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Abstract

Reconstructing Sea Surface Temperature Images: A Masked Autoencoder

Approach for Cloud Masking and Reconstruction

by

Angelina Agabin

This thesis presents a new algorithm to mitigate cloud masking in the analysis

of sea surface temperature (SST) data generated by remote sensing technologies,

e.g., Clouds interfere with the analysis of all remote sensing data using wavelengths

shorter than ≈ 12microns, significantly limiting the quantity of usable data and

creating a biased geographical distribution (towards equatorial and coastal regions).

To address this issue, we propose an unsupervised machine learning algorithm called

Enki which uses a Vision Transformer with Masked Autoencoding to reconstruct

masked pixels. We train four different models of Enki with varying mask ratios

(referred to as t) of 10%, 35%, 50%, and 75% on the generated Ocean General Cir-

culation Model (OGCM) dataset referred to as LLC4320. To evaluate performance,

we reconstruct a validation set of LLC4320 SST images with random “clouds” cor-

rupting p=10%, 20%, 30%, 40%, 50% of the images with individual patches of

4× 4 pixel2. We consistently find that at all levels of p there is one or multiple mod-

els that reconstruct the images with a mean RMSE of less than ≈ 0.03K, i.e. lower

than the estimated sensor error of VIIRS data. Similarly, at the individual patch

level, the reconstructions have RMSE ≈ 8× smaller than the fluctuations in the

patch. And, as anticipated, reconstruction errors are larger for images with a higher

degree of complexity. Our analysis also reveals that patches along the image bor-

der have systematically higher reconstruction error; we recommend ignoring these
vi



in production. We conclude that Enki shows great promise to surpass in-painting

as a means of reconstructing cloud masking. Future research will develop Enki to

reconstruct real-world data.
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1

Introduction

Remote sensing technology has revolutionized our ability to monitor and

understand Earth’s systems. Sensors like the Visible Infrared Imaging Radiometer

Suite (VIIRS; Jonasson & Ignatov, 2019) or the Moderate Resolution Imaging Spec-

troradiometer (MODIS; https://oceancolor.gsfc.nasa.gov/data/aqua/) are used for

tasks such as weather forecasting, monitoring climate change, atmospheric studies

and more. One of the most important oceanographic variables to observe is sea

surface temperature (SST), which impacts and or tracks key aspects of our ecosys-

tem, e.g., marine dynamics, weather patterns, global warming (Isern-Fontanet et al.,

2017). VIIRS and MODIS both capture SST data at high-spatial resolution (≈ 1 km)

with global coverage and twice-daily measurements for the past one (VIIRS) or two

(MODIS) decades.

Sensors like VIIRS have enabled routine monitoring of the ocean, but be-

cause remote sensing technology generates such large datasets (e.g., the National

Oceanic and Atmospheric Administration’s Level-2P (L2P), 2nd full-mission reanal-

ysis (RAN2) of the VIIRS dataset is nearly 100Tb in size), there is a growing need
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for automated and efficient ways to sort through and analyze the data. Unsupervised

machine learning (ML) is one approach that has shown great promise in this regard.

Specifically, by applying unsupervised machine learning to remote sensing data, we

can extract meaningful information from large datasets without the need for hu-

man intervention or (expensive) labeling. This enables one, for example, to observe

ocean patterns that may reveal the impact of global warming or to identify shifting

currents, upwelling or marine heat waves that impact human activity (Prochaska

et al., 2023; Levy et al., 2018; Penven et al., 2006; Prochaska et al., 2023). Within

Physical Oceanography, such models may identify patterns or outliers in sea surface

temperature data, such as the development of oceanic fronts or eddies (McWilliams,

2017; Chelton et al., 2011).

With the rise of ML, a type of artificial intelligence (AI), analysis of remote

sensing data, a difficult challenge inherent to these data rises to the fore: corrupt

data. Clouds, the most impactful corruption, stymie remote sensing observations

leading to masking and missing data on nearly all spatial scales. These are identi-

fied with custom algorithms and flagged in the Level 2 products produced by NASA

and NOAA among others (Wu et al., 2017). Corrupt data can greatly reduce the

application and analysis of remote sensing data (Figure 1.1), especially in select ge-

ographical regions (Figures 1.2). The problem is especially acute for many standard

deep-learning AI models (e.g. convolutional neural networks, CNNs) which generally

cannot do not allow for missing or masked data.

For example, consider the unsupervised ML model Ulmo by our team

(Prochaska et al., 2021), a probabilistic autoencoder architecture originally trained

on SST images that span 150x150km2 regions, which this paper will refer to as

cutouts, from the L2 SST Aqua MODIS dataset, and later retrained on RAN2
2



Figure 1.1: Cumulative number of cutouts Nc that are available for analysis as a
function of cloud coverage CC. At small values (CC < 10%), there is a greater
than exponential rise in the amount of data available for analysis. Increasing from
CC = 5% to 20% would make ≈ 3× more data available and one would gain an
order-of-magnitude by extending to CC = 40%.

VIIRS SST data (Gallmeier et al., 2023). Ulmo utilizes two distinct algorithms: an

autoencoder and a normalizing flow. The autoencoder reduces the dimensionality of

the original image into a latent vector, which represents the model’s understanding

of the image. These latent vectors are then processed through a normalizing flow to

convert them into a single variable known as the log likelihood (LL). The lower the

LL, the more uncommon the image and the greater its complexity Prochaska et al.

