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1. Elfective Nonrenormalizable Theories in Physics

1.1. Infrared limits of the standard model.

Observed particle interactions can sometimes be described by effective nonrenor-
malizable theories that, in the context of the standard model for strong and electroweak
interactions, correspond to a particular long distance, or low energy, limit of the un-
derlying renormalizable theory. For example, the Fermi theory of f-decay correctly
describes weak charged current interactions in the limit of small momentum transfer
q,., compared with the mass my of the charged intermediate bosons W#* that mediate
these interactions: -
¢’ << miy = V2¢*/8Gr, (1)

where Gr is the Fermi coupling constant. Another example is the SU(2), x SU(2)n
chiral invariant o-model that describes pion dynamics at energies that are small com-
pared with the inverse confinement radius of QCD. However, in this case, we cannot
simply reproduce the effective low energy theory as a particular limit of a parameter
(e-g., mw — oo for the electroweak theory) of the QCD Lagrangian; numerical meth-
ods used in attemptas to establish such a connection will be described in the lectures of
Petronzio !.

Finally, quantum gravity and its supersymmetric extension, supergravity, are
nonrenormalizable theories that are often conjectured to be the low energy/long dis-
tance limit of a finite (rather than renormalizable) theory which should become mani-
fest at energy scales large compared to the Planck scale or some other mass parameter
characterizing the underlying physics. The current leading candidate for such a theory
is a superstring theory? in ten dimensions, in which case the relevant parameter could
be the compactification scale or the string tension, both of which are expected to be
within a few orders of magnitude of the Planck mass. ‘

Effective four dimensional field theories suggested by superstring theories gen-
erally have a high degree of vacuum degeneracy at tree level which is related to symme-
tries of the effective Lagrangian under nonlinear transformations among scalar fields,
similar to the chiral invariance of the nonlinear o-model for low energy pions. An im-
portant question then is to what degree the degeneracy is lifted by loop corrections to
the effective tree Lagrangian. In this lecture I will discuss one-loop corrections to ef-
fective nonrenormalizable theories, with special attention to loop expansion techniques
that preserve all the invariances of the effective tree Lagrangian. Such symmetries play
an important role in the superstring-inspired field theories that I will discuss in my
second lecture. Here I illustrate the relevant techniques with examples drawn from
the standard model where it is possible to compare results using the effective low en-
ergy/long distance nonrenormalizable theory with exact calculations in the underlying
renormalizable theory.

Recall first two important properties of ultraviolet divergent contributions at
each order in the loop expansion for renormalizable theories: a) They are at most
logarithmic - with the important exception of quadratically divergent contributions to
scalar masses that I will discuss later in relation to the gauge hierarchy problem. b)
They can be reabsorbed into redefinitions of the parameters of the tree Lagrangian -
coupling constant, fermion masses, etc. ) i

Now consider the Fermi theory of low energy charged current weak interactions.
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The eflective interaction tree Lagrangian is of the form:
Cuee = 2V2CF (L1 VL) (VL) (1.2)

The one-loop contribution, Fig. la, to the eflective four-fermion coupling is quadrat-
ically divergent. Cutting off the loop momentum integration at |p] = A gives Lthe
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Figure 2: Finite one-loop contribu-
tions to 4-point (a) and 8-point (b)
fermion functions in the renormaliz-
able gauge theory.

Figure 1: Divergent one-loop contri-
butions to 4-point (a) and 8-point (b)
functions in the Fermi theory.

estimate (recall: there is a factor (4x)~? for each loop integration):
Cl-lmp~ 1 A? ﬁG 37 3 g’_ 2.7 2
ot Temt @V2GFY (Yrrde)” ~ o5 A (e (13)
In the context of the standard model, we know that the Fermi theory is relevant only

for momenta |p|? << miy; if we identify the cut-off A with the scale at which the Fermi
theory ceases to be valid, A? ~ m},, we obtain, using (1.1):

V2GF
16a2

- a

La~g (P’ = g Cueos (1.4)
where a = g¢*/4x is the weak “fine structure” constant: The result (1.4) can be
compared with the low energy limit for external momenta of the diagram of Fig. 2a,
which is finite and yields the same estimate:

N 1 e ’
51 ~ ol ) o ()’ ~ L) (1.5)

In the context of the Fermi theory, the quadratically divergent one loop correc-
tion (1.3) can be absorbed into a redefinition of the Fermi coupling constant. However,
there are also logarithmically divergent contributions to the one-loop effective action
that generate new couplings. For example, the contribution of Fig. 1b can be estimated

a3 1

~ 16n1

Lea (2V2GF)* In(A*/?) (i), (1.6)

4=

where gis a fermion mass my or an external momentum |q.5]. Dimensional consider-
ations and an analysis of the infrared behavior of the corresponding finite diagram of
Fig. 2b gives the estimate

~ 16n3

Can ~ (S5 o ol /1) ), (a1
which, using (1.1), is the same as (1.6) for A? = mj,. Note that while the underlying
physics dictates that A = O(myy), we cannot in general set A = m as an exact
equality. Rather, we should set A = gmw with 5§ = O(1). The precise value of n
depends on the details of the way in which new physics - in this instance the finite
range r ~ my’ of the weak interaction - enters to damp the apparent divergences of
the effective low energy theory. Moreover, the value of n can differ from one diagram
to another. Thus, calculations using the effective nonrenormalizable theory should
reproduce the correct order of magnitude of the quadratically divergent terms as well
as the precise coefficient of the logarithmic divergence. In the latter case a rescaling of
A by a factor of order unity can be reabsorbed into residual finite terms that cannot
be reliably evaluated in the context of the effective theory.

The above analysis is appropriate for the Fermi theory of charged current cou-
plings with one generation of quarks. When u «+ s charged current couplings are
included in the effective tree Lagrangian (1.2), one would grossly overestimate one-
loop strangeness-changing neutral current transitions with the identification A ~ myy.
This is because there is a much lower threshold, A ~ m. (c=charm) where these tran-
sitions are damped by the GIM mechanism3. Comparison of calculations of this type
with data provided an estimate® of the charmed quark mass before the underlying
theory* was known. In other words, an analysis of the divergent loop contributions to
a known effective theory can point to thresholds where that theory must be replaced
by a more convergent one.

In the following I will focus on a nonrenormalizable theory that is more closely
related to those suggested by superstrings, namely a gauged nonlinear g-model, but one
which can also be obtained analytically in a particular limit of a parameter (my — o0)
of the standard, renormalizable electroweak theory. This will provide another labora-
tory for testing.the validity of calculations using the effective theory. We will find (as
for certain superstring inspired models to be discussed later) features similar to those
for the Fermi theory: quadratic divergences can be reinterpreted as renormalizations,
while new terms are generated at the level of logarithmic divergences. I will also in-
troduce, in the context of more familiar physics, notions such as scalar metric, scalar
curvature and nonlinear symmetries, that play an important role in formal aspects of
string theories discussed by other lecturers.

1.2 The large Higgs mass limit of the standard electroweak model.

Neglecting gauge couplings, the scalar sector of the standard model* has the
(renormalizable) Lagrangian

1.}2 .
Ly = 0,90"¢ — Migl” - 5’ (1.8)

which is invariant under the group SO(4) or SU(2) x SU(2) of linear transformations
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amaong the four real scalar fields that parametrize the complex donblet o:

Y AN (in. + n,)
= = = . . ‘.9
v (9") V2 \o —in (1-9)
In terms of the component fields (x,0) Eq. (1.8) takes the standard form of the lincar
o-model:

Ly= %3,.08“0 + %8, i g —%a\(a2 N LT L (1.10)
A useful nonlinear formulation is obtained by making the field redefinition
= —F(¢e¢ . 1.1l
1 4 \/5 p ( )

In terms of the field variables (8, p) the Lagrangian

Cu=Lxsl00) - NP - V) (112)

displays explicitly the decoupling at zero four-momentum of the massless Goldstone
modes 8;, since these fields appear in (1.12) only through derivative couplings (Lk.8.).
The theories (1.10) and (1.12) are equivalent and give identical S-matrices as calculated
by expanding about the vacuum defined by < |p| > V2 =< p >=< o >=v, p=
o+ O(lpl - v/V2)?, 6 =i +O(lpl - v/V2).

Instead of (1.8), the Lagrangian relevant for weak interaction physics is that of
a gauged scalar sector, with the replacement

Oup— Dyp=(0,+iAL)p, Au= %TuA: . (1.13)

where the four 2 x 2 matrices T, represent the generators of SU(2)y x U(1) on the
scalar doublet y, and AZ are gauge fields. The gauged Lagrangian is invariant under
the transformation

¢ = Uz)p, A, =UAU™+idUU:

L(A,p) = L(A',¢) = L(A,¥), (1.14)

where in writing the last line of (1.14) we have relabelled the gauge field A’ = A. In
other words we treat the transformed gauge fields as the gauge degrees of freedom.
With the particular choice

U= c";'?"’, ¢ = —1—2 (0) - (1.18)
we obtain the Lagrangian of the “unitary gauge”

Ly = L(A,p), (1.16)

and we identify the physical Higgs scalar as H = p — v. Loop calculations are most
easily done in a renormalizable gauge in which ¢ is represented linearly, Eq. (1.9) and
the unphysical scalar degrees of freedom =; appear in the Lagrangian:

Lp=L(A,0,%), H=0—v. (1.17)

—6-

In cither case the physical Higgs mass is extracted from the potential in {1.10) or (1.12)
as: )

miy = 20%A. (1.18)

The physical particles of the theory are the massless photon v, the massive

vector bosons W* and Z and the Higgs particle H. The vector boson masses are

extracted by expanding the covariant derivative (1.13) around the vacuum |p| = v/V/2;
in tenns of the linear field variables (1.9):

3,2
_ g% _ 1 _
Do =L (Wrwe + mz,‘z_") W 4 (1.19)

The vacuum expectation value (vev) v is fixed by the experimental determination of

“the Fermi constant G and the identification

2
3 _ dmy
v = 3 =
9

(V2Ge)™ = (i—TeV)’. : (1.20)

Although the ; are not physical degrees of freedom of the theory, the relevance of the
o-model (1.10) or (1.12) to physics is through a theorem %~ which states that S-matrix
elements including longitudinally polarized W’s and Z2’s(Wy, Z,) can be calculated, up
to corrections of order miy/ Ew and mz/Ez, by replacing WF and Z_, respectively, by
x* and 7° as external particles and using the Feynman rules of a renormalizable gauge,
i.e., using the Lagrangian (1.17). This result is intuitively plausible if one recalls that
the physical, or unitary, gauge of Eqs. (1.15) and (1.16) was obtained by a transfor-
mation W,, — W}, = W, + 9, that introduces a longitudinal component 3, into the
vector field. Alternatively, in an unphysical gauge, the last term in (1.19) introduces
a mixing of W, with the longitudinal vector d,x. In practice, calculations are usually
performed in a renormalizable R¢ gauge® in which the gauge fixing term is arranged to
precisely cancel the W — & mixing term in (1.19). The Lagrangian is no longer man-
ifestly gauge invariant, but is invariant under nonlinear BRS transformations'? that
are related to gauge transformations. The Ward identities of BRS invariance can be
used”® to derive the vector-scalar equivalence theorem stated above.

Now consider the limit my — oo. Since v is fixed by experiment, Eq. (1.20),
it follows from (1.18) that X — oo, i.e., that scalar self-interactions become strong.''®
If the potential energy-density in (1.10) or (1.12) is to remain finite in this limit, |p|?
must be fixed at its ground state value.

