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Advanced structures, including Carbon Fiber Reinforced Polymer (CFRP) composites and 

lattice structures, have drawn significant attention due to their exceptional mechanical 

performance. However, their quality and mechanical performance can degrade because of defects 

introduced during manufacturing or in-service. This thesis proposes non-invasive electrical 

tomographic imaging techniques, electrical resistance tomography (ERT), electrical impedance 



 

xix 

 

tomography (EIT), and electrical capacitance tomography (ECT), for damage detection in 

advanced structures. These techniques leverage boundary measurements to reconstruct the interior 

electrical properties distribution of the advanced structures, such as electrical conductivity and 

permittivity, which are directly correlated to structural damage maps. However, classical electrical 

tomographic methods face challenges when applied to anisotropic CFRP composites and suffer 

from limited central sensitivity. To overcome these limitations, this thesis incorporated specific 

modifications, including the use of electrical conductivity tensors and normalized sensitivity maps. 

These enhancements improve the applicability of electrical tomographic methods on CFRP 

composites and lattice structures with complex geometries. Also, the use of smart paint and 

frequency-difference EIT was explored to enhance damage detection in painted advanced 

structures without the need for baseline measurements. Additionally, to increase computational 

efficiency for defect detection, machine learning methods are integrated with tomographic 

techniques. Simulation and experimental studies were conducted to evaluate the performance of 

the proposed techniques, and comparisons were made with classical solvers. The results 

demonstrate the effectiveness of the proposed ERT, EIT, and ECT methods in detecting damage 

in advanced structures. This comprehensive investigation provides valuable insights for damage 

detection in advanced structures, contributing to more efficient and effective inspection processes. 
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CHAPTER 1 INTRODUCTION 
 

1.1 Advances Structures 

Lightweight engineering has emerged as a critical area of research and development in 

recent years, driven by the need to reduce weight while maintaining or improving performance in 

a variety of applications [1–3]. Lightweight engineering is particularly important in automotive, 

naval, and aerospace industries, where weight reduction can translate into significant fuel savings, 

increased range, and improved overall functionality [4–7]. Lightweight engineering relies heavily 

on advanced materials and structures, such as composites, polymers, and alloys, and sophisticated 

design techniques that optimize structural efficiency. Among these different types of advanced 

structures, carbon fiber reinforced polymer (CFRP) composites and lattice structures, have become 

increasingly important in the field of lightweight engineering due to their superior mechanical 

properties. These materials offer high strength and stiffness with low weight, making them ideal 

for use in lightweight engineering applications where weight reduction is critical [2,3]. 

CFRP is a composite material consisting of carbon fibers embedded in a polymer matrix. 

The unique properties of CFRP composites stem from the arrangement of multiple layers of carbon 

fibers, where typically each layer is laid out in a specific direction within the polymer matrix [8,9]. 

This orientation allows the carbon fibers to bear the majority of the load, while the polymer matrix 

serves as a binding agent, resulting in a material that is both strong and lightweight. Another 

significant advantage of CFRP composites is their exceptional fatigue performance. Fatigue failure, 

which occurs under cyclic loading, is a critical concern in lightweight engineering. Traditional 

materials can experience fatigue failure over time, limiting their durability. However, CFRP 

composites have inherent resistance to fatigue due to their ability to dissipate energy through fiber 
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bridging and matrix toughening mechanisms [10]. This property allows them to endure millions 

of load cycles without significant degradation, making them suitable for applications subjected to 

dynamic loading, such as aircraft wings or wind turbine blades.  

Another class of lightweight structures is lattice structures, which are complex networks of 

interconnecting beams and nodes that distribute loads efficiently throughout the structure [11,12]. 

Lattice structures are bio-inspired 3D configurations of repeated and open unit cells [3,13]. 

Relative to conventional bulk materials, topologically ordered lattice structures can exhibit 

impressive mechanical strength, stiffness, thermal, and electrical properties while using 

significantly less material. In other words, they possess higher strength- and stiffness-to-weight 

ratios. These advantages have led to their broad applications in advanced lightweight naval, 

automobile, aerospace, and other engineered structures [4–6,11]. Moreover, lattice structures 

exhibit superior energy absorption capabilities. The interconnected lattice framework distributes 

external forces across multiple struts or beams, allowing for efficient energy dissipation during 

impact or dynamic loading events[14]. This property makes lattice structures ideal for lightweight 

applications requiring impact resistance and crashworthiness. Lattice structures provide a 

compelling solution for lightweight engineering due to their exceptional strength-to-weight ratio, 

energy absorption capabilities, and design flexibility. These structures offer significant weight 

savings while maintaining structural integrity, enabling the development of efficient, lightweight, 

and high-performance structures for a wide range of applications. 

For both these types of emerging advanced structural materials, their real functionality 

relies heavily on their structural integrity, which can be compromised by damage or defects that 

may occur during manufacturing or operations. For instance, CFRP composites can be vulnerable 

to delamination, fiber misalignment, and voids or porosity, which can degrade their mechanical 
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performance and lead to premature failure [15,16]. Similarly, lattice structures are susceptible to 

defects such as cracking, buckling, and deformation, which can compromise their structural 

integrity and reduce their load-carrying capacity [17–19]. The detection and characterization of 

such defects are critical to ensure the reliable and safe operations of these advanced structures. 

Therefore, there is an urgent need for the development of effective and efficient methods for 

damage detection in CFRP composites and lattice structures. 

1.1.1 Defects in CFRP Composites 

The usual manufacturing process for CFRP composites involves several steps, including 

the layup of carbon fiber sheets, impregnation with resin, and curing under heat and pressure. The 

layup process involves the orientation and placement of carbon fiber sheets in a specific pattern to 

achieve the desired mechanical properties [20]. The impregnation process involves the infiltration 

of the carbon fiber sheets with a resin matrix, which binds the fibers together and provides 

additional mechanical properties. Finally, the curing process involves the application of heat and 

pressure to the composite to solidify the resin matrix and create a strong and durable material [8,9]. 

However, during the manufacturing process, defects such as voids, delamination, fiber 

misalignment, and porosity can occur due to various factors, including improper processing 

conditions, inadequate quality control measures, and operator error [1,15,16]. When the porosity 

or void content increases, the mechanical properties of the material can be severely affected. Voids 

can cause stress concentrations during loading, leading to local failures and cracks. These local 

failures can exacerbate stress concentrations and reduce the overall strength and stiffness of the 

material. Misalignment and delamination are the other two types of defects that can significantly 

influence the performances of CFRP composites. Misalignment can occur when the fibers are not 
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perfectly aligned in the matrix, leading to stress concentrations at the interface between the fibers 

and the matrix [21]. This inefficient load transfer causes some fibers to bear more load than others, 

leading to higher stresses and ultimately failure. Delamination occurs when there is a separation 

between layers in the composite material, leading to a reduction in the mechanical properties of 

the material [16,22]. These defects too can reduce the load-bearing capacity of the material, leading 

to premature failure.  

During the operational life of CFRP composites, they may experience various loads and 

environmental effects that can cause damage or even failure. For example, unexpected impacts, 

such as collisions or drops, can cause visible as well as nonvisible damage, including delamination, 

matrix cracking, and fiber breakage. Other severe loadings, such as cyclic loading, can cause 

fatigue damage, leading to microcracks and progressive failure of the material [23]. Furthermore, 

environmental effects such as moisture, temperature variations, and exposure to ultraviolet 

radiation can cause degradation of the material over time, leading to a reduction in mechanical 

properties and ultimate failure [24]. Therefore, it is crucial to inspect and monitor the structural 

health of CFRP composites during their operational life to detect and address any damage or 

degradation in a timely manner and ensure the optimal performance and reliability of the material.  

1.1.2 Defects in Lattice Structures 

Lattice structures are widely used in lightweight engineering due to their high strength and 

stiffness while minimizing weight. Increasing performance demands for lightweight engineering 

applications means that lattice structures need to be fabricated with greater complexity and with 

smaller feature sizes. Conventional manufacturing processes, such as wire weaving [25], high-

temperature forming and diffusion bonding [12], and the interlocking method [26], are unsuitable 
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and too time-consuming for fabricating lattice structures with complex nodal connections. Recent 

advances in additive manufacturing (AM) have enabled methods to realize cellular lattice 

structures with intricate geometries [27,28]. Some of the widely used AM methods include fused 

deposition modeling [29] and stereolithography [30] for polymer-based structures, as well as 

extrusion [27], powder bed fusion [31], and direct ink write [32] for metallic cellular lattice 

systems.  

Despite the ability to use AM to fabricate complex cellular structures, their functional 

performance strongly depends on manufacturing quality. The presence of minor defects could 

compromise the structural integrity of the entire part [17]. For instance, nozzle clogs, micro-voids, 

and pores that occur during extrusion or uncontrolled thermo-mechanical behavior in powder bed 

fusion may induce cracks, shrinkage, uneven surfaces, and nodal disconnections in the struts 

[18]. During storage, transit, or use, these weakened struts are prone to stress concentrations, which 

can lead to defect propagation, broken struts, and partial or complete lattice structure failure 

[19]. Therefore, quality assurance and control of AM parts require that the type of defects and 

damage locations be identified whether they are incurred during manufacturing or when in service.  

1.2 Current State-of-the-Art of Non-destructive Evaluation Methods 

Considering the possible damage occurrence in advanced structures during manufacturing 

or operations, particularly due to easily overlooked damage precursors that could propagate and 

compromise structural integrity, it becomes crucial to detect and monitor any existing defects or 

damage precursors to guarantee their long-term safety and reliability. To address this issue, there 

are various non-destructive evaluation (NDE) techniques that are widely employed to detect 

defects and damage in advanced structures, such as by using strain gages and optical sensors [33–
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35], vision-based methods [36–38], thermography, radiographic testing [39–41], ultrasonic testing 

[42,43], and electrical tomographic methods [44,45]. 

1.2.1 Strain and Optical Sensing Techniques 

In advanced structures, strain gages, and optical sensing techniques are commonly used for 

monitoring structural health and detecting damage. Foil-based strain gages are commonly used in 

advanced structures due to their high sensitivity and small size. These sensors work by using a 

metallic foil or wire attached to the structure's surface [35]. Strain gages can be used to detect 

damage in a structure by measuring the strain at specific locations. When damage occurs, the 

material around the damage site undergoes a change in its mechanical properties, resulting in a 

change in strain. Yeow et al. [35] and Griffith et al. [46] applied strain gages on the composite 

materials and applied an epoxy precoat to fill surface irregularities, which eliminates bond failure 

but results in a relatively thick bond line that exhibits high levels of adhesive creep at elevated 

temperatures. Other than applying on the surface of the inspected structures, advanced materials 

can also have strain gages embedded within them to monitor strain and detect damage. Embedding 

strain gages within the composite structure provide a more direct measurement of strain and 

deformation and offer more reliable data because of exemption from damage or detachment over 

time. For example, Kanerva et al. [47] implemented fully embedded electrical resistance strain 

gages in a hybrid material system of CFRP and tungsten accurately sense thermal expansion when 

appropriate correction functions are used. 

Optical sensors are another type of sensor that uses light to measure strain and deformation. 

These sensors work by using a fiber optic cable that is embedded within the structure [34]. As the 

structure deforms, the cable experiences a change in its optical properties, which is measured using 
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a light source and a photodetector. Fiber optic sensors are highly sensitive, and they can detect 

changes in strain and deformation that are too small to be measured using traditional sensors. 

Optical sensors are ideal for monitoring large structures and complex geometries. In recent years, 

distributed optical fiber sensing techniques have been developed, allowing for the monitoring of 

strain and temperature changes along the entire length of a fiber optic cable. Glisic et al. [34] 

applied a distributed optical fiber sensing technique (a sensing cable) on a bridge for crack 

detection and structural integrity monitoring, but it could only monitor the one-dimensional strains 

along the sensors’ installed locations.  

While strain gages and optical sensors can provide accurate and stable measurements, they 

are limited in their ability to offer a comprehensive view of the structure being monitored. Discrete 

sensors can only provide localized monitoring in the installation area, and, in the case of optical 

sensors, they can only acquire strain along the one-dimensional length along the sensor's installed 

location. Therefore, in order to obtain a more comprehensive and spatially distributed view of the 

structure being monitored, other NDT methods are needed. 

1.2.2 Vision-based Methods 

One of the most common and easiest damage monitoring technique today is based on visual 

inspection, however, the process is labor-, cost- and time-consuming, and it could not offer timely 

spatial damage information. Automated vision-based inspection has been developed to address this 

issue. Vision-based techniques that utilize photographed images from high-speed cameras and 

imaging processing developed in computer vision are more labor-saving and accurate for detecting 

structural abnormalities [36,38]. This approach is becoming increasingly popular due to its ability 

to provide high spatial resolution and real-time monitoring capabilities. One advantage of using 
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vision-based methods is that they are non-contact, which means they can be used to inspect 

surfaces that are difficult to access or that may be damaged by other inspection methods. In 

addition, the use of high-speed cameras and advanced algorithms for image processing allows for 

the detection of small defects that may be missed by other inspection techniques. Recent 

advancements in vision-based methods using image processing and machine learning techniques 

have shown promising results in damage detection for various types of infrastructure, such as 

reinforced concrete bridges, precast tunnels, and underground concrete pipes. The use of transfer 

learning and deep convolutional neural networks has been investigated as an alternative to training 

original neural networks, and data augmentation techniques have been implemented to improve 

accuracy and robustness [36,38].  

However, there are some limitations to the use of vision-based methods for damage 

monitoring. One of the main challenges is the need for good lighting conditions and the presence 

of contrast between the structure and its surroundings. Additionally, the presence of non-damage 

features in the image, such as joints, wires or boundaries, can make it difficult to distinguish 

between actual damage and these features. Also, the complexity of the background and the diverse 

surface textures can also impact the performance of vision-based techniques [48]. Finally, vision-

based method inspection is typically limited to surface damage and cannot penetrate the material 

to detect internal cracks or other types of damage. As a result, additional NDE methods, such as 

ultrasonic testing or X-ray imaging, may be needed to fully assess the extent of damage in 

advanced structures. 
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1.2.3 Thermography 

Thermography is another NDE technique that utilizes the measurement of surface 

temperature to detect anomalies in the material beneath the surface. This technique is based on the 

principle that variations in the material's internal structure cause variations in the heat flow through 

the surface. In thermography, a heat source is applied to the surface of the material, and the heat 

distribution is measured using an infrared camera [49,50]. The resulting image, called a 

thermogram, shows the temperature distribution on the surface of the material. Any anomalies in 

the internal structure of the material will cause variations in the heat flow, which will be visible in 

the thermogram. 

Thermography is a widely used technique for the detection of defects such as cracks, 

delaminations, and voids in composite and lattice structures. It is a fast NDE method that can detect 

defects over a large area. However, thermography has some limitations. First, the technique is 

highly dependent on the material's thermal properties, and it may not be effective for materials 

with low thermal conductivity, such as some polymers. Besides, since the thermal energy may not 

be able to penetrate deep into the structure, it may not be able to detect subsurface damage 

embedded too deep within the material.  

1.2.4 Radiographic Testing 

Radiographic Testing (RT) is a non-destructive testing method that uses X-rays or gamma 

rays to examine the internal structure of a material or component [51]. The basic principle of RT 

is to pass high-energy radiation through the material or component and capture the resulting image 

on a photographic film or digital detector. The areas of the material that absorb more radiation 

appear darker on the image, while areas that absorb less radiation appear lighter. This creates a 
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contrast that can reveal hidden defects. RT can be performed in two ways: film radiography, which 

uses a photographic film to capture the image, and computed tomography (CT), which uses 

computer algorithms to create a three-dimensional image of the internal structure of the material 

or component. CT provides reliable and quickly readable data as it enables the observation of 

structures at a microscopic scale, thereby modifying the scale of observation from macroscopic to 

microscopic, leading to accurate results [39]. 

These radiography methods can detect large voids, inclusions, trans-laminar cracks, non-

uniform fiber distribution, and fiber misorientation such as fiber wrinkles in composite materials. 

Penetrant-enhanced radiography is employed specifically to detect small matrix cracks and 

delaminations in a composite sample. Also, CT has been shown to be a promising technique for 

the inspection and characterization of AM parts. CT allows for 3D visualization and analysis of 

internal features including defects such as voids, cracks, and inclusions. It also provides 

quantitative information on geometric features, such as porosity and density, which are critical to 

ensure the functionality and mechanical properties of AM parts. CT has been used for the 

inspection of various AM processes, including selective laser melting (SLM), electron beam 

melting (EBM), and binder jetting (BJ). 

While RT is a powerful tool for detecting internal flaws, it does have some limitations, 

including the potential for exposure to radiation, and the need for specialized equipment and 

trained operators. Besides, they can be inefficient for inspecting complex cellular lattice 

structures. For example, CT reconstruction of defects in lattice structure struts requires multiple 

projection slices and can be computationally intensive, slow, and expensive [51].  
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1.2.5 Ultrasonic Testing 

UT utilizes high-frequency sound waves to detect and evaluate flaws or defects within the 

material being inspected. The technique can detect internal cracks, voids, and other 

inhomogeneities in composite materials, as well as changes in thickness, corrosion, and other 

structural anomalies in metals. UT works by emitting ultrasonic waves from a transducer, which 

are then reflected back to the transducer and analyzed to determine the presence, location, and size 

of any defects. UT can be performed in pulse-echo mode, where the transducer sends and receives 

the waves, or in through-transmission mode, where one transducer sends the waves and another 

receives them. UT has the advantage of being able to provide real-time results and can be 

performed on curved or irregularly shaped surfaces.  

However, it requires skilled operators to interpret the data, and it can be affected by the 

presence of coatings or rough surfaces that can reflect or scatter the ultrasonic waves. Especially 

for lattice structures with complex geometries, UT requires a dense array of transducers and 

complicated wave generation and propagation patterns to evaluate the different scales and 

locations of defects [43].  

1.3 Electrical Tomographic Methods 

While NDE methods such as optical sensors, vision-based methods, and thermography can 

provide valuable insights into damage detection for advanced structures, they do have limitations 

to offer spatial damage maps or detect damage that is located deep within the structure. Other 

methods such as ultrasonic testing and radiographic testing are capable of detecting interior 

damage, but they require extensive setup time and complex installation processes, making them 

less practical for certain applications. Given these challenges, it may be more advantageous to 



 

12 

 

explore the inherent properties of CFRP composites for self-sensing, rather than relying on 

additional devices and labor for sensor installation.  

Numerous studies have utilized the electrical properties of CFRP composites or lattice 

structures for self-sensing, including embedded electrical resistance strain gages and electrical 

tomographic techniques. Electrical tomography is a non-invasive imaging technique used to 

visualize and monitor the internal structure and properties of materials. It involves applying 

electrical fields to a material and measuring the resulting electrical responses. Three commonly 

used electrical tomography techniques are electrical resistance tomography (ERT), electrical 

impedance tomography (EIT), and electrical capacitance tomography (ECT). 

1.3.1 Electrical Resistance and Impedance Tomography 

ERT is a technique used to image the internal conductivity distribution of a material. ERT 

involves injecting a direct or a low-frequency electrical current through the material, typically in 

the range of 1 Hz to 1 kHz, and measuring the resulting voltages at the electrodes placed on the 

boundary of the material  [52,53]. Because the electrical conductivity change will influence the 

boundary voltage measurements, the distribution of electrical conductivity can then be 

reconstructed using boundary measurements, providing images of the internal structure of the 

material. For advanced structures that have coupled electrical properties and mechanical properties, 

ERT could be employed to infer the presence of certain defect features, such as voids, cracks, or 

overstrains. 

EIT is another technique used to image the internal structure of materials. EIT involves 

injecting a high-frequency electrical current through the material, typically in the range of 1 kHz 

to 10 MHz, which is injected into the material being imaged. This high-frequency current causes 
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the material to behave like a capacitor, resulting in impedance or the complex conductivity change 

that is measured at the boundary. Similarly, the boundary measurements could capture the interior 

complex conductivity distribution change that correlated to structural health maps and could offer 

reconstructions that could be effectively interpreted as spatial damage or overstrain maps. 

The ERT and EIT methods have been extensively leveraged in geophysical and clinical 

applications since the 1980s and have recently gained attention for structural health monitoring 

(SHM) applications. This spatial sensing technique provides more sufficient information than 

discrete installed sensors by reconstructing interior electrical conductivity maps that correlated to 

mechanical properties maps [54]. Therefore, it could be effectively employed in damage and 

spatial strain sensing on electrically conductive composites and nanocomposite thin film coupled 

structures [55,56].  The utilization of a target’s electromechanical properties exempts inspection 

from complex operations (i.e. multiple projections of CT) [52,57]. For instance, Loyola et al. [57] 

investigated the use of EIT for spatial scalar strain sensing with nanocomposite thin films, while 

Gupta et al. [52] used EIT for localizing damage features in smart concrete casted with conductive-

film-coated aggregates.  

Moreover, the ERT and EIT methods have been investigated for detecting damage in 

advanced structures by leveraging the structure’s intrinsic electromechanical properties. 

Baltopoulos et al. [58] directly leveraged EIT for defect localization of nearly electrically isotropic 

CFRP laminate with electrodes attached to the boundary. Instead of introducing additional devices 

and extra labor for sensor installation, Nonn et al. [14] employed ERT with built-in connecting 

rivets and the inherent electrical properties of CFRP composites to localize a damaged hole in an 

anisotropic CFRP composite laminate. The damage localization capability of the EIT method on 

CFRP laminate benefits from its connected electrical and mechanical field coming from interior 
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carbon fibers. Reconstructed conductivity maps could be efficiently transferred to damage state 

maps because of the relation between electrical conductivity decrease and defects such as damages, 

fiber fracture, and delamination [59]. Shu et al. [60] applied 3D ERT on AM lattice structures with 

the normalized sensitivity map and reconstructed the damaged strut in the complex lattice 

structures. 

However, ERT and EIT methods have limitations due to their reliance on scalar-based 

solvers, which may not be effective for anisotropic materials. Moreover, the boundary 

measurements may result in low central sensitivity, making it difficult to detect defects in certain 

areas. To overcome these limitations, specific modifications have been incorporated, such as the 

use of electrical property tensors and normalized sensitivity maps. These modifications can 

improve the use of ERT for anisotropic CFRP composites and lattice structures with complex 

geometries. Additionally, the use of smart paint and frequency difference EIT have been explored 

to improve detection in painted structures without baseline measurements. These modifications 

will be stated in detail in the following sections. By addressing these limitations, electrical 

tomography methods have the potential to become increasingly valuable NDE tools for advanced 

structures. 

1.3.2 Noncontact Electrical Capacitance Tomography 

ECT is a noncontact technique used to image the internal electrical permittivity and 

conductivity distribution of a target. In ECT, an electric field is propagated by applying an 

alternating current to an electrode, and this electric field then interacts with the material being 

studied. The interaction between the electric field and the material results in changes to the 

electrical capacitance between pairs of electrodes, which are then used to reconstruct the electrical 
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permittivity distribution of the material [61]. One of the significant advantages of ECT is its non-

contact feature. It can measure the properties of the material being studied without using contact 

probes or inserting sensors into the material. 