(2021). This allows one to perform outlier detection to find interesting patterns.

However one major limitation of Ulmo and CNNs in general is that the in-
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Figure 1.2: Geographical distribution of the data with≤ 5% masked data (primarily
clouds) in the nighttime L2 MODIS dataset of SST imagery (see Prochaska et al.,
2021, for full details). Clearly, limiting to nearly cloud-free data greatly limits SST
analysis in various regions. Note the color bar is on a log10 scale.

put images need to be “whole”. For SST measurements derived from near-infrared

wavelengths, therefore, clouds pose a major problem. In the case of Ulmo, the

authors primarily trained on cutouts that are cloud-free or have low cloud cover-

age (CC ≤ 5%), and used a standard inpainting algorithm to fill in the masked

pixels. This resulted in a biased analysis of the ocean with the probability of a

cutout decreasing away from the continental boundaries except in the Equatorial

region (Figure 1.2), and a significantly reduced fraction of the total data available

(Figure 1.1).

Figure 1.1 highlights the potential gains of cloud mititgation. Even extend-

ing to data from CC = 5% to CC = 20% would increase the dataset by ∼ 3× while

extending to 40% would increase it by over one order of magnitude. However, our ex-

periments with the inpainting algorithm used in the Ulmo (Navier-Stokes Bertalmio

et al., 2001) and subsequent analyses indicate poor performance at CC > 5%, and
4



even reveal important systematic errors at lower cloud coverage fractions.

To make progress on this critical issue, we propose a new solution – use

a novel, ML algorithm based on natural language processing (NLP) to reconstruct

masked data. Our model, named Enki, is a Masked Autoencoder built upon the

architecture of a Vision Transformer (ViTMAE) trained on LLC SST cutouts (He

et al., 2021). By reconstructing the masked out pixels, this allows for SST cutouts to

be analyzed by algorithms like Ulmo, and more broadly, provide accurate estimates

for missing data for other scientific and commercial applications.

This Masters thesis to the Department of Scientific Computing and Ap-

plied Maths at the University of California, Santa Cruz describes the development,

testing, and first results from Enki. The thesis is organized as follows: Section 2

covers the architecture of ViTMAE. Section 3 goes over the environment in which

Enki was trained, the specifics of our training dataset and validation set, and the

hyperparameters we used during training. Section 4 goes over the qualitative and

quantitative results as we examine Enki ’s reconstructions.
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Figure 1.3: Architecture of our ViTMAE named Enki. In this example, the image
is 64x64 pixels and broken up into patch sizes of 16x16 pixels with 40% of the image
masked out. An image is broken down into patches and masked. The unmasked
patches are flattened and embedded by a linear projection with positional embed-
dings which are then run through the encoder, returning the encoded patches which
are then run through the decoder along with the masked (unfilled) tokens. This re-
turns another latent vector, and another linear projection layer outputs this vector
as an image with the same dimensions of the original image. The model of Enki we
train reconstructs cutouts of size 64× 64 pixel2 with a patch size of 4× 4 pixel2 and
a latent vector size of 256.
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2

Architecture

Enki is a Masked Autoencoder (MAE) neural network with a Vision Trans-

former (ViT) architecture (He et al., 2021). As an autoencoder, it has two primary

parts: (1) the encoder and (2) the decoder (e.g. Baldi, 2012). The encoder special-

izes in transforming an input image into a lower-dimensional latent space, known as

a latent vector. In machine learning, latent vectors are reduced, numerical represen-

tations of data which (ideally) capture the essential characteristics or features of the

data. The decoder transforms this latent vector back into a reconstructed output

image with the same dimensions of the input space.

Transformers are another type of neural network that also have an encoder

and decoder type architecture but differ from autoencoders in their structure and

use. Unlike autoencoders, transformers tokenize inputs. Each token contains a latent

representation, and the transformer applies self-attention to weigh the contribution

of each latent vector to the final data representation. Self-attention works by com-

puting a set of attention weights for each latent vector, based on its similarity and

association to other latent vectors in the image. Transformers are primarily used
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in NLP for tasks such as language translation. An example would be if a trans-

former was given an English sentence with the goal of reconstructing the sentence in

Japanese. The transformer tokenizes each word, performs self-attention to find the

relations between the words and produces the latent vector, and then reconstructs

the sentence in Japanese from the latent vector.

A ViT is a Transformer encoder applied to images (Dosovitskiy et al., 2020).

Similar to a sentence, the image is tokenized by breaking it into non-overlapping

patches, each of which is assigned a positional embedding. These are then fed

through a standard Transformer encoder. Self-attention is also performed on the

patches to weigh contributions of each patch to the final image representation. ViT

is primarily used for image classification (i.e., without a Transfomer decoder) and is

therefore a supervised learning model requiring labeled data for training.

He et al. (2021) developed a masked autoencoder based on the ViT which

utilizes both the encoder and decoder and learns to reconstruct images with masked

or missing data. The masked nature allows for unsupervised training which is ideal

for handling unlabeled big data. ViTMAE works by taking an image, breaking it

up into patches, masking out a portion of the patches, and then tokenizing them.

These patches are then fed through a transformer (the encoder), and a latent vector is

returned. The latent vector is then given to another transformer block (the decoder),

which reconstructs the image and a linear projection layer converts it back into the

original image’s dimension size.