P =0 4nt=0 (1.21)

The variable p or o, and therefore the physical scalar H, is eliminated from the effective
theory as an independent scalar degree of freedom:

o = (v - 7). (1.22)

Note that the constraint (1.21) is invariant under SO(4) or SU(2) x SU(2). When the
condition (1.22) is imposed, the linear transformations

61r.- = €ijx0;Tk + ﬂ,‘d,

§0 = —fim, (1.23)
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whiere o, and 3, i = 1,2,3 are the parameters of, respectively, a “vector™ and an “axial”
SU(2), are replaced by the nonlinear transformations

ém, = e pajme + At - v’)"’. (1.24)

‘The Lagrangian (1.10) takes the form

Ly— %&n‘é“n"ga, (1.25)
where .
~-_5.,+'f", (1.26)

is the scalar metric. One can check that (1.25) is explicitly invariant under (1.24).

The Lagrangian (1.25) defines an effective nonrenormalizable theory, that, ac-
cording to the equivalence theorem stated above, describes '27'3 the strong self-
couplings of longitudinally polarized W'’s and Z’s in the c.m. energy region mw <<
s << m}; in the large my limit of the standard model. Although the theory is strongly
coupled, invariance under chiral SU(2), Eq. (1.24) assures!? that the low energy limit
of S-matrix elements for x — x (and hence Wi, Z.) scattering are given precisely by
the Born, or tree, approximation to the Lagrangian (1.25):

S = Seen(l + O(s/16x%v%)). (1.27)

This is because (1.25) is the only form invariant under (1.24) that is at most quadratic
in momenta (i.e., in derivalives).

1.3. The one-loop scalar action.

In this section I will outline a loop-expansion procedure for the effective action
that explicitly preserves the invariances of the tree action. I start by recalling elements
of functional integration, background field methods and the derivative expansion.

Consider first a free scalar field theory, with Lagrangian
C= %(3,,sp‘8“w‘ —mlgi), i=1,...,N. (1.28)
The effective quantum action is _
Sa=iln / dge-51 (1.29)

where the tree action as a functional of p is given by

Syl = f d'zL(p) = —% / d*z¢' (z)A7 (2, ¥)p' (v)d"y. (1.30)-

The inverse propagator
A7 (z,y) = (8] + m")5(z — y) (1.31)

can be considered as an infinite dimensional matrix including the space time position
z as a matrix index. Then the integration (1.29) can readily be performed using the
gaussian integral

/d"xc"i"‘M""' =det VM (1.32)

—8-
which gives for (1.29) .
Ser = ilndet 24, (1.33)

For a (renormalizable) interacting field theory, with Lagrangian
1 o
L= §6ulp'a“(,9| - V(p) (1.34)

the effeclive action is, in practice, evaluated as an expansion in perturbation theory.
In the background field method one expands the functional S[p) around a classical
background field configuration yp. Setting v = o + :

§S l i 818

Sle) = S[wl+ G+ | &+ (1.35)
w80,

The first term in (1.35) is the effective tree action expressed in terms of . The
second term vanishes by virtue of the classical equations of motion in the presence of a
background field wp. More precisely, one adds a source term J;{io)¢* to the Lagrangian
(1.34) which assures that the equations of motion are satisfied for = @o. The third
term in (1.35) determines the one-loop correction to the effective action. Inserting
(1.35) into (1.29) gives'®

Sua = Slpol + il j d~¢exp(—;; / dz'(A7")ii) + -+

= Slpol +ilndet Y2+ = Slpo) + 2iTrin A+ . (1.36)

Here A is the propagator in the presence of the background field o; defining the
(background field dependent) “mass matrix”

U;,-(x) .,[(po(:t)] &p 89)’

we obtain

A7 (@) = @2+ Use)8(a = 1) = (02 + Us(a) [ gpebee—

= / z—%c“"(—p’ + U;;(—id/8p))e™>. (1.37)

By thus expressing the inverse propagator in terms of its Fourier transform, the x-
integrations implicit in (1.36) become trivial, and as the p-dependence reduces to
products of §-functions one obtains'®

TrinA™ = / dz [ =L Trin(-p* + U(z — i0/p)). (1.38)

(2 )t

The remaining p-integration can be performed after a Wick rotation and a suitably
defined expansion of the logarithm in (1.38) with

U(z — i8/0p) = U(z) - i8,U(z)8/p, + (1.39)

which gives the one-loop effective action as a series in increasing orders of derivatives'.
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In the case of a scalar theory with derivative couplings, the above formalism
must be generalized to provide an expansion that, at each loop order, is manifestly
invariant under field redefinitions. Consider a general o-model with the Lagrangian

. 1 , .

L= 59-’;’(?)3,.»9'3.‘?’ -~ V(p) (140
Under a change of field variables:

' ; aze .

¢ = 2%(y), 8.2°= wa,m' (1.41)

the scalar metric is redefined according to
8y' 8y’
9:(#) = haa(2) = 552 27394 (1.42)

The integration measure dV¥y in the expression (1.29) for the effective action must
now be replaced!? by the invariant measure d¥yp det'/? g(), and a covariant expansion
is obtained'®=% by replacing the functional derivatives §/8y° in (1.35) by covariant
functional derivatives l.);:

Slel = Sleol + DiS| '+ D.D;S| '+ (1.43)

As previously, the second term on the right in (1.43) vanishes by the equations of motion
(with appropriate covariant source terms), and the third term determines the one-loop
contribution which is governed by the inverse scalar propagator'® for the theory (1.40)
in the presence of a background field configuration gq:

8§

83 (=.y) = DiD;s| = T

§S
-Phe) 3| Se-w 0
12 Yo
where T is the scalar connection determined in the usual way from the scalar metric g.
Explicit evaluation of (1.44) gives®
A5 (z,y) = —gij(po)ld + U + RI}8(z - y), (1.48)

with
Ui = @*DiDV(y), Ri= R, 060", (1.46)

where D); is the covariant scalar derivative, analogous to the covariant functional deriva-
tive in (1.44), Ry,; is the scalar curvature Lensor, and

()] = 0,8 +Thow* = [, +wloll] (1.47)

is a scalar field redefinition covariant four-derivative. Inserting the above results into

the quantum action (1.29) and using (1.32) we obtain

S:E‘mp = —%'I'rlng_lA"l = —%Trln[t{’ + U+ R]

= _%' / d'z / (—;%’717 In A(p, = — i0/8p) (1.48)

with o
A(p,z - i8/8p) = (ip, — %)’ + U + R, (1.49)

-10-

where, for an arbitrary (matrix-valued) function #(x) = Fpo(z)), | deline the corre-
sponding barred function by

F(z) = F(z — i0/0p) = e~*25/% f(1)e2/%
= F(z)—18,F8/8p, + - - -. (1.50)

The derivative expansion (1.50) is not term-by-term covariant under scalar field redef-
initions. An explicitly covariant expansion is obtained® by noting that if we define

B=UAUY, U = ¢ "48/0pgi05/0p (1.51)
then & "
‘ /d‘:/#TrlnA:/d‘z/ﬁ‘—TrlnB, (1.52)

where d, is defined in (1.47). The equality (1.52) holds because 8/3p acting on the far
right of the integrands makes no contribution, nor, by integration by parts, does 8/8p
acting on the far left. Under the transformation (1.51) the functions F, Eq. (1.50),
become:

F=UFU™ = e "9/ p(g)ei /% = P(z) —i[d, F|8/3p+ - -, (1.53)
which gives an expansion that is term-by-term covariant. Furthermore, we have?:
U(ip. - ‘—7M)U—l =i(p. + évua/BPV) (1.54)

where the covariant operator G‘,,,(tp,B/ap) is defined in terms of the scalar curvature
and its covariant derivatives

G!w = [d,“,_d,]f = 8,,&p‘3,¢pkﬂ‘i“(tp),

G. = Gw_%[dmaw]a/apﬂ'*"“- ) (1.55)

- R

Assembling these results, we may write the one-loop effective action, Eq. (1.48),
in the manifestly invariant form

- ] m : 3 ) R
Sligt® = % / d"/ (Er%T' in{—(p, + G,.8/8p.) + U + R

1
= A% X constant — 3201 /d‘xTr {Az(U(::) + R(z))
—% InA? [(U(:l:) + R(z))* + %G,“,G“"]' + finite terms, (1.56)

where I have performed the momentum integration to display explicitly the divergent
contributions. The leading quartic divergence is field independent and therefore irrel-
evant as long as we are not interested in gravitational interactions (i.e., in the value
of the cosmological constant). For supergravity models that I will consider in Sect.
2 this term is exactly cancelled among bosonic and fermionic loop contributions. For
the case of a constant background field, 8,p0 = 0, we have R = G, = 0, and the
expression (1.56) reduces to the familiar Coleman-Weinberg result?! for the one-loop
effective potential:

1
—1
Sclﬂ P la,‘m=0 = _32",2

/J‘:I:Tr(/\zhl?(cp) + %M‘ In(M3/A?) + constant), (1.57)



with the identification M?*(p) = U(p) for the ficld- dependent mass matrix. With non:
constant background ficlds there is, in particular, an additional quadratically divergent
term proportional to the scalar Ricci tensor:

TrR = — R;;0,9'0"¢’ (1.58)
which represents a one-loop correction to the scalar metric tensor g;,.

1.4 The (gauged) nonlinear o-model.

We can immediately apply the results of the preceding Section to the nonlinear
o-model defined by Eqs. (1.25) and (1.26). There is no potential so U = 0, and the

scalar curvature is readily evaluated to give™™
, 1. .
R = 5 (bigin - LHIR (1.59)
and the Ricci tensor (l N)
Rij = 59 (1.60)

where N is the number of real scalars «;, is in this case proportional to the metric
tensor. This is because the expression {1.25) with metric tensor (1.26) is the only
two-derivative form that is invariant under the SU(2) x SU(2) transformations (1.23).
Combining the one-loop result (1.56) with the tree Lagrangian (1.25) we obtain for the
one-loop corrected effective Lagrangian

. 3
Leﬂ = %g,‘)‘a“!ia,.l’j (l - (N l)_A"')

1673 o2
l 2 l py) 2
+ g Tr (R + 336G ) In(AY/1) 4 -+ (161)
The first term in (1.61) can be viewed as a renormalization of the pion fields and vev
v:
(N-1)A?
xp=2x, vp= 2v, Z’=l—w;¥ (1.62)

The second, logarithmically divergent, term involves couplings that are not present at
tree level. The argument of the logarithm is necessarily dimensionless. However in
the massless o-model, there is no scale parameter to scale the dimensionful cut-off -
hence the question mark in (1.61). In this theory, successive terms in the derivative
expansion are increasingly infrared divergent®, although S-matrix elements are well
defined. Thus to get a sensible answer we must resume the expansion. The correct four-
point scattering amplitudes can be obtained simply by dimensional analysis®?: since R?
and G? are at least quartic in scalar fields, the only dimensionful quantity appearing
in the formal expression (1.56) that can appear in the argument of the logarithm is the
derivative operator. Thus the last term in (1.61) should be replaced by

L r [ron X v R+ Lol v )| vo@m), (169
Fype r (ﬂa1 a 3 e » ’ :

where a and o' are constants of order unity that cannot be reliably determined, as
discussed in Sect. 1.1

-12-

Spectalizi L Case ; ich i i :
e |l talizing o the case V =3, which is appropriate for the large my limit of
e stane ard model(and for pion physics), we obtain, for example, for the 7+ 1~ elastic
scatlering aniplitude at one loop? (here I set a = a’ = 0):

M(n’*rr‘ -— 1r+1r_) = -—iu/u2
I
toiani (387 1I0(A% = 5) + 3P 10(AY/ — t) + 2u7 In(A*/ - )

1 1
—alzln(/\’/ ~s)— is’ (A - 1)+ %u’[ln(/\’/ — 3} +In(A?/ - 1)]), (1.64)

afuisult whit.:h has been obtained previously?, using different techniques, in the context
of pion physica. In Eq.(1.64) s,t and u are the usual Mandelstam variables: s > 0,u,t <
1] 1]

0. The term proportional to In(A?/ — s) = In(A? 3 i
= 8) +sm cont t i
due to on-shell rescattering. o niains the absorplive part

In the large my limit of the electroweak theory, Eq. (1.64) can be interpreted as

the one-loop corrected amplitude for the elastic scattering of longitudinally polarized

W*W=. The tree amplitude® is given by the first term in (1.64), which contributes to -

Figure 3: Vector boson fusion pro-

cess for diboson production via strong

M WL z Wy, Wy, rescattering in fermion colli-
x P slons.