ECT has been successfully applied in various industrial process monitoring applications 

since its discovery in the late 1980s. It has also been used for nondestructive inspection of 

structural components and monitoring of epoxy curing and subsurface defects in composites. For 

example, Gupta et al. used ECT coupled with passive thin-film sensors to achieve non-contact pH 

and strain sensing. While damage in CFRP panels is consistently associated with decreased 

electrical permittivity and conductivity, the damage distribution would be interpreted from 

reconstructing electrical properties [22]. The classical ECT operates by measuring the changes in 

capacitance between multiple electrode pairs surrounding the object of interest, and the sensing 

domain is usually defined as the circular area enclosed by the boundary electrodes [62]. Circular 

ECT offers impressive sensitivity in the sensing domain, however, its primary limitation is the 

constraint on the shape of the objects that can be inserted within the circular electrode array. 

As an advanced variant, planar ECT focuses on a two-dimensional electrode arrangement, 

which expands the applicability of ECT to structures with different dimensions and shapes [22,63]. 

The advent of planar ECT has also unlocked its potential for detecting damage in large-scale 

complex structures, such as ships and aircraft. Inspectors can employ the designed planar ECT 

electrode array to efficiently scan these structures, enabling rapid and accurate assessments of their 

internal properties. This non-invasive approach to damage detection ensures the early 

identification of potential issues, thereby enhancing overall safety and operational efficiency.  

Gupta et al. [22] demonstrated that planar ECT could detect and visualize the presence and location 

of delamination damage of different sizes in CFRP composites. Fan et al. [63] optimized the 
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sensitivity matrix of the Planar ECT sensor by rotating the electrodes and investigated the 

reconstructed image quality of different Planar ECT arrays for detecting damage locations in CFRP 

composite. 

To apply planar ECT arrays as an effective scanning NDE system, the processing time 

must be minimized. Classical model-based ECT methods can be time-consuming due to the 

complex inverse problem process, including the iterative solver and the calculation of the Jacobian 

matrix [62]. Therefore, it is important to identify and implement techniques that can accelerate the 

ECT process and reduce processing time. 

1.4 Machine Learning Methods 

Machine learning is a rapidly developing field of computer science that allows machines 

to learn from data and make predictions or decisions without being explicitly programmed [64]. 

This is done using established algorithms and training data to build models that can be used to 

process and analyze large amounts of data in a timely manner. Machine learning algorithms can 

quickly and accurately process large and complex data sets, which would be impossible for humans 

to analyze in a reasonable amount of time. In general, there are two main categories of machine 

learning: supervised learning and unsupervised learning. Supervised learning involves the use of 

labeled data for training, while unsupervised learning involves the discovery of hidden patterns or 

anomalies in data without any prior knowledge.  

First, supervised learning involves training an algorithm using labeled data with known 

outcomes, with the goal of predicting outcomes for new and unseen data. This can be used for 

tasks such as classification, where the algorithm must assign a label to a given input, or regression, 



 

17 

 

where the algorithm must predict a continuous value. Common methods of supervised learning 

include decision trees, logistic regression, support vector machines, and neural networks. 

Second, unsupervised learning is used when the data set is not labeled and the goal is to 

identify patterns or groupings in the data. This can be used for tasks such as clustering, where the 

algorithm groups data points that are similar to each other, or anomaly detection, where the 

algorithm identifies unusual or abnormal data points. Common methods of unsupervised learning 

include k-means clustering, principal component analysis, and autoencoders. 

1.4.1 Machine Learning on Tomographic Methods 

In recent years, the data-driven artificial neural network (ANN) method has emerged as a 

powerful tool for addressing complex and nonlinear problems. ANN are composed of 

interconnected neurons organized in layers, designed to learn and process complex data patterns. 

These neurons are linked through weighted connections, which are adjusted during training to 

improve the network's performance [65].The layered structure of ANN enhances their ability to 

capture nonlinearity, making them well-suited for solving nonlinear problems such as electrical 

tomographic problems. For example, Quqa et al. [66] employed ANN to solve the EIT problem 

and validate the better performance of deep ANN versus the traditional total variation method. 

Zheng et al. [21] and Garbaa et al. [22] used autoencoder neural networks to solve the ECT image 

reconstruction problem and apply it to estimate flow patterns inside a circular electrode array. The 

reconstructions exhibit better image quality with more time efficiency than the classical linear back 

projection (LBP) method results. As an alternative, machine learning techniques can be employed 

to accelerate the process. 

 



 

18 

 

1.5  Thesis Outline  

Continuing from the introduction, the subsequent chapters of this dissertation delve into 

the specific aspects of electrical tomographic methods and their application in damage detection 

for advanced structures. Chapter 2 provides a comprehensive exploration of electrical tomographic 

methods, discussing the forward problems and inverse problem of ERT, EIT, and ECT, as well as 

the application of artificial neural networks in the tomographic method. This chapter serves as the 

foundation for the subsequent chapters, which focus on the practical implementation and 

evaluation of these methods in various contexts. 

In Chapter 3, the application of 2D ERT in detecting damage in anisotropic CFRP 

composites was discussed. The anisotropic solver employed, simulation details, and experimental 

results are thoroughly described to highlight the capabilities of this approach. 

Chapter 4 focuses on the detection of multiple defects in additively manufactured lattice 

structures using 3D ERT. The chapter presents adjusted absolute imaging and normalized 

sensitivity map to improve the low central sensitivity. Simulation results are provided, illustrating 

the ability of 3D ERT on single and multiple defects detection. Experimental details, testing, and 

results are also discussed, validating the effectiveness of 3D ERT in detecting defects in lattice 

structures. 

Chapter 5 delves into the utilization of EIT along with frequency-dependent nanocomposite 

smart paint. The integration of EIT offers a promising approach for reconstructing damage and 

strain states without the need for baseline measurements. Both simulations and experiments were 

conducted to validate the effectiveness of this method. These validation efforts demonstrate the 
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potential of EIT and frequency-dependent nanocomposite smart paint in accurately detecting and 

characterizing damage and strain states. 

Chapter 6 centers on the application of planar noncontact capacitive imaging and deep 

learning techniques for the detection of damage in composite materials. The chapter outlines the 

utilization of a complex impedance model in the planar ECT method, along with the 

implementation of reduced measurements and deep ANN. To validate the effectiveness of the 

proposed method, a series of experiments were conducted, including the use of modularized 

conductive PLA, detection of impact damage, and identification of delamination in CFRP 

composites. 

Each chapter follows a structured approach, providing an introduction to the topic, 

describing the methods and techniques used, presenting simulation or experimental details, and 

discussing the results and conclusions derived from the research.  
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CHAPTER 2 ELECTRICAL TOMOGRAPHIC METHODS  

 

2.1 Introduction 

In this chapter, the mathematical background and numerical techniques used for ERT, EIT, 

and ECT will be introduced. The electrical properties distribution, such as electrical conductivity 

and permittivity would be reconstructed from the solvers. Because of the correlation between the 

damaged/strained states and the electrical properties of the inspected objects or surfaces, once the 

electrical properties distribution is reconstructed, the regions of the object that have undergone 

changes in their electrical properties due to damage or strain could be identified.  

In the first part of this chapter, the classical solvers based on the finite element method 

(FEM) are stated. These tomographic methods consist of forward and inverse problems. In the 

forward problem solver, the boundary voltages or capacitances can be calculated based on a known 

electrical properties distribution and the excitation schemes [52]. The Laplace equations governing 

the physical model of these tomographic methods are stated, along with detailed descriptions of 

the forward problem.  

In practice, practical implementations of the tomographic methods require solving the 

inverse problem, which reconstructs electrical properties distribution from a set of experimental 

boundary potential or capacitance measurements [52]. There are two types of imaging methods for 

the inverse problem, absolute imaging and difference imaging methods. Absolute imaging 

involves directly computing the electrical properties distribution within the object based on the 

measurements. This method assumes that the electrical properties of the object are homogeneous, 

and the reconstruction is performed without any reference to a baseline or background image. The 

aim of this method is to obtain a quantitative estimate of the interior distribution, but its 
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effectiveness will be easily affected by errors generated from measurement, inaccurate model 

assumptions, and spatial inhomogeneity [67]. Difference imaging, on the other hand, utilizes the 

difference between two measurements to reconstruct the distribution difference of the two states. 

Time-difference and frequency-difference imaging are both valid methods for the difference 

imaging process. Since the difference imaging is reconstructing the changes in electrical properties 

by subtracting the measured data of a reference state, such as an undamaged state or a damaged 

stated in another excitation frequency, it could effectively compensate for drift or noise in the 

measurements and extract useful damage information from the background images. 

In addition to the classical solvers, data-driven approaches using deep ANN for 

reconstructions are also introduced. The model-based method for solving the inverse problem of 

reconstructing the electrical conductivity distribution within an object can be time-consuming and 

computationally intensive. This is especially true for the iterative reconstruction methods, where 

the nodal potentials of each finite element in each excitation scheme must be calculated to generate 

the Jacobian matrix for each iteration, which can be computationally intensive. In contrast, data-

driven methods such as deep ANN can avoid the computationally intensive calculation of the 

Jacobian matrix while still capturing the nonlinearity of the reconstruction process. Here, the deep 

ANN systems were trained by multiple damaged cases and learned the mapping between the 

measurements and the internal electrical properties distributions, allowing for fast and accurate 

reconstruction of images. 
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2.2 Forward Problems 

2.2.1 ERT Forward Problem 

ERT is a nonintrusive soft-field imaging method that relies on boundary current injections 

and voltage measurements for reconstructing the conductivity distribution of a conductive body 

(or target) [54,56]. It is known that localized damage (e.g., voids, cracks, or broken parts) in the 

target can prevent or limit electric current propagation through that specific region. Therefore, 

identifying the magnitudes and locations of localized conductivity changes in reconstructions 

would enable direct visualization of damage severity and their respective locations. 

In the forward problem, electric current propagation within a conductive target, Ω, with no 

interior current source, is governed by Laplace’s equation [52,54,68]:  

  ∇ ∙ (𝜎∇𝜙) = 0 in Ω  (2.1) 

where σ is the conductivity distribution of Ω, and ϕ is the electric potential in the domain. The 

Dirichlet and Neumann boundary conditions and the complete electrode model are also defined in 

Equations (2.2) to (2.4), respectively [52,54]: 

  ∫ 𝜎
𝜕𝜙

𝜕𝑛
𝑑𝑆 = 𝐼𝑙𝑒𝑙

 on Γ1  (2.2) 

  𝜎
𝜕𝜙

𝜕𝑛
= 0 on Γ2  (2.3) 

  𝜙 + 𝑧𝑙𝜎
𝜕𝜙

𝜕𝑛
= 𝑉𝑙 on Γ1  (2.4) 

where el is the location of the lth electrode, n is the normal direction from the boundary, zl is the 

contact impedance at the lth electrode, and Il and Vl are the injected current and electric potential 



 

23 

 

on the lth electrode, respectively. Here, Γ1 is the boundary with electrodes, while Γ2 refers to the 

remainder of the boundary. Equations (2.1) to (2.4) are numerically solved by the finite element 

(FE) method with a known σ distribution for simulated voltage responses V(σ) [52,54]. 

The second partial differential equation is usually numerically solved by FE method with 

a Galerkin approximation,  

 𝜙ℎ = ∑ 𝜙𝑖𝑁𝑖
𝑚
𝑖=1   (2.5) 

Here, ϕh is the approximated electric potential distribution, ϕi and Ni are the nodal potential and 

shape function of the ith node. The Galerkin approximation transforms the continuous formulation 

to discrete in meshed finite element domain and constructs a set of linear equations (2.6) and (2.7) 

for computing nodal electrical potentials ϕi and electrodes electric potentials Vl which are 

responsible for boundary voltages calculation [52,54]. Currents could be applied between an 

adjacent, diagonal, or opposite pair of electrodes according to different current injection patterns, 

and measured boundary voltage in experiments would be compared with the calculated voltages 

in the forward problem for further reconstructions [11,15]. 

∑ 𝜙𝑖 [∑ (∬ 𝜎∇𝑁𝑖 ∙ ∇𝑁𝑗𝑑𝑥2
Ω

+ ∑
1

𝑧𝑙
∫ 𝑁𝑖𝑁𝑗𝑑𝑥

𝑒𝑙

𝐿
𝑙=1 )𝑚

𝑗=1 ]𝑚
𝑖=1 − ∑ 𝑉𝑙 (∑

1

𝑧𝑙
∫ 𝑁𝑗𝑑𝑥

𝑒𝑙

𝑚
𝑗=1 )𝐿

𝑙=1 = 0  (2.6) 

 − ∑ 𝜙𝑖 (∑
1

𝑧𝑙
∫ 𝑁𝑖𝑑𝑥

𝑒𝑙

𝐿
𝑙=1 )𝑚

𝑖=1 + ∑
1

𝑧𝑙
𝑉𝑙|𝑒𝑙|

𝐿
𝑙=1 = ∑ 𝐼𝑙

𝐿
𝑙=1  (2.7) 

2.2.2 EIT Forward Problem 

EIT is also a non-invasive electrical imaging method that can be used to visualize the 

interior complex conductivity distribution of a conductive body using only current injections and 

corresponding voltage measurements at boundary electrodes [54,69]. EIT involves injecting 



 

24 

 

alternating currents into the object and measuring the resulting voltage changes on the boundary. 

Since the current flow in the target is depending on the distribution of the internal complex 

conductivity, the boundary voltage measurements of the target could reflect the change in the 

interior complex conductivity distribution [67]. In the EIT forward problem, boundary voltages 

are estimates based on a known complex conductivity distribution [52]. When a direct current is 

applied at the boundary to interrogate a conductive domain Ω (which has a known complex 

conductivity distribution), the corresponding boundary electric potentials can be evaluated using 

the updated Laplace’s equation with γω, which is the complex conductivity distribution of Ω in the 

injecting frequency ω, [52,60,70]: 

 ∇ ∙ (𝛾𝜔∇𝜙) = 0 in Ω (2.8) 

The Dirichlet and Neumann boundary conditions, as well as the complete electrode model, are 

also updated with the complex conductivity γω: 

 ∫ 𝛾𝜔
𝜕𝜙

𝜕𝑛
𝑑𝑆 = 𝐼𝑙𝑒𝑙

 on Γ1 (2.9) 

 𝛾𝜔
𝜕𝜙

𝜕𝑛
= 0 on Γ2 (2.10) 

 𝜙 + 𝑧𝑙𝛾𝜔
𝜕𝜙

𝜕𝑛
= 𝑉𝑙 on Γ1 (2.11) 

When a current is injected in a specific pair of electrodes, the electric potentials of the 

boundary electrodes could be solved with Equations (2.8) – (2.11) similarly using FE method as 

in ERT forward problem. The complete set of boundary voltages (Vω
i) (i.e., for Ω with an assumed 

complex conductivity distribution (γω
i) corresponding to an ith condition) is obtained by injecting 

current with frequency ω across different unique pairs of boundary electrodes. The adjacent, 
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opposite, or diagonal current injection pattern can all be used to interrogate Ω. The forward 

problem can be used to solve for boundary voltages, Vωa
i and Vωb

i, which correspond to ith damaged 

state with different current injecting frequencies ωa and ωb. Because the complex conductivity in 

the damage region is always 0 S/m while the complex conductivity may change with excitation 

frequency, the different distribution γωa
i and γωb

i are measured when currents with different 

frequencies are injected respectively. The change in conductivity distribution between those two 

states (δγ) can also be used to solve for the corresponding boundary voltage difference, δV [52,54]. 

This method will be efficiently applied to frequency-difference EIT (fdEIT). 

2.2.3 ECT Forward Problem 

In ECT, an object is surrounded by a set of electrodes, and a voltage excitation is applied 

to the electrode. The resulting electric field induces a distribution of charges within the object, 

which can be measured by the capacitance between pairs of electrodes. This noncontact 

measurement technique allows for the assessment of the object's internal electrical properties 

without the need for physical contact, making it particularly suitable for noninvasive and 

nondestructive evaluation of various structures. When a non-conductive object is inside the 

electrode array, the governing equation will be: 

 ∇ ∙ (𝜀∇𝜙) = 0 in Ω  (2.12) 

while the ε is the electrical permittivity of the material. The Dirichlet and Neumann boundary 

conditions are stated below: 

 𝜙 = 𝑉𝑙 on Γ1 (2.13) 

 𝜀
𝜕𝜙

𝜕𝑛
= 0 on Γ2  (2.14) 
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The voltage is excited on the boundary electrodes in sequence, and the potential of excited 

boundary electrodes will be equal to the magnitude of the excitation voltage, and the electrical 

potentials of other electrodes are zeros because they are grounded. The equations could also be 

solved with the FE method and the nodal electric potentials of each finite element could be 

computed. 

After obtaining the nodal electric potentials, the corresponding capacitances between 

electrodes could be calculated using the finite difference method, respectively. 

 𝐶𝑙𝑚 =
1

𝑉
∫ 𝜀

𝜕𝜙𝑙

𝜕𝑛
𝑑𝑆

𝑒𝑙
  (2.15) 

Where el is the excitation electrodes and ϕl is calculated nodal electric potentials when el is excited. 

Here, m is selected from all other electrodes that are grounded. 

2.3 Inverse Problem 

 The inverse problems of tomographic methods involve calculating the electrical properties 

distribution within the object or material based on the measured voltage data obtained from the 

boundary electrodes. The inverse problem is a complex task, as there exists an infinite number of 

possible distributions that could result in the same measured data. This issue poses a challenge for 

ERT image reconstruction, as the reconstruction of the true internal electrical resistivity 

distribution requires the identification of the most probable solution among the infinite possibilities. 

In response to this challenge, various inversion algorithms have been developed, which include 

linear and nonlinear methods, regularization techniques, and data-driven approaches. These 

methods aim to minimize the difference between the measured data and the predicted data from 
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the model, by incorporating additional regularization methods that reduce the number of possible 

solutions [44,69].  

The one-step linearization and iterative nonlinear algorithms are used to minimize the 

difference between the measured and predicted data. The regularization techniques aim to reduce 

the number of possible solutions by incorporating additional information or constraints, such as 

smoothness or sparsity of the electrical properties distribution [69,71]. These techniques offer a 

range of solutions for the inverse problem in ERT, EIT, and ECT, and the choice of method 

depends on the specific application and the desired accuracy of the reconstruction. 

2.3.1 Absolute Imaging 

Absolute imaging is a method that directly reconstructs absolute electrical properties 

distribution using the measured voltage or capacitance data. Here, the inverse problem aims to 

reconstruct the interior electrical properties of Ω by minimizing the difference between 

experimentally measured boundary voltages (Vm) and simulated voltages V(σ) or V(γω), or between 

measured capacitances (Cm) and simulated capacitances C(ε), starting with an assumed distribution. 

Because absolute imaging assumes that the electrical properties of the object are homogeneous, it 

is useful in applications where the electrical properties of the object are relatively uniform. 

Moreover, since the reconstruction process is performed without any reference to a baseline or 

background image, it is easily influenced by environmental noise and model inaccuracies [67]. But 

absolute imaging has the advantage to offer a quantitative estimate of the electrical properties 

distribution. Quantitative absolute imaging is useful in application of structural damage detection 

because it allows for the characterization of the electrical properties, which can provide valuable 

insight into the structural health of the material. For example, changes in conductivity may indicate 
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the presence of microcracks or other forms of damage that are not visible to the naked eye. By 

quantitatively characterizing the conductivity distribution within the material, EIT can help to 

identify the severities of defects, and prevent them lead to catastrophic failure [60,67]. 

2.3.1.1 Objective Functions and Regularization Methods 

In ERT, EIT, and ECT processes, to reconstruct the distribution of electrical properties, the 

objective functions to minimize the differences between measurements and calculated data in the 

forward problems are stated in Equation (2.16) – (2.18) respectively: 

 𝑔𝜎 = arg min
𝜎

{‖𝑉𝑚 − 𝑉(𝜎)‖2}  (2.16) 

 𝑔𝛾𝜔
= arg min

𝛾𝜔

{‖𝑉𝑚 − 𝑉(𝛾𝜔)‖2}  (2.17) 

 𝑔𝜀 = arg min
𝜀

{‖𝐶𝑚 − 𝐶(𝜀)‖2}  (2.18) 

 However, tomographic methods are of ill-posed nature, which means that there are an 

infinite number of possible solutions that can fit the measured data equally well. This is because 

electrical property distributions within bodies or materials cannot be directly measured, while only 

boundary measurement can be assessed. Therefore, reconstructed internal electrical property 

distributions from these measurements are inherently uncertain and highly vulnerable to noise and 

errors during measurement. 

Regularization is a mathematical technique designed to eliminate this uncertainty in the 

reconstruction process by adding extra constraints. By taking into account prior knowledge about 

the physical characteristics of material, regularization methods can improve image quality, reduce 

noise levels, and mitigate measurement errors [54,72]. Reconstructions without regularizations can 
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be highly susceptible to noise and other sources of error, leading to poor image quality and reduced 

diagnostic precision. Regularization methods enable us to control the tradeoff between fitting data 

and producing a smooth or structured solution, producing more precise and dependable images. 

There are a few regularization methods that are commonly utilized in tomographic imaging 

methods. One popular regularization technique is Tikhonov regularization, which involves adding 

a penalty term to the objective function used to solve an inverse problem. This penalty term is 

proportional to the square root of the L2 norm of the solution vector and helps to solve for smooth 

solutions. Hence the objective function becomes: 

 𝑔𝜎 = arg min
𝜎

{‖𝑉𝑚 − 𝑉(𝜎)‖2 + 𝜆‖𝑅𝜎‖2}  (2.19) 

 𝑔𝛾𝜔
= arg min

𝛾𝜔

{‖𝑉𝑚 − 𝑉(𝛾𝜔)‖2 + 𝜆‖𝑅𝛾𝜔‖2}   (2.20) 

 𝑔𝜀 = arg min
𝜀

{‖𝐶𝑚 − 𝐶(𝜀)‖2 + 𝜆‖𝑅𝜀‖2}  (2.21) 

Where λ is the hyperparameter, and R is a regularization matrix, which is the square root of the 

diagonal of the matrix Hessian matrix [62]. Tikhonov regularization can reduce noise in images 

while producing more reliable ones by damping out the small singular values from the system, but it 

may result in blurring or loss of details in reconstructions [69].  