Our architecture, named Enki and described in Figure 1.3, follows closely

that of the original ViTMAE. We changed the hyper parameters of image size to fit

our 64× 64 pixel2 cutouts, and reduced the patch size down to 4× 4 pixel2. A small

patch size is preferred because real clouds are not large squares. A future version of
8



Config Value

Models and Masking Ratios t=10, 35, 50, 75
Base Learning rate (t=10, 35, 50) 1e-4
Base Learning rate (t=75) 1.5e-4
Weight Decay 0.05
Warmup epochs 40
Training Epochs 400
Batch size 64
Image size (64, 64, 1)
Patch size (4, 4)
Encoder Dimension 258
Decoder Dimension 512

Table 2.1: The training hyperparameters for the model are summarized in this table,
highlighting the different learning rates chosen for each specific model. Additionally,
a 256 embedding dimension was initially selected with the intention of utilizing the
latent vectors for training Ulmo. However, it was discovered that this approach
was not feasible due to the computationally expensive nature of training Ulmo with
each patch generating a 256-sized latent vector. As a result, alternative strategies
were explored to address this limitation.

Enki will convert cloud mask into a set of patches, and we can reproduce a mask

with squares while minimizing the number of good pixels masked.

On the other hand, smaller patch sizes are more computationally expensive.

Decreasing the patch size down to even 2 × 2 pixel2 will increase the total number

of patches from 256 to 1024 with an increase of 4× in compute.
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Figure 2.1: A visual example of the reconstruction process. 1) We start with the
Original image; 2) We convert this image into patches, and mask out a p percentage
of the image. In this example, we use p = 75; 3) The unmasked patches are run
through a transformer block (the encoder; see Figure 1.3) that returns latent repre-
sentations of the patch. Each unmasked patch has a latent vector of size 256; 4) The
full set of patches (latent vectors of unmasked patches + empty masked patches)
are now run through another transformer block (the decoder) that reconstructs the
missing patches. This image is converted back into the original dimension space
of the original image. However, notice that what the decoder returns has notable
patches where the image was not masked. We suspect this is because when the
model is evaluating MSE, it only evaluates the reconstructed masked pixels. This
means when reconstructing, the model does not care what the unmasked patches
look like; and 5) We take the unmasked patches from the Original image and replace
the missing patches with the reconstructed patches from the decoder to create our
final reconstructed image.
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3

Methodology

Enki is trained in two steps: pre-training and fine-tuning. Pre-training is

typically used to train a deep-learning model on a general corpus, while fine-tuning is

used to adapt the model to a specific dataset. A model of ViTMAE could be trained

on a general corpus like ImageNet-1K and then fine-tuned on another dataset to

specialize in reconstructing birds. However, when a model of ViTMAE is trained,

the hyperparameters used during training cannot be changed when reconstructing

new images outside of training. For example, a model of ViTMAE was trained on

128x128, three color channel images with a 16x16 patch size, must be applied to

data with the same shape. Our training set did not match the parameters of the

available trained models. Therefore Enki was pre-trained from scratch to suit our

needs. Pre-training for Enki was performed using a modified version of Facebook AI

Research group’s code to run in Kubernetes with an h5 file containing our training

dataset. Multiple models of Enki were trained on different masking ratios (t) to

study how its affect on Enki performance for image reconstruction.

Finally, we have experimented with different masking ratios during and
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after pre-training. We distinguish these two values as the masking ratio a model

was trained at as t (e.g. a model trained at 10% masking is referred to as t=10) and

the masking ratio for the input image for reconstruction is referred to as p (e.g. an

image being reconstructed at 10% masking is referred to as p=10).

3.1 Training Dataset

In unsupervised learning, the dataset does not have labels. Our training

dataset is comprised of millions of SST images for Enki to learn patterns. For this

project, the optimal dataset would be one that is free of clouds and noise because

we do not want Enki to learn to reconstruct unmasked clouds or add noise into

reconstructed patches(Wu et al., 2017). The dataset should adequately capture

both typical and uncommon SST dynamics with a uniform coverage of the ocean.

For pretraining, we used a dataset generated from a Ocean General Cir-

culation Model (OGCM) from the Estimating the Circulation and Climate of the

Ocean (ECCO) project in a collaborative effort between the Massachusetts Institute

of Technology (MIT), the Jet Propulsion Laboratory (JPL), and the NASA Ames

Research Center (ARC). Specifically, we use the 1
48

◦
, 90-level simulation known as

LLC4320. The LLC4320 model outputs do not contain clouds (only a statistical

model of the atmosphere) or sensor noise.

Furthermore, while we have large sets of cutouts of true data from MODIS

and VIIRS that are nominally “cloud free”, our experience is that many of these

contain clouds that were missed by standard screening algorithms (see Gallmeier

et al., 2023, for examples). Working with a cloud-free VIIRS dataset may also bias

Enki towards behaving best in cloud-free regions (e.g. Figure 1.2). LLC4320 data
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does not suffer from this issue; we can generate a training set with uniform coverage

of the ocean in both location and time. Additionally, Gallmeier et al. (2023) shows

that the distribution of sea surface temperature anomaly (SSTa) patterns present

in the VIIRS observations are generally well-predicted by the LLC model. This

provides confidence that a ViTMAE trained on LLC4320 outputs may well reflect

patterns within the real ocean.

