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Abstract

Item explanatory models have the potential to provide insight into why certain items are
easier or more difficult than others. Through the selection of pertinent item features, one can
gather validity evidence for the assessment if construct-related item characteristics are chosen.
This is especially important when designing assessment tasks that address new standards. Using
data from the Learning Progressions in Middle School Science (LPS) project, this paper adopts
an  “item  explanatory”  approach  and  investigates  whether  certain  item  features  can  explain
differences  in  item  difficulties  by  applying  an  extension  of  the  linear  logistic  test  model.
Specifically,  this  paper  explores  the  effects  of  five  features  on  item  difficulty:  type
(argumentation, content, embedded content), scenario-based context, format (multiple-choice or
open-ended), graphics, and academic vocabulary. Interactions between some of these features
were also investigated. With the exception of context, all features had a statistically significant
effect on difficulty.

Keywords: linear logistic test model, item explanatory models, item features
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1 Introduction

This paper adopts an “item explanatory” approach, where the focus is on investigating
whether  certain  item  features  can  explain  differences  in  item  difficulties  by  applying  an
extension of the linear logistic test model (LLTM; Fischer, 1973) to a middle school science
assessment that was designed to follow the Next Generation Science Standards (NGSS; NGSS
Lead States, 2013). Explanatory item response models (EIRMs; De Boeck & Wilson, 2004) have
the potential to provide explanations for the item responses, unlike descriptive models where
item responses are merely described by the estimated parameters. While more traditional models
output a list of estimated item difficulties, an “item explanatory” approach results in a list of
estimated difficulties for item features.  These item features must  be selected a  priori  and,  if
content-related features are chosen, have the potential to provide strong content validity support
for an assessment. Specifically, this paper explores the effects of five features on item difficulty:
type, context, format, graphics, and academic vocabulary.

1.1 The Next Generation Science Standards (NGSS)

The  NGSS is  a  U.S.  initiative  designed to  increase  understanding of  science,  create
common standards for teaching across the U.S., and develop more interest in science in school-
age students in the hopes that more of them will major in a science-related area of study in
college. The NGSS provides performance expectations to reflect a reform in science education
that includes three dimensions: (1) developing disciplinary core ideas (DCI), (2) linking these
core ideas across disciplines or crosscutting concepts, and (3) engaging students in scientific and
engineering practices—based on contemporary ideas about what scientists and engineers do. The
emphasis, in particular, is on integrating these three dimensions so that core ideas are not taught
in isolation, but connect to larger ideas that also involve real-world applications. Rather than
learn  a  wide  breadth  of  disconnected  content  topics,  the  goal  is  to  develop  a  deeper
understanding of a few core ideas that set a strong foundation for all students after high school.
The  Learning  Progressions  in  Middle  School  Science  (LPS)  project,  described  in  the  next
section,  examined two of these three dimensions and designed an assessment to reflect their
integration. 

1.2 Item Features for the Learning Progressions in Middle School Science (LPS) Project

One of the main research goals for the Learning Progressions in Middle School Science
(LPS) project2, was to explore the relationship between science content knowledge, a DCI, and
scientific argumentation, a scientific practice. To further explore this relationship, the assessment
was divided into three “complex tasks”, which consist of three item  types: (1) argumentation
items assessing argumentation  competency in  a  specific  scientific  context  (e.g.  two students
arguing over what happens to  gas particles placed in  a container),  (2) content science items
embedded within the same scientific context (e.g. what happens when you insert gas particles
into a sealed container), and (3) content science items assessing knowledge of other concepts in
the  same  science  domain  but  not  so  closely  associated  with  the  context  (e.g.  compare  the

2 Details of the project are not discussed here, though several resources are available for interested readers (Osborne
et  al.,  2013a;  Osborne  et  al.,  2013b;  Wilson,  Black,  & Morell,  2013;  Yao,  2013;  Yao,  Wilson,  Henderson,  &
Osborne, 2015). 
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movement of liquid water molecules with the movement of ice molecules). In this paper, these
three item types are referred to as ‘argumentation’, ‘embedded content’, and ‘content.’ Examples
are provided in Figures 1 through 3. 

The ‘complex tasks’ are each set within a context—that is all the items within a complex
task share a common setting. These contexts are what happens when someone (a) chops onions,
(b) inserts gas particles into a container, and (c) mixes sugar into a glass of water. These contexts
will be referred to as ‘Onions’, ‘Gases’, and ‘Sugar’ for easier reference. The embedded content
and argumentation items were presented in these contexts, while the content items were related
(i.e., they were more generalized but about the same concepts). Note that while the context of the
content  items  are  more  generalized,  they  were  still  designated  into  a  context  by  the  test
developers.