Total variation (TV) regularization is another popular technique to promote sparsity or 

piecewise constant solutions [71]. This involves adding a penalty term proportional to the total 

variation of the solution, encouraging smooth transitions or edges. TV regularization helps 

preserve details in the reconstruction and also maintains the contrast. However, it may introduce 

artifacts in regions with high curvature. The objective functions added with TV regularization are: 
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  𝑔𝜎 = arg min
𝜎

{‖𝑉𝑚 − 𝑉(𝜎)‖2 + 𝜆𝑇𝑉(𝜎)}  (2.22) 

 𝑔𝛾𝜔
= arg min

𝛾𝜔

{‖𝑉𝑚 − 𝑉(𝛾𝜔)‖2 + 𝜆𝑇𝑉(𝛾𝜔)}    (2.23) 

 𝑔𝜀 = arg min
𝜀

{‖𝐶𝑚 − 𝐶(𝜀)‖2 + 𝜆𝑇𝑉(𝜀)}  (2.24) 

The total variation of electrical properties distribution TV(*) could be written as: 

 𝑇𝑉(∗) = |𝐿 ∗| ∫ ∇δ𝛔
 

Ω
 dΩ  (2.25) 

Where L is a sparse matrix that represents the edge information of the mesh used in reconstructions. 

Specifically, each row of matrix L represents one edge in the mesh, and each row contains two 

non-zero values of the edge length that correspond to the two elements connected by the edge. 

Here, lk is the length of the kth edge in the mesh, and the kth row of the matrix L is defined as: 

 𝐿𝑘 = [0, . . . , 𝑙𝑘, 0, . . . , −𝑙𝑘, 0, . . . ,0]  (2.26) 

2.3.1.2 Jacobian Matrix 

To solve the inverse problem in tomographic methods, The calculation of Jacobian matrix, 

or say the sensitivity matrix, is needed. The Jacobian matrix is used to calculate the gradient of the 

objective function, which represents the direction of the steepest descent in the search for the 

optimal solution. It could be further used in further one-step linearization algorithm as J, or in the 

nonlinear iterative algorithm as Ji: 

 𝐽𝑖 = − ∫ (∇𝜙𝑝
𝑖 )𝑇∇𝜙𝑞

𝑖 𝑑𝑥3
Ω

  (2.27) 



 

31 

 

For ERT and EIT, the entries of the Jacobian matrix are the derivatives of V(σ) or V(𝛾𝜔) 

with respect to the 𝜎 or 𝛾𝜔 in each finite element. Each row of the Jacobian matrix corresponds to 

a single measurement of the vector V(σ) or V(𝛾𝜔), and the corresponding ϕp and ϕq are the nodal 

electric potentials considering current passing through the pair of current injection electrodes p 

and current passing through the measuring electrodes q, respectively [62,69,71,73]. For ECT, ϕp 

and ϕq are the nodal electric potentials considering the two electrodes for the capacitance 

measurements are excited respectively [73]. The sensitivity matrix effectively interprets the 

influence of interior electrical properties in each element on every single measurement. Each 

element of the sensitivity matrix represents the sensitivity of a single measurement to changes in 

the distribution of internal electrical properties. By multiplying the sensitivity matrix with the 

vector of known electrical properties, data that would be measured at the boundary electrodes for 

a given electrical properties distribution could be predicted. Inversely, the interior electrical 

properties distribution could be calculated from known measurements using a sensitivity matrix. 

2.3.1.3 One-step Linearization and Nonlinear Iterative Algorithms 

One-step linearization is a computationally efficient approach for solving the inverse 

problem for tomographic methods. The linearization method involves approximating the 

sensitivity matrix, which describes the relationship between the internal electrical properties 

distributions and the measured voltage data, using a first-order Taylor series expansion. This 

approximation assumes that small changes in the internal conductivity distribution result in small 

changes in the measured voltage data, which can be represented by a linear relationship between 

the two [74]. The linear relationship is expressed with the sensitivity matrix Ji calculated at the 

current estimate of electrical properties distribution, and Ji stays the same during the reconstruction 

process. In this thesis, only the Tikhonov regularization method was utilized for the inverse 
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problem. Therefore, further discussions only focus on the inverse problem process with Tikhonov 

regularization. By solving the objective functions, the increment could be calculated for ERT, EIT, 

and ECT as follows, respectively: 

 Δ𝜎 = (𝐽𝑖𝑇
𝐽𝑖 + 𝜆𝑅𝑇𝑅)−1 ∙ 𝐽𝑖𝑇

∙ [𝑉𝑚 − 𝑉(𝜎𝑖)]  (2.28) 

 Δ𝛾𝜔 = (𝐽𝑖𝑇
𝐽𝑖 + 𝜆𝑅𝑇𝑅)−1 ∙ 𝐽𝑖𝑇

∙ [𝑉𝑚 − 𝑉(𝛾𝜔
𝑖)]  (2.29) 

 Δ𝜀 = (𝐽𝑖𝑇
𝐽𝑖 + 𝜆𝑅𝑇𝑅)−1 ∙ 𝐽𝑖𝑇

∙ [𝐶𝑚 − 𝐶(𝜀𝑖)]  (2.30) 

While the linearization method simplifies the relationship between the internal distribution 

and the measured voltage data, it also introduces errors due to the nonlinear nature of the problem. 

These errors can be reduced by using higher-order Taylor series expansions, or by using nonlinear 

iterative algorithms that do not require the linearization of the forward problem. The Gauss-

Newton iterative algorithm [54,69] is an effective way to maintain the nonlinearity of the problem. 

The algorithm uses a linear approximation of the forward problem to update the estimate of the 

internal distribution in each iteration. Instead of using the same sensitivity matrix, the algorithm 

calculates the sensitivity matrix Ji based on the current estimate of internal distribution using 

Equation (2.27), and the increment in each iteration could be calculated using Equation (2.28) - 

(2.30). The estimation of internal distribution for ERT, EIT, and ECT could be continuously 

updated: 

 𝜎𝑖+1 = 𝜎𝑖 + Δ𝜎𝑖+1  (2.31) 

 𝛾𝜔
𝑖+1 = 𝛾𝜔

𝑖 + Δ𝛾𝜔
𝑖+1  (2.32) 

 𝜀𝑖+1 = 𝜀𝑖 + Δ𝜀𝑖+1  (2.33) 
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The sensitivity matrix Ji+1 calculated based on the distribution in the i+1 step will be used 

to compute the increment in the following step. The reconstruction process continues until the 

error ratio, which is defined as the norm of the difference between the measurements and the 

calculated data from the forward problem, is not improving by 0.1% for the following iterations, 

then returns the final reconstructed distribution [52]. 

The main advantage of the Gauss-Newton algorithm is its ability to handle nonlinear 

problems and produce high-quality reconstructions with good spatial resolution and contrast. 

However, the algorithm can be computationally expensive due to the iterative calculation of the 

sensitivity matrix and the regularization term. 

2.3.2 Difference Imaging 

  Difference imaging is an imaging technique used in tomographic methods to improve the 

spatial resolution and contrast of reconstructed images. Other than absolute imaging, this technique 

involves subtracting two sets of measurements obtained under different conditions to isolate the 

changes in the internal conductivity distribution. The two sets of measurements correspond to two 

different electrical property distributions, which may be obtained at different time points where 

the electrical properties change, or at different frequencies where the electrical properties have 

different values. By subtracting the two sets of measurements, the resulting difference data contain 

information about the changes in the conductivity distribution between the two conditions. Hence 

the objective functions of the difference imaging for ERT, EIT, and ECT are: 

  𝑔𝛿𝜎 = arg min
𝛿𝜎

{‖𝛿𝑉 − 𝐽𝛿𝜎‖2 + 𝜆‖𝑅𝛿𝜎‖2}  (2.34) 

 𝑔𝛿𝛾𝜔
= arg min

𝛿𝛾𝜔

{‖𝛿𝑉 − 𝐽𝛿𝛾𝜔)‖2 + 𝜆‖𝑅𝛿𝛾𝜔‖2}   (2.35) 
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 𝑔𝛿𝜀 = arg min
𝛿𝜀

{‖𝛿𝐶 − 𝐽𝛿𝜀)‖2 + 𝜆‖𝑅𝛿𝜀‖2}  (2.36) 

 By solving the objective functions with one-step linearization or Gauss-Newton iterative 

algorithms as similar as in absolute imaging, the difference between the two distributions from the 

specific conditions, δσ, δγω, and δε, could be obtained and used for further damage 

characterizations. 

 Unlike the absolute imaging technique, difference imaging does not provide quantitative 

values that directly represent electrical properties distribution. However, it is possible to obtain 

quantitative information about severities from difference images by calibrating the data against a 

reference or using a priori information about the internal distribution. Moreover, difference 

imaging has several advantages over absolute imaging, including improved spatial resolution and 

contrast in the reconstructed images. This is because the use of difference data instead of the 

original data in the reconstruction process can help to isolate the changes in the internal 

conductivity distribution and improve the quality of the reconstructed images. It could be 

effectively used to detect and localize abnormalities in the internal distribution, while the resulting 

difference data can highlight areas where there are significant changes. In addition, difference 

imaging can also help to mitigate the effects of modeling errors and measurement noise. Since the 

difference data isolate the changes in the internal distribution, any modeling errors or noise that 

affect both sets of measurements equally will be canceled out in the difference data. This can lead 

to more accurate and robust reconstructions, particularly in situations where the noise or modeling 

errors are significant. 

 



 

35 

 

2.3.2.1 Time-difference Technique 

 Time-difference imaging involves subtracting two sets of measurements obtained at 

different time points, typically corresponding to the same object in different physical states. By 

subtracting the two sets of measurements, the resulting difference data can highlight changes in 

the internal electrical properties distribution over time caused by the stress or loading event [75,76]. 

The method is particularly useful in the detection and characterization of cracks, which are known 

to cause changes in the electrical properties of the material surrounding the cracks [44]. The 

resulting difference image can then be used to locate the position and extent of the defects in the 

structure. Overall, time-difference imaging is a valuable tool for detecting and localizing changes 

in the internal electrical properties distribution of structures and can provide important information 

for assessing the health and safety of a system. 

2.3.2.2 Frequency-difference Technique 

 Frequency-difference technique, unlike the time-difference technique that could be easily 

applied to all three tomographic methods, is usually adopted in the EIT process. In frequency-

difference imaging, two sets of measurements are obtained at different frequencies, typically using 

a range of excitation frequencies or harmonic frequencies. This imaging technique is primarily 

effective for materials that exhibit a frequency-dependent response, such as some composite 

materials or frequency-dependent conductive nanomaterials. In these materials, changing 

excitation frequencies can result in variations in the electrical properties distribution of the material 

as a function of frequency.  

To fulfill the frequency-difference technique, first, the complete set of boundary voltages 

(Vω
i) (i.e., for Ω with an assumed complex conductivity distribution (γω

i) corresponding to an ith 



 

36 

 

condition) is obtained by injecting current with frequency ω across different unique pairs of 

boundary electrodes in the forward problem process. The adjacent, opposite, or diagonal current 

injection pattern can all be used to interrogate Ω, but only the adjacent current injection pattern 

was utilized in this thesis. It should be mentioned that the fdEIT forward problem can be used to 

solve for boundary voltages, Vωa
i and Vωb

i, which correspond to an ith damaged state with different 

current injecting frequencies ωa and ωb. Because the complex conductivity in damage region is 

always 0 S/m while the frequency-dependent conductive surrounding is changing with excitation 

frequency, the different distribution γωa
i and γωb

i are measured when currents with different 

frequencies are injected respectively. The change in conductivity distribution between those two 

states (δγ) can also be used to solve for the corresponding boundary voltage difference, δV [27,28]. 

During the inverse process, measurements are obtained under two excitation frequencies. 

By subtracting the two sets of measurements, the resulting difference data could be used to 

reconstruct the difference images for highlighting changes in the internal electrical properties 

distribution as a function of frequency. The damaged state could be extracted from it as the 

electrical properties in the crack or damaged regions would stay the same even when interrogated 

using different frequencies of excitation signals. 

2.4 Deep Artificial Neural Network 

The classical EIT method for solving the inverse problem is usually time consuming and 

computationally intensive. Especially, in the model-based tomographic method, the nodal 

potentials of each finite element in each excitation scheme are required to calculate the Jacobian 

matrix J, which is computationally intensive [31]. Moreover, the chosen of one-step linearization 

algorithm could not capture the nonlinearity of the tomographic problems and the employment of 
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the regularization method may also not successfully reconstruct the topological images because of 

the difficulty to select an optimal hyperparameter [24,29].  

In contrast, data-driven methods, such as the deep ANN method, can avoid the 

computationally intensive calculation of the Jacobian matrix while preserving the nonlinearity of 

the reconstruction process as compared to a model-based tomographic approach with one-step 

linearization [25]. An ANN or a deep ANN framework, consisting of multiple layers connected 

with edges and nonlinear activation functions in neurons, can adapt to the nonlinear electrical 

tomographic problem and improve reconstructed images with higher accuracy [25,26]. During 

training, the weights for the neurons and edges would be updated to conform to the data. This 

approach has shown promise in improving the accuracy and speed of tomographic image 

reconstruction, making it a potentially valuable tool for NDT on advanced structures. 

2.4.1 ANN Architecture 

The basic structure of an ANN consists of three types of layers: an input layer, one or more 

hidden layers, and an output layer. In the case of a deep ANN, there are multiple hidden layers 

between the input and output layers, allowing for a more complex and hierarchical representation 

of data. The input layer receives the data and passes it to the hidden layers for processing. The 

 

 

 

Figure 2.1: A simple ANN is illustrated. 
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hidden layers are responsible for extracting meaningful features from the input data, and the output 

layer produces the final prediction based on the learned features. Each layer of an ANN consists 

of multiple nodes or neurons that are interconnected. Each neuron receives input from the neurons 

in the previous layer and produces an output that is passed to the neurons in the next layer. The 

connections between neurons are weighted, and the weights are learned during the training process 

to optimize the performance of the network.  

To introduce nonlinearity into the model, activation functions are applied in the network. 

The activation function is applied to each neuron in the hidden layers of the network. It takes the 

weighted sum of the inputs and bias of a neuron and applies a nonlinear transformation to produce 

an output value, which is then passed to the next layer or the output of the network. The activation 

function introduces nonlinearity into the network, which is essential for modeling complex, 

nonlinear relationships between inputs and outputs [66]. Without an activation function, a neural 

network would simply be a linear regression model. The choice of activation function depends on 

the problem being solved and the characteristics of the data. For example, sigmoid and tanh 

functions are often used in deep ANN because they are smooth and differentiable, which allows 

for efficient gradient-based optimization during training. On the other hand, ReLU (Rectified 

Linear Unit) is often used in the output layer because it is simple and computationally efficient. 

Here in this thesis, ELU (Exponential Linear Unit) is utilized for the tomographic problems 

because computational efficiency and its ability to maintain negative values. 

The deep ANN architectures used in this thesis consist of an input layer, four hidden layers, 

and an output layer. The input layer for each tomographic method corresponds to a whole set of 

measurements, while the output layer corresponds to the conductivity, complex conductivity, or 

electrical permittivity values of finite element in the region of interest, or localized damage 



 

39 

 

coordinates. After the input layer, batch normalization was performed, followed by the fully 

connected hidden layers that implement an exponential linear unit activation function. At the end 

of the network, one last fully connected layer operated as the output layer for regression, without 

any activation function. 

The forward propagation of the deep ANN in the hidden layers can be expressed as: 

 𝑥𝑙 = 𝑒𝑙𝑢(𝑊𝑙𝑥𝑙−1 + 𝑏𝑙) (2.37) 

where xl and bl are the output and the bias vectors of the lth layer, respectively, while elu(*) 

represents the exponential linear unit activation function. The matrix Wl represents the weights 

associated with the connections between the neurons of the l-1th and lth layer. The sizes of xl, bl, 

and Wl differ between l = 1 and l = 5 due to the varying number of neurons in the input and output 

layers.  

2.4.2 Training Process 

 Obtaining large amounts of real-world data for training the ANN model can be challenging 

and time-consuming. In this thesis, the training set for a deep ANN is obtained using synthetic data 

from the forward problem solver. First, damage in arbitrary locations would be generated while 

causing the change of electrical properties distribution, then the simulated measurement on the 

specific distribution will be calculated from the solver. During training, the deep ANN adjusts its 

weights and biases to minimize the difference between the predicted and actual conductivity 

distribution, based on the synthetic data generated by the forward solver. The entire weight set Wl 

= {W1, …, W5 } is determined during the training procedure using the sets for ERT, EIT, and ECT 

respectively as follows: 
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 𝑊 = arg min
𝑊

{‖𝛿𝜎 − 𝑥(𝑊, 𝛿𝑉)‖2}  (2.38) 

 𝑊 = arg min
𝑊

{‖𝛿𝛾𝜔 − 𝑥(𝑊, 𝛿𝑉)‖2}  (2.39) 

 𝑊 = arg min
𝑊

{‖𝛿𝜀 − 𝑥(𝑊, 𝛿𝐶)‖2}  (2.40) 

Once the ANN is trained, it can be used to reconstruct the electrical properties distribution 

from new measurements obtained from a subject. This approach can be effective in solving the 

inverse problem of tomographic methods in practice. However, it is important to note that the 

accuracy of the reconstruction depends on the quality of the training data and the assumptions 

made by the forward solver. 

2.5 Summary and Conclusion 

This chapter introduces the mathematical background and numerical techniques used in 

ERT, EIT, and ECT for reconstructing the distribution of electrical properties. The methods allow 

for identifying regions of damage or strain based on changes in electrical properties. Classical 

solvers based on the FEM are discussed, along with the forward and inverse problems. In the 

inverse problem, absolute and difference imaging methods are explored, with absolute imaging 

offering quantitative reconstructions for assessing the severity of damage and difference imaging 

effectively compensating for measurement errors. Additionally, data-driven approaches using 

deep ANN are introduced, enabling fast and accurate reconstruction without intensive 

computations. These methods demonstrate the versatility and effectiveness of tomographic 

techniques in detecting and visualizing damage in various materials and structures. 

 

  



 

41 

 

CHAPTER 3 2D ERT FOR DAMAGE DETECTION ON ANISOTROPIC CFRP 

COMPOSITES 

 

3.1 Introduction 

The ERT method can effectively detect and locate damage in CFRP laminates due to the 

correlated electrical and mechanical fields created by the conductive carbon fibers within the 

material. Reconstructed conductivity maps could be efficiently transferred to damage state maps 

because of relation between electrical conductivity decrease and defects such as damages, fiber 

fracture and delamination [59]. However, electrical anisotropy is inherently generated in CFRP 

laminate with oriented carbon fibers and complex electrical mechanism from ply to ply. Therefore, 

a scalar conductivity distribution produced by classical ERT would include artifacts and 

inaccuracy if electrically anisotropic objects are involved and could not totally reveal the general 

damage state. Nonn et al. [77] discovered inescapable artifacts and shift of the reconstructed 

damage when applied classical ERT on damage localization of a anisotropic composite laminate. 

Many research recently conducted attempted to improve ERT solutions on anisotropic objects. 

Hamilton et al. [78] used a unique conductivity to represent the whole conductivity tensor, and 

Zhao et al. [79] connected determinant of the strain tensors to the ERT reconstructed scalar 

conductivity. Abascal et al. [80] conducted ERT on simulations of brain imaging function with the 

eigenvector ratio of conductivity tensor affixed. Gao et al. [81] utilized the method for damage 

detection on a 2.5D C/SiC composites, but determined the anisotropic conductivity tensor with 

additional long-strips samples. Hence an integrated non-destructive damage localization method 

including electrical anisotropy characterization and the difference between using classical and 

anisotropic ERT on electrically anisotropic objects are worthy of research and discussions.   
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In this chapter, anisotropic ERT was used to localize damage (in the form of holes) in 

electrically anisotropic CFRP laminates. The anisotropic conductivity tensor was first 

experimentally examined with non-destructive Montgomery method, then the fixed conductivity 

tensor ratio was leveraged to solve this inherently anisotropic ERT problem. Except the complex 

anisotropy inherently generated in CFRP laminates, electrical contacts are an additional 

experimental challenge for successfully examining CFRP laminates with the anisotropic ERT 

method. Instead of using standard silver paint or silver epoxy contacts, rivets were chosen as 

electrode contacts because of their contact stability, wide utilization as protection element in CFRP 

structures, and elimination of additional elements [82]. The performance of damage localization 

with anisotropic ERT was compared to classical ERT and the reconstructions were evaluated with 

position errors and shape deformation factors. 

3.2 Methods 

3.2.1 Anisotropic solver 

In a general case, σ is generally a tensor rather than a scalar. For electrically isotropic object, 

a scalar conductivity reconstruction could represent the electrical property distribution. 

Nevertheless, classical ERT is not sufficiently capable to deal with electrically anisotropic material 

such as composite laminates discussed in this paper. In anisotropic ERT, the governing equation 

of ERT mechanism should be: 

  ∇ ∙ (𝝈∇𝜙) = 0 in Ω (3.1) 

with σ as a tensor. Given the inherent electrical anisotropy of the composite laminate and near zero 

conductivity of damage holes, only variation of the tensor with fixed eigenvectors and eigenvalue 

ratios was considered here, such that σ equals γσ0 [80]. σ0 is a dimensionless fixed tensor inherently 
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given from the material properties. Its determinant det(σ0) equals 1, thus γ could be used as the 

representative conductivity for anisotropic materials. The forward problem operator in anisotropic 

ERT produces adjusted voltage responses based on Equation (3.1), and the construction of 

sensitivity matrix is modulated as: 

 𝐽𝛾 = − ∫ (∇𝜙𝑝)
𝑇

𝝈0∇𝜙𝑞𝑑𝑥2
Ω

 (3.2) 

with respect to representative conductivity γ. As same in classical ERT, Gauss-Newton iterative 

algorithm was also adopted here to obtain addition of representative conductivity ∆γ in each step 

until certain criterion was satisfied. After subtracting γ reconstruction of pristine state from 

damaged state, the defect distribution could be extracted given that defects like damage holes 

lessen local conductivity.  

3.2.2 Montgomery Method 

The anisotropic electrical property of the CFRP composite laminate was characterized for 

analysis of electrical behavior and modelling with conductivity fixed tensor. Montgomery method 

was adopted here owing to its non-invasive four-probe measurement approach which determines 

anisotropic conductivities of the object with only one specimen [79,83]. On the account of applied 

electrical current traveling in combination of three axes instead of only one principal direction, 

anisotropic conductivities are always evaluated through resistance tests of multiple long-strip 

samples. Except for inconvenience, those tests conducted on separate samples could be marred by 

low signal-to-noise ratio caused by high contact resistance of conventional electrodes attachments 

and low resistivity of individual carbon fibers, hence unmatched results [77,81]. Montgomery 

method takes advantage of the theorem that an anisotropic object could be hypothetically 

transformed into an equivalent with isotropic resistivity and alterative dimensions whose length 
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ratios are correlated to resistance ratio of the anisotropic object, i.e., L1' = L2', σ1 ≠ σ2, and L1 ≠ L2, 

σ1 = σ2 as shown in Figure 3.1. The transformation is associated with equivalent electrostatic 

potentials dropping and the depth to which current flow within the object [83]. In this chapter, the 

process was simplified to two-dimensional (2D) anisotropic resistivities characterization with σ1, 

σ2 and σ12, because only laminated material and in-plane spatial conductivity were investigated.  