The training dataset for Enki consists of LLC4320 cutouts from 2011-11-17

to 2012-11-15, inclusive. LLC4320 cutouts were extracted to cover 144 × 144 km2

sampling and resized using the local mean to 64× 64 pixel2 cutouts. The geographi-

cal distribution uniformly samples the ocean between latitudes of 90S and 57N. Real

satellite data contain noise from the atmosphere and from instruments, but because

the goal of reconstruction is not to reconstruct the noise in images, we did not im-

pute noise in the LLC4320 cutouts (in contrast to Gallmeier et al., 2023). In total,

the training dataset ends up being ∼ 2.6 million cutouts. Although it is possible

to generate larger datasets for training purposes, we encountered resource limita-

tions during the training process, and expanding the dataset size would significantly

extend the training duration. Unlike datasets such as ImageNet, which contain a di-

verse range of objects like animals, plants, and various objects, SST patterns exhibit

less variability. Given this characteristic, we hoped that the inclusion of 2.6 million

cutouts in our dataset adequately captures the dynamics present in the ocean.

3.2 Training

We performed a hyperparameter scan of the masking ratio during training t.

Four different models of Enki were trained with 10%, 35%, 50%, and 75% masking.

13



These variations are referred to as t = 10, 35, 50, 75 respectively. Each model was

trained for 400 epochs on the complete dataset of 2.6 million LLC4320 SST cutouts.

During training, several models errored if the learning rate was too high. For these

models, we adjusted the learning rates from the default value; the t = 75 model was

trained at 0.00015, while the t = 10, 35, 50 models were trained at 0.0001. During a

single training epoch, Enki iterates through every cutout in the dataset and masks

out the specified masking ratio with random 4× 4 pixel2 patches. Performance was

evaluated using the default Mean Squared Error (MSE) loss function, but going

forward we may consider implementing other loss functions.

Every epoch of training uses new randomized masks for each cutout. This

forces the model to see significant variations and better generalize. All models were

trained in the Nautilus Pacific Rim Platform with Kubernetes using 4 CPUs, 75Gb of

RAM, and 8 NVIDIA-A10 GPUs. These specs were chosen after profiling training

speeds with available resources. Training times varied based on masking ratios.

Higher masking ratios completed in shorter training times, with the t = 75 model

training the fastest (≈ 22 minutes per epoch). Lower masking ratios require more

computations to create the latent vectors; the t = 10 has a 40% longer training time

(≈ 30 minutes per epoch).

3.3 Validation Dataset

In unsupervised learning, the validation set is a subset of the data not used

during training. It is used to evaluate the performance of a model with data the

model has not yet seen. The validation set therefore assesses model performance

while avoiding any effects of overfitting during training. Overfitting refers to when

14



a model learns the dataset too well that it is able to give accurate predictions, or

in our case reconstructions, for the training dataset, but has not generalized well to

reconstruct new data. While 2.6 million cutouts is a substantial dataset, it is still

small compared to the 100Tb of data in the VIIRS dataset. If we want Enki to

perform well, we wish it to reconstruct data outside of the training set.

The validation set we created for this project was a batch of 680,000

LLC4320 cutouts from the same locations of the training dataset but offset by

≈ 2 weeks from the training set. These cutouts follow similar cloud free and no

noise and were drawn uniformly over the ocean. While not within the scope of this

thesis, the validation set for future studies could contain VIIRS or MODIS cutouts

to determine Enki’s effectiveness reconstructing real cutouts.

15



Figure 3.1: Training loss of the t = 75 Enki model. The lost function implemented
was the MSE of the reconstructed masked out patches. As typical of deep-learning
models, there is rapid improvement in the loss at early stages followed by a shallow
plateau at late times.
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4

Analysis and Results

Following the completion of training, we used the validation set to recon-

struct cutouts with the four Enki models trained at t = 10, 35, 50, 75. For each

model, we reconstructed images at a masking ratio of p = 10, 20, 30, 40, 50. We

chose to limit our range to p ≤ 50 because further masking would run the risk of

Enki having insufficient information to interpolate accurately. The seed for the

masking was not set, so masks for all the reconstructions differ. Reconstructed im-

ages were created by replacing masked patches with reconstructed patches. The

results are invariably imperfect and we anticipate larger errors at higher masking

ratios. To assess the magnitude of the error, we calculate the Root Mean Squared

Error (RMSE):

RMSE(y, ŷ) =

√∑N−1
i=0 (yi − ŷi)2

N
(4.1)

where y represents the original image, ŷ represents the reconstructed image, and N

represents the number of pixels that were masked out. Throughout, the RMSE is

only calculated on masked pixels i.

Analysis of the RMSE is performed at the patch level and on images as a

17



whole (excluding the edge patches, which we will discuss in depth in Section 4.2). As

discussed in Section 4.3, we identified a bias for select t,p values. In nearly all cases,

we correct for this bias before evaluating the RMSE. In the following sub-sections,

we present results including the performance of the Enki models with various t

values.

Figure 4.1: Qualitative assessment of the reconstruction for a single image with
Enki. This high-complexity image (LL ≈ −19000) was imputed with a p = 50
mask and we applied the t = 50 Enki model. Despite the high masking ratio, the
reconstruction reproduces the original at high fidelity. The primary exception are
features along the sharpest gradient (residuals of 7.3 and -7.5) and the upper-right
corner (residuals of -2.5) where the model is forced to extrapolate.

