Lawrence Berkeley National Laboratory
Recent Work

Title

RESONANCE EFFECTS IN THE SEMICLASSICAL THEORY OF ELECTRONICALLY NON-ADIABATIC
COLLISION PROCESSES

Permalink

https://escholarship.org/uc/item/1c09b6jK

Author
Miller, William H.

Publication Date
1977-12-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/1c09b6jk
https://escholarship.org
http://www.cdlib.org/

Submitted to the Journal of Chemical . LBL—7334

Preprint = *

RESONANCE EFFECTS IN THE SEMICLASSICAL THEORY OF
ELECTRONICALLY NON-ADIARATIC COLLISION PROCESSES

RECEIVED

William H. Miller BER R LALCATORY
MAN 14 19/8
December 1977 LIBRARY 4ND

DOCuMENTS SECTION

Prepared for the U. §. Department of Energy
under Contract W-7405-ENG-48

( TWO-WEEK LOANCOPY )

This is a Library Circulating Copy
which may be borrowed for two weeks.

For a personal retention copy, call
Tech. Info. Division, Ext. 5716 y

B A

veel-1d1



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



LBL~7334

\ ~ RESONANCE EFFECTS IN THE SEMICLASSICAL THEORY OF

‘ *
ELECTRONICALLY NON-~ADIABATIC COLLISION PROCESSES

$
William H. Miller
Department of Chemistry and Materials and Molecular Research Division,
Lawrence Berkeley Laboratory, University of California,
Berkeley, California 94720



Abstract

_ Significant advances in the theory of electronically non-adiabatic
collision processes have been made in recen; years by the advent of models
that treat all thel"heavy particle' degrees of freedom--i.e., tfanslation;
vibration, and rotation--by classical mechanics; only electronic degreés

of freedom are treated quantum mechanically. The "surface hopping" model

- of Tully'and Preston and the generalized Stuckelberg model of Miller and

'George are examples of this type of approach, There have, however, been

questions as to whether or not such models are capable of describing

resonance effects in electronic-vibrational energy transfer, e.g.,

A¥ + BC(v=0) + A + BC(v=1), with AEA =~ hy This paper shows that these

BC”
resonance effects are the result of interference of amplitudes for different

classical trajectories that contribute to the transition. The Miller-George

~model, which incorporates interference and tunneling within the framework

of classical S-matrix theory, thus describes resonance behavior, while the

‘Tully-Preston model, which adds probabilities (rather than amplitudes) for

the various trajectories, does not.

’



I. Introduction

As one better understands the dynamics of molecular collision processes

ez

that occur on ggg.poteﬁtia;'energy surface (i.e., within.oné adiabatic
électronic‘staté);'greater attention is being directed to exfending : L
theoretigal'mode}s_to deal with non-adiabatic phenoﬁena, i.e,, those that
involve trénsitions:from one potential energy sufface to another.l Since
atoms and molgcuies are "heavy particles", their dynamics is often well
approximatédvby clgSsical mg@hanics; and the utility of claséical tfajectory
metﬁods for_treating inelastic énd'reaCtive méleculér collisions on a sihgle
.potentiallehergy sﬁrfaée is well-known.2 One thus.ﬁiéhgs'to extend such
methods as far as @qssiﬁle to deal with eiectronically nonadiabatic
coliisions.

A mgjor contribution to accomplishing thislwas Tully and Prestqn's3
"surface hopﬁing" model,_which'they succeszuliy applied to the ut + H,
collision system. The important feaﬁure introduced by the Tully—Prestdn
approach‘is that él; heavy particle degfees pf freedom~-translation and
'vipratioﬁ.(énd rofation, too, but it will bé ignofed for purposes of
discussion)--are treated classically, as claséical trajectories moving on
’a.poﬁential energy sﬁrface. Only électronic degrees of freedom are described
quantum mechanicéily, i.e., as'statesg each adiabaﬁid electfonic state is a C\

different -potential energy surféce. Most other approac_hes4 have treated

R i

/

electfbnic and vibrational degrees of freedom quéntum mechanically, while
translation is treate& classically; i.e., onerconsiders translational
trajectories on "Qibroﬁic" potential energy curves. The fundamental short-
coming of this latter approach is that the coupling.between-translétion and

vibration cannot be treated correctly (because vibration is quantum mechanical
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and.translgtion is c¢lassical). For molecular collisions it'apbears that in
general it is.ﬁore realistic to treat the céupling between translation »
and vibration consistently, even if classically.