The normal conductivities were calculated through Montgomery measurements with four 

electrodes on the corner of one face of the square-shaped pristine CFRP laminates. Currents were 

applied through the electrode contacts on two neighboring corners, longitudinally and transversely, 

and voltage measurements were conducted between contacts on the other two corners. The normal 

conductivities σ1 and σ2 could be calculated based on the isotropic equivalent as [77,79,83]:  
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Figure 3.1: Four-probe Montgomery measurements on an anisotropic object are transformed to its isotropic 

equivalent. 
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where d is the specimen’s thickness, U1, U2 and I1, I2 are voltage responses collected and currents 

injected in the transverse and longitudinal direction, respectively.  

Measuring electrical anisotropy in principal crystallographic directions make the four-

probe Montgomery method appropriate for anisotropy characterization of the [0°/90°/0°] layup 

composite laminate, given the high coincidence between global coordinate axes and electrically 

principal axes of the laminate [83]. However, the principal axes would shift from the global 

coordinate axes slightly with a small angle θ due to manufacture errors like carbon fiber and ply 

misalignments. So, the measured conductivity tensor σ would differ from the perfectly orthotropic 

σ' with relations shown in Equation (3.6).  

 
𝝈 = 𝑇𝝈′𝑇𝑇 = (

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

) (
𝜎1

′ 0

0 𝜎2
′) (

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

) =

(
𝜎1

′ cos2 𝜃 + 𝜎2
′ sin2 𝜃 (𝜎2

′ − 𝜎1
′) cos 𝜃 sin 𝜃

(𝜎2
′ − 𝜎1

′) cos 𝜃 sin 𝜃 𝜎2
′ cos2 𝜃 + 𝜎1

′ sin2 𝜃
)  

(3.6) 

 

Hinckley et al. [84] and Yurgartis et al. [85] found that fiber misalignments of prepreg is usually 

axially symmetric, and ply orientation of high-quality commercial laminates could be maintained 

within two degrees of stated nominal value. Considering the small angle variation which 

maximumly would only results approximate 0.05 change on shear conductivity and 0.005 change 

on normal conductivities, σ could assume to be approximating σ' in this study. In Section 3.3, the 

influence of misalignments in ERT measurements was detailed described which substantially 

stands for the feasibility of conductivity tensor approximation. With assumption that electrical 

principal axes coincide with global axes, the conductivities components of CFRP laminates were 

measured with Montgomery method as σ1 = 11.77 (Ωmm-1) and σ2 = 6.35 (Ωmm-1). The 
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conductivity ratio of σ11/ σ22 = 1.85, which is close to the theoretical value of 2 (classical laminate 

theory) for the [0°/90°/0°] stacked laminates.  

3.3 Simulation Details and Results 

3.3.1 Damage Localization Simulation Results  

To examine the feasibility of this anisotropic ERT solver to localize damages on the 

anisotropic CFRP composite laminate, simulations were conducted in advance. A 2D model was 

built in Abaqus with dimension 250×250 mm2, and 16 electrodes were equidistantly spaced on the 

boundary. A supposed circular hole damage was imposed in the plate which theoretically reduce 

conductivity inside the circle to nearly zero. Linear triangular elements were leveraged here for its 

fast operability and adaptability for different shapes. First, isotropic material was considered for 

evaluation the functionality of the ERT solver. The reconstruction process was conducted with 

Gauss Newton iterative algorithm based on voltages measurements from opposite injection pattern. 

Then, simulation tests were conducted to evaluate capability of classical and anisotropic ERT on 

anisotropic plates. The pristine state is an anisotropic plate with electrical conductivity ratio of 

1.85:1 in two directions, and the damaged state is the plate with a damage hole where 

representative conductivity γ was set to 0. At last, the influence of ply misalignments was 

considered in simulation to evaluate our approximation was of reason. 

The functionality of ERT solver on an isotropic material is shown in Figure 3.2a, the 

reconstructed representative conductivities were normalized by the maximum amplitude. And the 

errors between simulated voltages V(σ) and target voltages Vm in iterations shown in Figure 3.2b 

validate the high performance of Gauss-Newton optimization method. The reconstructed 

conductivity distribution perfectly reveals the position and size of the hole damage, which 
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substantially support the performance of the iterative ERT solver. To systematically study how 

electrical anisotropy influences ERT reconstruction results, three fixed conductivity tensors were 

considered to simulate voltage measurements. In Equation (3.7), σ0' and σ0'' expressed the 

anisotropy resulted from unequal number of plies in principal directions, and σ0''' considered the 

anisotropy resulted from maximum ply misalignments.  

 𝝈0
′ = (

0.735 0
0 1.360

) , 𝝈0
′′ = (

1.360 0
0 0.735

) , 𝝈0
′′′ = (

1.354 −0.014
−0.014 0.732

) (3.7) 

 

Performances of classical and anisotropic ERT solver on the anisotropic laminate were both 

evaluated by criteria proposed by Adler et al. [86]. The elements with negative conductivity lower 

than one-fourth of minimal conductivity value were regarded as being within the defected region 

corresponding to a damage hole. The position error was exhibited as the distance between center 

of actual imposed damage hole and the centroid of the reconstructed defect region. The shape 

deformation factor determined by the areal portion of reconstructed defect region that was not 

   

(a) (b) 

 
Figure 3.2: (a) Reconstructed representative conductivity distribution of a damaged isotropic material using 

classic EIT solver. The hole damage center is marked by a white ‘+’, and the EIT damage center is marked 

by a green ‘o’. (b) Errors between simulated voltages Vc and dummy measured voltages Vm with iterations. 
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included in the equal-area circle, represented by the black dashed line in reconstructions, could be 

recognized efficiently in the images. These criteria are commonly used in resolution evaluation of 

ERT method and speak volumes in anisotropic ERT study [77,87].  

The reconstructions of representative conductivity γ distribution with opposite current 

injection pattern are shown in Figure 3.3. Detailed discussion of current injection patterns would 

be stated in Section 3.3.2 and Section 3.4 with experimental data. With anisotropic materials, 

classical ERT could reconstruct a rough location of the damage hole (Figure 3.3a, 3.3c, 3.3e and 

3.3g), however, the results are with significant distortion and inaccuracy. Not only the shape of 

damage holes got stretched, also unexpectable noises were induced around the damage area. When 

using classic ERT to solve data obtained from σ0 = σ0', where the conductivity is higher in direction 

2 than in direction 1, the reconstructed damage was elongated in direction 2 while squeezed in 

direction 1. Similar phenomenon is shown in Figure 3.3c and 3.3g with measurements calculated 

from a plate with σ0 = σ0''. Moreover, the bright artefacts shown in the first and third columns of 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

 

Figure 3.3 Representative conductivity γ distributions were reconstructed with simulated measurements 

with conductivity fixed tensor σ0 = σ0' (first and second columns) and σ0 = σ0'' (third and fourth columns) 

by using classical EIT (first and third columns) and anisotropic EIT (second and forth columns). The 

damage holes were localized near the boundary (first row) and in the center (second row). The imposed 

damage center and EIT damage center are marked by a white ‘+’ and green ‘o’ respectively. 
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Figure 3.3 may provide false information in decision-making step by mistakenly being recognized 

as mechanically generated conductivity increase. Anisotropic ERT solver with initially built-in 

fixed conductivity tensor σ0' or σ0'' that perfectly avoided the reconstruction distortion and shift of 

damage center, shown in the second and fourth columns of Figure 3.3. However, the results were 

still influenced by sensitivity difference in the domain. Due to the low sensitivity in the center, the 

reconstructions of holes shown in the second row of Figure 3.3 exhibit stretches with certain levels 

even if utilizing anisotropic ERT.  

Voltage measurements generated from a plate with σ0 = σ0''' that included maximum 

possible ply misalignments were also tested here. The reconstructions of γ distribution solved by 

anisotropic ERT with approximate conductivity fixed tensor σ0'' which neglected ply 

misalignments are shown in Figure 3.4a and 3.4b. The images exhibit great coincidence with 

reconstructions in Figure 3.3d and 3.3h. This consistency demonstrates that assumption of 

coincidence between electrical principal axes and global axes does not influence ERT 

  
(a) (b) 

 

Figure 3.4: Representative conductivity γ distribution were reconstructed with simulated measurements 

with conductivity fixed tensor σ0 = σ0''' by using anisotropic EIT with built-in tensor σ0 = σ0''.  (a) A damage 

hole was located near boundary and (b) a damage hole was in the center. The supposed damage center and 

EIT damage center are marked by a white ‘+’ and green ‘o’ respectively. 
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reconstruction of the [0°/90°/0°] composite laminate used in this chapter. Hence, the small errors 

resulted from ply misalignments could be neglected for convenience in the following discussions.  

3.3.2 Anisotropy discussion in simulation 

The electrical anisotropy tends to alter current flow in the plate towards the direction with 

higher electrical conductivity, which differentiates the electrical field and voltage measurements 

from the one generated in an isotropic material plate. Thus, simply utilizing classical ERT solver 

with voltage measurements of anisotropic objects easily produces distorted reconstruction. The 

normalized differences between simulated voltage measurements in an isotropic plate and an 

anisotropic plate with fixed tensor equal to σ0'
 were calculated and plotted in Figure 3.5. Significant 

normalized differences of voltage responses arise from the electrically anisotropic model, and the 

high normalized differences were generated from voltage measurements far away from the pair of 

current injection electrodes. These low measurements play a more important role in the inverse 

problem than measurements with larger response because they include more extensive interior 

information.  

 

   

(a) (b) (c) 
 

Figure 3.5: Normalized differences of simulated voltage responses between an isotropic model and an 

anisotropic model with (a) adjacent pattern, (b) diagonal pattern, and (c) opposite pattern were plotted. 
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3.3.3 Current injection patterns 

The delicacy of voltage measurements renders the difficulties of ERT reconstruction in 

practice considering experimental noise. Besides reducing noise by enhancing data acquisition 

(DAQ) system, choosing current injection pattern with high sensitivity is required to minimize 

signal to noise ratio (SNR) in practice. Sensitivity map reveals how one specific measurement 

responds to disturbance from each element, which assist to visualize highly sensitive area in the 

region of interest. To discuss sensitivity among three different current injection patterns, the 

sensitivity map for each measurement were overlaid in addition and normalized by Equation (3.8) 

and (3.9). Here, Jsum is normalized sensitivity in addition, i and k mean each measurement and each 

element, and n is the number of total measurements.  

 𝐽(𝑖𝑘) =
∆𝑉𝑖

∆𝛾𝑘
 (3.8) 

 𝐽𝑠𝑢𝑚(𝑘) =
∑ 𝐽(𝑖𝑘)

𝑛
𝑖=1

𝑛
 (3.9) 

Figure 3.6 demonstrates a unit change of electrical conductivity of a single element reacting on the 

set of boundary measurements in total for each pattern. Sensitivity reaches to highest on the 

boundary and mitigate to the center for all patterns. High sensitivity speaks volumes in practice 

    

(a) (b) (c) 
 Figure 3.6: Normalized sensitivity maps in summation with (a) adjacent pattern, (b) diagonal pattern, and 

(c) opposite pattern were plotted. 
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with more reliable experimental data and further accurate reconstruction images. In opposite 

pattern, current is injected between electrode pairs positioned horizontally or vertically, while in 

diagonal pattern current is injected 45° or -45° angle across the domain. They both provide higher 

spatial sensitivity over the entire material than adjacent pattern because of current spreading 

[81,88]. The performance of three injection patterns will be further exhibited in Section 3.4 with 

experimental data. 

3.4 Experimental Details and Results 

3.4.1 Experimental Details 

The defect detection ability of anisotropic ERT solver was evaluated experimentally with 

commercial electrically anisotropic CFRP composite laminate. Sixteen electrodes with rivets 

contact were installed on the boundary of the CFRP composite laminate plate, with four on each 

side. The contact between rivets and the laminate was improved by conductive silver grease which 

offered stable contact impedance. Cuts were made on the edges between electrodes to prevent 

short circuits between adjacent rivets and enhance electric field propagation in the whole domain. 

Those rivets were directly connected to a multiplexer and a microcontroller for current injection 

and voltage measurements depending on different current injection patterns. Currents of 10 mA 

were injected in the specific pairs of electrodes by a Keithley 6220 precision current source and 

voltages were measured by a Keithley 2182A nanovoltmeter (Figure 3.7a). Delta mode was 

utilized to couple the current source and nanovoltmeter because it ensured reduced 

noise and accurate measurements by eliminating the effects of thermal offsets. A 5 mm hole 

(around 0.03% of the plate area) was drilled in the plate as a damage in the damaged state. The 

hole was enlarged to 15 mm (around 0.3% of the plate area) in the second damaged state (Figure 
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3.7b). Adjacent, diagonal and opposite current injection patterns were all conducted, and the 

average of two measurements for each pattern were employed for noise reduction. 

3.4.2 Experimental voltage measurements 

The model was completely rebuilt to imitate the real plate. Voltages on the boundary were 

generated from the FE method solver and compared with experimental measurements. The voltage 

measurements in the pristine state and voltages from the anisotropic model for all three patterns 

are shown in Figure 3.8. Considering the error of electrodes installation, inaccuracy introduced by 

environmental noise and complexity of current flow in actual 3D composite plate, mismatches that 

  

(a) (b) 

 Figure 3.7: (a) The CFRP laminate was examined by EIT data acquisition (DAQ) system in the pristine 

state [14]. (b) The CFRP laminate was drilled with a 15 mm hole inside. 

 

    

(a) (b) (c) 

 
Figure 3.8: Simulated voltages were compared to experimental voltage measurements with (a) adjacent 

pattern, (b) diagonal pattern, and (c) opposite pattern. 
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varies experimental data from modeling measurements. However, the mismatches are admissible 

because only the difference between pristine and damaged states would make an impact.  

The existences of damages such like cracks, delamination and fiber fractures would change 

spatial mechanical and electrical properties of the composite, alter electrical field propagation and 

hence different voltage responses from pristine state measurements. Assuming there was no other 

influence on the structure, the voltages change corresponding spatial conductivity change could 

certify presence of damages. In this study, only a damage hole where electrical conductivity was 

nearly zero was drilled. In opposite pattern measurements, the maximum voltage difference 

between pristine and damaged states is in the range 10-4 V, which is quite small compared to the 

maximum voltage that is in the range 10-2 V. These small variations were resulted from the interior 

low sensitivity and may be damaged with noises. Therefore, image artefacts are usually unable to 

be eliminated in ERT reconstructions with experimental data.  

3.4.3 ERT Results with Experimental Data 

Anisotropic ERT and classical ERT were both employed with the experimental data to 

detect the damage hole in the plate. To improve the reconstruction results, regularization 

hyperparameter (λ) which influences the reconstruction quality should be optimized. Low λ value 

ensures higher level of diffusion and spatial resolution toward center of the domain by promoting 

small singular value decomposition (SVD) components which contain more information away 

from boundary electrodes. However, overweighting small SVD components may generate 

reconstruction without physical meaning due to noise contamination [58]. The shown 

reconstructions were solved with the optimal hyperparameter selected by L-curve method which 

balances the norm of (dγ) versus the norm of minimizing penalty part (Jdγ-dV). The optimal 
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hypermeters selected in this chapter for adjacent, diagonal, and opposite pattern were 10-10, 10-8 

and 10-5 respectively. Besides, choosing proper current injection pattern which enhances image 

quality would benefit diagnosis in the decision-making procedure. The representative conductivity 

reconstruction normalized by the maximum value generated with measurements from three 

patterns are shown in Figure 3.9. The first row with reconstructions from classical ERT solver 

exhibits large position errors, shape deformations and areal noises for every current injection 

pattern. Reconstruction with adjacent pattern (Figure 3.9a) are with an elongated damage and 

artificial defects downside. Likewise, reconstructions with diagonal and opposite patterns shown 

in Figure 3.9b to 3.9c display damage shift, shape deformation and bright noises with positive 

value outside of the defected hole. These outer noises originally express different meshed elements 

responding to the boundary electrical potential change, which are usually with relatively small 

values compared to values of real defects. Nevertheless, the measurements did not conform to the 

   
(a) (b) (c) 

   

(d) (e) (f) 

 
Figure 3.9: Representative conductivity distributions were reconstructed with (a)-(c) classical EIT solver 

and (d)-(f) anisotropic solver. The first, second and third columns respectively correspond to adjacent, 

diagonal, and opposite pattern. The actual damage center and EIT damage center are marked by a white 

‘+’ and green ‘o’ respectively. 
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classical ERT model due to the disturbance of electrical anisotropy and produced noises which 

were hard to be characterized as numerical errors or mechanical conductivity increase such as 

compressive overstrains.  

The reconstructions solved by anisotropic ERT shown in Figure 3.9d to 3.9f exhibit more 

coincidence with circular damage hole and less artifacts beyond the defected hole. Consistent with 

the sensitivity study shown in Figure 3.6, the results solved with measurements from the opposite 

and diagonal patterns eclipse results with measurements from the adjacent pattern, expressing 

smaller position error and less shape deformation in the direction of higher conductivity. Except 

from the error induced by noises from experimental measurements, the low sensitivity in the 

damage hole location and neglect of through thickness anisotropy explain the imperfection of 

reconstruction produced by anisotropic ERT solver. These results are consistent with 

reconstructions in Section 3.3.1, shown in Figure 3.3h, where the reconstructed damage hole 

remains shape deformation even with anisotropic ERT solver due to the low central sensitivity. 

From Nonn et al. [77], solutions form classical ERT with measurements generated by a detailed 

3D model shows higher consistent artefacts with experimental results than leveraging a 2D model. 

This demonstrates the existence of artefacts beyond region of the hole even with anisotropic ERT 

solver. In general, the reconstruction with measurements from the opposite pattern exhibits better 

spatial accuracy with small position errors, shape deformation, and less artefacts among these three 

current patterns. Therefore, the opposite pattern was used for following study. 
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According to the comparison above, anisotropic ERT solver displayed superior 

performance than classical ERT on anisotropic materials. While damage detection in composite 

laminates consists of not only the localization of defects but also the evaluation of deterioration 

degree. Thanks to a 5mm hole (0.03% of the plate area) and a 15mm hole (0.3% of the plate area) 

were drilled in sequence during the experiments, the two sets of data were inputted in the solver 

for severity diagnosis. The reconstructed representative conductivity was normalized with the 

maximum absolute value obtained from the damaged case with a 15 mm hole, as thus the 

comparisons were clearly revealed. It is clearly shown the diameter of equal-area circle in the 

reconstruction with a 15 mm hole is around 3 times of the one with a 5 mm hole, expressing the 

anisotropic ERT solver has potential to quantitively evaluate the damage propagation in composite 

laminates. The reconstructed image shown in Figure 3.10b with a 15 mm damage hole approached 

the realistic situation more with a smaller position error, which was benefited from its greater 

responses in boundary voltage measurements due to the damage.  

 

  
(a) (b) 

 Figure 3.10: Representative conductivity distributions of composite laminates with (a) a 5 mm hole and (b) 

a 15 mm hole were solved by using the opposite pattern measurements. The actual damage center and ERT 

damage center are marked by a white ‘+’ and green ‘o’ respectively. 
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3.5 Conclusion 

This chapter proposed an integrated non-destructive anisotropic characterization and ERT 

solver for defect detection on an electrically anisotropic CFRP laminate. The anisotropic properties 

resulted from UD plys and misalignments were also considered and investigated. The anisotropic 

ERT solver exhibited better performance on damage assessment of the CFRP laminate than 

utilizing classical ERT, producing solutions with much less shape deformations, position errors 

and artefacts. The advantages of this solver on anisotropic material compared to classical ERT 

were discussed both in simulation and experiments. Besides, different current injection patterns 

were investigated, and the opposite pattern showed excellent ability to accurately localize and 

quantify defects far away from boundary electrodes than adjacent and diagonal patterns. The 2D 

ERT solver could efficiently reconstruct conductivity distribution corelated to defects distribution, 

however, errors generated from neglect of through-thickness anisotropy limit its performance in 

material damage assessment. In the future study, a 3D anisotropic ERT method with detailed 

model needs to be developed, and the ability of ERT method on detecting defect propagation 

should be investigated.  
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CHAPTER 4 MULTI-DEFECT DETECTION IN ADDITIVELY 

MANUFACTURED LATTICE STRUCTURES USING 3D ERT  

4.1 Introduction 

Lattice structures are 3D configurations of interconnected struts and nodes that offer 

superior mechanical, thermal, and electrical properties compared to conventional materials [3,13]. 

They are widely used in various industries due to their high strength-to-weight ratios  [4–6,11]. 

AM techniques have enabled the fabrication of intricate lattice structures, but their performance is 

highly dependent on manufacturing quality [27,28]. Minor defects such as clogs, voids, and 

thermo-mechanical issues can compromise the structural integrity of the part, leading to failure  

[19]. Therefore, identifying the locations and severities of defects and damage is required, whether 

they occur during manufacturing or while in service. 

This chapter aims to leverage 3D ERT to directly detect and accurately identify the 

locations of damaged struts in cellular lattice structures. ERT aims to reconstruct the conductivity 

distribution of a conductive target that is directly correlated to damage or strain states by using 

only boundary electric potential measurements [52,53]. The utilization of a target’s 

electromechanical properties exempts inspection from complex operations [52,57].  

A major challenge when using electromagnetic tomographic methods is that the accurate 

reconstruction of electrical properties (e.g., conductivity) distribution around the interior of the 

target is challenging due to the lower sensitivity of measurements in its interior versus near the 

boundaries [89,90]. This limitation may cause inaccurate localization and quantification of defects 

and may be even more severe for open cell lattice structures. To solve this problem, Baltopoulos 

et al. [58] proposed reserving smaller SVD components of the sensitivity map for efficient 

conductivity reconstruction of the center region by choosing a smaller hyperparameter, but this 
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solution may introduce additional artifacts in the region of interest, hence deteriorating 

reconstruction quality. Li et al. [90] used a normalized sensitivity map to compensate for the low 

central sensitivity, but the proposed normalized methods are element-based and are 

computationally intensive. The element-based normalization is effective for detecting 

perturbations with large-area conductivity change. However, the method is not as effective for 

small-area defects, such as small defects in open cell lattice structures with small cross-section 

struts, where reconstructions would still suffer from image artifacts. These image artifacts may 

result in inaccurate defect detection or incorrect decisions. Thus, to improve reconstruction 

performance with respect to small perturbations, the normalized sensitivity map should be adjusted 

to be capable of compensating for low central sensitivity and restraining image artifacts. 

In this chapter, a high-throughput, 3D, iterative, absolute conductivity distribution ERT 

system was presented for identifying single and multiple damaged struts in conductive cellular 

lattice structures. The significance of this work is that the ERT algorithm employs a strut-based 

normalized map that preconditions the sensitivity map for enhancing conductivity reconstruction 

sensitivity while mitigating artifacts due to the ill-conditioning of the ERT inverse problem. The 

efficacy of this method was assessed by quantifying the relationship between damage severity and 

the corresponding reconstructed conductivity changes. Both numerical simulations and 

corresponding experiments of cellular lattice structures with different damage features were 

performed. To demonstrate that ERT could examine conductive cellular lattice structures, 

experiments were performed using 3D-printed polymer cellular lattice structures, which were then 

coated with a soluble, sacrificial, and electrically conductive nanocomposite thin film. Damage 

scenarios with single and multiple damaged struts were considered. 
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4.2 Theory and Methods 

It is known that localized damage (e.g., voids, cracks, or broken parts) in the target can 

prevent or limit electric current propagation through that specific region. Therefore, identifying 

the magnitudes and locations of localized conductivity changes in reconstructions would enable 

direct visualization of damage severity and their respective locations. In this section, the theory of 

the adjusted absolute ERT method is introduced first. Then, the strut-based normalized sensitivity 

map and the quantitative defect detection method are discussed in detail.  