4.1 Qualitative Results

Consider first a visual inspection and assessment of the image reconstruc-

tions by Enki. Figure 4.1 shows a representative example for a higher complexity

SST cutout. The example has a p = 50 mask ratio and we implemented the t = 50

Enki model.

Overall, the Enki model demonstrates strong performance in capturing

the underlying structure of the SST patterns, even at higher masking ratios. The

reconstructed images exhibit smooth transitions between the unmasked and recon-

structed patches and no significant offsets, eliminating the need for bias correction.
18



However, some residual errors are observed along sharper gradients, where the model

accurately estimates the border between different values but falls short of perfection.

We also see that in cases where certain features, such as the curved point of negative

(blue) values, are completely masked out, Enki produces sensible, albeit imperfect,

reconstructions. A similar occurrence can be observed in the upper-right corner

where the gradient is mostly masked out, and the reconstructed gradient is less

harsh.

Expanding on the qualitative inspection, Figure 4.2 shows the reconstruc-

tions for four images chosen to span a range of complexity (here we use the LL

metric from Ulmo). Overall, the reconstructions are close to the original images.

Reflecting what we saw from Figure 4.1, as the masking ratio increases, the model

begins to miss or incorrectly guess some of the features. For example, for image A

and B for t = 75, p = 75 there are features which are smoothed over or incorrectly

reconstructed. In image C for t = 75, p = 75 in the bottom right corner there is

a small negative value (blue) feature that is entirely missing in the reconstruction.

When looking at the mask, we find that the feature had been entirely masked out

leaving Enki no information to interpolate the feature. Despite this, Enki we are

still able to recognize the key patterns from the original image in the reconstruction

indicating that Enki is able to capture the overall structure of the cutouts. We

continue to observe these types of incorrect reconstructions in the t = 50, p = 50

examples, but to a lesser extent. In A we see for t = 50, p = 5 that the dot of orange

to the mid-left of the image is missing in the reconstruction, but when looking at the

blue gradients on the bottom-right and the swirl in the middle, we find the features

are not as smoothed out as they are in the t = 75, p = 75 reconstructions.

Meanwhile, the images from D with LL=1110 are reconstructed well across
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all models, and we suspect that complexity of a cutout will play a role in how well

Enki reconstructs images.

We next examined at how models reconstruct at masking ratios (p) outside

of their training (t). In Figure 4.4 we show an example of the t = 10, 35, 50, 75 models

reconstructing at p = 10, 30, 50. Here, we see issues arise with the reconstructions.

For the t = 10 model, we see erros in the patches at p = 30, and at p = 50 this

effect is magnified. The t = 35 model has this issue for p = 10, 50, while the p = 30

reconstruction does not. The t = 50 model performs significantly worse than the

rest of the models at p = 10, 30, but does well at p = 50. This implies that there

may be a certain offset between t and p for which a particular model of Enki will

perform well.

Finally, the t = 75 model does not have a single masking ratio within the

chosen range that produces acceptable results. At all levels of p the patches are

visible, and there is an offset in values from the original image.

In their original paper, He et al. (2021) found that training at 75% masking

was ideal because it reduced redundancy when training, and forced the model to learn

more rather than extrapolating information from nearby patches. However, for our

purposes, we are more interested in accurate reconstructions over well generalized

ones. We have already seen that when a lot of smaller, finer features are fully

masked out, these features tend to either be smoothed over or missing within the

reconstructions. We demonstrate more in-depth examples of this in Figure 4.3. In

the top right corner of the upper image, Enki fails to reconstruct the small band,

and completely smooths over all the finer dynamics in the bottom right. The bottom

figure demonstrates another example of Enki smoothing out finer details.

In addition, it was noted in the original MAE paper that different masking
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techniques were tested. One of these techniques was a “block-wise” masking strategy

that masked out a large block of patches from the middle of the image. While

random patching is convenient for training due to the high variability in masks,

random patching does not accurately represent cloud masks. This is especially true

for the p = 10 reconstructions where we have many isolated patches scattered around

the cutout. Block masking could more accurately emulate large clusters of clouds

blocking out large portions of the image. We will consider this approach in future

work.
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Figure 4.2: Galleries of reconstructions by the different models. In each case, the
cutout is reconstructed using the Enki-trained model that matches the masking
ratio p. A collection of reconstruction galleries showcasing the results obtained from
various models is presented in this study. Each gallery exhibits the reconstruction
of a different cutout being reconstructed by a model at the mask training ratio they
were trained at. Different LL were intentionally selected to demonstrate how Enki
performs across a spectrum of ocean dynamics.
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Figure 4.3: The top image demonstrates how the Enki model trained at t = 75 will
frequently miss finer features in p = 75 reconstructions. Notice how the bottom right
corner is almost entirely masked out. In the reconstruction, all the structure of the
original cutout is replaced with a smooth gradient. The bottom image demonstrates
how the t = 75 model generalizes shapes, but looses a lot of the finer details.
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Figure 4.4: Gallery of different models reconstructing cutouts at p = 10, 30, 50. No-
tice that a model performs best when reconstructing around the range for which it
was trained. Models are still able to capture the values of an image when reconstruct-
ing around 15-25% away from where they were trained, but the patches become
visible to the human eye. This is especially noticeable in the t = 35, p = 10, 50
reconstructions.