Figure 1.  An argumentation item from the Onions complex task. 
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Figure 2.  An embedded content item from the Onions complex task.

Figure 3.  A content item from the Onions complex task. 

The remaining three item features explored in this paper are often tested in psychometric
studies to examine whether they have an unintended effect on the item difficulties. For instance,
the  format refers  to  whether  an  item is  open-ended or  forced-choice  (e.g.,  multiple-choice).
Previous studies have suggested that multiple-choice items are easier for students than open-
ended ones (Hohensinn & Kubinger, 2011; Kubinger, 2008). Because the assessment includes a
combination of both, this feature is investigated to see this finding holds true for the LPS data. 

The  graphics feature  includes  three  categories:  schematic  representations,  pictorial
representations,  and  no  graphics.  Schematic  representations  are  defined  as  abstract  pictures
whose  “schematic  meaning  is  provided  by  the  symbolic/visual  representation  in  the  item”
(Martinello,  2009,  pp.  166).  An  example  would  include  an  image  of  the  movement  of  gas
particles. This contrasts with pictorial representations,  which are concrete images that simply
illustrate the details of objects described in an item.  

Lastly,  whether  an  item contains  academic  words is  explored.  Academic  vocabulary
words are those that are not among the 2,000 most common words and occur most often in
academic texts (Coxhead, 2000). Unlike technical vocabulary—which are the specialized words
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specific to a discipline, academic vocabulary words are more generalized and span across many
content areas (Stevens, Butler, & Castellon-Wellington, 2001). This distinction is important for
many studies investigating the language effects of content assessments because while technical
vocabulary is deemed to be construct-relevant, academic vocabulary is often seen as construct-
independent  and,  subsequently,  may  interfere  with  the  interpretations  of  student  scores  on
assessments (Avenia-Tapper & Llosa,  2015;  Haag, Roppelt,  & Heppt,  2015; Wolf and Leon,
2009). Coxhead’s (2000) academic word list (AWL) is used here to identify academic words on
the assessment3.  Note that the word “evidence” is on the AWL, but will not be counted as an
academic word in this paper because “evidence” is central to the argumentation construct. Thus,
“evidence”  is  deemed  to  be  construct-relevant,  whereas  other  words  on  the  AWL may  be
considered construct-independent. 

1.3 Research Questions

This  paper  explores  the  effect  of  each  item  feature  on  the  overall  item  difficulty.
Specifically, the research questions are:

RQ1. Which  of  the  following,  if  any,  item  features—type,  context,  format,  inclusion  of
graphics, and inclusion of vocabulary from the Academic Word List (AWL)—contribute
to the explanation of item difficulty? 

RQ2. Does the item type feature interact with any of the other features to have a statistically
significant effect on the item difficulties?

Because  of  the  added complexities  in  interpreting interactions,  only  one  feature  was
explored in detail for RQ2. Item type was chosen because it directly relates to the content of the
items and is also related to the main research goal of LPS—exploring the relationship between
content knowledge and argumentation. 

2 Methods

2.1. Sample

In the spring of 2014, a total of 282 eighth and tenth grade students from a large urban
U.S. school district took the assessment during regular school hours on a computer for one class
period.  Four  students  have  provided no information  for  the  test  (i.e.  all  missing responses),
leaving a final sample of 278 students.  

The  sample  consisted  of  119  grade  8  and  159  grade  10  students  from  3  schools.
Demographic information was missing for one student. There were more girls (n=172) than boys
(n=105). A high percentage of this group of students were classified as gifted students (n=169,
60.79%), as this was a convenience sample. Eleven (3.96%) were classified as special education
students. 

3 Cobb’s website Web Vocabprofile Classic at http://www.lextutor.ca/vp/eng/  automatically sorts texts and provides
counts for four types of words: the 1000 most frequent words, 1001-2000 most frequent words, words on Coxhead’s
(2000) Academic Word List, and off-list words.
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2.2. Instrument

A subset4 of the original 2013-2014 LPS items were used, for a final total of 39 items
across the three complex tasks. Table 1 illustrates the distribution of these final item types across
the three different contexts – Onions, Gases, and Sugar. There were 20 argumentation items, 7
embedded content, and 12 content items. All embedded content and content items were scored
following the content learning progression, while all argumentation items were scored following
the argumentation learning progression. A brief description of the two learning progressions is
provided in the Appendix. Readers interested in learning more about the progressions can also
refer to additional resources (Osborne et al.,  2013a; Osborne et al.,  2013b; Wilson, Black, &
Morell, 2013; Yao, 2013; Yao, Wilson, Henderson, & Osborne, 2015). 