4.2.1 Adjusted Absolute Imaging 

 To quantitatively identify the damage in the lattice structure, absolute imaging which could 

reconstructs absolute conductivity distribution should be adopted in this chapter. However, in 

practical ERT implementations, errors from measurements, inaccuracies from spatial 

inhomogeneity, and the modeling of electrode positions could affect the accuracy of the 

reconstruction result of the target in the damaged state when using absolute imaging directly [67]. 

In this chapter, an adjusted absolute imaging method which efficiently compensates for those 

errors was employed, and the workflow is illustrated in Figure 4.1. This method calculates the 

 

 Figure 4.1: The flow chart illustrates the adjusted absolute imaging process. 
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modeling error () between experimental undamaged state measurements (Vundamaged) and the 

voltages V(σref) calculated by the assumed homogenous model, before locally subtracting them 

from damaged state measurements (Vdamaged), as is shown in Equations (4.1) and (4.2). The 

undamaged state measurements usually could be easily obtained from itself or other qualified 

structures in a mass production [56,67]. The updated measurements (V’damaged) compensate for 

modeling inaccuracy and are directly used to reconstruct the absolute conductivity distribution (σrd) 

of the target. This mechanism enhances reconstruction quality by transforming the inverse problem 

from a global to a local minimization process [67]. 

 𝜀 = 𝐹(𝜎𝑟𝑒𝑓) − 𝑉𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑 (4.1) 

 𝑉′𝑑𝑎𝑚𝑎𝑔𝑒𝑑 = 𝑉𝑑𝑎𝑚𝑎𝑔𝑒𝑑 − 𝜀 (4.2) 

4.2.2 Modification of the Sensitivity Map 

 In ERT, reduction of sensitivity in the target’s central causes relatively low reconstructed 

conductivity changes and more image artifacts, especially considering measurement noises [88,90]. 

To address this limitation, a strut-based normalization procedure is proposed and can be imposed 

on the sensitivity map to improve σ reconstruction. 

Figure 4.2 outlines the procedure for the strut-based normalization process, where the 

objective is to obtain uniform boundary-voltage-to-conductivity-perturbation sensitivity in each 

strut (i.e., regardless of their location in a cellular lattice structure). To calculate the normalized 

sensitivity, the reconstruction results from classical ERT for each damaged state (where a damaged 

strut k is assigned with 0 S/m) are obtained first in steps (1) to (3). A total of s damaged states are 

solved considering the total of s number of struts in the structure. Among all states, the largest 
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reconstructed change within the damaged strut (σmax) could be acquired in step (4) when 

damage is assigned on the boundary strut. During the calculation of the strut-wise normalization 

matrix (N) in step (5), diagonal components of the matrix N are normalized to compensate for 

relatively low responses in the central struts, and the non-diagonal components are used for 

suppressing artifacts to 0.1σk, which would not affect the defect evaluation. With this 

normalization, the adjusted sensitivity map could be obtained as JN in step (6), and the change in 

voltage measurements corresponding to a single perturbation would be: 

 𝛿𝑉 = (𝐽𝑁)(𝑁−1)𝛿𝜎 (4.3) 

The results, which show the benefits of using the normalized sensitivity map to improve 

interior sensitivity and mitigate image artifacts, will be discussed in Sections 4.3 and 4.4. 

4.2.3 Representative Strut Conductivity and Defect Quantification 

Damage severity within each strut can be reflected by a single index, which is referred to 

in this work as strut representative conductivity, σs. Here, σs is the equivalent conductivity of a 

damaged strut, which is calculated using the electric potential drop between the two ends of the 

 

 Figure 4.2 The flow chart illustrates the calculation of the normalized sensitivity map. 
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strut, Vab, while assuming its dimensions remain the same. Vab is affected by the size, shape, and 

amount of damage developed in the strut. With known damage features shown in Figure 4.3, σs 

could be calculated as:  

 𝑉𝑎𝑏 = ∫
𝐼

𝐴𝑟𝜎0

𝐿

0
𝑑𝑙  (4.4) 

 𝜎𝑠 =
𝐼𝐿

𝑉𝑎𝑏𝐴0
=

𝐿

𝐴0 ∫
1

𝐴𝑟𝜎0

𝐿
0 𝑑𝑙

  (4.5) 

where σ0 is the material conductivity in its undamaged state, L is the length of the strut, and Ar is 

the residual area (i.e., the cross-sectional area where the defected region Ad is subtracted from the 

undamaged cross-section A0) for a differential length, dl.  

During ERT inspection, defects in struts with small cross-sectional areas could not be 

effectively localized given the limited resolution and electric field propagation pathways in 

topologically ordered open cell structures. However, the reconstructed conductivity (σr) in each 

strut could be used to examine damage severity. Here, σs which corresponds to the damage could 

 
 

 
Figure 4.3: Damage that was introduced in a strut is illustrated, and the strut representative (σs) conductivity 
could be further calculated.  
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serve as a comparison parameter with respect to σr solved by ERT with an invariant struts model. 

In this study, σr was compared with σs in both simulations and experiments to validate the 

quantitative defect detection capabilities of the proposed ERT method. 

4.3 Simulation Details and Results 

4.3.1 3D ERT Numerical Simulations 

The feasibility of 3D ERT for detecting and localizing damaged struts in cellular lattice 

structures was first assessed with numerical simulations. A 3×3×1 lattice structure with cubic unit 

cells consisting of 40 mm long and 2×2 mm2 cross-section struts was constructed in Abaqus, as is 

shown in Figure 4.4; the cellular lattice structure was meshed using 9,229 tetrahedral elements. 

Electrodes were defined at the 24 intersecting nodes along the boundaries. The conductivity of all 

the elements was assumed to be 1,000 S/m, based on the resistance measurements of the (carbon 

nanotube) CNT thin film coat used in the following experiments. 

A quantitative damage assessment study was performed by executing the 3D ERT forward 

and inverse algorithms on the undamaged lattice structure, as well as on assumed single-defect 

cases. Defect severity was simulated by considering two defect propagation situations in an interior 

  

 
 Figure 4.4: A 3×3×1 lattice structure model was created in Abaqus. Electrodes in the upper z-plane are 

marked in white. 
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strut (strut 1), where the size of the damage feature could grow along the length or depth of the 

strut. Damage propagating along the strut length was modeled by assigning 0 S/m to adjacent finite 

elements in the longitudinal direction of the initial damage site, while damage propagating along 

depth considered 0 S/m elements in the transverse direction and along the strut cross-section. A 

fully damaged strut was simulated by assigning 0 S/m to all elements along the strut cross-section 

(i.e., the strut is completely broken).  

To simulate a multi-defect damage case, an additional full strut length breakage was then 

introduced in strut 2 by assigning all finite elements within the strut to be 0 S/m. For each 

undamaged and damaged scenario, the 3D ERT forward problem was executed by applying direct 

current (DC) between all adjacent electrode pairs (i.e., adjacent current injection pattern) on each 

z- or 3×3 plane (Figure 4). The complete set of 504 boundary voltages calculated from the forward 

problem were corrupted with Gaussian white noise signal with a signal-to-noise ratio (SNR) of 

66.2 dB, considering the measured SNR is between 65 dB and 68 dB and simulations conducted 

by Polydorides et al. [91]. The voltage dataset was then used as the input for the ERT inverse 

solver to reconstruct the 3D conductivity distribution of the lattice structure model. 

4.3.2 Sensitivity Discussion 

The sensitivity map relates the conductivity perturbation of each finite element to the 

corresponding variations in boundary electrode voltages. The magnitude of sensitivity is correlated 

to electric field propagation induced by current injected in a pair of boundary electrodes [73]. In 

general, the electric field in the center of the target would be much lower than near the boundary, 

resulting in lower sensitivity in the center. Figure 4.5a plots the summation of the absolute values 

of sensitivity for each finite element when the lattice structure was interrogated using the adjacent 
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injection pattern (in logarithmic scale). The bright color in the central struts illustrates the 

decreased sensitivity at the center. Because of the in-plane current injection scheme, the sensitivity 

of vertical struts along the z-axis is lower than the in-plane struts. The hyperparameter in the 

inverse problem controls the number of valid SVD components of the sensitivity map. Usually, 

choosing a smaller hyperparameter will reserve more small SVD components and improve 

reconstructions of central conductivity changes [58]. However, it is difficult and inefficient to 

select the appropriate hyperparameter regarding conductivity perturbation happening in different 

regions of an open cell lattice structure.  

Therefore, instead of adjusting the hyperparameter for different conductivity perturbation 

situations, a normalized sensitivity map was implemented. In accordance with the uniform 

normalized sensitivity map, the hyperparameter for a uniform conductivity perturbation in the 

entire region was chosen with the L-curve method for the reconstruction process [58]. In this case, 

the L-curve with the hyperparameter ranging from 10-13 to 10-4 is plotted in Figure 4.5b, and 10-7 

(near the inflection point) was chosen. 

 

   
 

(a) (b) 

 

Figure 4.5: (a) The summed sensitivity map of the lattice structure was calculated. (b) The L-curve was 
plotted, with λ ranging from 10-13 to 10-4.  
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4.3.3 Assessment of Conductivity Reconstruction 

Classical image evaluation criteria and an additional quantitative criterion were employed 

to evaluate the conductivity imaging performance of ERT with and without the normalized 

sensitivity map. It should be clarified that the scope of this chapter only considered damaged struts, 

so only strut-based errors were evaluated. The image evaluation criteria of position error eC and 

area error eA are calculated as: 

 𝑒𝐶 =
|𝐶𝑟−𝐶𝑠| 

𝐿𝑝
   (4.6) 

 𝑒𝐴 =
|𝐴𝑟−𝐴𝑠|

𝐴𝑝
  (4.7) 

where Cs and As are the centroid and damage area of the real damaged strut, respectively, while Cr 

and Ar are the reconstructed damage centroid and damage area, respectively, which are defined by 

conductivity changes larger than one-fourth of the maximum conductivity change [87,92]. The 

undamaged strut’s length Lp and area Ap are included for normalization. In addition, the 

reconstructed error value, eσ, is defined to assess the difference between reconstructed conductivity 

(σr) and the calculated strut representative conductivity (σs) normalized by undamaged state 

conductivity σp. 

 𝑒𝜎 =
|𝜎𝑟−𝜎𝑠|

𝜎𝑝
   (4.8) 

4.3.4 Single-defect Detection 

Different damage severities were imposed in the single-defect case, and only the 

reconstructed conductivity values were affected but not the localization of the defect. Thus, the 
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single-defect case with a fully damaged strut (Figure 4.6a) was investigated and reconstructed by 

ERT (Figure 4.6b) first. The ERT conductivity distribution of the single-defect lattice structure 

was reconstructed without and with the normalized sensitivity map; plots of reconstructed 

conductivity values with respect to the finite elements are shown in Figure 4.6c and 4.6d, 

respectively. A total of 22 iterations were conducted in the inverse process with the normalized 

sensitivity map to reach the error ratio tolerance. The decrease of the error ratio is shown in Figure 

4.6e. Classical ERT (i.e., without the normalized sensitivity map) could not accurately reconstruct 

the conductivity value (i.e., 0 S/m) of the central damaged strut but instead could only approach it 

(i.e., 96 S/m), as is shown in Figure 4.6c. The reconstructed conductivities in the undamaged struts 

also show significant variations and deviate from the true value of 1,000 S/m. In contrast, Figure 

4.6d shows that the reconstructed conductivity values when using ERT with the normalized 

 

 

(a) (b) 

   

(c) (d) (e) 

 
Figure 4.6: (a) A lattice structure was imposed with damage. (b) An ERT reconstruction was solved with 
the normalized sensitivity map. (c) The reconstructed conductivity values of each element when solved 
without and (d) with the normalized sensitivity map are plotted. (e) The normalized errors are plotted with 
iterations. 
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sensitivity map were similar to the actual case (i.e., either 1,000 or 0 S/m). In fact, the 

corresponding strut-based image errors eC and eA are all zeros as shown in Table 4.1. The improved 

reconstruction performance occurred because normalization compensates for the low central 

region sensitivity by imposing corresponding weighting factors that facilitated accurate 

conductivity reconstruction.  

As more accurate reconstructed conductivity values were achieved by using ERT with the 

normalized sensitivity map, the quantitative defect detection ability was further examined with 

results solved with the normalized sensitivity map. A total of 24 different assumed single-defect 

cases considered two defect propagation situations were discussed, either along the length or depth 

of the strut. The first set of 12 damage cases considered a single crack propagating longitudinally 

in strut 1, where different damage scales (which were defined by damage width and length) were 

simulated by assigning a conductivity of 0 S/m to n longitudinally adjacent finite elements. The 

 

Figure 4.7: Reconstructed conductivity in the strut σr is consistent with representative strut conductivity 
σs. Depth and length of the damage feature are varied by assigning 0 S/m to n finite elements. 

 

Table 4.1: Image errors quantification and comparison of single-defect reconstructions in simulation 

Strut-based evaluation eC eA 

Without normalized sensitivity map 0.0030 0.1314 

With normalized sensitivity map 0 0 
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second set of 12 damage cases were introduced on another undamaged structure, with a defect 

propagated transversely in strut 1 by imposing 0 S/m on n elements along the strut cross-section. 

Up to 12 elements were assigned with 0 S/m to simulate a fully damaged strut. In Figure 4.7, the 

change of the reconstructed conductivity (σr) within the damaged strut is consistent with the strut 

representative conductivity (σs) for both imposed damage propagation scenarios. Their consistency 

expresses the significance of calculating strut representative conductivity and the capability of the 

ERT method with the normalized sensitivity map to return conductivity values corresponding to 

the damaged states. The reconstructed errors (eσ) of the damage cases with defect propagation 

along depth are shown in Table 4.2. The trends shown in Figure 4.7 demonstrate that the 

reconstructed values are more sensitive to damage propagated in the transverse direction (as 

opposed to the longitudinal direction), as suggested by Equation (4.3). 

4.3.5 Multi-defect Detection 

Multiple defect sites were also considered by introducing an additional full strut breakage 

to a boundary strut (strut 2), as shown in Figure 4.8a. The ERT result solved without the normalized 

sensitivity map in Figure 4.8b was littered with artifacts, and eσ of strut 1 (see Table 4.3) is 

approximately twice that of strut 2, because strut 2 is closer to the boundary electrodes. In contrast, 

Figure 4.8c and 4.8d show the reconstructed conductivity distribution in 3D visualization and with 

Table 4.2: Reconstructed value errors of single-defect reconstructions in simulation 

Damage Scale eσ Damage Scale eσ 

1 0.0008     7 0.0192    

2 0.0026     8 0.0198    

3 0.0052     9 0.0198    

4 0.0060     10 0.0251     

5 0.0100     11 0.0209   

6 0.0105 12 0.0137 
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respect to finite elements, respectively, when using the normalized sensitivity map. In addition to 

significantly reducing conductivity reconstruction artifacts, normalization yielded uniform 

sensitivity throughout the cellular lattice structure. The reconstructed conductivity for both 

damaged struts approaches 0 S/m and can be clearly interpreted as breakages, as can be seen in 

  

(a) (b) 

  

(c) (d) 

Figure 4.8: (a) A lattice structure with two damaged struts. (b) The reconstructed conductivity values of 
each element when solved without the normalized sensitivity map. (c) The reconstructed 3D 
conductivity distribution and (d) the conductivity values for each element, when solved using the 
normalized sensitivity map.  

 

Strut 1
Strut 2

Elements 

of strut 2

Elements 

of strut 1

Elements 

of strut 2

Elements 

of strut 1

Table 4.3: Errors quantification and comparison of multi-defect reconstructions in simulation 

Strut-based evaluation eC eA eσ of strut 1 eσ of strut 2 

Without normalized 

sensitivity map 

0.0146 0.1528 0.0752 0.0329 

With normalized sensitivity 

map 

0 0 0.0032 0.0017 
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Figure 4.8d, and both error values are 20 times lower than the case without normalization. Overall, 

these simulation results demonstrated improved spatial and quantitative accuracy when the 

normalized sensitivity map is incorporated with ERT.  

4.3.6 Application on Other Lattice Structures 

To validate the effectiveness of this method on other lattice structures with different 

numbers of cells, simulations have been conducted for damage detection in a 3×3×3 lattice and a 

4×4×1 lattice with diagonal struts. The 3×3×3 lattice has a total of 24 electrodes distributed on the 

first and third z-plane boundary intersections, while the 4×4×1 lattice has 32 boundary electrodes. 

Broken struts were applied on the two lattice structures respectively and the reconstruction results 

from the ERT solver are shown in Figure 4.9a and 4.9b. The ERT solver still shows excellent 

performance in detecting the damaged struts in these lattice structures. 

 

 

   
(a) (b) 

Figure 4.9: 3D conductivity distribution reconstructions confirmed damage detection performance of 
the ERT solver in (a) a 3×3×3 lattice structure, and (b) a 4×4×1 lattice structure with diagonal struts. 
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4.4 Experimental Details and Results 

4.4.1 3D-printed Lattice Structures 

Experiments were performed on 3D-printed cellular lattice structures to validate damage 

detection and localization (Figure 4.10a). A commercial fused deposition modeling (FDM) 

Ultimaker 3+ 3D-printer fabricated 3×3×1 polylactide acid (PLA) lattice structures with cubic unit 

cells identical to the structure described in Section 4.3.1. The PLA lattice structure was coated 

with a multi-walled carbon nanotube (MWCNT) thin film. First, a paint primer layer was spray-

coated onto the lattice structure. Second, an MWCNT-latex ink was prepared following the 

procedure described by Mortensen et al. [93] and Wang et al. [94]; MWCNTs were purchased 

from SouthWest NanoTechnologies. Lastly, upon complete air-drying of the nanocomposite in 

ambient conditions, 24 boundary electrodes were formed by drying colloidal silver paste (Ted 

Pella) over conductive threads (Adafruit) at the intersecting boundary nodes, without damaging 

the structure.  

4.4.2 3D ERT Data Acquisition and Testing 

The customized 3D ERT data acquisition (DAQ) system employed in this chapter is shown 

in Figure 4.10b. It consists of a Keysight 34980A multifunctional switch (with an internal digital 

  

(a) (b) 

Figure 4.10: (a) A 3×3×1 lattice structure was spray-coated with a conductive, nanocomposite thin film. 
(b) ERT measurements were obtained using a customized data acquisition system.  
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multimeter) and a Keithley 6221 current source, which were connected and controlled by 

MATLAB. The current source was commanded to inject 10 mA of DC to an adjacent pair of 

boundary electrodes, while the switch sequentially measured and recorded 504 boundary voltage 

measurements. The same adjacent electrode method reported in Section 4.3.1 was utilized to 

inspect the nanocomposite-coated lattice structure.  

Three sets of cases were considered: (1) undamaged state, (2) single-defect damaged state, 

and (3) multi-defect damaged state. First, the undamaged 3D lattice structure was interrogated to 

reconstruct the undamaged state conductivity distribution of the test specimens. Second, seven 

different single-defect damage cases (Cases #1 to #7 in Table 4.4) were prepared and tested. Each 

of these cases featured one damaged internal strut, where damage was introduced by mechanically 

etching off a portion of the film on the damaged strut. Table 4.4 shows how the single-defect 

damage cases were unique. The film was removed from one to four of the faces of the square-

cross-section strut, while the length of the damage varied between L/4 to L, where L is the total 

length of the strut. In particular, Case #7 corresponded to the case when the film was removed 

from the entire strut, so the electric current could not flow through the strut (i.e., to emulate 

complete strut breakage). Lastly, the multi-defect damaged state, Case #8, considered two 

damaged struts with the nanocomposite completely removed.  

Table 4.4: Summary of experimental test cases 

 Single-defect Multi-defect 

Case #1 #2 #3 #4 #5 #6 #7 #8 

Number of damaged struts 1 1 1 1 1 1 1 3 

Number of damaged faces 1 1 1 1 2 3 4 8 

Total damaged length L/4 L/2 3L/4 L L L L 2L 
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4.4.3 Single-defect Detection 

Experimental realization of the ERT method depends on the robustness of the experimental 

data as well as modeling accuracy, where accuracy can be impaired by data with environmental 

noise and inaccurate modeling. It was hypothesized that the adjusted absolute imaging used in this 

work could diminish errors by compensating modeling errors with local minimization. An example 

of a direct comparison between simulated and experimentally measured boundary voltages is 

shown in Figure 4.11a and confirms the degree of mismatch was minor. 

 

 

(a) (b) 

  

(c) (d) 

Figure 4.11: (a) Simulated voltages are compared with experimentally measured voltages. (b) The first 
etch (damage) was introduced in the lattice. (c) The reconstructed conductivity values of each element 
when solved with the normalized sensitivity map are plotted. (d) The corresponding 3D conductivity 
distribution successfully confirmed damage detection in strut 1. 

 

Strut 1

Elements 

of strut 1



 

77 

 

The defect detection performance of the ERT system with the normalized sensitivity map 

was examined with experimental measurements in Case #1. The picture of Figure 4.11b shows 

that the film was etched off on the upper side of strut 1 with a total etched length of L/4. From the 

results obtained from 36 iterations in the inverse process and evaluations shown in Figure 4.11c 

and Table 4.5, artifacts were restrained to some extent with the application of the normalized 

sensitivity map. These minor conductivity artifacts were the result of experimental measurement 

noise and modeling inaccuracies of modeling. The reconstructed value of 928 S/m in strut 1 is 

related to the size of the etch and will be discussed more in the quantitative study. The 

reconstructed conductivity distribution of the lattice structure with a single damaged strut is 

visualized in Figure 4.11d.  

The quantitative damage detection performance of ERT was evaluated with experimental 

measurements in the single-defect damaged state, from Cases #1 to #7. Although only conductive 

nanocomposites were coated onto PLA lattice structures, the ERT FE model still considered solid 

struts, because the modeling inaccuracy of strut cross-sections is admissible due to the strut-wise 

defect detection capability of ERT on lattice structures. This meant that actual damage, such as 

film etched off a single face, was modeled as a one-fourth cross-section reduction. Thus, Case #1 

was assumed to have experienced a volume reduction of one-fourth A0 and one-fourth L, as 

illustrated in Figure 4.12a. The reconstructed image and value were then evaluated with the 

Table 4.5: Image errors comparison of single-defect reconstructions in experiment 

Strut-based evaluation eC eA 

Without normalized sensitivity map 0.0696 0.1551 

With normalized sensitivity map 0 0 
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representative model and strut representative conductivity (σs), which was calculated using 

Equations (4.4) and (4.5).  