I 1000
e Wagliudinal BW poir ¥ T T
produstion rete lo-.l‘l:alnl I3 peic
pr on rete
0 Tev — o0 losp we -
1000 - . res spprea. o0 leep .
~ - tres spprea.

Figure 4: W,f Wy and Z.Z;, pair production rates® in pp collisions at /s = 20
and 40 TeV with a rapidity cut {y| < 1.5 and a cut-off A = 3 TeV. The amplitudes
have been unitarized as described in the text.

AAAA Fig'ure 6: Diboson production via fermion-
+ antifermion annihilation through renor-
vvvv

malizable gauge couplings.
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s- and p-wave scattering only. The one-loop correction contains all partial waves (as
well as a comparable amplitude?? for elastic Z} scattering, which vanishes at tree
level) and therefore represents a more realistic scattering model that incorporates the
correct symmelry and analyticity properties, although it is not fully unitary. For WiV
center of mass scattering energies \/sw < 1 TeV, unitarity corrections are expected
to be important only fot the lowest (s) partial wave. Including a correction®? for this,
expected yields for pp — (2.2, or W W[) + anything, via the fusion process of
Fig. 3, are shown in Fig. 4 for a rapidity cut |y| < 1.5 and pp c.m. energies of 20
and 40 TeV, where they can be compared with predictions’ using (unitarized) tree
amplitudes.

The one-loop corrections shown in Fig. 4 are surprisingly large, and one may
question the usefulness of the one-loop approximation. The expansion parameters are
effectively sww/(45v)? and (A/4xv)?, s0 the series converges for sww, A? < (4xv)? ~
(3TeV). Thus if A £ 3TeV, the results of Fig. 4 should be reliable in the energy
range m}y << sww << A3, and will cease to be meaningful above the scale A of
“new physics” which could take the form of a Higgs scalar (or broad resonance in the
I = J = 0 channel if my X TeV) or a richer resonance spectrum. In the region sww <
A?, the experimental signature’®? for strong W, Z interactions is an enhancement of
WW, ZZ and W Z production over what is expected from the scaling contribution from
4§ annihilation, Fig. 5. For my — 00, the tree contribution of Fig. 3 was found to
exceed ¢ annihilation for \/sww % (1/2 — 1)TeV; the one loop corrections yield an
even larger strong interaction contribution in the subresonance continuum region.

If we interpret the results of Fig. 4 and Eqs. (1.61)-(1.64) as applying to
the large my limit of the standard model, the underlying theory is renormalizable.
We can compare these results with those obtained by calculating in the finite my,
renormalizable theory, and then taking the large my limit. For this purpose, we start
with the linear o-model of Eq. (1.10), in which case we have

&av

R=G, =0, Uj;= 0, 1.65
=0, U= g7 (1.65)
~ where I identify (po,1,- -~} = (0,51, -, #N). The expansion (1.56) now gives
-1 1 .
Litoop = 3—2‘—,{1\"1’rU - ETrU’ln A? 4 finite terms}, (1.66)

which, in particular contains no divergent derivative terms.

Now consider the limit A — oo. It is convenient to introduce the variables p
and 0;:

) . N V3
o = pcos(8/v), ®; = pb;sin(8/v), 8= (z 9?) . (1.67)

i=1
The potential is independent of the Goldstone modes §;; exciting these modes with
zero four-momentum costs no energy, even in the limit A — co. However, for p # v
the potential energy is infinite. As discussed in Sect. 1.2, p remains fixed at its ground
state value: p? = 0% + #% = v, In other words, to evaluate the effective action (1.29)
we may introduce source terms for the 8; but not for p. Imposing the classical equation
of motion for p:

0

n

(1.68)

5 _ (0065  or'ss
§p \Bpbo = 9p én

9

-~ ~
& ?
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we can eliminate the background field o = om,,d,n;) in terms of the fields #; and
their derivatives. The integral in (1.56) (or {1.37)) is most easily performed by first
diagonalizing the “mass matrix” U(n,dn). There is one eigenvalue

“ma” = A(3p® - v’);oo (1.69)

that grows with A and decouples (up to a field-independent contribution) for m? >> A3,
and N eigenvalues
“md " = A(p? ~ u’);—o finite _ (1.70)

that remain finite in the limit. Since we are working with a renormalizable theory
we can interpret A as the renormalization scale. The effective theory obtained for a
particular choice of A is then a good approximation for energy scales in the neighbor-
hood of A, and only light eigenmodes, |“m"} £ A, contribute to the loop integrals for
the effective theory. We expect the effective nonrenormalizable o-model to be valid at
scales much smaller than the Higgs mass my 22 “m,(7,0r)", i.e., for

“ma® << A? << “m?". (1.71)

Indeed, when (1.66) (or more precisely (1 37)) is evaluated by taking the limit m, — oo
before the limit A — oo, the previous result, Eq. (1.61), is exactly reproduced?®3s.

The large my limit of the standard electroweak theory is, in fact, a gauged
nonlinear o-model. The generalization of the above results to include background
gauge fields A, is easily realized by replacing ordinary space-time derivatives by gauge-
covariant derivatives:

) 8,—D,=8,+iA, ‘
d,=8,+v = d.=D, +7,. (1.72)
Then the expression (1.55) for G, is modified to include a term proportional to the
gauge field strength
: Gwz[d,,,dV]:iFwi--n (1.73)
and the logarithmically divergent contribution in (1.56) proportional to G? includes a
term

‘ G,.G" = *F, F* (1.74)

that contributes to the one-loop ﬂ-_functionm.

To fully determine the one-loop action, however, we must also include internal
vector boson loops. - This is complicated by the fact that when the tree action is
expanded, as in (1.36) or (1.43), up to terms bilinear in the quantum fields (or functional
integration variables) there are in general vector-scalar mixing terms:

§> [dsID,el 3 [ d=idzTset b, o

3 /d‘zgao/i,,@“tﬁ' +he = —/d‘x@&“(/i“po) + h.c. (1.75)

To evaluate the effective potential?* with po=constant, A, = 0 one usually works in the
Landau gauge, 8,A* = 0, so that the last term in (1.75) vanishes identically and there
is no vector-scalar coupling. When nonconstant scalar and vector background fields are
present the situation is more complicated and one must find the gauge condition most
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appropriate for the specific calculation. The case relevant to the large myy standard
model, namely the globally SU(2) x SU(2) symmetric nonlinear o-model embedded
in an SU(2)L x SU(1) gauge group, turns out to-be particularly complicated, but has
heen solved?. The divergent contributions to the effective scalar and gauge boson
action have been determined, giving an expression of the form?

Cl ~loop __

In A? .
- lsﬁz’DuVIz + W[GFWF" + b'DuWP

+c(9'D,p)? + - - -} + finite terms. (1.76)

The first three terms in Eq. (1.76) can be interpreted as renormalization of fields and/or
parameters of the tree Lagrangian. In fact parts of these logarithmically divergent
contributions remain divergent for finite my. In particular, the coefficient a determines
the B-function for scales intermediate between mw and my.

The dots in the coefficient of In A? represent terms at least quartic in the gauge
and scalar fields. According to the equivalence theorem of Sect. 1.2 we can calculate
S-matrix elements by interpreting A, as a field operator for transversely polarized
vector bosons and the ; in the expression (1.9) for ¢ as field operators for longitudinal
bosons. An examination of the exact expression >3 for these terms shows that there
is a factor of the weak gauge coupling constant g for each external transverse boson,
and that the vertex functions with no external A, are precisely those obtained in the
ungauged model.

in other words, the only divergent correction from gauge loops to the effective
scalar action of Eq. (1.61) comes from the fourth term in Eq.(1.76), which has been
identified?” as the only two-derivative term that is SU(2) x U(1) gauge invariant but
breaks global SU(2) x SU(2). It also contains a correction to the parameter

p = mly/m} coe? b, (1.77)
In the unitary gauge:
\ 3 - — “,
(D) lmo = ~Toomgr 202 (1.78)

which contributes a shift in the Z-mass but not the W-mass Using the explicit value
found® for c in Eq. (1.75), one gets for the correction to the p-parameter (1.77):

_ -3 A? .
-1 Tin? tan’6,In (mfv + finite (1.79)
which is well within experimental limits: [p — 1| < 0.004 if we take A < 3TeV as
discussed above. Conversely, experimental limits on |p — 1] assure? that this term
cannot contribute significantly to the Wy, Z, scattering amplitudes.

If we now set A? = m}, in Eq. (1.79) the result is precisely that found®® by
taking the large my limit of the one-loop corrected p-parameter as calculated in the
renormalizable (finite my) standard model. Slmllarly, the Iogarithmically divergent
four point functions (i.e., dots) in Eq. (1.76) agree?™® with previous results® found
for those contributions that grow with Inmy as calculated diagrammatically in the
standard model.

We have thus established that one-loop effects calculated in the effective non-

renormalizable theory defined by the my — oo limit of the standard model agree
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with the large my limit of one loop calculations evaluated using the renormalizable
theory. This result lends a degree of credibility to the loop expansion of the effective
nonrenormalizable theory.

On the other hand, the results shown in Fig. 4 are of much more general
validity than the standard model. If the scalar sector possesses a chiral SU(2) x SU(2)
symmetry, as mentioned in Sect. 1.2, the leading behavior of low energy S-matrix
elements are necessarily those determined by the effective tree Lagrangian of Eqs.
(1.25) and (1.26). There is only one possible gauge invariant, chiral symmetry breaking
correction (Eq. (1.78)) to this low energy behavior and it is constrained to be small
by observation: p = 1. The effective tree Lagrangian (1.75) is therefore universal®” up
to corrections of order |p — 1, and so, therefore, is the divergent part of the effective
one-loop Lagrangian.

If in Eq. (1.26) we replace v by f,., the decay constant for # — €5, then Eq.
(1.25) is the effective Lagrangian for pion physics, valid at energies s,. £ m} i.e., the
resonance region in pion scattering. In this case the underlying renormahzable theory
is (approximately) massless QCD, with Lagrangian

Ny
Lqcp =Y ¥y - Di + GG (1.80)

i=1
where N is the number of quark flavors, G%, is a gluon field strength tensor and the
covariant derivative is D,, = 8, +ig, :\‘c ‘A /2, with A° a 3x 3 matrix operating on color
indices. The Lagrangian (1.80) is invariant under global flavor SU(Nfr)L x SU(NF)r
transformations on quarks:

Yrr— et Y p. (1.81)
where AF is an Nr x Ng matrix acting on flavor indices. Empirically, the first gener-
ation of quarks is very light, m,,m4 =~ 0, so chiral symmetry is a good approximation
for Ne = 2. Experimental data tells us further that the vacuum is not chiral SU(2)
invariant. We attribute this observation to spontaneous symmetry breaking; the vac-
uum energy is lowest for < $p ># 0. The quark condensate < ¢y > is not chiral
invariant; its presence breaks chiral SU(2)g, x SU(2)g to ordinary flavor SU(2), i.e., the
subgroup of transformations (1.81) with a; = ap. Spontaneous breakdown implies the
existence of massless Goldstone bosons, which are assumed to be the (almost) massless
pions. Chiral SU(2) dictates that their low energy S-matrix elements be determined
by the chiral invariant Lagrangian (1.25), (1.26). Loop corrections™ then generate
the one-loop effective contribution of Eqs. (1.61)-(1.64), where the effective expansion
parameters ate now 3,./(47 f.)? and (m,/4x f,)%.