24



Figure 4.5: Average RMSE error for reconstruction of all masked 4×4 pixel2 patches
at the location i, j in the image. The i and j represent the position of the patch
from the lower left corner. These are for the validation set with t = 10 and p = 20
reconstructions. Clearly, patches at the edge suffer significantly higher RMSE values.
We attribute this to the fact that edges and corners have less surrounding information
compared to patches in the center. For a real-world application of Enki, we would
advise ignoring the image-border for any reconstructions. All further calculations
and analysis presented in this thesis explicitly ignores the border.
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4.2 Analysis of Reconstructions at the Individual Patch

Level

Figure 4.6: RMSE of patches vs the standard deviation of SSTa(σT ). The black
line is the one-to-one relationship where RMSE = σT . The blue line is the RMSE
of t = 10, p = 20 patches vs σT , and the red line represents a (by-eye) fit to
the blue line. We see that for log10 σT > −2 (0.02K), Enki’s RMSE is nearly a
magnitude less than the σT . This means the reconstructions are far more accurate
than random noise. At log10 σT < −2, the RMSE flatten out. We speculate that
this is because spatial scale of the features become too small for outside patches to
assist in reconstruction.

An analysis of Enki’s performance was conducted at the individual patch

level to evaluate whether patch complexity or position affected Enki’s patch recon-

struction. We begin by calculating the RMSE of every patch of the reconstructed
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t = 10, p = 20 images, and then taking the average of all reconstructed patches at

position (i, j). As seen in Figure 4.5, the patches along the border exhibit a system-

atically higher RMSE. This is especially true at the corners which have the highest

average RMSE. We speculate this is because patches at the edges and especially the

corners are reconstructing with less information compared to patches towards the

center. In essence, Enki is forced to extrapolate instead of interpolate. A distinct

example of this can be see in Figure 4.1 where the gradient in the upper right corner

is not as pronounced as the one found in the original image. In some cases, when a

cutout has a small feature completely masked, the model will reconstruct the image

without the feature entirely.

While this issue may not be limited to edges and corners, Figure 4.1 indi-

cates that the edges and corners experience this issue more often than inner patches.

A blunt solution to handling these patches is to exclude them altogether from the

final cutout. While this throws out data, avoiding patches more prone to this is-

sue may be critical for real-world applications. For the remainder of this thesis, we

ignore the border in all further calculations and analysis.

Continuing our analysis of the patches, we also examined Enki’s perfor-

mance based on the complexity of a patch. Specifically, we gauged the patch com-

plexity by measuring the standard deviation in temperature (σT ). We hypothesized

that as patch complexity increases, we will also observe a rise in reconstruction

RMSE. After binning patches by σT , we calculated the median reconstruction error

(RMSE) of each bin (Figure 4.6). Here, we plot the σT of a patch against the RMSE

of a patch on a log-log scale.

The black dashed line represents the one-to-one relationship between σT

and RMSE. If the results for Enki track this line it would mean that the recon-
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structions are roughly equivalent to random noise. The blue line is the RMSE of

the t = 10, p = 20 patches plotted against the σT . The red dotted line represents a

by-eye fit.

We see that after a σT of 0.02K (≈ −2 on the plot) that the RMSE is

smaller than the black line by nearly one magnitude. We do see that there is a

correlation between the RMSE and σT as they increase at a similar rate, but the

lower RMSE means that the constructions being produced by Enki are excellent.

Before 0.02K, we observe that the plot flattens out at an RMSE of about

0.0012K (-3 on the plot). We suspect this is because as σT decreases, the special scale

of features in the SST patterns also decreases. At the threshold of 0.02K, the spacial

scale of the features become smaller than the size of the patch, and the reconstructed

field within the patch becomes less reliant on information from outside the patch,

resulting in patch reconstructions that are pretty much random. This indicates that

as we surpass this threshold Enki’s reconstructions start using outside information

when reconstructing patches.

4.3 Bias Analysis

When examining models trained with a higher masking ratio (t) that are

reconstructing images of lower masking ratios (i.e. t > p), a systematic offset is

observed (e.g. Figure 4.8). This is most apparent when using the t = 75 model to

reconstruct images with p = 10 and for the t = 50 model aside from p=50. We

calculate the offset in a single image as the median of the absolute value of the dif-

ference between original and reconstructed pixels. The mean offset of reconstructed

set of images at a given t, p is referred to as the bias. For example, a single cutout
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Figure 4.7: An example of the offset that can be found in the t = 75 model at p = 10
and how adding a bias correction on the image can improve the final reconstruction.
We see that in the example without bias that the RMSE is 0.0267 and that there
is an offset in this image towards 0.05K. In the 2nd image, we subtract the bias of
0.0267 from the reconstructed patches, and see an improvement in the RMSE down
to 0.0162 and in the qualitative examination of the reconstruction.

reconstructed by the t = 75 model at p = 10 may have an offset of 0.0131, but

the bias of the whole t = 75,p = 10 reconstruction set is 0.0269. When applying a

correction to reconstructions, we will use the bias because one cannot predict the

correct offset for a given cutout.