The conductivity results of Cases #1 to #7 (with etches of different sizes along the length 

and different faces) were reconstructed using ERT with the normalized sensitivity map. Among 

these, Cases #1 to #4 considered damage occurring on a single face but increased in length from 

L/4 to L (i.e., similar to damage propagating along the length of the strut). Cases #5 to #7 

corresponded to damage growing in depth. The comparison between reconstructed conductivities 

solved with the normalized sensitivity map and the strut representative conductivities is presented 

in Figure 4.12b, while the calculated errors listed in Table 4.6 show their consistency. From Figure 

4.12b, it can be seen that damage along the cross-section of the strut can be detected at a higher 

sensitivity than those along the length. Overall, the similarity between the reconstructed and strut 

representative conductivity results experimentally validated the proposed ERT method.  

 

 

(a) (b) 

Figure 4.12: (a) The actual experimental damage (Case #1) was compared to what was modeled. (b) 
Representative strut conductivity σs and reconstructed conductivity in the strut σr change in tandem as 
damage increased in severity, both along its length and depth (cross-section). 

 

L/4

L/4

A0/4

Experiment

Modeling

Table 4.6: Reconstructed value errors of single-defect reconstructions in experiment 

Damage Case #1 #2 #3 #4 #5 #6 #7 

eσ 
0.0053 0.0199 0.0257 0.0353 0.0134 0.0042 0.0244 
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4.4.4 Multi-defect Detection 

In addition to the single-defect scenarios (i.e., Cases #1 to #7), Case #8 with an additional 

broken strut (i.e., strut 2) was considered. The conductivities of each element reconstructed using 

ERT with the normalized sensitivity map are plotted in Figure 4.13a. Similar to the previous results, 

damage in the broken struts could be identified, and the conductivity values approached 0 S/m. 

Artifacts were present in other elements, but their magnitudes are at least 83% lower than those 

corresponding to the two broken struts, which are also evident based on the calculated error values 

listed in Table 4.7. Because these correspond to experimental results, artifacts due to measurement 

noise and mismatch between simulation modeling and experiment are inevitable. Nevertheless, the 

   

(a) (b) 

Figure 4.13: (a) The reconstructed conductivity values of each element when solved with the normalized 
sensitivity map are plotted. (b) The corresponding 3D conductivity distribution of the lattice structure 
successfully identified broken struts in strut 1 and strut 2.   

 

Elements 

of strut 2

Elements of 

strut 1

Table 4.7: Errors quantification and comparison of multi-defect reconstructions in experiment 

Strut-based evaluation eC eA eσ of strut 1 eσ of strut 1 

Without normalized 

sensitivity map 

0.0287 0.2233 0.0653 0.0804 

With normalized sensitivity 

map 

0 0 0.0056 0.0030 
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values of eσ in Table 4.7 clearly show that ERT with the normalized sensitivity map outperforms 

classical ERT.  

4.5 Results and Discussion 

The simulation and experimental results showed that the 3D ERT method with the strut-

based normalized sensitivity map was able to quantitatively characterize damage in cellular lattice 

structures. The strut-based normalized sensitivity map compensated for the low central sensitivity 

and diminished image artifacts, so the reconstructions had much smaller reconstruction errors in 

eC, eA, and eσ.  

The implementation of the ERT method in practice may meet problems as many electrodes 

need to be attached for to the structure the contact-based ERT inspection. Improper manual 

attachment of electrodes on structures in service or measuring voltage in very high- or low-

temperature environments would result in unexpected measurement noise or voltage raises or 

drops respectively. Inaccurate measurements may further influence the reconstruction process, 

hence poor damage detection performance. To solve this problem, modularized press contact 

electrodes with covers could be utilized, which could avoid extreme temperatures and could be 

assembled together to adapt to different structures. Also, electrodes numbers could be reduced to 

meet the minimum requirement after investigating the optimized electrode configuration in the 

future. 

Overall, the 3D ERT method is an efficient method for detecting damage in lattice 

structures. With only a few electrodes attached to the boundary and their corresponding voltage 

measurements, the resistivity distribution that correlated to the damaged state could be captured. 

Currently, vibrational-based methods could only offer classification of different damage scenarios 
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but could not effectively pinpoint specific damaged struts unlike the 3D ERT method [95]. 

Moreover, ERT utilizes the intrinsic electromechanical properties of lattice structures and renders 

effective inspection by propagating current throughout the entire structure. Furthermore, X-ray 

CT-based measurements or other image processing methods require the structure to be placed 

between a source and detector while being rotated to obtain multiple projection slices, which 

requires extensive operational times and computational resources [96]. 

4.6 ERT and Machine Learning for Lattice Structures Damage Detection 

This section investigated 3D ERT with deep ANN method as an efficient and practical 

NDE method for localizing defects in complex lattice structures. Traditional model-based 

approaches for solving the ERT inverse problem are time-consuming and computationally 

intensive [58,69], even though they have been successfully used in patterned, grid-like structures 

similar to cellular lattices [76,97]. Data-driven methods that could potentially output conductivity 

distributions in near-real-time would be more suitable for detecting damage in complex structural 

geometries (e.g., cellular lattice structures) and for use in high throughput manufacturing settings. 

The data-driven algorithm is significantly faster than conventional ERT while enabling greater 

accuracy of 3D conductivity distribution reconstructions. Experimental results are presented in this 

work to validate this machine-learning-based ERT solver. 

4.6.1 ERT-ANN System 

To effectively apply the ERT-ANN system to the structure, the model was further meshed 

in Abaqus with 3440 tetrahedral finte elements. The conductivity of the undamaged structure was 

uniformly set as 1000 S/m. This numerical model was used to solve the ERT forward problem to 
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determine the boundary voltage responses corresponding to different current injection schemes. 

These datasets were then used for training the deep ANN system.  

The ERT-ANN system consisted of two sets of deep ANN structures, namely, deep ANN 

Ι and deep ANN ΙΙ, was developed. Deep ANN I was used to identify the damaged strut (i.e., with 

a decrease in conductivity) within the cellular lattice structure. It utilizes information from 504 

boundary voltage measurements to estimate the centroid of the damaged strut j. After identifying 

the damaged strut j, the second deep ANN ΙΙ-j, which corresponds to the damaged strut j, was used 

to localize the exact damage within that strut. In this section, only single damage cases were 

considered. 

Training of deep ANN Ι entailed preparing datasets for an undamaged case and 5000 

damaged cases for the 3×3×1 cellular lattice structure shown in Figure 1a. Damage to the strut was 

simulated by modeling the conductivity of a randomly selected finite element of the structure and 

setting it to 0 S/m. For each case, the ERT forward problem was solved to obtain the boundary 

voltage response associated with a current injection scheme. They were then corrupted with 

Gaussian white noise with 66.2 dB signal-to-noise ratio (SNR). The normalized voltage difference 

(dVn) between each damaged state and the undamaged state was calculated as:   

  𝛿𝑉𝑛 =
𝑉𝑑−𝑉0

𝑣
   (4.9) 

where v is the maximum absolute measurement on the undamaged structure, Vd and V0 represent 

voltages in the damaged state and the undamaged state respectively. Because deep ANN Ι only 

focuses on detecting the damaged strut instead of the exact damage location, SVD could be used 

on δVn for input dimensionality reduction [98]. Here, the dimension of the input depends on the 
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number of singular values included when the ratio of variance reaches a 0.995 accuracy, and a 

total of 72 encoded inputs δVn
svd were utilized in deep ANN Ι. The output of deep ANN Ι is the 

centroidal coordinates of the damaged strut.    

The second structure (deep ANN ΙΙ) includes multiple deep ANN structures, where deep 

ANN ΙΙ-j could provide the location of the single defect within strut j, and j starts from 1 to the 

total number of struts (N) in the lattice structure. To train deep ANN ΙΙ-j, 500 damaged cases, each 

with a unique and randomly selected single finite element defect of 0 S/m within strut j, were 

generated. The ERT forward problem was solved for each damage case (i.e., considering the entire 

lattice structure). Considering that all these damaged states are from the same strut j, the calculated 

boundary responses would be similar. Thus, SVD could also be used on δVn for a more efficient 

input dimensionality reduction [98]. A total of 18 encoded inputs δVn
svd from SVD were selected 

to represent the 504 boundary voltages when strut j is damaged. The output of deep ANN ΙΙ-j is 

the centroid of the defect element k within strut j.  

The deep ANN architectures for deep ANN Ι and deep ANN ΙΙ-j used in this section are 

illustrated in Figure 4.14a and 4.14b. With the encoded normalized voltage difference as input, 

  
(a) 

 

(b) 

 

Figure 4.14: (a) The architectures of deep ANN I and (b) deep ANN II-j are illustrated. 
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four fully connected hidden layers with 2048 neurons in each layer were employed. For each 

neuron in the hidden layer, an exponential linear unit was implemented. 

4.6.2 Experimental Details and Results 

To validate the performance of the ERT-ANN system, experiments were conducted on 3D-

printed PLA lattice structures coated with an electrically conductive MWCNT-based thin film [99]. 

Two different damage states (i.e., states 1 and 2) were investigated as shown in Figures 4.15a and 

4.15b. Damage states 1 and 2 were introduced to the structure by mechanically etching off the 

conductive MWCNT thin film at portions of strut 1 or strut 2, respectively. 

The effectiveness of deep ANN Ι on localizing the damaged strut was examined first. The 

calculated normalized voltage differences (δVn) between undamaged and damaged states were 

(a) 

 
(b) 

 
Figure 4.15: Experimental results and the visualization of (a) damage state 1 and (b) state 2 solved with 

the ERT-ANN system. 
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processed with SVD and employed in deep ANN Ι as inputs. The predicted locations of the strut 

centroids, x, y, and z were stated with the true centroids of damaged struts in Table 4.8. The image 

position errors1 for the two states are 0.1702 and 0.0683, respectively [23]. The predicted values 

were then employed in the k-nearest neighbors algorithm to find the damaged strut in the two cases. 

The middle figures in Figures 4.15a and 4.15b confirmed that deep ANN-I was able to correctly 

identify the damaged strut in the lattice structure for both damage states.  

Then, deep ANN ΙΙ-1 and deep ANN ΙΙ-2 corresponding to strut 1 and strut 2 were then 

employed to estimate the specific damage locations within each respective strut. The true and the 

predicted x, y, and z of centroids for each state were stated in Table 4.8, and the image position 

errors for the two states are 0.0276 and 0.0413. The result visualizations are shown in the right-

hand-side images in Figures 4.15a and 4.15b. The results show that deep ANN II-j was able to 

correctly identify the portion of the strut where the damage occurred. Only small deviations 

between the actual and predicted locations were observed. Similar to before, the predicted 

centroids could be fed into the k-nearest neighbors algorithm to obtain the x, y, and z coordinates 

for the damaged element. The precision of the deep ANN systems is constrained by the discretized 

finite element. Overall, these test results validated the damage localization performance of the  

ERT-ANN system for topologically ordered lattice structures with low image errors. 

 

Table 4.8: The true and predicted centroids from ANN I and ANN II in damage state 1 and state 2 

  Deep ANN I Deep ANN II 

  x [mm] y [mm] z [mm] x [mm] y [mm] z [mm] 

State 1 
True 39.00 57.00 19.00 38.76 44.57 19.73 

Predicted  44.30 61.25 19.46 39.02 45.62 19.51 

State 2 
True 58.00 0.00 19.00 70.61 -0.31 19.80 

Predicted  56.60 2.27 19.60 69.55 -0.20 21.06 
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4.7 Conclusions 

This chapter demonstrated an absolute, high-performance, 3D ERT method which 

incorporates a strut-based normalized sensitivity map for quantitative defect detection in lattice 

structures with high image accuracy. The approach was applied for detecting multiple defects in 

open-cell lattice structures. The strut-based normalized sensitivity map addressed the issue of 

heterogeneous damage sensitivity, particularly lower sensitivity away from the boundaries where 

measurements are obtained. Simulations and experiments validated the improved defect detection 

capability of this method compared to classic ERT. In simulations, single- and multi-defect cases 

were realized by assigning 0 S/m to finite elements while the damage in experiments was realized 

by etching coated conductive nanocomposite thin films.  Our results show that the ERT method 

with the normalized sensitivity map could localize defects more accurately and with smaller image 

errors compared to classical ERT. Quantitative damage detection performance was demonstrated 

by the strong consistency between reconstructed conductivity within a strut and the actual damage 

severity. Future work will examine the development of an electrical impedance tomography 

system to leverage alternating current input excitations for higher resolution defect imaging, and 

non-iterative reconstruction algorithms that not requiring a baseline measurement for high-speed 

anomalies detection instead of high-accurate conductivity reconstructions.  

Moreover, an ERT-ANN system was proposed for detecting and localizing defects, such 

as broken or partially damaged struts, in topologically ordered conductive lattice structures. 

Specifically, the ERT-ANN system consisted of two ANN structures. Deep ANN-I was used to 

identify the damaged strut, while deep ANN-II further determined where the damage occurred 

within the strut. The method was trained using numerically simulated data (i.e., by considering 

different damage cases and calculating the boundary voltage responses using the ERT forward 
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problem). Upon training, experiments were performed using a conductive thin-film-coated lattice 

structure, where damage was introduced by etching off portions of the film in different struts. The 

ERT-ANN system was able to correctly locate the damaged struts and accurately identified the 

portion of each strut that was damaged. Overall, the data-driven ERT method could utilize 

boundary voltages to reconstruct the conductivity distribution of complex 3D lattice structures and 

detect conductivity decreases due to damage such as strut breakages, voids, or manufacturing 

defects. Future studies will consider different damage severities as well as more complex 

distributed damage scenarios.   
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CHAPTER 5 BASELINE FREE COMPLEX CONDUCTIVITY MAPPING FOR 

SPATIAL DAMAGE SENSING USING NANOCOMPOSITE AND EIT  

5.1 Introduction 

Damage and degradation in civil, aerospace, mechanical, naval, and automotive 

engineering structures are unavoidable, especially since they are exposed to various environmental 

conditions, repeated loads, extreme events, and unexpected forces [36,44,100]. For instance, 

cracks and overstrains are easily generated because of internal stresses caused by temperature 

changes or structural swelling from the moisture absorption [100]. Especially, surface cracks may 

easily expedite the moisture and chemical absorption in structures, which result in loss of structural 

strength and stiffness, hence influencing structural mechanical behavior and integrity [100,101]. 

Therefore, condition assessments are profoundly needed to discern the surface cracks and 

overstrain in the early stage to prevent damage propagation and the subsequent reduction of 

structural load-carrying capacities. 

Paints or coatings that are usually deposited on the surface of aircraft, automotive, and civil 

structures could be upgraded to multifunctional and smart paints, which could directly serve as a 

sensing layer for monitoring damage and overstrains. Therefore, instead of using SHM methods 

by introducing additional devices afterward, direct employment of multifunctional structures with 

intrinsic self-sensing capability or coupled sensing coats would be the most cost- and resource-

efficient. Recently, the advent of nanotechnology has enabled the development of nanocomposite 

coats as multifunctional skin sensors [102]. Among a variety of nanomaterials,  CNT has attracted 

significant attention because of its unique mechanical and electrical properties and wide 

applications. For instance, Loyola et al. [57] developed a CNT-based thin film that could be spray-

deposited on the surface of unlimited size for strain and damage sensing. Zhao et al. [79] applied 
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inkjet-printed CNT-based thin film to perform spatial strain sensing and studied the strain 

sensitivity by characterizing the piezoresistive matrix. Dai et al. [103] fabricated a nanocomposite 

strain sensor by coating CNT onto a nonwoven carrier fabric, which is mechanically robust and 

linearly piezoresistive. Except for depositing extra sensing layers on the surface, Li et al. [75] has 

successfully fabricated multifunctional CNT-based nanocomposite paint as a strain-sensitive 

sensor which could not only serve as a sensing layer but also as protection.  

To obtain spatial mechanical information from multifunctional skin sensors, EIT which 

utilizes the coupled electrical and mechanical properties of the skin sensors is extensively 

employed [67,75,79]. The impedance reconstructions directly reflect structural strain and damage 

states as the electrical impedance of those sensing skins is directly related to their mechanical fields. 

However, the absolute impedance reconstruction has limited accuracy because of possible 

modeling errors and environmental noises [67]. Time difference EIT (tdEIT) which requires 

measurements before and after damage could offer a more reliable estimation of the change of 

impedance distribution due to the damage, but the acquisition of measurements of the undamaged 

structure is not always achievable in practice [67]. Thus, fdEIT which reconstructs the image using 

measurements from two different electric current injecting frequencies is a good candidate to 

inspect structural mechanical states in arbitrary time steps [70,104]. 

In this chapter, a nanocomposite paint was fabricated to serve as a spatial strain sensor. A 

commercially available vinyl-based paint was used as the matrix material to design the MWCNT-

based nanocomposite paint. The variation of electrical properties versus frequency in unstrained 

and strained states was characterized. The variation of electrical properties in different injecting 

frequencies enables the application of fdEIT methods. However, since the damaged area is always 

circumvented by the impedance perturbation of MWCNT-based paint background from different 
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injecting frequencies, the image for the damaged region is easily reconstructed with artifacts [70]. 

To increase the reconstruction accuracy, Baltopoulos et al. [58] proposed to choose the optimal 

hyperparameter with the L-curve method regarding different perturbations, but the preprocessing 

is too time-consuming. Therefore, data-driven methods that could potentially output impedance 

distributions in near-real-time with high accuracy would be more suitable.  

Data-driven deep ANN techniques have garnered significant attention because of their 

adaptability for modeling nonlinear processes. Deep ANN architectures that possess multiple 

layers with numerous neurons could be efficiently adapted to solve EIT problems with inherent 

nonlinearity. As compared to a physics-based EIT approach with one-step linearization, a deep 

ANN could reconstruct a target’s impedance distribution with higher accuracy, especially when 

considering the nonlinear nature of conventional EIT. Li et al. [105] and Quqa et al. [66] employed 

data-driven ANN methods to solve the EIT problem, and validate the better performance of deep 

ANN versus the traditional total variation method. 

This chapter employed the deep ANN method in the fdEIT process, on a smart MWCNT-

based paint with frequency-dependent electrical impedance. The process of classical fdEIT and 

deep ANN based fdEIT are stated in Sections 5.3.1 and 5.3.2, and simulations and experiments 

were conducted to validate the performance of this method. 

5.2 Material 

The objective of this chapter was to improve the fdEIT process with the deep ANN method 

while incorporating nanocomposite sensing paint to enhance surface damage detection. In this 

section, the fabrication and characterization of the nanocomposite paint were discussed. First, the 
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fabrication procedure of the MWCNT-based paint was stated. Second, long-strip samples were 

fabricated and the frequency-dependent piezoresistive properties were characterized. 

5.2.1 Nanocomposite fabrication 

To fabricate the MWCNT-based smart paint, a commercially available Pro-Line vinyl 

copper antifouling paint and Pro-Line vinyl paint thinner from Sherwin-Williams (Garland, TX, 

USA) were used as the matrix in this study. Also, to create the piezoresistive property of the smart 

paint, the conductive MWCNT and carbon black (CB) SC159 purchased from NanoIntegris 

(Boisbriand, QC, Canada) and Tokai Carbon CB (Fort Worth, TX, USA) respectively were added 

into the formulation.  

First, the nanocomposite mixture was produced with 0.74 wt.% MWCNT, 0.37 wt.% CB 

and 61.89 wt.% of vinyl paint thinner. The addition of CB in the nanocomposite mixture would 

enhance the sensor strain sensitivity and linearity [75]. In order to disperse MWCNT and CB more 

uniformly, the mixture was subjected to bath sonication for 90 min. Then, 37 wt.% of vinyl paint 

 
Figure 5.1: The spray-coating and characterization process of the nanocomposite paint is illustrated. 

Rough side of
TPU sheet

Airbrushing 
nanocomposite paint

Coated TPU 
sheet

Attaching 
electrodes 

∿

V

AC current 
generator

AC voltage 
measurement



 

92 

 

was added to the sonicated mixture and shear-mixed for 20 min at 800 rpm. The final piezoresistive 

nanocomposite paint was eventually ready to be sprayed. Spray-coating was then manually 

performed using a Paasche airbrush onto the rough side of the thermoplastic polyurethane (TPU) 

sheet substrate which was provided by Wiman Corporation (Sauk Rapids, MN, USA), as 

illustrated in Figure 5.1. Lastly, after 12 h air-drying of the nanocomposite in ambient condition, 

electrodes were attached on the boundary of specimens for following measurements. For the 

formation of electrodes, conductive threads were purchased from Adafruit, solder wire was from 

Voltera (Kitchener, ON, Canada), drying colloidal silver paste was from Ted Pella (Redding, CA, 

USA), and two-part silver epoxy was from MG Chemicals (Surrey, BC, Canada). 

5.2.2 Frequency-dependent Piezoresistivity 

The frequency-dependent impedance was measured while AC currents were injected with 

different frequencies. Long-strip specimens were formed by spraying nanocomposite paint on 

5×70 mm2 TPU sheets and then affixed to a 3D-printer fabricated dog bone-shaped PLA coupon. 

Voltera solder wires were soldered on the copper tape and then connected to the end of specimens 

  
(a) (b) 

Figure 5.2: (a) The nanocomposite paint was sprayed on a TPU sheet and affixed to a PLA coupon. (b) 

The relation between the complex conductivity of the nanocomposite paint and current injecting 

frequency is plotted. 
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with fast-drying colloidal silver paste as shown in Figure 5.2a. In the unstrained state, specimens 

were first connected to a Keithley 6221 current source and a Keysight 34450A digital multimeters 

(DMM), as illustrated in Figure 5.1, to obtain complex conductivity (γ) in different injecting 

frequencies from 1 kHz to 100 kHz. In Figure 5.2b, the normalized complex conductivity 

continuously increases when the current injecting frequency increases. The complex conductivity 

at 100 kHz is around five times of complex conductivity at 1 kHz. The difference of complex 

conductivity in different frequencies enables the application of the fdEIT method. 

Then, the coupon was subjected to cyclic tensile loads with 0.08 mm peak displacement in 

the Test Resources 150R load frame. Meanwhile, the AC voltages were continuously measured by 

the digital multimeter while an AC current was flowing through the specimen. Because the AC 

voltage measurements were easily unstable when the excitation frequency is high, only 1 kHz – 

50 kHz excitations were employed. The related study discussed by Li et al. [75] about resistance 

change of the smart paint under the cyclic tensile loads and its strain sensing sensitivity will not 

be included in this section. Instead, the average maximum impedance changes (under 0.08 mm 

peak displacement) during the five load cycles were recorded. The maximum normalized 

impedance change (∆Zn) at each excitation frequency was calculated by dividing the impedance 

change between the maximum strained state (Zm) and the unloaded state (Z0) by Z0: 

   ∆𝑍𝑛 =
𝑍𝑚−𝑍0

𝑍0

   (5.1) 
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As shown in Figure 5.3, ∆Zn decreases when the injecting frequency increases. The 

maximum normalized impedance change is almost 0 when the frequency is 50 kHz, which 

represents the strain sensing sensitivity of the nanocomposite paint in 50 kHz excitation is very 

low. The strain-sensing property of the paint is nearly decreasing linearly when the excitation 

frequency is smaller than 8 kHz. With the frequency-dependent piezoresistivity, under different 

frequencies, the region under tensile strain will have a larger impedance difference and also a 

larger complex conductivity difference than the unstrained region. The properties could be utilized 

in the fdEIT processing to localize the strained region. 