Technicolor is a nonstandard scenario for the spontaneous breaking of the elec-
troweak gauge symmetry based on the extrapolation of the observed nonperturbative
phenomena in QCD from the scale Agcp ~ 100MeV where color couplings become
strong, to the scale v ~ 250GeV of electroweak symmetry breaking. One assumes a
new gauged technicolor interaction among techniquarks yr and techni-gauge bosons
Ar that is asymptotically free and strong at a scale Arc ~ 250 GeV. From the
observation that

< P9 >~ Adop ~ f2 ~ (100 MeV)? (1.82)

one infers that

< Y1 >~ Ao ~ v° ~ (250 GeV)>. (1.83)

-
‘- A



-17-

The massless Goldstone bosons are technipions, 77, the analogues of pions. T'he techni-
quarks are assumed to carry SU(2). x U(1) quantum numbers such that the condensate
(1.83) also breaks the electroweak gauge symmetry. Then the technipions couple to
the weak gauge bosons via the effective gauge invariant coupling (1.19), so that the
I and Z acquire masses and “eat” the technipions which become their longitudinally
polasized components. The equivalence theorem of Sect. 1.2 holds by construction,
and chiral flavor invariance of the technicolor Lagrangian implics that (1.25),(1.26) is
the effective technipion tree Lagrangian. Thus the results of this section apply specifi-
cally to technicolor models, and the yields of Fig. 4 are correct at energies below the
. technirho resonance mass where, of course, cross sections will rise dramatically.

The phenomenon of fermion condensation in a strongly coupled nonabelian
gauge theory has also been invoked as a possible mechanisin for breaking supersym-
metry, 2 as will be discussed in my second lecture and the lectures of John Ellis.??

1.5 Supergravity and the gauge hierarchy problem.

The gauge hierarchy problem can be simply stated by noting that scalar masses
have quadratically divergent loop corrections in nonsupersymmetric renormalizable
theories. In general, if the theory possesses elementary scalar fields o, the one-loop
corrections will include mass terms:

A,
L, —p®. .
1 “’"’3“1611“’ (1.84)

Technically, the term (1.84) can be reabsorbed into a renormalization, but the appear-
ance of scalar masses much smaller than the natural scales of the theory, such as the
grand unification scale mgyr or the Planck scale mp, becomes very artificial. More-
over if the ultimate theory - including gravity - underlying observed physics is a finite
rather than a renormalizable one, all mass parameters must be calculable in terms of
the fundamental length scale (e.g., mp ~!) of the theory.

In a theory with unbroken supersymmetry (SUSY) a = 0 identically in Eq.
{1.84) because there is an exact cancellation between bose and fermi loop contributions
to the scalar mass. Since SUSY is necessarily broken, the cancellation cannot be
complete, but in the context of broken SUSY one anticipates an effective cut-off A ~
msysy, i.e., the scale that governs boson-fermion mass splittings.

The scalar sector of the standard model, Eq.(1.8), is weakly coupled if the
coupling constant A is small, A/4x £ 1, implying for the physical Higgs mass, Eq.
(1.18), my < 1 TeV. There is in fact no experimental evidence that the Higgs sector
is not strongly coupled. On the other hand one must ultimately explain the known scale
of electroweak symmetry breaking, v = 1/4 TeV. It is unlikely that this scale is orders
of inagnitude less than the scale parameter of the effective low energy scalar Lagrangian,
even in the strongly coupled limit. In other words, experimental observation requires
an effective cut-off less than or the order of a TeV.

In addition to SUSY, scalar masses (as in technicolor models) can be protected
by spontaneously broken global symmetries. if ¢ is the Goldstone boson of an exact
symmetry of the Lagrangian that is spontaneously broken, it is necessarily massless
and again a = 0 in Eq. (1.84). If there is a small explicit breaking of the global
symmetry, ¢ can acquire a correspondingly small mass. Consider for example, the

IO
w
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QCD Lagrangian, Lq4.(1.80), but with quark masses included:
Lqocp = Lycpl(mg = 0) — mytiu —mydd - - - . (1.85)

The nonvanishing mass terms my 4 # 0 explicitly break SU(2)r x SU(2)r. An empir-
ically good formula for the pion mass is:

2 Mud 3

my o~ 7. m, aA? (1.86)

Here the pion mass is governed by two effects: the scale A ~ m, where the effective
pion theory (1.25) breaks down and the ratio a = m, 4/ fx of explicit to spontaneous
symmetry breaking. (There is no factor (47)~? in (1.86) because m, 4 # 0 is a tree
level effect.) :

Now consider the minimal coupling of N real scalar fields to gravity, with the
action

! . 2
Sa = / d*z./5(g* B,' 0" — %KR). (1.87)

Here g is the space-time metric (/g = det/? g) and R is the space-time curvature. Loop
corrections to the action (1.87) will generate divergent contributions to the scalar self-
energy, Fig. 6Ga. In the supersymmetrized gravity theory, or unbroken supergravity,
the contributions of Fig. 6a will be exactly cancelled by the gravitino (G) exchange
diagrama of Fig. 6b.

G G
..‘:--(.w&...-..‘;-.' _Q_.<>.:9. + - ‘ﬁ'O‘?-- + ——Q—é- PO

()

Figure 8: Contributions to scalar (@) self energy from (a) graviton (G) and (b)
gravitino (G) loops. In Fig. 6b x; is the fermionic superpartner of ;.

& O
.__@J_,__ d . '] _ A
PR/ A A/ S A 3 T T
X X X
Figure 7: Two-loop contributions to - Figure 8: Gravitino-loop coatribu-
scalar masses through combined gauge tions to the gaugino mass; A is a gauge
and gravitational interactions, which boson.

may be approximated as a one loop
contribution with nonvanishing (at one
loop) gaugino (§) mass.
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When SUSY is broken the gravitino acquires a mass, mg # 0, and the cancellation is
no longer complete. Then one expects a (quadratically divergent) contribution to the
scalar mass term: 2
2
2 ma A
™ 2 47,3
1677}
where A is the appropriate cut-off. If A ~ mp, electroweak plienomenology requires
< e
ma~ 10 TeV.

m

(1.88)

However the action (1.87), as well as its supersymimetric extension, is invariant™
under global SO(N) transformations among the ;. Thus to all orders the effective
quantum action will depend on the scalar fields only through SO(N) invariant quanti-
ties: |¢|? = Tip?, L 0.0'0%¢, etc. Il the vacuum energy of Lhe theory is lowest for
a value < |p|* ># 0, SO(N) will break spontancously to SO(N — 1), producing N — 1
Goldstone bosons. Thus, only one of the ¢’s will acquire a mass of the order of (1.88)
while the N — 1 others will remain massless to all orders.

In the real world, scalars have interactions other than gravitational ones. In
particular there are gauge interactions that explicitly break the SO(N) symmetry of the

action (1.87), so one can expect a priori a (mild) suppression factor a ~ a, where a is

the gauge interaction fine structure constant. Suppose, however, that SUSY is broken,
so mg # 0, by the vev of a gauge singlet scalar. In the absence of gauge couplings
SO(N) is an exact symmetry of the Lagrangian, so the diagrams of Fig. 6 cannot
generate scalar masses. On the other hand, if SUSY breaking is not communicated
at tree level to the gauge sector, i.e., if the gaugino masses (m;)ivee = 0, gauge loop
diagrams (sce Fig. 11b below) vanish by supersymmetry. At the two-loop level, gauge
interactions that know about SO(N) breaking, and gravitational interactions, that
know about SUSY breaking, can combine, as in Fig. 7, to yield nonvanishing gauge
nonsinglet scalar masses that one might estimate® as:

2 2
L A

m? ~ 2
e a(47r)3 mp’

(1.89)

requiring mgS10% GeV if A ~ mp. One can estimate the two-loop contribution of
Iig. 7 as a two-slep process. First calculate the one-loop contribution, Fig. 8, to the
gaugino mass (the blob in Fig. 7), and then use renormalization group equations to
obtain the low enecrgy value of the scalar masses, which should be of order

1., % 1
m ~ g (1.90)
The two diagrams of Fig. 8 separately give contributions of the form:

my = ("T'""—)‘%A’/m;, + a—:;)—,(mg/m},) [pin(A?/m) + ] ' (1.91)

For a # 0, using (1.90), we would get the estimate (1.89). However, the divergent
contribulions from the two diagrams of Fig. 8, have been found® to cancel identically.
Then if ¢ # 0, using (1.91), we obtain instead of (1.89)

: a
m: ~ Wrn%/yn},, (1.92)

requiring only mg <10 *mp ~ 10" GeV. Thus a large hierarchy for electroweak sym-
metry breaking could arise from a rather mild hierarchy for SUSY breaking relative
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to the Planck scale. i fact, subsequent caleulations™™ showed that the two contri-
hutions of Fig. 8 to the gaugino mass cancel completely. In my second lecture 1 will

discuss other sources of gaugino masses at one loop.

The above discussion is still unrealistic in that Yukawa couplings, which also
break the O(N) symmetry of the action (1.87) have still not been included - they
are indeed necessary in the standard model for generating quark and lepton masses.
Moreover, for a nonminimal gravitational coupling, i.e., for a nontrivial scalar metric,
gi; # &i;, the gravitational action is not SO(N) symmetric. It may however, as for the
o-model of Eqs. (1.25) and (1.26) possess a nonlinear symmetry that could play the
same role. This is the case for a class of superstring inspired models, to be studied in
Sect. 2, that possess a nonlinear noncompact global symmetry of the kinetic energy
term.

A compact symmetry, such as SO(N), leaves invariant the form }:/lv ¢} under
linear transformations, and, in particular, the canonical kinetic energy

L&
Lxg = Ezauw'a“w' (1.93)
1

is SO(N) invariant. A noncompact symmetry, such as SO(m, N — m) leaves invariant
the form L7 w? — TN, | ? under linear transformations. The corresponding invariant
kinetic energy term
g N
Lxe = 3 (2(8,.%)3 - 2(8,.%)') (1.94)
1 m41
is physically unacceptable as it contains “ghosta”. Only nonlinear realizations of non-
compact symmetries among scalar fields can lead to physically acceptable theories. For
example the Lagrangian

0,p0"" — (pi0*%') (@ Busps)
(1 - pip')?
where the p; = (¢‘)! are N + 1 complex scalars, is invariant under nonlinear SU(N +
1,1) transformations. This can be seen most easily by writing (1.95) in the form
. o
Op:0p9
which, as discussed by Ellis,® is the most general® form for the kinetic energy in

N 41 supergravity theories. The real function G(p, ) is the Kahler potential. For the
Lagrangian (1.95) it is given by:

Lk =

, 1=0,--4,N (195)

G = —In(1 — @y). ' (1.97)
which is obviously invariant under compact, linear SU{N + 1) x U(1) transformations.
The remaining 2N + 2 transformations of SU(N + 1,1) are characterized by N + 1
complex parameters a; of the coset space SU(N +1,1)/SU(N 4-1) x U(1). Under the

non linear transformations

bpi = a; — tp;fftp,' (1.98)
the Kahler potential is not invariant
§G = ayp + pa. (1.99)
-

-
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However, since its variation is a sum of functions of @ and of o, the Killer metric G!
and the hence kinetic energy terms are invariant.