It is unclear why these offsets are present; we have yet to identify its origin

or even any strong correlation with image or patch properties. But when the typical

offsets are high enough, these lead to systematically large RMSE values. We calcu-

lated the bias for all models at all percentage of masking ratios, and plot them in
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Figure 4.8: Histogram of the offsets in t = 75 reconstructing p = 10 images. The
bias of the whole reconstruction set is 0.0267 which represented by the red line.

Figure 4.9. In addition, we provide the values Table 4.1.

Figure 4.9 shows that the most prominent bias occurs for models with high

training mask ratios (t > 10) applied to data with low masking (p ≤ 20). When

examining p = 10, a bias is present in all of the models aside from the t = 10 model.

At p = 30, we now see that the t = 35 and t = 75 model have a much lower bias,

nearing the performance of the t = 10 model. We do observe improvement in the

t = 50 model at p = 30 as the bias increases by half from t = 20 to t = 30.

As a whole, we note that the t = 10 model’s bias always remains close to

zero while outside of the p = 50.

Qualitatively and quantitatively, adding the bias improves the reconstruc-

tions and lowers the RMSE. Occasionally, the offset of an individual image is much
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Figure 4.9: The bias that appears in t = 10, 35, 50, 75 at p = 10, 20, 30, 40, 50. We
mark zero bias as a dotted red line. In this plot, we see that in general, the t = 10
model has a relatively low bias across all Patch Mask Ratio. The next lowest is the
t = 35 which starts out with a higher bias until it reaches 3 p = 30 masking. The
t = 75 model follows a similar pattern to the t = 35 model. The t = 50 stands out
as having a large bias at every pexcept p = 50.

larger than the bias, especially in images that have a larger σT . We show an example

of this in Figure 4.10 where despite adding a bias correction, the RMSE is worse

than if we had not added the bias. When calculating the offset of this cutout, we

find it to be 0.014. Despite this offset being half of what the bias is, the change is

barely visible (if at all).

4.4 RMSE Analysis of Cutouts

We hypothesize that recontruction performance will degrade for images

with higher complexity, e.g., sharp fronts. To test this, we remove the edge patches
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Figure 4.10: In this example, despite subtracting the bias (0.026 for t = 75,p = 10)
we see no improvement in the cutout. When we examine the RMSE, we see that
adding the bias correction made the cutout worse.

and apply a bias to all cutouts to ensure the best performance for all models. For

image complexity, we adopt the LL metric from Ulmo. For each reconstruction set

(t,p), we ‘binned the RMSE into 10 groups of ascending LL and took the average of

the RMSEs within those bins. We plot these results in Figures 4.11 and 4.12.

When comparing the RMSE to the log likelihood (LL) we see there is a

correlation between the two. As LL decreases, the RMSE increases. We also see that

for the the masking ratio has an effect on how well a model performs. For t = 10,

as the masking ratio increases, the RMSE also increases.

The initial observation from Figure 4.12 is that the performance of the

t = 50 model was noticeably worse compared to the other models. This result
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Training Ratio p = 10 p = 20 p = 30 p = 40 p = 50

t = 10 1.018e-0.6 1.214e-06 8.741e-0.6 8.027e-05 9.601e-05

t = 35 0.0173 0.0077 0.0013 -0.0013 -0.0043

t = 50 -0.0288 0.0603 0.0298 0.00796 -3.883e-6

t = 75 0.0269 0.0102 0.00237 -0.00183 0.00321

Table 4.1: The numerical values of all the biases. Notice how, for the t = 10, 35, 50, 75
models, the greater p is offset from the model’s training ratio, the higher the bias.
The only exception is the t = 10 model, which has a low bias for all masking ratios.

matches the bad reconstructions we have seen in Section 4.1 and the higher biases

in 4.3. This disparity can be attributed to the lower learning rate used during pre-

training. We expect that increasing the number of training epochs or relaunching

pre-training with a higher learning rate will make the t = 50 model more competitive

with the other models. Despite its poor showings at p, it is important to highlight

that the t = 50 model exhibited the best performance when reconstructing images

at p = 50.

The t = 10 model achieves the highest performance at p = 10, followed by

p = 20 and then p = 30. In the case of the t = 35 model, the best performance is

observed at p = 30, followed by p = 40 and p = 20. The RMSE pattern of the t = 75

model follows a slightly different trend. It exhibits its worst performance at p = 10,

shows improvement as it reaches p = 30, and then experiences a gradual increase

in RMSE to p = 50. Although the exact cause for this behavior is uncertain, it is

worth noting that the t = 75 reconstructions across all the examined masking ratios

have had issues. This suggests that the increasing masking ratio may contribute to

the observed rise in RMSE after p = 30.

Once again matching what we observed in Figure 4.4, all models other

than the t = 10 model exhibit their worst performance at t = 10. These are also the

images that are observed to require the highest bias correction, and even with such
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correction, their performance remains more than twice as poor as that of the t = 10

model. Clearly, these models have not learned the finer-scale features apparent in

the data.

We acknowledge that the t = 10 model consistently has some of the lowest

RMSE. The only instances where we observe lower RMSE values than the t = 10

model are with the t = 35 model at p = 40 and the t = 50 model at p = 50. The

t = 35 model does, however, compare competitively with the t = 10 model at p = 30

masking with the RMSE appearing very similar.

While this would indicate that the t = 10 model would be a good general

model to use for reconstructions, it is important to remember that when examining

the t = 10 models qualitatively, we can see that the low RMSE values are likely

because it is able to estimate the values of the image well even at higher masking

ratios.