Someﬁhat later Miller and George5 presentéd a more general semiclassical
theory which, while still utilizing the full classical trajectories of the
heavy particle motion, incorporated qﬁantum mechanical interference and
tunneling effects. Miller—Géorge theory, which combined an approximation

of Stuckelberg6 with an idea introduced by Pechukas,7 was shown8 to include

‘a number of disparant models in a unified framework. It was seen, for

example, that the model does.not even réquire that thé two potential energy
surfaces héve an "avoided intersection". In its most primitive (and most
easily épplicable) limit that the surfaces gg_havé a well;defined avoided
intersection and that semiciassicél interference effects are discarded, the
Miller-George approach reduces essentially to that of Tully and Preston.

In addition to including quantum mechanical interference and tunneling
effects, the Miller—George modelvhas the desirable feature of not requiring
a somewhat ill-defined "hop'" from one potential energy surface to another;
the transition between surfaces is continuous, and uniquely determinéd by
the classical meéhanics on the adiabatic potential energy surfaces. Further- -
moré; the probability of the transition is also determined consistently by
the classical dynamics on the potential energy'surfacés (as a classical
éction integral). In the Tglly—PreSth approaéh, on the other hand, the
traﬁsition prgbability is determiﬁed separately by solving the two-state
-time—dependent Schrddinger equation, and this precludes a proper coupling

of the nuclear dynamics and the electronic transition.



The quéstion has recéntly arisen,9 however, as to whether or not the
Tully-Preston or Miller-George models are capable of describing resonant
transitions correctly, and the purpose of this paper is to explore this

) (

question. The'pafticular application for which the question arose is

electronic~vibrational energy transfer, e.g.,
Br® + HCR(v=0) + Br + HCR(v=1) -, BEH

wﬁefe-Br* is thelzf% stéte._ AEﬁr,>the excitation energy.of the bromine
atom, is close to hw, the vibratibﬁal separation in HCL. The net energy
which_mustAcoﬁe from, or go into translation is thus small ahd the cross
section:fqr the process is “anomalodslyf 1afgé."Such'resonance effectsv
are well-known, and it is also well-known that they éré well déséribed

by the time—dependént'SchrBdinger equation if the internal states in
quesfion:are treated quantum mechanicaily,‘i.e., if electronic ggg“vibra;ibnal
degrees of freedom are treated_qﬁantum mechanically. As discussed above,
however, the key feaﬁufe that makés the Tullnyreéton and Miller-George
approaches useful is that Ell heévy particle degrees of freedom are
tréated_classically, i.e., via classical trajectbrieé. It is thus important

to find out if resonance béhavior can be described by models of this type.

The main cdnclusion of the paper is that this resonance behavior results

from interfereﬁce of amplitudes for the different classical trajectories that
contribute to the transition. Since Miller-George theory'incorporates inter-

"classical S-matrix"

ference and tunneling effects within the framework of
theory,8 it describes the resonance features; the Tully;Preston,approach, on
the other hand, adds probabilities (rather than probability amplitudes) for

the different trajectories, and thus cannot. Section II shows more explicitly

how this comes about by considering a simple model.

ty
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II. Resonant Transitions; A Simple Example

The example chosen is the simplest one which illustrates the resonance
effects of‘interest;:it is an ultra-simplified model of vibrational-electronic
energy transfer;. Let i and j (=.1 or 2) denote two diabatic electronic
statesf and Hij(R7r) the 2'2 2 electronic Hamiltonian matrix. R and r are
the trénslationél and vibrational cdordinates,_respectively; roﬁation is
ignoréd, i.e., the model is that of a collineaf A + BC collision. The two
adiabatic potential energy surfaces, Wl(R,r) and WZ(R,r), are

. . 1
11’+_H22).i'§

I

W = ("

2 2 |
W=7 [AH™ + 4,1 , : (2.1)

where i = 1 and 2 correspond to - and +, respectively, and AH = H22—H11'

The model is simplified further by assuming

AH =0 |, . (2.2a)

and by linearizing H

12 in the vibrational displacement,

| e, Ry
le(R,r) = le(R,rO) + -————a—r'o——'-‘— (r—?o) s (2.2b)

where r, is the equilibrium position of r. R and r are functions of time

0

which, in a rigorous version of the model, are determined by classical
motion on the adiabatic potential energy surface, but which here are taken

to be unperturbed classical motion,

_R(t) = Ro + vt , " (2.3a)
r(t) - r, = \ 23;1 cos{(wt) ., | v (2.3b)



where the vibrational motion is that of a harmonic osgiilator. The oscillatory
time-dependence of r(t). is thekey feature of the resonance effect, so to
make.thevmodei simple enough for an analytic solution tﬁe ﬁime:depéndénce

- of R(t) is'neglected. 'WitﬁiEq. (2.3), the.potenti%l>mod¢l thus:assuﬁgs'the

form

M= 0 - © (2a)

Hp,(6) = H,(R(2),r(t))
Ae B . ' o
=5 " X cos(wt)_. . : (2.4b)

where Ae and A are time independenﬁ,

Ae = 2.H12v(RO,r,O) ' o (2.5a)

| s OH (R ,r.)
e VB T2t 250
omw VBrO ‘

Ae is the_eléctroﬁic:enéfgy Hefect.