In N + 1 supergravity theories, as discussed by Ellis* the scalar potential (ne-
glecting gauge-induced D-termns) is derived from the Kahler potential®

Vi) = (6.167"),6" -~ 3),

% _ o
9.‘=£=(G " (1.100)
For the Kahler potential (1.97), V() is invariant under linear SU(N + 1) transfor-
mations, since ¢ is, but it is not invariant under the nonlinear transformations (1.98).
The Yukawa couplings, which are similarly derived®*3® from the Kihler potential are
also not invariant.

However the form of the kinetic energy term (1.93) does not uniquely determine
the Kahler potential. To obtain an alternative Kahler potential we make the change
of field variables.

11 N

T=§;i:' [o2 lfw, i=10oN. (1.101)
Then (1.97) becomes

G =—In(T+T-C'C)+ f(p) + [(9). (1.102)

The first term in (1.102) appears in the Kahler potential for “no-scale™ supergravity
models® as well as some superstring-inspired models.***! If instead of (1.97) we take
the Kihler potential . _

¢=-n(T+T-CC (1.103)
we obtain the same kinetic energy, (1.96) which is SU(N + 1,1) invariant. The Kihler

potential (1.103) is invariant, not under SU(N + 1,1), but under*®** a noncompact
Heisenberg group Gy of nonlinear global transformations.

Ci—Ci+a

T—oT+GC+%&a+iu (1.104)

with N complex parameters a; and one real parameter v of a compact axial U(1)
symmetry: § Im T = constant. A supergravity theory defined by the Kahler potential
(1.103) is, for vanishing gauge coupling constant, fully invariant under Gy which can
be shown*? to imply mc = 0 to all orders.

Neither (1.97) nor (1.103) defines a theory with realistic Yukawa couplings for
the low energy theory. The class of superstring-inspired models that [ will study in the
following lecture have a Kihler potential of the form:*?

G=-3n(T+T-ICP)+In WC)+ W)+, (1.105)

where the dots refer to functions of fields other than T and C;, and the super potehtial
W(C) generates the observed Yukawa couplings of the gauge nonsinglet sector C.
Both W(C) and the gauge couplings break invariance under (1.104). Nevertheless,
as discussed in Sect. 2 below, Gy invariance of the function (1.103) is sufficient*? to

~22-

protect scalar masses inc at one loop in the class of models defined by (1.105) that
have a vanishing cosmological constant at tree level.

2. Superstring-Inspired Supergravity Models.

2.1 An effective tree potential.

In most of this lecture I will study a prototype model obtained by a simple
compactification of 10-dimensional supergravity, with nonperturbative SUSY breaking
effects incorporated.? At the end I will discuss the generalization of the results to -
a class of more realistic models. Ellis®® has outlined the steps used in constructing

.the prototype model. Here | shall recall the relevant physical aspects and present the

resulting potential.

Compactification from ten to four dimensions generally entails a number of
scalar fields associated with the geometry of the compact manifold. In particular there
is the dilaton field @y related to scale transformations in 10-d supergravity, and the
breathing mode o associated with fluctuations in the size of the compact manifold.
The particular combinations

.k
ReS = tpg/‘ea", ReT = wg/‘ca + —2'1\012, 2.1

where the N complex fields p; are gauge nonsinglets, are the scalar members of two
chiral supermultiplets. In addition there are other gauge nonsinglet scalars associated
with the detailed topology of the compact manifold that I will comment on later.

The possible relevance of these fields to phenomenology is that a) they couple
only with gravitational strength to observed matter and thus provide the possibility
of communicating weak SUSY breaking to the observed sector through quantum cor-
rections, and b) they are associated with (classically) flat directions in the space of
scalar field values. Specifically, if SUSY is unbroken, the effective tree potential in four.
dimensions is of the form '

V = f(ReS, ReT)V (¢:) (2.2)

with < V(p;) >= 0, so the vevs of ReS and ReT remain undetermined at the classical
level.

In order to make contact with observed physics, the vacuum degeneracy must be
lifted and SUSY must be broken by nonperturbative quantum effects. Two sources of
nonperturbative SUSY breaking have been proposed®?! in the context of the Eg x Ey
heterotic string.* With Calbai- Yau compactification,? for example, the gauge group in
four dimensions is Ey x Fg, where Eg is the gauge group of the observed sector and Eg
that of a hidden sector, coupled only gravitationally to observed matter. Both groups
can be broken down further® at the compactification scale Agyr by loops of gauge
flux trapped around topological singularities in the compact manifold. The surviving
subgroup of Eg must contain the observed SU(3). x SU(2) x U(1) of the standard
model for strong and electroweak interactions: The hidden gauge theory is assumed to
be a pure supersymmetric Yang-Mills theory which is asymptotically free and therefore
becomes strong at some scale A.. This means that, as in QCD, Sect. 1.4, the gauginos
of this strongly coupled sector may form a condensate:

<IA>xh#0 (2.3)
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which breaks supersymmetey™ (as well as a chiral symmetry). In ten-dimensional
supergravity there is also a ficld strength Heaw (L ML N = 0,---,9) that is an anti-
symunetric, rank-three Lorentz tensor. This field may acquire a nonvanishing vacuum
expectation value (I,m,n=5---,9):

< Hpnp >xc#0 (2.4a)

that satisfies a quantization condition*®:
/s dE"™ < Hypmn >= 270 (2.48)

when integrated over a closed J-surface S of the six-dimensional compact manifold.
The vev (2.4) also breaks supersymmetry. Either (2.3) or (2.4) alone would induce a
positive cosmological constant. Combined they can contribute to the vacuum energy
deusity in the form of a perfect square®

< Vie >x< (H + f(po)A))? > (2:5)

which also involves the dilaton field . When one integrates over the compact 6-
manifold to obtain the effective 4-d action the size of the compact manifold

Acur ~mp < e ¥ >=mp < (ReS ReT)_‘/z > (2:6)

also appears, and the resulting potential depends on the scalar fields S and T in such a
way that, for fixed values of the parameters c and h, the degeneracy in § is lifted. This
is because it is the S-field that couples in four dimensions to the gauge bosons and
gauginos. As a consequence its vev determines the unified gauge coupling constant:

< ReS >= (4magur)~". 2.7)

Specifically, the full effective tree potential in this model takes the form:%2"38

Vi =U+V +D (2.8)
with
U=(S+8) (T +T - Hp)) 2 IW(p) + c+ h(1 + w)e™ e 1P, (2.90)
o1 S\ - - -2 0W oW
V=g(5+ Sy MT + T~ kel®) B B (2.95)
D = S (3T, (T + T — klpl’) (S + 5)7, (2.9¢)

where the matrices T° represent the generators of the observed gauge group on the
chiral fields. In writing (2.9a) I have introduced the notation

where b governs the f-function of the strongly coupled hidden gauge sector. The
superpotential W(yp) = (W(5))! is cubic in the gauge nonsinglet fields. V and D are,

respectively the F-term and D-term that appear in globally supersymmetric theories,

4=
i.c., n the Hat space lunit mp — oo, if supersymmetry is unbroken. Eqs. (2.9) are
expressed in units of the reduced Planck mass:

1= mp = (87Gn)""? 22 x 107'8GeV. (2.11)

where Gy is Newton's constant.

Each term in (2.8) is separately positive semi-definite. V and D are minimized
for p; = 0 and therefore vanish at the ground state. If the SUSY breaking parameters
c and h are absent, W (p) = 0 forces U = 0 and the vevs of S and T are undetermined.
When the supersymmetry breaking vevs of Eqs. (2.3) and (2.4) are turned on the
vacuum energy vanishes for

B =pHo=4rn, n ¢ 2Z, (2.124)

w=wp:c= —h(l +uwp)e /2 (2.12b)

(The choice of sign in Eq. (2.12b) assures a CP-invariant §-vacuum, i.e., F F does not
contribute to the quantum action.) The vev of T remains undetermined at tree level,
as does the value of the gravitino mass.®

mi =< >=< (S+3) (T +T) lc+he™P >. (2.13)

At tree level there is therefore a four-fold vacuum degeneracy; in addition to < ReT >
and < Im T >, there is a two-fold degeneracy in the parameter space defined by c,h
and wy. We shall now see to what extent this degeneracy is lifted at the one-loop level.

2.2 The Effective Theory at One Loop.

The effective one-loop potential is obtained by a covariant expansion of the
quantum action with constant scalar background fields z, as in Eq. (1'43), but where
now higher spin loops must be included. The result is the Coleman-Weinberg potential:*!

Vats = Viws + 53t [ 790" + M*(2),
P4 M(2) = 27)A7 00 (2.14)

A~Y(p?, z) is the propagator in the presence of the background scalar fields z and Z(z)
is a field dependent normalization matrix. For scalar loops Z3(z) = gi;(2), the scalar
metric, and M3(z) is determined from the second covariant derivative of the potential,
as discussed in Sec. 1.3. In a general supergravity model®® the fermion and gauge boson
kinetic energy terms are of noncanonical form. For example the fermion part of the
Lagrangian is of the form

Cr = T2 (2)y- 8+ ME(W +0(02) + O (H9)) = ¥ (BF" v +... (219)
and the vector part is of the form
1
Cv = {Lople) PP + 3 A7 (MY ()., A% 4 -

1 .
= 5A;(A;,')(,‘,A'*" + total deriv. +---. (2.16)
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The corresponding mass matrices appearing in (2.11) are, respectively

MEG) = (Z2"(ME () 2: ()

J]

(M @), = (1@ (@) ) (217)
afd Y]

I work in the Landau gauge, 8*A, = 0, so that, as discussed in Sect. 1.4, the gauge

basons decouple from the scalar fields. Similarly, imposing the gauge condition ¥y, =

0 on the gravitino field ¢, assures that it decouples from fermions. The relevant part

of the gravitino Lagrangian reduces simply to :

1—
Lo=—59(r-0+ma(sNhut . (2.18)
With these gauge conditions the supertrace F of a function of M? is defined by*

STr F(M?) = 3Tr F(M}) + Tr F(M}) — 2Tr F(M})
—4F(m}) + 2F(4m}), (2.19)

where the last term is the Fadeev-Popov “ghostino™ contribution. The integral in Eq.
(2.14) is divergent and must be regulated by a cut-off or subtraction parameter A.
Neglecting terms of order M?/A? we obtain:

1 1
Vors(2) = View + 555 [qA’S’I‘r M?+ 3STr M ln(M’/pA’)] . (@220)
where A is the appropriate cut-off and n and p are prescription dependent parameters
of order unity that reflect uncertainties in threshold factors and finite contributions as

discussed in Sect. 1.1.