5.3 Classical fdEIT and fdEIT-ANN System 

5.3.1 Classical fdEIT Solver 

In this chapter, fdEIT with difference imaging was employed for complex conductivity 

distribution reconstruction. In the forward problem, the complete set of boundary voltages (Vω
i) 

(i.e., for Ω with an assumed complex conductivity distribution (γω
i) corresponding to an ith 

condition) is obtained by injecting current with frequency ω across different unique pairs of 

 

Figure 5.3: The maximum normalized impedance change under 0.08 mm tensile displacement is 

decreasing with the increase of injecting frequency. 
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boundary electrodes. The adjacent, opposite, or diagonal current injection pattern can all be used 

to interrogate Ω, but only the adjacent current injection pattern was utilized in this chapter. It 

should be mentioned that the fdEIT forward problem can be used to solve for boundary voltages, 

Vωa
i and Vωb

i, which correspond to ith damaged state with different current injecting frequencies 

ωa and ωb. Because the complex conductivity in the damage region is always 0 S/m while the 

complex conductivity of the nanocomposite paint is changing with excitation frequency, the 

different distribution γωa
i and γωb

i are measured when currents with different frequencies are 

injected respectively. The change in conductivity distribution between those two states (δγ) can 

also be used to solve for the corresponding boundary voltage difference, δV [52,54]. 

For the inverse problem, difference imaging was employed in this chapter, and the 

conductivity change (δγ) between two states could be estimated with least-squares (LSQ) as 

Equation (2.35). Except for difference imaging, weighted difference imaging is also widely applied 

in fdEIT on medical imaging to remove background perturbations [70,104]. However, the method 

is not suitable for this chapter because the complex conductivity in the damage region is always 0 

S/m, so the difference in complex conductivity distribution in the paint background would not be 

included in the weighted difference. 

In this chapter, with a high excitation frequency ωb and then a low excitation frequency ωa, 

the nanocomposite paint will have a large complex conductivity γωb and then a small complex 

conductivity γωa while the γω of the damage region remains 0 S/m. The δγ in the nanocomposite 

paint region between these two injecting frequencies is positive while δγ in the damage region is 

0 S/m, therefore, localized low conductivity could be used for directly visualizing damage 

locations. 
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5.3.2 The fdEIT-ANN System 

Here, an fdEIT-ANN system was leveraged to reconstruct complex conductivity 

distribution in the nanocomposite region and then detect the damage locations. The structure 

investigated in this chapter is a 50×50 mm2 square-shaped nanocomposite thin film with 16 

electrodes equidistantly attached on the boundary, as shown in Figure 5.4.  

In the fdEIT-ANN system, the complex conductivity change (δγ) and corresponding 

voltages change (δV) obtained from the fdEIT forward problem would be utilized in the deep ANN 

structure for the training process. The trained deep ANN then could be used to identify the region 

with low conductivity as the damage location with the input of normalized boundary voltages 

change. To solve the fdEIT forward problem, a model with the same dimensionalities was 

constructed in Abaqus with a total of 1250 triangle meshed elements. The deep ANN system 

utilized 208 normalized boundary voltage differences as the input layer to calculate the normalized 

complex conductivity change in 1250 elements as the output layer. 

 
Figure 5.4: A schematic figure of a nanocomposite paint thin film with 16 boundary electrodes under 

EIT testing is illustrated. The EIT DAQ system injects electrical current across a pair of adjacent 

electrodes, while voltages are measured at all other remaining boundary electrodes. 
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To prepare the training sets for the ANN structure, 3000 damaged cases of the square 

nanocomposite paint thin film with random were generated. Randomly propagated damage in the 

thin film was modeled by setting 𝛾  of finite elements in the damaged region to 0 S/m. The 

maximum damage element number was set as 200 in this study. The complex conductivity of other 

finite elements was set to 11.83 S/m and 58.35 S/m respectively, corresponding to the values of 

nanocomposite paint in 1 kHz and 100 kHz excitation that characterized in experiments. So, a total 

of 6000 complex conductivity distribution states were examined with the forward problem solver 

to calculate the boundary voltages. The boundary voltages were then added with white Gaussian 

noise of 66.2 dB signal to noise ratio (SNR) considering the experimentally measured SNR is 

between 65 dB and 68 dB. The normalized difference (δVn
i) of simulated voltages in ith damage 

case between 100 kHz and 1kHz excitaition is calculated as: 

  𝛿𝑉𝑛
𝑖 =

𝑉100𝑘
𝑖 −𝑉1𝑘

𝑖

𝑉
   (5.2) 

where V is the maximum absolute voltage during 1 kHz excitation. The δVn
i serves as the input. 

Also, the differences of complex conductivity distributions between 100 kHz and 1 kHz excitation 

were noramlized as δγn before put in the output layer. 

The deep ANN architecture is illustrated in Figure 5.5. With the normalized voltage 

difference as input, four fully connected hidden layers with 2048 neurons in each layer were 

employed. For each neural in the hidden layer, an exponential linear unit is implemented. Even 

though the ANN system was trained with material properties in 1 kHz and 100 kHz excitation 

frequencies, the system could be adapted to different pairs of excitation frequencies because of the 

normalized inputs and outputs. 
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5.4 Simulation Details and Results 

5.4.1 Simulation Details 

The network trained with datasets mentioned in Section 5.3.2 was used in the simulation 

tests directly. Four damaged cases were investigated in the simulation with randomly propagated 

damage as shown in Figure 5.6. Two injecting frequencies, 100 kHz and 1 kHz were selected here 

for the simulated fdEIT interrogation. The choice of 100 kHz and 1 kHz is a decent representation 

to investigate the performance of the classical fdEIT solver and the fdEIT-ANN system, and the 

discussion of other pairs of frequencies was not further included in this section because only the 

reconstructed scale would be slightly different. Therefore, the complex conductivity in the 

damaged regions shown as blue in Figure 5.6 maintains 0 S/m, while the undamaged regions were 

imposed with 58.35 S/m and 11.83 S/m complex conductivity in sequence. Then the synthetic 

boundary voltages were calculated by the forward problem solver for the two distributions of each 

damage case. The corresponding simulated noise-free boundary voltages were then corrupted by 

white Gaussian noise with a 66.2 dB SNR. 

 
Figure 5.5: The architectures of the ANN system is illustrated. 
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The difference of synthetic boundary voltages in two excitation frequencies was first fed 

into the classical fdEIT solver to obtain the complex conductivity distribution. Then the 

effectiveness of the fdEIT-ANN system in detecting damaged regions was examined. The 

calculated normalized voltage differences (δVn
i) were employed in the system as inputs, and the 

outputs δγn of  were visualized in a 2D map.  

In addition, a sythetic strained state with a concentrated tensile strain shown as Figure 5.7a 

was considered. The region in blue was assumed to be subject to a tensile strain. According to the 

material characterization in Section 5.2, the piezoresistive properies decrease while the injecting 

frequency increases. Therefore, in order to utilize large response to obtain better reconstruction 

performance, 1 kHz and 50 kHz frequencies were chosen to interrogate the strained case. With 

533 µε tensile strain, the normalized impedance change is 0.074 and 0.00018 with a 50 kHz and a 

 
Figure 5.6: Four damaged cases were investigated in the simulation. The simulation results and the 

visualization of four damaged cases were obtained from the classical fdEIT and the fdEIT-ANN system. 
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1 kHz excitation frequencies. Hence, the complex conductivity in strained and unstrained regions 

are 11.01 S/m and 11.83 S/m with a 1 kHz excitation, and the complex conductivity in the whole 

domain maintains as 30.52 S/m with a 50 kHz excitation. The corresponding synthetic boundary 

voltages were then calculated and fed into the classical and the fdEIT-ANN solvers for processing. 

5.4.2 Evaluation criteria 

The interpretation of the normalized change of complex conductivity distribution to a 

damage map is achieved by including the finite element in the damaged region where δγn in the 

element is larger than half of the maximum complex conductivity change. To quantitatively 

compare the performance of damage detection between classical fdEIT and fdEIT-ANN system, 

evaluation criteria were employed. Here, the position error ep and shape deformation error es were 

considered as: 

   𝑒𝑝 =
|𝐶𝑟−𝐶𝑡| 

𝑙
   (5.3) 

 𝑒𝑠 =
𝐴𝑟

𝐴
 (5.4) 

where Cr and Ct are the centroids of the reconstructed and true damaged region, respectively, Ar is 

the area that is included in the reconstructed damage region but not in the true damage region, and 

l and A is the length and area of the square specimen [29].  

5.4.3 Simulation results and discussions 

The results from the classical fdEIT solver and the fdEIT-ANN system are shown in Figure 

5.6. The complex conductivity distributions from the classical fdEIT were normalized by the 

maximum change to offer an efficient comparison with the results from the fdEIT-ANN system. 
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For the cases with damage shown in different locations, classical fdEIT solver could reconstruct 

the area with low δγn roughly, but accompany an enlarged area than the true damaged region and 

artifacts shown at the undamaged region. In the results for Case 1 and Case 4, artifacts were shown 

in the bottom right corner and the top left corner respectively. The region with low δγn values could 

also be identified as a damaged region and influence further decision-making. The image errors 

are stated in Table 5.1. The application of the iterative solver in the inverse reconstruction process 

may improve the results by gradually reducing the low δγn region and approaching the true damage 

region, however, the artifacts in the background are difficult to be eliminated. Moreover, the 

processing time of the iterative solver is much longer than the one-step linearization method 

employed here.  

In contrast, the results from the fdEIT-ANN system could detect the damaged region more 

accurately. Even though the background of these images is not smooth as images from the classical 

solver because of the unutilized regularization method, it will not influence the image evaluation 

because the variation of δγn in each background finite element is much smaller than half of the 

maximum change. In Table 5.1, the position errors and shape deformation errors for images from 

the fdEIT-ANN system are both a few times smaller than from the classical fdEIT solver. For Case 

Table 5.1: Image errors quantification and comparison of four simulated damage cases 

Position error  

ep 

Classical fdEIT solver fdEIT-ANN system 

Case 1 0.0508 0.0304 

Case 2 0.0513 0.0143 

Case 3 0.0409 0.0354 

Case 4 0.0190 0.0151 

Shape deformation error es Classical fdEIT solver Classical fdEIT solver 

Case 1 0.0848 0.0240 

Case 2 0.0608 0.0488 

Case 3 0.2328 0.0552 

Case 4 0.0608 0.0168 
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3 with the solid damage, the result from the fdEIT-ANN solver has a 5 times lower shape 

deformation error than from the classical solver. However, the topological damage is difficult to 

be accurately identified by the fdEIT-ANN system. For a state with strong topological damage as 

in Case 2, the shape deformation error only diminished 1.2 times.  

Moreover, the images for the strained case were shown in Figures 5.7b and 5.7c. The 

complex conductivity difference between two excitations in the strained region is 19.51 S/m,  

which is slightly larger than the difference in the unstrained region 18.69 S/m. So the reconstructed 

strained region is shown in red.  The result from the fdEIT-ANN system is more accurate than 

from the classical fdEIT solver, and the image errors for the two reconstructions are stated in Table 

5.2. 

 

 

   
(a) (b) (c) 

Figure 5.7: (a) The complex distribution for the strained case in 1 kHz excitation was shown. The 

reconstructed images were obtained from (b) the classical fdEIT and (c) the fdEIT-ANN system. 
 

Table 5.2: Image errors quantification and comparison of the simulated strained case 

 Classical fdEIT solver fdEIT-ANN system 

Position error ep 0.0343 0.0279 

Shape deformation error es 0.0872 0.0360 
 



 

103 

 

5.5 Experimental details and results 

5.5.1 Experimental details 

Following the simulation study, experimental investigations were conducted to validate the 

effectiveness of the aoolication of fdEIT technique on the nanocomposite smart paint. The 

nanocomposite spray, prepared according to the procedure outlined in Section 5.2.1, was applied 

onto a square-shaped TPU sheet measuring 50×50 mm2. The spraying process ensured an even 

and consistent coating of the nanocomposite on the sheet, allowing for subsequent experimental 

measurements and analysis. Then, 16 conductive threads were equidistantly attached to the sample 

with drying colloidal silver paste. 

The DAQ system used in this chapter was identical to the one described in Chapter 4, 

depicted in Figure 4.10b. It comprises a current generator, a multifunctional switch, and an 

interface. The current source was set to deliver 20 mA AC currents to an adjacent pair of boundary 

electrodes. The switch then sequentially measured and recorded a total of 208 AC voltage 

measurements along the boundaries of the specimen. This setup allowed for precise control and 

accurate data collection during the experimental measurements. 

A circular damage region was manually etched off from the nanocomposite paint sample 

on the left side (Figure 5.8a). Subsequently, 20 mA AC currents at frequencies of 1 kHz and 5 kHz 

were applied to the sample through electrodes by sequence. The resulting AC measurements were 

recorded and utilized for the reconstruction process. 
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5.5.2 Experimental results and discussions 

Figure 5.8a and 5.8b depict the reconstructed normalized complex conductivity maps 

obtained from the fdEIT method. Both reconstructions successfully detected the complex 

conductivity difference resulting from the smart paint excited at different frequencies. The damage 

was localized as the blue spot, indicating the normalized conductivity change close to 0. However, 

some artifacts were observed outside the damage area in both reconstructions. The classical solver 

generated smooth artifacts because of the Tikhonov regularization method, while the ANN system 

produced scattered artifacts. 

5.6 Conclusion 

In this chapter, a MWCNT-based smart paint was developed for damage and strain sensing. 

The unique frequency-dependent complex conductivity of the smart paint enables the application 

of fdEIT, eliminating the need for baseline measurements. Furthermore, the implementation of 

data-driven deep ANN technique enhances the efficiency of the fdEIT process. Simulations and 

experiments were conducted to validate the effectiveness of the proposed method in damage and 

strain sensing using the MWCNT-based paint and fdEIT-ANN method. 

 
 

(a) (b) (c) 

Figure 5.8: (a) A circle region was etched off in the nanocomposite smart paint. The reconstructed 

images were obtained from (b) the classical fdEIT and (c) the fdEIT-ANN system. 
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CHAPTER 6 COMPOSITE DAMAGE DETECTION WITH PLANAR 

NONCONTACT CAPACITIVE IMAGING AND DEEP LEARNING  

6.1 Introduction 

As mentioned in previous chapters, CFRP composites are extensively used in aircraft, 

naval structures, and the automotive industry because of their outstanding lightweight and 

mechanical performances. Compared to conventional metals, CFRP composites have significant 

advantages such as light weight, enhanced mechanical strength, better fatigue performance, and 

high corrosion resistance [1,2,20]. However, unexpected impacts, other severe loadings, or 

environmental effects during their operation life may cause damage or even failure of these 

composite parts. The possible damage modes are not limited to delamination, fiber/matrix 

debonding, fiber breakage, and transverse cracks [15,16,22]. Especially, the inside damage and 

delamination in the laminated structures are very hard to be visually detected.  

Here in this chapter, the relationship between damage modes and electrical permittivity 

and conductivity changes in the composites were leveraged to develop and validate experimentally 

a noncontact, capacitive imaging system for assessing damage and delamination in CFRP 

composite panels. Classical ECT operates by measuring changes in capacitance between multiple 

electrode pairs surrounding the object of interest, and the sensing domain is usually defined as the 

circular area enclosed by the boundary electrodes [62]. Circular ECT offers impressive sensitivity 

in the sensing domain, however, its primary limitation is the constraint on the shape of the objects 

that can be inserted into the circular electrode array. As an advanced variant, planar ECT focuses 

on a two-dimensional electrode arrangement, which expands the applicability of ECT to structures 

with different dimensions and shapes [63].The advent of planar ECT has also unlocked its potential 

for damage detection in large-scale complex structures, such as fleets or aircraft. Inspectors can 
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employ the designed planar ECT electrode array to efficiently scan these structures, enabling rapid 

and accurate assessments of their internal properties. This non-invasive approach to structural 

health monitoring ensures the early identification of potential issues, thereby enhancing overall 

safety and operational efficiency.  

To guarantee effective scanning, processing time must be minimized. A supervised 

machine learning method that utilizes the deep ANN has been used in the capacitive imaging solver 

for achieving a high-resolution and time-efficient damage detection process. Adjacent 

measurements from the planar capacitive electrodes with strong sensitivity were employed in this 

chapter to render the measurement reduction, which not only decreases the influence of the low 

signal-to-noise ratio from measurements of other pairs of electrodes but also improves the deep 

ANN performance by reducing the input dimensionality. Because of the electrically conductive 

characteristic of CRRP composite, the complex impedance model was utilized here to generate 

training data for the network. With the presence of damage, the permittivity and conductivity are 

decreasing in a certain area and could be captured by the capacitance measurements. A portable 

planar electrode array has been prototyped. The imaging system has been used to visualize 

subsurface damage features and to characterize spatial damage sensing accuracy and sensitivity.  

6.2 Methods  

6.2.1 Classical Planar ECT solver and Complex Impedance Model 

In this chapter, a 12-electrode planar ECT system was with a 4×3 rectangular electrode 

array assembly was utilized as shown as Figure 6.1. The 20×20 mm2 electrodes were deposited on 
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one surface of the substrate. During the inspection, the ECT electrode array would be placed close 

to the target surface, and a 15 V AC voltage with 1.25 MHz frequency will be excited in each 

electrode by sequence while others remain grounded. In each excitation, the capacitance between 

the excited electrodes and the following grounded electrodes will be measured. Here, a total of 66 

capacitance measurements would be recorded for each inspection for the following reconstruction 

and damage characterization processes. The inspection continues to the following regions of 

interest after the completion of a full set of measurements.  

The classical planar ECT solver used in this chapter also consists of the forward problem 

and the inverse problem [22]. In Section 2, the governing equation for the ECT method for 

nonconductive materials is explained in detail. However, due to the conductive properties of CFRP, 

a complex impedance model should be used for its characterization instead of the general ECT 

model for nonconductive materials. The ECT impedance model is updated as: 

 

Figure 6.1: A 12-electrode planar ECT system was assembled to form a 4×3 rectangular array. 
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 ∇ ∙ ((
𝜎

𝑖𝜔
+ 𝜀)∇𝜙) = 0 in Ω  (6.1) 

The Dirichlet and Neumann boundary conditions are: 

 𝜙 = 𝑉𝑙 on Γ1 (6.2) 

 (
𝜎

𝑖𝜔
+ 𝜀)

𝜕𝜙

𝜕𝑛
= 0 on Γ2  (6.3) 

The complex impedance is represented by a complex quantity that has both a real and 

imaginary component. The real component is related to the conductivity of the material, while the 

imaginary component is related to its electrical permittivity. When dealing with nonconductive 

materials such as CFRP composites, the inspected object could be viewed as a parallel combination 

of an equivalent capacitor and resistor in the model. The relative influence of the capacitor and 

resistor on the impedance is determined by the frequency. When a low frequency is excited on the 

material with low conductivity, the capacitor dominates. While inspecting a high-conductive 

material, the resistor dominates [61]. While increasing the excitation frequency may allow 

capacitor dominates on a high-conductive material [61]. Here in this chapter, considering the 

conductive properties of CFRP composites, a high excitation frequency of 1.25 MHz was chosen. 

In the forward problem, electrical capacitances between electrodes would be calculated for a given 

distribution of conductivity and dielectric properties with Equation (6.4) using the finite difference 

method [62].  

 𝐶𝑙𝑚 =
1

𝑉
∫ 𝜀

𝜕𝜙𝑙

𝜕𝑛
𝑑𝑆

𝑒𝑙
  (6.4) 

The change of conductivity distribution and electrical permittivity would be both taken into 

account and would be captured in the capacitance measurements. In Figure 6.2, the comparison of 
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normalized capacitance measurements on a CFRP panel and the synthetic data from the previous 

model and the new complex impedance model was shown. The influence of the material 

conductivity makes normalized capacitance measurements drift above, which has a low upper 

bound and a high lower bound. That is because the conductive property and electron movement 

decreases the difference between capacitances measured from two close electrodes and two 

electrodes far away. Therefore, synthetic capacitance data generated from the new complex 

impedance model is more consistent with capacitance measurements than the data from the 

previous model. 

In the inverse problem, measurements were taken within the planar electrodes array to 

reconstruct the electrical properties of the inspected domain. Two different conditions were 

investigated, an undamaged state and a damaged state, and measurements were taken for each 

condition. The difference between the two measurements would then be utilized in difference 

 
Figure 6.2: A total of 66 normalized measurements from the 12-electrode planar ECT system 

on a CFRP panel were compared with the synthetic data from the nonconductive ECT model 

and the complex impedance model. 

 

(previous model)

(new model)
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imaging with the one-step linearization method to reconstruct the electrical properties change in 

the domain. Electrical properties within the CFRP panel are influenced by its internal structure and 

composition, and the presence of damage will alter the values. Damage and delamination in the 

CFRP composites can reduce the permittivity of the panel while causing the conductivity to 

decrease or become 0 S/m. Therefore, electrical conductivity and permittivity distributions both 

could offer damage state information of the inspected CFRP panel. However, because the dielectric 

properties dominate in the high-frequency excitation in this study, only permittivity distributions 

were reconstructed here. This updated model will help improve the damage characterization on 

CFRP composites. 

6.2.2 Reduced measurements 

The planar configuration of electrodes in a capacitive imaging system can have a 

significant impact on the sensitivity and accuracy of the measurements obtained. Specifically, due 

to the nature of the capacitive imaging technique, measurements obtained from adjacent electrodes 

are likely to produce a larger response than measurements obtained from electrodes that are farther 

away. Even though the capacitance measurements obtained from adjacent pairs of electrodes and 

from electrodes that are further apart will exhibit less difference in CFRP composites due to their 

conductivity properties, the change in capacitance observed in the electrodes that are further apart 

due to a change in the electrical properties distribution is still very low. In addition, measuring 

capacitance accurately from electrodes that are farther apart can be challenging due to the potential 

influence of environmental noise. 
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To reduce the impact of environmental noise on the measurements and to improve the efficiency 

of the measurement process, it may be advisable to prioritize measurements with larger response 

amplitudes. To quantify the responses, a CFRP composite was simulated to place on the top of the 

planar electrode array, and the synthetic capacitances were computed using the forward problem 

solver with the complex impedance model. The normalized synthetic capacitance change were 

calculated as: 

 𝐶𝑙𝑚
𝑁 =

𝐶𝑙𝑚
𝑐 −𝐶𝑙𝑚

𝑎

𝑚𝑎𝑥(𝐶𝑙𝑚
𝑐 −𝐶𝑙𝑚

𝑎 ) 
 (6.5) 

where Clm
c is the capacitance calculated when a CFRP is placed on the top of the electrodes array, 

while Clm
a is the synthetic capacitance measurements of air. 