Overall Enki shows great promise in being able reconstruct SST images.

While some of the finer details can be lost especially in higher masking ratios, we

have seen countless examples in which Enki is still able to capture the general

structure of the cutout. In addition, for all masking ratios we examined, there was

always a model that had an RMSE lower than 0.05. We believe that Enki shows

great potential for reconstructing clouds masks in real SST images.
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Figure 4.11: RMSE as a function of image complexity, here gauged by LL as mea-
sured by the Ulmo algorithm with higher values indicating less complexity. Irre-
spective of patch size, the average RMSE increase with image complexity indicating
the Enki model. Aside from the lowest bin in LL (most complex), the RMSE of the
reconstructed patches for p ≤ 30 have average RMSE < 0.04K which is comparable
to the noise in remote sensing sensors like VIIRS.
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Figure 4.12: Average RMSE for all of the image reconstruction sets. The t=10
model performs well at all masking ratios p.
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Figure 4.13: Different examples of how the t = 10 model incorrectly reconstructs
p = 40 cutouts. In the first, t = 10 completely fails to guess the values of the
original image and fills in the patch with extreme values. In the second example,
while performing better than the first example, the patches are still visible. In the
third example, we see that t = 10 has failed to both capture the values and the
structure of the patterns with patches have a blocky characteristic to them.
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5

Concluding Remarks

Our analysis reveals that Enki shows great promise as a method of recon-

structing cloud masked SST images. The qualitative examinations produce sensible

and usable results, and by exploring various training ratios, we aim to identify the

ratio that produces the most favorable and effective outcomes.

We find Enki is most accurate when handling reconstructions at lower

masking ratios with higher masking ratios running the risk of masking out too much

information which may lead Enki to smoothing over or missing masked features.

We also note, that patches at the edge of cutouts are more prone to error, leading us

to conclude that when reconstructing, it’s best to remove the edge patches to reduce

the chance of errors.

We do, however, acknowledge that there our some limitations in our current

analysis. The ”clouds” we introduce into images are randomized, so they are not a

perfect representation of how real cloud masks will look. Going forward, it would

be good to test how Enki performs reconstructing LLC cutouts with real cloud

masks. Throughout this thesis, we also mainly focus on LLC data which is free of
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a lot of issues that plague real data. Real remote sensing data is noisy because of

atmospheric noise and noise introduced by the instruments, and it often runs the

risk of unmasked clouds. The next step would be to run Enki on real world data

and see how it compares to older methods of filling masked pixels like inpainting.

We also acknowledge that while Enki appears to be able to generalize well

and capture the main shapes of a dynamic, there is a lot of information that it is un-

able to recreate accurately at a p = 75 masking ratio. This becomes apparent when

comparing the RMSE of reconstructions at different masking percentages where we

see a steady increase in the RMSE as the masking ratio increases. This means that

while the models like the t = 75 model can reconstruct up to p = 75 masking, we

should be cautious because reconstructions at this level of p masking lose much of

the details due to aggressive masking.

If we were to only use a single model, it would likely be the t = 10 model.

Reconstructions would likely only go up to p = 20, which if applied to VIIRS data

would increase the available cutouts by a magnitude (Figure 1.1). However, since

we know that different models perform best within a range of p, an alternative

approach is to incorporate multiple t models within Enki and select the appropriate

model based on the cloud coverage of the cutout being reconstructed. To determine

the exact range where each model performs optimally, further in-depth analysis is

required.

Future work will encompass a range of tasks and objectives.

• Our subsequent undertaking involves conducting analysis on VIIRS cutouts.

While the reconstructions of LLC cutouts displayed promising results, it is

crucial to determine if these outcomes can be effectively applied to real data.
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This is because, despite the well-predicted SST patterns of VIIRS determined

by the LLC4320 model, it is important to acknowledge that the LLC4320

data itself is generated and may have variations when compared to real-world

observations.

• Moving forward, we also aim to conduct reconstructions utilizing real cloud

masks obtained from actual data. The current random masking, especially

at lower masking ratios, may not accurately represent the true cloud masking

scenario. Therefore, applying real cloud masks in our reconstructions has

the potential to yield different and more realistic results, providing valuable

insights into the performance of the reconstruction model.

• Throughout this study, our training dataset and validation set consisted of

noise-free cutouts. While the primary objective of Enki is not to reconstruct

noise, we want to investigate whether the inclusion of noise has any impact

on the quality of reconstructions. By introducing noise into the input data,

we can assess the robustness and performance of Enki under more realistic

conditions.

• Additionally, we consider conducting a follow-up study in which we set the

seed of the mask for reconstructions. This controlled experiment will enable

us to analyze the specific impact of each model on the reconstructed output,

without confounding factors introduced by random variations.

• We may explore the use of different types of loss functions during training

or alternative equations to evaluate the performance of reconstructions. It

is worth considering that many images exhibit significant variations in stdT,

which means that the perception of reconstruction errors may differ based on
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the magnitude of stdT. To address this, we could potentially evaluate a model’s

performance by calculating the RMSE normalized by the stdT of the masked

pixels in the original image. This approach would provide a more contextually

relevant assessment of the reconstruction quality, accounting for the inherent

variability in sea surface temperature across different images.
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