One can extract some of the qualitative features at one loop, that are indepen-
dent of the precise shape of the effective potential, simply from dimensional analysis.*?
The only dimensionful quantities in (2.20) are the mass matrix M and the cut-off A.
Since the potential has dimension four the one-loop contribution is necessarily of the
form

Victoop = STr M*f(M?[A?). ’ (2.21)

We wish to evaluate (2.21) in the neighborhood of the tree ground state, so we set
@; =0 and B = fo. Then the elements of the squared mass matrix M? are all linear
homogenous functions of the SUSY breaking parameters ¢ and h:

M*pi =0) = (ReT) ¥a(w)ch + d(w)h?)]
= h*(ReT)2v{w) + O(h), (2.22)
where in writing the last term in Eq. (2.22) | have used the tree level condition (2.12b)
and h is the loop expansion parameter. The effective tree theory with potential (2.8),
(2.9) is valid at scales below the scale of gaugino condensation, i.e., the scale where

the hidden gauge interactions become strong, which is determined by renormalization
group equations to be, using (2.6),

A? = e = () Ay

= (etoP) (2.23)

g9
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mn Planck mass units. Delining the variables

u = h¥(ReT)™®
x = pe* (2.24)

we have M? = pv(w), M3/A2 = xv/'(w), so identifying A? = A? in the supertrace (2.21)
it takes the form
Victoop = 1 f(x,w)- (2:25)

Near its ground state y; = 0 the tree potential is proportional to a perfect square:
Viree(pi = 0) = (ReT)|g(c, h,w)|* ' (2:26)

with g = 0 when (2.12b) is imposed. Shifts of order & from one-loop effects contribute
at O(h?) to the tree level vacuum energy. Therefore to determine the one-loop vacuum
configuration we need only retain the contribution (2.25). Since this is already O(A),
one loop corrections to the ground state condition (2.12b) will also contribute at O(h?).

At tree level there is a three-fold degeneracy in the parameter space defined by
(ReT), (w), h and c. Thus, subject to the condition (2.12b), we must minimize the
contribution (2.25) with respect to three independent variables in this space, that |
take to be yu, x and w. The extrema of the one-loop corrected potential therefore occur

for of of
5; =3 = 0 (2.27a)
and
wW=0or f=0. (2.27b)

Either of the conditions (2.27b) assures that the energy-density vanishes at all extrema
of the potential. This implies that if the potential is not positive semi-definite every-
where it is unbounded from below. If the function f(x,w) is positive semi-definite,
there is always a global minimum at u = 0, for which supersymmetry is unbroken and
all particles remain massless. If this is the only solution it means that one-loop correc-
tions force the potentially SUSY breaking nonperturbative effects to vanish. As higher -
order perturbation corrections cannot break SUSY, this is not a physically acceptable
solution.

If we impose the conditions (2.27a) with u? # 0, f(x,w) = 0 the function f is
overdetermined and a fine tuning of parameters other than the dynamical variables x
and w is required for such a solution to exist. The theory contains no free parameters
(such as coupling constants) other than the dynamical variables. This means that
whether or not a nontrivial (4#? # 0) solution exists depends on the detailed way in
which the physics of the, presumably finite, underlying theory enters to damp the
divergent integral (2.14). In numerical searches*’ for solutions to the minimization
equations (2.27) we varied the uncertainty factors 5 and p using an approximation
of the form (2.20). We considered a solution as acceptable if it occurs for plausible
values of these parameters. If any such solution exists, and if the potential is bounded,
it has vanishing vacuum energy and is infinitely degenerate, because the function f is
independent of the parameter ¢ that determines the scales of the theory. In other words,
if one-loop corrections permit a vacuum with a finite, nonvanishing SUSY breaking
gravitino mass the tree level degeneracy is lifted in all but one direction (aside from
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the axion, ImT, direction) in the space of dynamical variables. Thus the ratio ma/A.
is fixed, for example, but not the value of mg. However the quantization condition
(2.4b) implies that this degeneracy is discrete, and that all scales are fixed by the
topology of the compact manifold.

I emphasize that, unlike the scalar field degrees of freedom, h and ¢ are ouly
parameters——not propagating fields—of the eflective low energy theory valid at scales
below A,. ‘There is a doubly infinite set of effective theories corresponding to possible
choices for these parameters. Since they are, however, dynamical variables of the
underlying theory they should relax or tunnel to those values that minimize the overall,
fully quantum corrected vacuum energy. If there is any solution to (2.27) with finite
my there is one for any value of u, Eq. (2.24) and hence for any value of ¢ oc h + O(h).
Once ¢ chooses one of its allowed values, all other vevs (except (ImT)) are fixed.

I now assume that there exists a solution with finite gravitino mass. Soft super-
symmetry breaking in the observable sector can be probed by expanding the one-loop
effective theory around the ground state field configuration zo. The ; dependence of
the effective potential can be obtained by writing the field dependent mass matrix as

M(z) = M () + & = M2 + A. (2.28)
The éupcrtracc of an arbitrary function F(A1?)) can then be expanded as
STr F(M?) = STr F(M}) + STr(AF'(M])) + O(4?). (2.29)

Since A = O(yp?), the second term in (2.29) contains the quadratic and cubic -
dependent terms that appear as soft SUSY breaking effects in the low energy, effective
renormalizable theory.

In the most general supergravity models supersymmetry breaking, mg # 0, at
tree level induces both nonvanishing scalar masses,3%*® proportional to mg, and “A-
terms” which are terms of order mg that are linear in the superpotential W(yp). No
such terms appear at tree level in the effective tree potential (2.8), (2.9) but they could
appear at the one-loop level with coefficients suppressed by the loop factor (47)~2. An
explicit evaluation of the mass matrix (2.28) gives, however, for the potential (2.21)
when expanded as in (2.29), the following result.*”*? If V,; is the one-loop corrected
potential (2.14) and we define:

V(c, ReT\w) = Vogy(pi = 0), (2.30)

then the p-dependence of V, is given by:

Vers(2) = Ve + W), ReT — lols) +0(%) (2.31)

which is precisely the form of the p-dependence of V.., alone. In writing (2.30) I have
not ‘used the tree level condition (2.12b). If we now expand (2.31) up to terms cubic

in the ; we obtain A ov
Vg = Verslo = 0) = Slol’ 5250

W (o) + W) Lt
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+0(y*). (2.32)
The ground state conditions 8V/9 ReT = 8V/dc = 0 assure the vanishing of both the
mass term and the “A-terms”. Note that there is a quartic term in the expansion

A2 o, m}
V. bl PR | <l ReT) 14

that could lead to non-negligible SUSY breadking effects if m}, ¢ is large. However it
can be shown that this term disappears from the effective low energy theory for o;
when the heavy field ReT is correctly integrated out.434%

The vanishing of the scalar masses®®5! can be traced?? to the invariance of the

form (1.103) under the Heisenberg group Gy introduced in Sect. 1.5, as I will indicate
wore explicitly in Sect. 2.4. The vanishing of the A-terms* is less transparent; it occurs
only when one minimizes the potential with respect to the parameters ¢ and h, as well
as scalar vevs, and is therefore related to the vanishing of the cosmological constant.
Large nonvanishing A-terms with vanishing scalar masses would be a phenomenological
disaster, since all gauge nonsinglet scalars could acquire vevs, breaking, in particular,
color and electric charge conservation.

Another possible source of soft supersymmetry breaking is gaugino masses.
Since gauginos transform according to the adjoint representation of the gauge group,
which is real, their masses, as for scalars, do not break the gauge symmetry. There
are two sources for gaugino masses that are generated by radiative corrections. The
first is from one-loop gaugino self-energy diagrams,% Figs. 8 and 9. As mentioned
previously the diagrams of Fig. 8 cancel exactly, as do those of Fig. 9a.

X -~S
NVAVV\ + O 3 ‘/"'\SI + |: \,
7 kx/ g ¥t ] § i
S

Figure 8; Onc-loop contributions to the gaugino mass from (b) the scalar field S
and (a) its chiral superpartner xs.

The quadratically divergent contributions to Fig. 9b also cancel and the result gives a

contribution®" of order mz ~ m} In(A?/m}).

In addition there is a “tree-level” gaugino mass induced®*? by the shift at one
loop in the tree level relation (2.12b). In the model® considered here, the tree-level
gaugino mass is given by

G ~
(M3)iree =< e"ﬂgé(s +8) >=< UM >= O(h) (2.34)

where G is the Kahler potential and U is defined in Eq. (2.9a) or (2.26). If, for example,
wy = wp + 8w is the vev of w as determined at one-loop, with wy given by (2.12), we

<3 <
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get a contribution to the gaugino mass
1 AU
fmy = U (wy) = §U"/’(u\,)'x(m)m (2.35)
The shift éw is determined by
ov au v )
b, =0= (;5 + —iafﬂ) lor = 0. (2.36)

Wr.iting U in the form, (2.26), we have

2
O e =2ty ($4er)) 80+ 008

a—"&‘ﬂ e - (2.37)
When adding these two contributions care must taken to treat all divergent integrals
in a consistent fashion. This can be done by evaluating the effective one-loop action
in the presence of constant background gaugino as well as scalar fields. The term
bilinear in gaugino fields, evaluated at the scalar ground state configuration, can then
be identified with the gaugino mass term. The result found*® in this way is that
the two contributions to the gaugino masses cancel identically when one imposes the
minimization conditions (2.27).

dmy ox bw ox —

To show how such a cancellation can occur I will briefly outline the calcula-
tion. In the presence of both boson () and fermion () background fields the inverse
propagator can be written in the form*®

A5 = DiD; Sivea by = [2(P + 8));5 : (2.38)

where i,j refer to all quantum field degrees of freedom, Z(zp). is the normalization
matrix introduced in Eq. (2.14) and

P = B(3* + M(¢))B + F(iv- 9 + Me(9))F, (2.3%)

) = BbgrF + FérpB + BéppB + FbrrF + O((/)a) (2.39’))

In Eqs. (2.39) B and F are projection operators on, respectively, the boson and fermion
subspaces in the space of quantum fields (i.e., the functional integration variables Jmﬁ)
Eq. (2.39a) determines the propagator for ¢ = 0. The t-dependent part is expanded
in Eq. (2.39b) where 8gF and 8¢ are linear in ¢ and 6gp and 8 are quadratic in .
The effective one-loop Lagrangian is given by '

9
] - - Jat=( é)r‘(«‘a)
Lyotoop = %ln / dpdi det V*Z(p)e Lhid

- %STrln(P +6)

~ 3{STr In P Str P75 %STr PSPTS + O(Y).  (240)

The first term in brackets gives the eflective one-loop bose Lagrangian, in particular
the effective potential. It represents a sum of one-loop diagrams with any number of

Y
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external bose flickds. The other two tenms correspond to diagrams with two external .
fermion lines. ‘Fhe sccond term has a closed scalar or fermion line as in the second
diagram of Fig. 8, 9a and 9b, while the third term has one boson and one fermion

internal line as in the first diagram of these figures. It is however easier to evaluate
these terms by making a change of integration variables:

¥ — ¥ =+ (i7-0+ Me(p)) " baF. (2.41)
In terms of the fields ¢ and ¢ the propagator takes the diagonal form

Z7'A™" = B(3" + Mj(p) + Apd¥)B

+F (0 + MA(p) + ApY¥)F + O(¥*), (2.42)

and, with the appropriate gauge conditions, the supertrace reduces to the form of Eq.
(2.19) where the mass matrices M now contain terms bilinear in .

For the case of interest p — z, the set of scalar fields, and ¥ — A, the back-
ground gaugino fields, and we obtain

| _CYP = STr F(A,M?(2) + A(x)MN)

= STr F(A, M*(2)) + ASTr(A(z) afp F(A, M*(2)))

+0((MV)Y), : (2.43)
where | have expanded as in (2:29). The first term on the right in (2.43) is the scalar
potential of Eq. (2.21): F(A,M?) = M?f(M?/A?). The second term gives the one-
loop gaugino self energy, Figs. 8 and 9. To compare this contribution with the one
arising from the shift in the tree level relation (2.12b), I define

5c = c+ h(l + wo)e™/? = O(h). (2.44)

Then by reasoning identical to that of Eqs. (2.34)-(2.37) we have
6Vl-—loop
dc

It is straightforward to verify that when the minimization equations (2.27) are imposed

(and the appropriate coefficients included) Eqs. (2.37) and (2.45) give the same result.

