle may be tailored to maximize active time
for each individual sensor under a given deployment scenario
(temperature profile, lifetime requirement, battery capacity).

There are several different ways that such an opportunistic
stack may be organized as shown in Fig. 6. The scenarios
differ in how the sense-and-adapt functionality is split between
applications and the operating system. Scenario 1 relies on
the application polling the hardware for its current variability
signature. In the second scenario, the application handles
variability events generated by the operating system. In the
last scenario, handling of variability is largely offloaded to the
operating system.

IV. RedCooper TESTBED

In this section, we describe our implementation of our
testbed that uses DDRO testchip and on-board senors to enable
the demonstration of variability-aware hardware and software
adaptation. The overall block diagram of the testbed is shown
in Fig. 8.

On our testchip, there are on-chip performance sensors
(DDRO) and leakage sensors. For the purpose of demonstrat-
ing software duty-cycling, we also implement on-board preci-
sion resistors to measure the current drawn by the processor
and the (on-chip) SRAM memory separately.

Fig. 6. Designing a software stack for variability-aware duty cycling

Fig. 7. RedCooper Testbed.

Fig. 8. Block Diagram of RedCooper Testbed.



4

Fig. 9. Software Adaptation Illustration.

Fig. 10. Pseudo code showing programs running on the processor and mbeds.

Due to testchip implementation issues, there are two major
challenges in the implementation of the testbed:

1) They only way of off-chip communication is through
the JTAG interface (i.e., memory read/write)

2) the on-chip sensors (including DDRO and leakage sen-
sors) are implemented as a self-contained block, there-
fore cannot be directed exposed to the processor.

To address these issues, we put two mbed MCUs [4] on
the board. One MCU (MBED2) is used to control both on-
chip and off-chip sensors and transfer the sensor readings
upon sensing request. The other MCU (MBED1) is used
to accept the actions requested by the processor, including
adjusting operating frequency/voltage, requesting for sensor
readings, writing sensor readings to certain memory locations,
and acknowledging sensor reading updates. A photo of the
testbed board is shown in Fig. 7.

V. ADAPTATION DEMONSTRATION

In this section, we will describe our implementation of the
software running on RedCooper testbed that demonstrate the
use of hardware sensors for hardware and software adaptation.

The software running on the M3 core is shown in Fig. 9.
The operating system (OS) is based on CoOS [5]. Three tasks

Fig. 11. A snapshot of the demo hardware.

are implemented within the OS:
• Task I sends the sensing request by writing to a pre-

specified memory location. Upon seeing the request, the
on-board MCUs will start reading the sensor values and
write the sensor readings directly to certain memory
locations.

• Task II acts as the central adaptation center, which reads
the sensor readings, including DDRO frequencies, current
drawn by the M3 core, current drawn by the on-chip
SRAM, and the on-chip leakage sensor. DDRO frequen-
cies are used to calculate the performance slack and
determine the adjusted voltage. The current and leakage
sensor values are used to calculate the feasible duty cycle
using Equation (1). The duty cycle rate is further translate
to the number of iterations for Task III.

• Task III is the main application running in the OS, which
calculates the value of pi with its best effort under the
constrained duty cycle.

The pseudo code of the OS tasks and MBEDs are shown in
Fig. 10. In this demo, all three OS tasks are fired every 10
seconds. We set the processor to run at a fixed 600 MHz
clock frequency. The active power includes both the core and
SRAM power consumption. The sleep power includes the
SRAM power and the projected leakage power of the core.

A snapshot of the entire hardware is shown in Fig. 11.
We have two copies of RedCooper (i.e., Instance A and
Instance B) running side-by-side. Each testbed is equipped
with an LCD reporting the system status. The demo results is
highlighted with the snapshot of the LCD as in Fig. 12 and 13.
1 The LCD reports current system status, including supply
voltage (V), current drawn by processor core (A), current
drawn by SRAM plus the projected leakage current from on-
chip leakage sensor (L), current number of iterations for Task
III (DC), calculated value of pi (PI), and error of calculation
in percentage (e).

Fig. 12 highlights some results at room temperature. In-
stance B has smaller sleep power than Instance A, which im-
plies the potential of achieving high duty cycle rate. Therefore
the number of iterations is set at 49 and the calculation error
is smaller than that of the Instance A.

1The complete demo video can be found at
http://nanocad.ee.ucla.edu/Main/Codesign



5

Fig. 12. A snapshot of the demo results under room temperature.

Fig. 13. A snapshot of the demo results after heating up Instance A (reported
by LCD A). If the system is “designed for worst case”, it has to margin
for scenario of Instance A and set DC = 18. While our system shows its
capability of reducing the margin and run at DC = 49, as the scenario of
Instance B.

Fig. 13 highlights some results after heating up the Instance
A. At higher temperature, Instance A shows its capability to
adapt its supply voltage based on the performance sensors.
Higher temperature and supply voltage increases Instance A’s
power consumption significantly, especially the sleep power.
Instance A is able to adapt to this change dynamically and
adjust its software duty cycle to meet the lifetime constraints.
If the system is without hardware sensors and designed
for the worst-case scenario (including process variations and
temperature fluctuations), the number of iterations, as in this
demo, will be at most 18 (the case for Instance A in Fig. 13)
with 1.865% calculation error. With the hardware sensors
and adaptations, we are able to achieve 49 iterations and
calculation error as small as 0.668% (the case for Instance
B).

VI. CONCLUSION

In this paper, we first described out testchip implementation
of DDRO and present the testchip measurement results. The
silicon measurement results show that using multiple DDROs
can reduce the mean delay estimation errors by up to 35%
(from 2.5% to 1.5%) compared to using generic inverter-based
ring-oscillator. Then we described our implementation of the
RedCooper testbed using DDRO testchip. We demonstrated a
variability-aware system, which utilized hardware performance
and power sensors, exposes them to the software level, and
reduce the design margin through hardware and software
adaptations. By utilizing the sensing infrastructure, our demon-
stration shows that the hardware and software adaptation can
achieve up to 2.7X total active time increase for lifetime
energy constrained, as compared to sensorless system.

REFERENCES

[1] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R. K. Gupta, R. Kumar, S. Mi-
tra, A. Nicolau, T. S. Rosing, M. B. Srivastava et al., “Underdesigned and
opportunistic computing in presence of hardware variability,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 32, no. 1, pp. 8–23, 2013.

[2] L. Wanner, C. Apte, R. Balani, P. Gupta, and M. Srivastava, “Hardware
variability-aware duty cycling for embedded sensors,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 21, no. 6, pp.
1000–1012, 2013.

[3] T.-B. Chan, P. Gupta, A. B. Kahng, and L. Lai, “Ddro: A novel
performance monitoring methodology based on design-dependent ring os-
cillators,” in Quality Electronic Design (ISQED), 2012 13th International
Symposium on. IEEE, 2012, pp. 633–640.

[4] [Online]. Available: http://mbed.org/
[5] [Online]. Available: http://www.coocox.org/CoOS.htm