For this simplé(model [Eq. (2.4)] cénsider first the Tully-Prestén
approach wi;h the entire time intervai taken as the "transition region".
With”R(t) and r(t) given és'above, fhe'l + 2 electronic transition is
detefmined quaﬁtum mechénically, and in order to caréy this.ouf analytically
perturbation theory isjused; the resul; will éhus be valid only to lowest
~order in the cou?ling péraﬁéter A. Sz,l,‘the ampiitude of‘tﬁe-ﬁransitibn,
is given in firsf—ordér time-dependent perturbation theory by

i -idet/h | ‘ -
SZ_,l = -5 Zdt e le(t) , | (2.6)

e



- and with_HlZ(t) from Eq. (2.4b) this becomes

%
il
1

. RS
21 %Zdte_ B [-AZ—E—Acos(wt)]

. - =t S L
- 5 7dte B lae - aeiWE L openlwty

The time integral is seen to involve integral tepresentations of the Dirac

‘delta function,

o 1 ixt
S(X)v = o0 Zd_t e R

so if Ae > 0, the transition amplitude is

_imh e |
s, =22 sGE-D . (2.7)

This model thus shdws the resonance effect--i.e., a large transition
proﬁability if Ae =‘hw—4to the extreme. For more realistic models the
deltg functiqn is‘broadéned“énd made finite because le(t) # 0 for only
a finite time interval (rather than the infinite time interval as above).
' Consider now the Milier—Georgévapproach. From Eqs. (2.1) and (2.4)
one sees thatvfhe adiabatic potential'differenge AW(t) = W2(t) - Wl(t)

is

AW(;) 2 le(t)

Ae - 2X\ cos(wt) | . (2.8)



A transition between potential energy surfaces 1 and 2 is possible whenever

AW(t) has a complex crossing point, and this is often identified by'the real

times at which AW(t) has a relative minimum. As shown in Figure la, AW(t)
from Eq. (2.8) has minima at t = 2mn/w, wheré n is any integer. The complex

crossing times, i.e., the roots of the equation

M(t) =0

are seen to be simply related to the times when AW(t) has minima:-

t. = 2nT + '}‘.COSh-'.l (AEI

T e e n (2.9)

_ The amplitude 82 1 is the superposition of amplitudes for all the possible’

crossing times, i.e., for all the possible trajectories that can lead to

the 1 » 2 transition:

B Z s (2.10)

n=-—oo

. / B _
where Sn is the amplitude for the 1 -~ 2 transition to take place at the

vcomplex time'tn. (Sinée S is being calculated only to lowest order in

2,1

A--to compare with Eq. (2.7)--it is not necessary to take re-crossings into

.account.) Sn is given in Miller-George theory.by.s’8

t

t
s = exp e.t.) exp(- & e w I (- Let) (2.11a)
n Pl Eptg) exp hJ, 27w ) 1) SFPLT g Bty (eetia
| | L . | )

t .
. n R -
- ei® exp[%-f dt AW(E) ] (2.11b)
0

[N

.
W



where ti + - and tf -+ 4o are the initial and final times. 0 is a constant

phase independent of the index n. The interpretation of Eq. (2.1la), apart
ie ¢ . /h —ieltl/h o
from the unperturbed phase factors e and e , is that the

particle moves on potential surface W, from ti t0'tn, crosses to w2 as tn

1

(where W ='W2), and then moves on W2 from tn'to t The relevant action

1 £°

integral in Eq. (2.11b) is easily evaluated

£ t

N n

f dt AW(t) f dt [Ae - 2X cos(wt)]
0 0

Aet_ - gﬁ-sin(wt )
n w n

' ' 2
_ Ae2nm | iAe -1 Ae, _ LS
= —7;——4-—27-Fosh (EX) 1 ng- ] . (2.1

To lowest order in A,

1 2

cosh Y28 1 -2 - wdS +oo00d (2.13)
2A 2 el
Ae
so that the net amplitude is
iég‘Zhﬂ :
_ hw Ae Ae _
8, " Yy e expl- p= (5] (2.14)

n=--0

‘where the.constant phase factor has been discarded. ' The Poisson sum formulall

implies that

I N (2.15)-

(1]
=
"
™
]
8
O
5?>
£lm
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and since Ac > 0 it is then eaéy to show that Eq. (2.14) becomes

- Ae er L ‘
52,1 _"g_d w WG o (2.16). .