Since Vi—toop depends on c only through the squared mass matrix M?, we obtain
o M yp) 8

e I
dmy o — Be STr[ Bc . DM

dmy o bc o — (2.45)

F(A,M’)] . (2.46)

The right-hand side of (2.46) and the last term in (2.43) are supertraces over the
same matrix valued function, 3F(A, M?)/3M3, with different weight matrices, namely
dM?3/c and A(z). These matrices can be calculated, and one finds that when the
ground state conditions are imposed: _

OA OF OM? 9F

0=STrF= i"-.S'Tr F= —STr— +

% YRR TN W TVEL (247)

“the two contributions cancel identically, independently of the functional dependence of

F(M?/A?) = M~2F(A, M?) on its argument.
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2.3 The stability of the potential,

The results of the preceding section were obtained under the assumption that
the effective one-loop potential is bounded from below. If the approximate furm (2.20)
is used, with n,p = 1, the potential is indeed bounded® for wo >  (acur 1) as a
function of ReT with c and h fixed, but it is negative at its minimum m this direction.
In view of the results of Sect. 2.2, this implies that it slopes to —oo in some direction
in the (c,h) plane. Morcover, examination®? of the O(M?/A?) corrections to the ap-
proximation (2.20) shows that they destabilize the potential in the direction ReT — 0,
or ing — oo. Explicitly, for Af? >> A%, the integral (2.14) becomes

Wictoop = Gin 21\‘5'1‘rln(Al,,//\') (2.48)

where lhe notation Af} implies that the supertrace is over the subspace of massive
modes: m3 >> A2, The stability of the potential therefore dependa on whether there
are more massive bosonic or fermionic states :

Sign(V)r—o = Sign(B = F)mago. (2.49)

For the theory corresponding to the tree potential (2.8),(2.9), one finds (B — F)naz0 =
—4, and the potential is unstable. However loop corrections calculated for this theory
are not valid at field values for which M? > A2, since large M?(z) in the loop propa-
gators probes comparably large momenta. At scales larger than the condensate scale
A. the gauge couplings are weak and there is no gaugino condensation. We expect*’
the effective theory relevant at scales between A and the compactification scale Agur
to be approximately described by the potential (2.8) but with A = 0 in Eq. (2.9a).
The mass spectrum of the corresponding effective supergravity theory, evaluated at the
ground state z = zg of the tree potential with h # 0, satisfies*’

(B~ F)mipo=2N—2Ng-3=2A+1 (2.50)

where N is the number of chiral supermultiplets and Ng the number of gauge multi-
plets, so the potential is bounded if

A=N-Ng-220. (2.51)

Of course one-loop corrections calculated for the effective theory with h = 0 also cease
to be valid for M?(z) > Afyr. However the condition (2.51), if satisfied, assures that
an apparently stable ground state found using an approximation like (2.20) will not be
simply an artifact of that approximation.

The results of the preceding section imply that the potential is unbounded
in some direction of parameter space unless it is positive definite everywhere. Since
V(M3(z)) = 0 for M*(z) = 0, this implies in particular that the slope at the origin
of M? must be positive. The behavior at small M? is governed by the quadratically
divergent term in (2.20), proportional to STrAM>.

For the supergravily theory defined by the potential (2.8), (2.9) (and by the
gauge field normalization matrix, Eq. (2.16), fap(z) = 6agS5) one finds*

STrM? = 248U - 2(f - U) + O(p*). (2.52)
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For h £0,U = o, = 0 and ¢¥ > 0 at the tree ground state, so STrM?* < 0, and the
potential is unbounded in the direction mz. =e? 00 Forh=0, U=éY sothe
slope at the origin of mg for p, = 0 depends on the sign of A, defined in Eq. (2.50).

If we split the loop integrals into two regions
a) P <AL KO, 2.534)

b)) AL |p < Abury B =0, (2.53b)
the effective one-loop potential takes the general form:

Victoop = STrVo (M3, A?) + STrVi(M?, Adyr, AD),
V. = MAF,(M?*/A?)
= M*F(M*|Agyr, A Abur), (2.54)

where M3 and M? are, respectively, the appropriate mass matrices for regions (a) and
(b) of integration. If the quadratically divergent term in V) is positive and dominates
that in ¥, the slope at the origin of mé will be positive and the potential may be
positive semi-definite everywhere.*”*? This requires in particular A > 0, or since A as
defined by Eq.(2.50) is an integer

: A1 (2.55)

However, with the inclusion of one-loop corrections to condensate effects, to be dis-
cussed below, the interpretation of the effective parameter A that actually governs the
slope at the origin may be modified, and it is not necessarily an integer.

The mass matrix relevant to region (b) is of the form
M?(p; = 0) = S(ReT)3i(w) = h*(ReT) %0 (w) + O(h) = pi'(w), (2.56)

where I have used (2.12b), and since A2/A%yy (see Eq. (2.23)) depends only on w, the
modified one-loop potential (2.54) is still of the form (2.25). Then the reasoning leading
to the conditions (2.27), and the conclusions of Sect. 2.2 regarding the cosmological
constant, are still valid.

. Using approximations-of the form (2.20) for both terms in (2.54), the potential
has been studied*”*® numerically by varying its parameters. Solutions to the mini-
mization equations were found for plausible values of the uncertainty factors n; and p;,
small values of A and values of wy in the range 2 < wp < 5. This corresponds, via Eqs.
(2.7) and (2.10), to 1/16 < agyr < 1 where I assume that

.06 < b < 0.56, (2.57)

i.e., that the hidden gauge group Gj,q satisfies SU(3) C Ghia C Es. The poten-
tial for one such solution is shown in Fig. 10. As the vacuum is degenerate absolute

A
4
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Figure 10: The one-loop eflective po-
tential in the ¢ — (ReT)™! plane for
fixed values of the other dynamical vari-
ables in the case where a minimum ex-
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Figure 11: One loop contributions to
the scalar () self energy in a renor-
malizable SUSY theory which vanish
when tree level masses (x) vanish.

ists for finite mg.

A Figure 12: Gaugino mass renormal-
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Figure 13: Contributions from nonrenormalizable interactions to (a,b) soft SUSY
breaking terms in the effective potential and to (c) scalar couplings to gauginos.

YA

mass scales are not determined, but their ratios are determined; one finds

mg/mp ~ 0.1 Agur/mp ~ 4] \[cbo, (2.58)
where 7 is one of the threshold factors.

As before, we can expand the potential (2.54), or the corresponding effective
Lagrangian, about the ground state field configuration to study soft supersymmetry
breaking in the observable sector. One finds*® that there are again no “A-terms”, i.e.,
terms proportional to the superpotential W (p). However, if one simply integrates the
expression (2.14) over A? < |p|* < ALy with M? replaced by M? one finds (including
a threshold uncertainty factor §) soft SUSY breaking terms in the potential that are
proportional to the factor .
a(w) = In(pA}/ALyr). . (2.59)
Note that this factor does not grow with the cut-off scales for fixed w. It is as ili-
determined as any of the finite (i.e., cut-off independent) terms. The shape of the
potential for p; = 0 is in fact not very sensitive to its presence; setting a(w) = 0 has
little influence*® on the characteristics of the solutions to the minimization conditions.

However, we wish to ascertain the presence or absence of soft SUSY breaking
independently of the details of the potential; therefore we should assume a priori that
a(w) # 0. We then find two types of SUSY breaking terms arising from region (b) of
loop integration. First, for h = 0 and ¢ # 0 gauge nonsinglet scalars and gauginos have
SUSY breaking tree-level masses proportional to the gravitino mass. These masses
are renormalized at one loop through the standard diagrams, Figs. 11 and 12, of
a renormalizable (softly broken) SUSY gauge theory. These terms simply represent
a renormalization of the parameters that define the theory at scales g > A above
gaugino condensation, and cannot change qualitatively the features of the physics at
scales p < A.. The mass terms generated by the diagrams of Figs. 11 and 12 would
in fact vanish if we first renormalized (at one loop) the effective theory for 4 > A and
then let < A ># 0 to determine the effective theory for p < A..

A second source of soft SUSY breaking terms in the effective one-loop scalar
potential is from nonrenormalizable interactions. Expanding the term e in the tree
potential for region (b); R .
Viyree =€? +V+D - (260)
yields the one loop contributions of Figs. 13a,b to terms that are quadratic (mass
terms) and cubic (but not proportional to W (y)) in the gauge nonsinglet scalar fields.
However, the effective scalar one-loop Lagrangian, including background gaugino fields,
also contains the AA-dependent terms generated by the diagrams of Fig. 13c. When
the. diagrams of Figs. 13a,b and 13c are added the } and ¢} terms in the effective
one-loop Lagrangian, as expanded about the A # 0 tree vacuum, are proportional*® to
< 9% ¢ }L\ >. On the other hand, the nonderivative past of the tree Lagrangian
valid at scales u > A, is (including only scalar and gaugino fields)

1- .
£(z,A) — Lxg(z,0) = (777 + 4-,\)\)’ +V+D. (2.61)
The vanishing of the tree level vacuum energy for a nonvanishing gaugino condensate:

<y %» >=0 ' (2.62)



-35-

should also imply the vanishing, at scales below A where < AX >och £ 0, of the soft
SUSY breaking terms gencrated by the diagrams of Fig. 1c.

One might then wonder whether the contribution of region (b) of loop integra-
tion is entirely cancelled by one-loop contributions to gaugino condensation effects,
in which case the slope of the effective one-loop potential would be negative at the
origin of mg. This is almost certainly not the case. The effective tree potential of Lqs.
(2.8) and (2.9) that defines the effective theory for 4 < A: can be obtained from the
effective nonderivative Lagrangian of Eq. (2.61) by the replacement < A >— f(2).
The effective scalar mass matrix, obtained as the second (covariant) scalar derivative
of the effective Lagrangian is not invariant under this replacement:

8 Fi}
3 < M >=0, 5—;/(:) #0. (2.63)

One could therefore conjecture that the net effect of region (b) loop contributions, after
inclusion of loop corrections to condensate effects, is only to modify the contribution of
scalar loops. Using this conjecture one finds*® that the effective value of A — A,yy(w)
that governs the slope of the potential near mg = 0 is a (generally noninteger) function
of w, independent of N and Ng. A positive semi-definite potential can occur for
w < 1.7 (agur > 0.4), and the value of A,;;(w) turns out to be naturally of order
unity, which is consistent with the results of the numerical analysis described above that
require a value A ~ 1 for the existence of a solution to the minimization equations.
The functional form of A.;s(w), and hence the condition w < 1.7, depends on the
precise functional form the potential, Eq. (2.9a), while the qualitative results of Sect.
2.2 are independent of this.

However, the above reasoning is not really correct since one cannot obtain the
effective Lagrangian, incorporating the correct symmetry properties, that is appropri-
ate for the description of physics scales s < A. by a simple and unique substitution
A\ — f(z) in the Lagrangian valid at scalea p > A.. The correct procedure 3154 is to
first determine the effective superpotential appropriate for scales p < A,; the effective
Lagrangian is then determined by the standard prescription® for N = 1 supergravity.