In Figure 6.3, the normalized capacitance changes were plotted. The horizontal adjacent 

pairs of electrodes such as 1-2, 2-3, 3-4, vertical adjacent pairs of electrodes such as 1-5, 5-9, and 

diagonal adjacent pairs of electrodes such as 1-6, 2-7, all shows in red or black which represent 

 

Figure 6.3: Synthetic normalized capacitance change between a simulated CFRP composite on top and 

air. 
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large change of capacitances between the two states. Capacitance changes in other pairs of 

electrodes shown in orange or yellow in this figure are much lower than from those adjacent 

electrodes. Especially the normalized capacitance changes between Electrode 1 and Electrode 12, 

which are the farthest electrode pair, is very low and shown in light yellow. Therefore, to 

effectively reduce the effects of measurement noise and improve data quality, only measurements 

between adjacent pairs of electrodes are utilized to form a set of reduced measurements and 

following reconstruction process. This process help simplify the mathematical modeling of the 

system and improve the computational efficiency of the reconstruction algorithms. 

6.2.3 Planar ECT-ANN System 

In the classical ECT solver, the inverse problem solver with difference imaging technique 

was used to reconstruct the electrical permittivity distribution. However, as mentioned in Section 

2, the model-based solver is computationally inefficient and could hardly be applied in the real 

time scanning inspection process. Therefore, a planar ECT-ANN system was generated in this 

chapter to reconstruct permittivity distribution change using variation of capacitance 

measurements.   

In the planar ECT-ANN system, the conductivity change δε and corresponding capacitance 

change (δC) obtained from the planar ECT forward problem solver using FE method would be fed 

into the deep ANN as outputs and inputs for training process. The efficiency and accuracy of the 

deep ANN were enhanced by converting the output of 3D inspected region into a 2D map. This 

help reduce the dimensionality of output to 1884 neurons, and it was achieved by projecting the 

tetrahedral finite element onto 1884 triangle finite elements using the k-nearest neighbors 

algorithm based on the element centroid. Here, the reduced 29 adjacent measurements were used 
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as input to train the networks, and finally obtain a deep ANN system with the reduced adjacent 

measurements. The trained deep ANN system then could be used to identify the region with 

permittivity decrease as the damage location with the input of capacitances change. 

To prepare the training sets, an undamaged case and 5000 damaged cases with random 

finite element defect were examined with the forward problem solver for capacitance 

measurements. The electrical permittivity and conductivity decrease to 8.854×10-12 F/m and 0 S/m 

respectively in the damaged region. The measurements were then added with white Gaussian noise 

of 66.2 dB signal to noise ratio (SNR) and the normalized difference of simulated voltages between 

each damaged state and undamaged state is calculated as: 

 𝛿𝐶𝑛 =
𝐶𝑑−𝐶0

𝑐
 (6.6) 

where c is the maximum absolute measurement on the undamaged structure. The output in ANN 

is the normalized electrical permittivity change: 

 

Figure 6.4: The architectures of the deep ANN system is illustrated. 
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 𝛿𝜀𝑛 =
𝜀𝑑−𝜀0

𝜀0  (6.7) 

where εd is the electrical permittivity distribution in the damage state, and εd is in the undamaged 

state. In Figure 6.4, the deep ANN architecture is illustrated. After being trained, the ECT-ANN 

system can be used to reconstruct images of the electrical permittivity distribution. The distribution 

could be used to identify damage by detecting decrease in the permittivity caused by the damage. 

6.3 Experimental Details 

To validate the effectiveness of this method, a prototype planar ECT system was 

manufactured and utilized to conduct experiments. The assembly consists of a panel with an 

electrode array, a data acquisition (DAQ) unit, and RG 174 coaxial cables connecting the two parts 

together. The electrode array was commercially printed with PCB (Printed Circuit Board) with 

aluminum, including 12 boundary electrodes, each 20×20 mm2, arranged in a 3×4 pattern on the 

front surface of the board. A 1 mm diameter hole was drilled in the center of each electrode, 

allowing for a conductive path between the front and back surfaces of the PCB in a constrained 

region. To further improve the electrical performance of the ECT system, a conductive shield was 

printed onto the remaining region of the back surface of the PCB with a gap. The shield was 

designed to minimize electromagnetic interference (EMI) effects, which can cause unwanted noise 

and interference in ECT measurements. By printing the shield onto the back surface of the PCB, 

the ECT system was able to operate more reliably and with greater accuracy. A total of 12 RG174 

coaxial cables were respectively soldered on the electrode region and the shield region of the board 

backside, and then connected to the DAQ unit. A commercialized high-speed capacitance 

measuring unit was utilized for ECT interrogation and DAQ. The unit outputs 1.25 MHz, 15 V 

peak-to-peak, square waves, and travels with the cable to the electrodes array for ECT interrogation.  



 

116 

 

6.3.1 Modularized Conductive PLA 

Prior to the direct examination of CFRP panels with impact damage or delamination, 

conductive PLA blocks which were fabricated by the FDM Ultimaker 3+ 3D-printer were first 

used for the examination. This is due to the similar conductive properties of the PLA modules and 

the CFRP composites. The conductive PLA modules can be placed onto the ECT electrode array 

at different locations and with varying sizes to simulate the conductivity and electrical permittivity 

perturbations that are observed in damaged CFRP panels. This allows for testing of the planar ECT 

system's ability to detect and locate perturbations in the region of interest in a more comprehensive 

and flexible manner. First, a 45° block with 1 mm thickness (Figure 6.5a) that could diagonally 

cover electrode 1 to electrode 11 was 3D printed for the following evaluation of reduced 

measurement efficiency. Additionally, 22×22×1 mm3 rectangular cuboid blocks which could cover 

an electrode and its surrounding gaps, as shown in Figure 6.5b, were fabricated. These blocks were 

used to test the planar ECT system's ability to accurately localize conductivity and permittivity 

perturbations. 

 

  
(a) (b) 

Figure 6.5: (a) A 45-degree block with 1 mm thickness, and (b) a 22×22×1 mm3 rectangular cuboid 

block were 3D printed with conductive PLA and placed on the ECT electrode array. 
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6.3.2 Impact Damage Imaging 

To further test the ECT ability of impact damage detection on the CFRP panel, A CFRP 

composite was fabricated using Hexcel HexForce Carbon Fiber Fabric Plain Weave 3k 

5.8oz/197gsm Style 282 and epoxy resin infused using the VARTM (Vacuum Assisted Resin 

Transfer Molding) process. Three regions with dimensions of 125 mm x 75 mm were chosen and 

fixed at the boundaries in the composite panel. The three regions were then subjected to impact 

using a 0.254 mm radius dropping the ball with three different energies: 10.1 J, 20.2 J, and 30.4 J, 

respectively. The impact energy from the dropping ball will be transferred to the CFRP panel, 

propagating through the material as stress waves. If the impact energy in this test surpasses the 

material's ultimate strength, stress waves can cause damage such as delamination, fiber breakage, 

or matrix cracking to some extent in the impacted region. The extent and severity of the damage 

will depend on the impact energy and the design of the composite structure. 

During the inspection process, the undamaged region within the CFRP panel was first 

examined to obtain the undamaged state measurement C0. Then the impacted regions were then 

inspected by the ECT electrode array for the measurements of the different damaged states Ci. 

6.3.3 Delamination Imaging 

Other than damage caused by impact, delamination is also a common type of damage in 

composite materials, and it can significantly reduce the structural integrity of the material. In this 

chapter, the use of ECT to detect and image delamination in a CFRP panel was also investigated. 

Four CFRP panels measuring 68×90 mm2 and containing [0]6 plies were fabricated by vacuum 

bagging, each featuring single-layer delamination of varying sizes and locations. The process of 

fabricating the CFRP panels with delamination involved stacking six layers of prepregs and then 
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curing them using the vacuum bagging method. Delamination was purposely introduced between 

the third and fourth prepregs using release film of varying sizes, including 22×22 mm2, 22×45 

mm2, 22×68 mm2, and 45×45 mm2. The resulting composites with delamination were labeled as 

D1, D2, D3, and D4, with D1 having the smallest delamination and D4 having the largest. In 

addition to fabricating the composite panels with delamination, an undamaged panel with the same 

six-prepreg stacking was also produced without introducing any release films. This panel is 

referred to as P1. 

First, ECT interrogation was conducted on the undamaged composite panel P1 to obtain 

measurements in the undamaged state. Then, the panels with delamination (D1-D4) were inspected 

in order, and the differences in measurements were used as input for both the classical ECT solver 

and the planar ECT-ANN system. The detailed results of the ECT interrogation as well as the 

analysis using the classical ECT solver and ECT-ANN system are presented in the following 

section. 

6.4 Experimental Results  

The planar ECT system was used to interrogate the CFRP panels with impact damage and 

delamination, as well as the conductive PLA modules. The resulting measurements were then 

processed using both the classical ECT solver and the ECT-ANN system. The following section 

presents a detailed analysis of the results obtained from these experiments. 

6.4.1 Modularized Conductive PLA Imaging 

In Figure 6.6, the imaging results of a diagonal PLA block placed on the ECT electrode 

array were presented. The results obtained from the classical solver using the full set of 
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measurements, the reduced measurements from H/V (horizontal and vertical) adjacent electrodes, 

and the reduced measurements from H/V/D (horizontal, vertical and diagonal) adjacent electrodes 

were displayed in Figures 6.6a to 6.6c, respectively. The classical solver with reduced H/V/D 

measurements was able to produce an image that was almost identical to the image produced with 

the full set of measurements. This is because the perturbation was mostly captured by the adjacent 

pairs of electrodes. However, the results from the H/V measurements neglected the variation of 

measurements in diagonal adjacent electrode pairs. As a result, the imaging in Figure 6.6b was 

distorted and did not accurately reflect the actual location of the perturbation. In Figure 6.6d, 

imaging from the planar ECT-ANN with reduced measurements was shown to also detect the 

  
(a) (b) 

  
(c) (d) 

Figure 6.6: A diagonal PLA was placed on the ECT electrode array and the measurements was employed 

for reconstructions by (a) classical ECT solver with the whole set of measurements, (b) classical ECT 

solver with H/V measurements, (c) classical ECT solver with H/V/D measurements, (d) ECT-ANN 

system with reduced measurements. 
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diagonal pattern of the perturbation. The planar ECT-ANN system was able to produce an image 

with much less time while still maintaining accuracy to some extent. 

After evaluating the effectiveness of reduced H/V/D measurements, the study proceeded to 

examine the imaging ability of perturbations of small conductive PLA modules on the planar ECT 

system. A small module was first placed on the electrode array, and then two additional 

modularized PLA perturbations were placed on a 68×90×1 mm3 3D-printed conductive PLA base 

to simulate a subsurface perturbation. Both the classical ECT solver and the planar ECT-ANN 

system were able to accurately identify the location of the perturbations caused by the conductive 

PLA modules. 

 

 

 
Figure 6.7: Conductive PLA modules were placed on the ECT electrodes and then a conductive base. 

The reconstructions were solved with the corresponding measurements by classical ECT solver with 

reduced measurements (second row) and ECT-ANN system with reduced measurements (third row). 
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6.4.2 Impact Damage Imaging Results 

Following the evaluation of the planar ECT system's imaging capability in detecting small 

perturbations of conductive PLA modules, the study continues by investigating its effectiveness in 

imaging impact damage in CFRP panels. To evaluate the localization ability of the planar ECT 

system, the electrode array was first used to interrogate the panel under 30.4 J impact in the region 

of the blue box shown in Figure 6.8a to 6.8b. The planar ECT-ANN system was used to process 

the measurement difference between the damaged state and an undamaged state, and the solved 

images are shown in Figure 6.8a and 6.8b. The damaged region was indicated by a relative 

decrease in electrical permittivity in the reconstructions. By moving the inspection location, the 

damaged imaging area was found to move accordingly, thereby validating the effectiveness of this 

method in detecting impact damage. The reconstructed damaged region shown in the images is 

 

Figure 6.8: Impact (30.4 J) imaging solved by  ECT-ANN system with reduced measurements. 
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larger than the actual impact contact region, which can be attributed to the propagation of stress 

waves throughout the material. 

Furthermore, the regions under different impact energy levels were then inspected using 

the ECT electrode array. The reconstruction results were normalized by the maximum change in 

the case under 30.4 J impact and shown in Figure 6.9a to 6.9c. The images demonstrate that 

increased impact energy results in larger permittivity decreases. However, in the case of the CFRP 

panel subjected to a 10.1 J impact, image artifacts were observed on the left side of the 

reconstruction due to the relatively small perturbation. 

6.4.3 Delamination Imaging Results 

Finally, the CFRP panels with intentionally introduced delamination were examined using 

the planar ECT system. The results of the classical ECT solver and the planar ECT-ANN system 

are presented in Figure 6.10, which demonstrates their ability to effectively detect and image the 

delamination damage. 

 
Figure 6.9: Impact (30.4 J, 20.2 J, 10.1 J) imaging solved by the ECT-ANN system with reduced 

measurements. 

 



 

123 

 

 

6.5 Conclusion 

In conclusion, the planar ECT-ANN system proved to be an effective method for detecting 

damage in CFRP panels. The system was able to accurately detect and localize perturbations in 

the electrical permittivity of the material, both in simulated perturbations using conductive PLA 

modules and in actual impact damage and delamination in CFRP panels. The effectiveness of the 

system was demonstrated through experiments using different impact energies and sizes of 

delamination. Furthermore, the use of reduced H/V/D measurements was also evaluated and found 

to be effective in reducing measurement time while maintaining accuracy. Overall, the planar 

ECT-ANN system provides a promising approach for non-destructive evaluation of CFRP 

structures, with potential applications in aerospace, automotive, and other industries. 
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Figure 6.10: Delamination imaging solved by the ECT-ANN system with reduced measurements. 
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CHAPTER 7 CONCLUSION  

In this thesis, the objective was to investigate the effectiveness of non-invasive electrical 

tomographic imaging techniques, including ERT, EIT, and ECT, for damage detection in advanced 

structures such as CFRP composites and lattice structures. The thesis aimed to overcome the 

limitations of classical methods and explore modifications and enhancements to improve their 

applicability. Additionally, machine learning methods were incorporated to increase 

computational efficiency and real-time defect detection. Through simulation and experimental 

studies, the performance of these techniques was evaluated, and their results were compared with 

classical solvers. The findings highlight the potential of electrical tomographic imaging techniques 

for damage detection in advanced structures, addressing the need for accurate and efficient 

inspection methods in the field. 

7.1 Conclusion and Contributions 

In chapter 2, the fundamental aspects of electrical tomographic methods, including ERT, 

EIT, and ECT, were introduced. The chapter covers the forward problems associated with these 

methods, explaining how the boundary measurements relate to the internal electrical properties of 

the object. It also delves into the inverse problem, which involves reconstructing the electrical 

properties from the boundary measurements. Additionally, the chapter introduces deep ANN as a 

potential tool for electrical tomographic imaging. By providing this foundational knowledge, 

Chapter 2 establishes the basis for the subsequent modifications and enhancements to the solvers 

discussed in later chapters. 

Chapter 3 presents an integrated non-destructive anisotropic characterization and ERT 

solver for defect detection in an electrically anisotropic CFRP laminate. The chapter considers the 
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anisotropic properties resulting from UD plies and misalignments and investigates their impact on 

the ERT solver. The anisotropic ERT solver demonstrates superior performance in damage 

assessment compared to classical ERT, delivering solutions with reduced shape deformations, 

position errors, and artifacts. The advantages of the anisotropic ERT solver for anisotropic 

materials are discussed through simulations and experiments. The chapter also explores different 

current injection patterns, highlighting the effectiveness of the opposite pattern in accurately 

localizing and quantifying defects located far from boundary electrodes.  

The contribution of this chapter goes beyond the development of the anisotropic ERT 

solver for defect detection in CFRP laminates. The approach also incorporates a non-invasive 

method to obtain the anisotropic properties, making it highly applicable for industrial inspection 

purposes. This chapter provides a comprehensive examination of the differences between the 

classical ERT solver and the anisotropic solver, starting from the forward problem and considering 

the variations in measurements. Additionally, the investigation of different current injection 

patterns offers valuable insights for future applications, aiming to achieve more accurate and 

effective inspection results. By addressing the challenges associated with anisotropic materials and 

exploring advanced techniques, this chapter lays the foundation for enhancing defect detection and 

assessment capabilities in various industrial sectors. 

In chapter 4, significant contributions were made in the field of electrical tomographic 

imaging on lattice structures. This chapter has demonstrated the effectiveness of a 3D ERT method 

for quantitative defect detection in lattice structures by incorporating a strut-based normalized 

sensitivity map and an adjusted absolute imaging method. Both simulations and experiments have 

validated the enhanced performance of this method in localizing defects with smaller image errors 

and accurately assessing damage severity. The results highlight the strong consistency between the 
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reconstructed conductivity within a strut and the actual damage. This chapter addresses two key 

challenges associated with lattice structures: low central sensitivity of traditional imaging methods 

and the quantitative damage detection in topologically ordered geometries. By incorporating a 

strut-based normalized sensitivity map, this chapter provides a direct solution to compensate for 

the low central sensitivity and improve the localization of damage in central struts. This 

advancement has significant influence on quality assessment in industrial manufacturing process, 

where precise defect detection is crucial. Moreover, the proposed adjusted absolute imaging 

technique offers a direct and quantitative assessment of damage severity. This is particularly 

valuable in lattice structures with thin struts, where it is challenging to accurately localize the exact 

location of damage. The ability to obtain quantitative values for damage severity enhances the 

precision and effectiveness of defect assessment. The improved defect detection and quantification 

capabilities provided by this chapter have the potential to enhance the structural integrity and 

reliability of lattice structures in real-world applications. 

Chapter 5 introduced EIT which considers the complex impedance/conductivity of the 

material. This shift allows for a more comprehensive understanding of the electrical properties and 

behavior of the inspected material. The MWCNT-based smart paint developed in the chapter 

exhibits complex conductivity that varies with frequency. This unique characteristic enables the 

application of fdEIT, which eliminates the need for baseline measurements and enhances the 

accuracy of damage detection. 

Moreover, this thesis also makes a significant contribution by exploring the application of 

deep ANN in electrical tomographic methods. In chapter 4 to 6, deep ANN models were integrated 

into ERT, EIT and ECT methods to enhance their efficiency and accuracy. Several simplification 

techniques were employed to optimize the deep ANN models, such as reducing the complexity of 
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the network architecture. These simplification methods not only improve the computational 

efficiency of the deep ANN models but also maintain their effectiveness in capturing the electrical 

properties perturbations. By harnessing the power of deep ANN models, this research opens up 

new avenues for faster and more reliable electrical tomographic imaging, making it highly 

applicable in real-time industrial inspections, large-scale structural monitoring, and other time-

sensitive applications. 

In chapter 4, an ERT-ANN system has been proposed for detecting and localizing defects 

in conductive lattice structures. The system utilizes two deep ANN, deep ANN-I for identifying 

damaged struts and deep ANN-II for determining the location of damage within the struts. Training 

of the ERT-ANN system using simulated data and subsequent experiments using conductive thin 

film coated lattice structures have demonstrated its capability to accurately locate damaged struts 

and identify the specific portions of each strut that are damaged. The data-driven ERT method 

presented in this chapter offers a valuable tool for reconstructing the conductivity distribution of 

complex 3D lattice structures and detecting conductivity decreases associated with various forms 

of damage. The integration of deep ANN techniques further enhances the effectiveness and 

efficiency of the fdEIT process in chapter 5, allowing for accurate and reliable damage and strain 

detection. Both simulations and experiments have demonstrated the effectiveness of the proposed 

method. 

In Chapter 6, the integration of deep ANN techniques contributes to enhance the system's 

efficiency for damage detection in CFRP panels. This chapter explored the use of reduced 

measurements, specifically the H/V/D measurements, which proved to be effective in reducing 

measurement time while maintaining detection accuracy. The combination of deep ANN 
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algorithms and the utilization of reduced measurements in the planar ECT system offers a 

promising approach for damage detection on CFRP structures. 

7.2 Future Research 

The findings and developments presented in this thesis open up avenues for future research 

in the field of tomographic imaging and damage detection. In addition to the 2D ERT on composite 

structures, the development of a 3D anisotropic ERT method that can accurately account for 

through-thickness anisotropy could be one area of future exploration. This would involve refining 

the modeling approach and incorporating detailed models to capture the complex behavior of 

materials in three dimensions. Additionally, investigating the ability of the ERT method to detect 

defect propagation would be valuable for understanding how damage spreads within a structure 

and how it impacts its overall integrity. 

Another promising area for future research is the exploration of multi-modal imaging using 

EIT or ECT. Both EIT and ECT techniques capture information about the electrical conductivity 

and permittivity of the inspected material. By acquiring voltage phase information in addition to 

the traditional measurements, it becomes possible to obtain a more comprehensive characterization 

of the material's electrical properties. This multi-modal approach opens up opportunities for 

advanced image processing techniques to be applied. By leveraging the combined reconstructions 

from one set of measurements, image processing algorithms can be employed to enhance the 

accuracy and resolution of defect detection and localization. Furthermore, the use of 

nanocomposite thin films that are sensitive to specific stimuli, such as corrosion or other damage 

modes, can be incorporated into the multi-modal imaging framework. By introducing these 

specialized films to the inspected material, it becomes possible to obtain multiple damage mode 
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reconstructions. This multi-modal approach, incorporating voltage amplitude and phase 

information, advanced image processing techniques, and the use of stimuli-responsive thin films, 

has the potential to revolutionize defect detection and characterization in various industries. It can 

provide more accurate and detailed reconstructions of complex damage scenarios, enabling 

proactive maintenance and improved decision-making in structural integrity assessments. 

Moreover, the application of machine learning on electrical tomographic method could be 

further investigated. Firstly, the method can be evaluated and validated on more complex damage 

scenarios and varying levels of damage severities. By expanding the range of simulated and 

experimental cases, a comprehensive assessment of the method's effectiveness and versatility can 

be achieved. In addition, the training process of the machine learning models can be enriched by 

incorporating experimental results into the training dataset. This can provide real-world data that 

better represents the complexities and variabilities encountered in practical scenarios. By 

integrating experimental results, the models can be further refined and fine-tuned to improve their 

accuracy and robustness. Another avenue for future research is the exploration of transfer learning 

techniques. Transfer learning allows the knowledge gained from training on one dataset or 

structure to be transferred and adapted to another dataset or structure. By leveraging pre-trained 

models or learned features, the training process can be accelerated, and the model's performance 

can be improved even with limited data. Transfer learning can facilitate the adaptation of machine 

learning-based damage detection methods to various inspected materials and structures, enabling 

faster deployment and wider applicability. 

In summary, future research in tomographic imaging should strive to address the 

limitations of existing methods, explore multi-modal imaging approaches, develop real-time 

imaging systems, and expand the application of these techniques to new industries and materials.   
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