To compare this to the result of quantum mechanical time-dependent
pertﬁfbation theofy, Eq. (2.7), one needs only the term of.Eq.'(2.16)
that is lowest order in A, the %=1 ;éfm,

]

59,1 % he

6(—%— 1) > : (2.17)

which is the same (apért from constant phase factors) as Eq. (2.7) except -
that the multiplicative constant e = 2.72 appears rather than T = 3.14.

The terms & > 1 describe multiple vibrational resonances, Ae = fhw;

i.e.,
A + BC(v=0) > A + BC(v=2)

The important feature.this calculation demonstrates is that the
resonanée effect is correctly described by the Miiler—George model. It
comes from the interference,of amplitudes that correspoﬁd to the different
times at which thé frahsition can occur. In the pertﬁrbative limit it has

. ‘ I\
the same form as the result given by quantum mechanical time-dependent

perturbation theory, although it does make an error (v 13%) in the %"
multiplicative numerical factor.
In actual application there will not be an infinite number of terms

in the sum over integers n in Eq. (2.15). (Nor will the different terms

have precisély the same phase factors). Figure 1b shows the behavior of



fNg
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AW(t) that might be expected for a more réalistic model;_hére there would
be only a'finiteﬂnumber of avoided crossings with significant transition
probabilities, A finite and broadenedvresénance function would thus replace
the delta_function;v

It is important to‘note that the Tully-Preston model obtains the

resonance behavior only if the entire time interval is taken as the

"transition region' during which the time-dependent Schrodinger equation
is used to determine the transition probability associated with the
transition region. During this transition time interval, however, the
claésical path muét be assumed, rather than determined by the classical

equations of motion. (In the Tully-Preston model the tréjectory is

determined by classical mechanics between the various transition regions.)

Thus if the entire time interval is the transition region, the classical
path must be assumed for the entire time interval, and the model thus looses
its greatest charm, namely that ofvallowing the classical path to be

determined dynamically rather than having to assume it a priori. If each

avoided crossing--i.e., each minimum of AW(t)--is treated as a separate

crossing region;>as it should be for the model to be consistent, then the
Tully-Preston model misses the resonance effect completely since it would
add the probabilities (rather than probability amplitudes) related to the

different avoided'croséings.
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TIII. Concluding Remarks

The &ssential point in realizing that Miller-George theory describes

resonance behavior in electronic-vibrational energy transfer is that

AW(t) = AW(R(t),r(t)) is in general an oeeillefory fuqction of t‘because‘.
r(t)'is. AW(t) will tﬁue have a number.ef "avoided crossings” (i.e.,
minima), and the suﬁerﬁositiqn of the amplitudes for the various‘pOSSiblev
trajectories that change from surface 1 te surface 2 interfere and can
eeuse resonance effects. How sherp the resonance structure is deéends.on
how many amplitudes have comparable transition probabilities. The model
diecussed inJSeetion Ii, elthough grossly oversiﬁﬁiified ie order toemake
:a simpie analytic solution possible, illustrates the way resdnance effects
appear. |

Since ‘the Tully4Preston.model,does not include this kind of
interference behavior, why Has it been as successful as it has,
e.g., for the H+ + H2 systeﬁ? Here, too, there are eéually several
different trajeetoriéé that contribute'to a given process, and the proper -
.thing to do is to.supefpose amplitudes for these differeht trejeetoriee;
rather than add probabiiities.'For'non—resonanee‘prOCesses, however, the

different trajectories leading to a given transition are eésentially
P . ’ /

uncorrelated ﬁith each other, and averages'over_iﬁéact parameter; rotational
degeneracy, etc., quench the interference effeets. _For a nearly resonant
proeess, onjthe other hend; the different avoieed crossings are highly
correlated.with‘each otﬁer, i.e., thevphaSes of the amplitudes for the
different trajectories_differ from each other in e_regular‘ﬁanner.; Since

these phase relations are approximately independent of impact parameter,

@\
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eté.,_the interferenée Between these various amplitudes is less likely to
be quenched by averages over unobserved collision paramétérs.
Miller-George theory is difficult to épply in its fully rigorous
form, but there are several ways12 of simplifying it to a level £hat
makes it comparable'in'appiicébility to the'Tullnyreéton model;but which
still retain interference:information. One would expect this to be a
qsefully’accurate déscription Qf.resonance behavior in nén—édiabatic

collision phenomena.
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Figure Caption

The adiabatic potential difference’AW(t) as a function of time for the
model -given by Eq. (2.8).
The adiabatic potential difference as a_fuﬁction of time for a more

realistic model.



(a) . - AW(t)

_ J 1 1 .I.
47 21 o 27 A4z
w W w w

© XBL 782-7111



This report was done with support from the Department of Energy.
Any conclusions or opinions expressed in this report represent solely
those of the author(s) and not necessarily those of The Regents of the
University of California, the Lawrence Berkeley Laboratory or the
Department of Energy.




TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
"BERKELEY, CALIFORNIA 94720