Therefore, to correctly incorporate one-loop effects from physica at scales pu >
A., one should first calculate the effective one-loop Lagrangian, including corrections to
gaugino couplings, relevant at these scales. For the effective theory with h =0, all the
quadratically divergent contributions that have been calculated thus far81:20:49.58 have
the property that they are proportional to terms that appear in the tree Lagrangian
of that theory. This strongly suggests that these terms can be interpreted as field
and Kihler potential renormalizations in such a way that the tree plus quadratically
divergent one-loop effective Lagrangian can be cast in standard form.® One could then
define a corrected effective “tree” Lagrangian valid at scales just below A, following the
procedure of Affleck et al.,** to which, of course, the one -loop corrections of Sect. 2.2
should be added. On the other hand, logarithmically divergent corrections involve?9®8
terms of higher order in space-time and Kibhler derivatives and in the Kiahler and space-
time curvatures. Interpreting these corrections in a similarly consistent fashion would

first .require a generalization of the standard N =1 supergravity Lagrangian to higher

derivative terms.

As mentioned above, the structure of the effective potential relevant to the
determination of the vacuum energy is insensitive to the presence of logarithmically

o =36

divergent terms, Eq. (2.59). In particular, a determination of the quadratic divergences
is sufficient to resolve the issue of the boundedness of the potential. On the other hand,
the logarithmic divergences must be understood to fully address the question of soft
SUSY breaking. Neglecting radiative corrections to condensate effects (i.e., to AX
couplings for ps > A.), one finds*® contributions from nonrenormalizable interactions to
gaugino masses that are of order (41r)"’m3¢ and (47)72A’mgy. A complete evaluation
of the quadratically divergent contributions would at least determine whether or not
terms of the second type are present and set a bound on one-loop gaugino masses.

2.4 Possibilities for a viable phenomenology.

47,49

Let me first summarize the results of the preceding sections.

In the model studied above it was found that if the one-loop effective potential
is not positive semi-definite everywhere it is unbounded from below, resulting in an
infinite, negative cosmological constant and infinite gravitino mass - clearly a physically
unacceptable solution. If the potential is bounded, the ground state vacuum energy
vanishea. One possibility is that the ground state is uniquely determined with mgy =0
and unbroken supersymmetry. This is equally unacceptable since we live in a vacuum
that is noninvariant under SUSY. A numerical analysis‘7*? of the potential shows that
there are plausible values of the parameters for which an acceptable vacuum, with
broken SUSY, a finite gravitino mass and no cosmological constant, can occur. In this
case the vacuum has an infinite degeneracy, and the scales mg, A and Agyr remain
undetermined, although their ratios are fixed. The degeneracy is lifted by fixing, for
example, the parameter c that appears in the effective potential, Eq. (2.9a). If this
parameter is interpreted! as proportional to the vev of the 10-d three-form, Eq. (2.4a),
“then all scales are determined by the topology of the compact manifold. Furthermore,
the quantization condition (2.4b) suggests that the vacuum energy is discrete, and
therefore does not have an associated, massless Goldstone mode.

-Assuming the existence of a vacuum with finite mg, the effective one-loop La-
grangian can be expanded to determine whether effective soft SUSY breaking terms
are generated in the observable sector. No such terms are found to be generated by
one-loop corrections in the effective theory for 4 < A.. However, the potential can
be bounded and positive semi-definite only if we include loop corrections from physics
at scales A, < y < Agur, and a complete evaluation of their effects requires further
study. The heuristic arguments of Sect. 2.3 suggest that no soft SUSY breaking terms
are generated in the effective one-loop scalar potential.

If, in addition, no gaugino masses are generated, it is difficult to guess the origin,
or estimate the magnitude relative to mg, of SUSY breaking effects in the observable
sector, in particular the ratio m,/myg that governs the gauge hierarchy discussed in
Sect. 1.5. It could be that scalar masses arise only in a very high loop order and are
therefore suppressed by many powers of the effective loop expansion parameter 1 /1673,

Alternatively they might be dominated by effects of higher string and Jor Kaluza-
Klein modes and thus suppressed by powers of mg/mp and/or a'm}, where o is the
inverse string tension: o Smp’. In either case the observed gauge hierarchy might be
realized but certainly cannot be calculated with present technology.

1An alternative interpretation, in terms of the vev of a scalar field, has recently been proposed.®®
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If, iustead, quantum corrections from scales Ao < 1 < AguT generate nonvin-
ishing gaugino masses al one-loop, they are either of order

my ~ mJG/(‘in)'m;, (2.61a)
or of order
my ~ A’mg/(4n)*mp £ 100mg/(4r)*m} (2.61b)
where I have used the result
mg ~ 0.3A, ~ 0.1Agur ~ (107" — 107’)/\/.:&.,. (2.65)

As explained in Sect. 1.5, (2.64a) requires

mg 2 107*mp (2.66a)
for a viable gauge hiérarchy. while (2.64k_>) requires

mg < 10%mp. (2.66b)
If the parameter ¢ is proportional to the vev of Him,, Eq.(2.4a), the quantization

condition (2.4b) implies a quantization condition for ¢ of the form*®

2x4/2

1673

. where €1 i8 the anti-symmetric Levi-Civita tensor and | use complex coordinates for
the compact 6-manifold: €mn = (€fmn).* In writing (2.4b) and (2.67) the metric of the
compact manifold M has been normalized by defining*®

gim = €°Gim(0)

. ) mp \8 ’
/M a°;a°:detg‘m(o) = E;r—“;—’) . (2.68)
Then one expects s ) :
— mp ¥ mn <
I= (5;,—,5) /s dE"™ 1 < 1 (2.69)
which implies for n # 0:
¢ = 10°n/1 X 1000. (2.70)

Using the range of values (2.57) for bo gives

mg = \/g(o.:: —12) x 107 (2.1)

which may, from (2.70) be consistent with the requirements (2.66) for a viable gauge
hierarchy. It ia also interesting that a value as large as (2.70) for ¢ might also allow for
a successful inflationary scenario.’”

The model studied in the preceding sections is-in fact a toy model when in-
terpreted as emerging from the compactification of ten-dimensional supergravity. The
topology of the compact manifold is characterized by Hodge numbers b;; that are posi-
tive integers and determine*s the spectrum of massless states (before SUSY breaking).

c ( mp )3-[5(,2‘"‘"5""" = 2xn (2.67) |

—_18-

n particular the number of matter generations is given by by, — byy; observation there-
fore requires by, > 3. In addition to the scalar field S, there are a total of by, gauge
nonsinglets T;, whercas only one (T') was included in the above model. One should
therefore pin-point the qualitative features of the model studied that assure desirable
features at one loop and try to identify a class of more realistic models that incorporate
the same features. )

As 1 will explain more explicitly below, the sufficient ingredients*? to ensure van-
ishing gauge nonsinglet masses at one loop are a) a partial invariance of the effective
tree Lagrangian under a noncompact Heisenberg group Gy of nonlinear transforma-
tions, b) a “no-scale” structure® of the tree potential, and c) vanishing vacuum energy
at tree level. In this context I define “no-scale” by the absence of a term in the poten-
tial proportional to e?, which, in the absence of nonperturbative effects, would force
an unbroken supersymmetric solution mg = 0. In the general class of models that
I consider the tree-level vacuum configuration has p; = 0, and its vacuum energy is
determined by the contribution (2.9a), defined more generally by

6 \ ' |66
= Y . =
U=e (3583) 35l -(‘2.72)
Thus the condition for vanishing vacuum energy at tree level is
6= -0 (2.13)

The vanishing of the cosmological constant at one-loop for the model studied above
follows essentially from dimensional analysis and therefore should be a feature of a much
more general class of models. Finally, the vanishing of A-terms - and possibly gaugino
masses - at one-loop, is intimately connected with the vanishing of the cosmological
constant. There is no reason why this_result should not generalize to more realistic
models that incorporate the features a), b), and c) enumerated above, although at
present we have no understanding of it in terms of symmetries.

To see how these conditions assure the vanishing of gauge nonsinglet scalar
masses at one-loop, recall first (Sect. 1.5) that exact invariance under Gy implies
m,, = 0 to all orders. This invariance is broken by both the superpotential W(p) and
the gauge interactions. In a broken SUSY theory, the latter will induce scalar masses,
via the diagrams of Fig. 11(b), of order '

m} ~ . (2.73)

_ In most superstring-inspired models, as in the toy model studied above, the
tree-level gaugino masses are determined by the S-field:

my;=e%(S + g)z—% (2.75)

and vanish when the condition (2.73) for a vanishing cosmological constant at tree-level
is satisfied. The presence of a superpotential W(y) induces the contributions shown
in Fig. (lla) to the scalar self energy. By supersymmetry they cancel identically for
vanishing scalar and chiral fermion tree-level masses.
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o order o generate nonvanishing gauge nonsinglet scalar masses one needs the
interplay of a Gy breaking interaction (W (yp) # 0) with a SUSY breaking interaction
(e.g., W(S) # 0). An analysis*? of the passible contributions to scalar masses shows
that they vanish if Eq. (2.73) is satisfied. This is a one-loop argument only. ‘The
conventional wisdom is that gauginos acquire masses at one loop and therefore that
scalars will acquire masses, Eq. (2.74), at the two-loop level. If, however, one-loop
contributions to gaugino masses vanish, as suggested by the study of contributions
fromn scales u < A. where the theory is unambiguously specified, it is unclear whether
scalars will acquire masses at higher loops. A more thorough understanding, in terms
of symmetries, is needed to better address this question.

Since, on the other hand, the vanishing of scalar masses can be understood in
terms of a partial Heisenberg symmetry Gy, we can ask whether any potentially real-
istic models possess this partial symmetry. It has been shown*®® that Gy is a remnant
of a partial symmetry, which is exact for vanishing gauge couplings, of ten-dimensional
supergravity. Under this symmetry the gauge fields Ay and the antisymmetric field
By (of which the three-form Hiamn, Eq. (2.4), is the covariant derivative) transform
according to:

Ay — Ay + Hy,

Ban — Bun + %Aﬁ,ll}h, (2.76)
where Hyg is a harmonic form. In Calabi-Yau compactification,®® where the SU(3)
subgroup of one Ej is identified with the holonomy group of the compact manifold, the
limit of vanishing gauge coupling constant is singular, and the appropriate invariance
under Gy may not survive® in the effective 4-d theory. However, it is expected Lo
survive for orbifold compactification.

Quite generally, consider an effective 4-d Kihler potential of the form
¢ =G(T,T,C,C)+ G(s;(S,S') +Wn|W(C) + W(S))? (2.77)
where W(S) # 0 induces tree-level SUSY breaking, and

G(1,T,C,C) = - )"i‘ QalnUs - "z'j Pglndet UB. (2.78a)
A=] B=l

The functions U, are of the form

Us=Ta+ TA - ZC-MCiA (2785)

and the Lg x Lg mairicea U are of the form

UB =T+ T, -3 CiBCr®. (2.78¢)

In Eqs. (2.77), (2.78) the ficlds S, T4 and some of the C's are gauge singlets. The
superpotential defined in this way yields an effective tree-level potential of the form:

V =e%GiIGs|* + Pn+ D+ V, (2.79)
where
n=Y Q4+ Pelp-3 (2.80)
A B
* <

~40-

and D are V are, respectively, the usual D- and F- terins that are quartic in the
gauge nonsinglet fields. ‘The criteria enumerated above, that assure vanishing one-
loop scalar masses, are satisfied for Gs = n = 0. Specific examples, based on orbifold
compactification, of theories satisfying these criteria have been given by Ferrara et al.*!
with field content and Kihler potential specified by the following table:

nag np P L
0 1 - 1 3
3 0 11, - -
2 0 12 - -
1 1 1 1 2

The existence of these effective theories suggest that a superstring theory in
ten dimensions might yield an effective field theory in four dimensions with a realistic
particle spectrum and the possibility of generating the hierarchy of scales needed to
understand the observed scale of electroweak symmetry breaking.
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