Table 1 

Distribution of types of items across the three complex tasks

Task Argumentation Embedded Content Content TOTAL

Onions 9 1 4 14

Gases 4 3 6 13

Sugar 7 3 2 12

TOTAL 20 7 12 39

2.3. Model

The linear logistic test model (LLTM; Fischer, 1973) decomposes the item difficulty into
a linear combination of item features. Because the items in the data are polytomously scored, the
extension for the LLTM is described here. This extension is sometimes referred to as the linear
partial credit model (Fischer & Ponocny, 1994) which is also similar to the multifacet Rasch
model (Linacre, 1989). This model builds from the partial credit model (Masters, 1982), which
models  the  log  odds  of  the  probability  that  student  p with  ability  θp  will  respond in
category j  instead of category j−1  on item i :  

P(X i= j∨θ p)

P(X i= j−1∨θp)

¿=θp−δij

log ¿

  (1)

where δ ij  is a parameter for the difficulty for step j  of item i  and θp N (0, σθ p

2
) . 

4 The  original  data  included  two  content  constructs,  Macroscopic  Properties  and  Particulate  Explanations  of
Physical Changes. There were six content and no embedded content items related to Macroscopic Properties. Thus,
to avoid any misleading conclusions when exploring the difficulties of content and embedded content items, the
Macroscopic Properties items were removed.  
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The LLTM, on the other hand, models  δ ij  differently, while all other terms stay the
same. Specifically,  δ ij  is defined as:

δ ij=δi+τ ij (2)

and

δ i=∑
m=1

M

βm Xℑ (3)

where δ i  is the item difficulty, τ ij  is the step deviate parameter, X ℑ  is the value of item
i on feature m , and βm  is the regression weight for item feature m . Notice that the

item step parameter, δ ij  from (1) is replaced with the linear combination of the difficulties for
the item features. To answer RQ1, the overall item difficulty across the steps can be written as:

δ i=β1typ ei+β2 task i+β3 format i+β4 graphic si+β5 AW Li  (4)

where the coefficients for each feature determines if the item becomes easier or more difficult. 

For RQ2, interaction effects are added to (4). As an example, (5) shows the overall item
difficulty for a model that includes interaction terms for type and all other features.

δ i=β1typ ei+β2 task i+β3 forma t i+β4 graphic si+β5 AW Li+β6 type i∗tas k i+¿

β7typ e i∗format i+β8typ e i∗graphic s i+β9typ ei∗AW Li (5) 

Because  (4) can be  found by constraining some of  the  parameters in (5) (i.e.  βk=0 , for
k>5¿ , these two models can be directly compared using a likelihood ratio test. ConQuest 3.0

(Adams, Wu, & Wilson, 2012) was used for all analyses.  

3 Results

3.1 Item Analysis

Table 2 provides the frequencies for each of the five features on the assessment. For type,
the items are not distributed evenly across the three categories. Argumentation items make up 
approximately half of the items, while only 17.95% of the items are categorized as embedded 
content. On the other hand, the items are about evenly distributed for the item contexts, format, 
and graphics. Only 13 items contained academic words. 
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Table 2

Frequencies for Each Item Feature on the LPS Assessment and the LLTM Result (RQ1)

Item Feature Count Percentage Estimate
(SE)

p

Type <0.001

    Argumentation 20 51.28 0.07 (0.03) 0.02

    Embedded Content 7 17.95 -0.49 (0.04) <0.001

    Content 12 30.77 0.43* (0.04) <0.001

Context 0.11

    Sugar 12 30.77 -0.07 (0.04) 0.08

    Onions 14 35.90 0.01 (0.03) 0.74

    Gases 13 33.33 0.06*(0.03) 0.05

Format <0.001

    Multiple-Choice 19 48.72 0.75 (0.02) <0.001

    Open-Ended 20 51.28 -0.75*(0.02) <0.001

Graphics <0.001

    Schematic 11 28.21 0.06 (0.03) 0.05

    Pictorial 14 35.90 0.24 (0.04) <0.001

    None 14 35.90 -0.31* (0.03) <0.001

Academic Words List (AWL) <0.001

    Yesⱡ 13 33.33 -0.15 (0.02) <0.001

    No 26 66.67 0.15* (0.02) <0.001

Noteⱡ: “Yes” means that an item contains at least one AWL word. It does not account for the number of AWL words
in an item. 
Note*: Indicates the result is constrained for the model to be identified. In ConQuest, this is done by setting the last
category for each feature to be equal to the negative sum of all other categories for that feature.
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To get a better sense of the items, a partial credit analysis was conducted. The coefficient
alpha was 0.84 and the EAP reliability was 0.83. Overall, the items appeared to fit well, as the
weighted mean square fit statistics ranged from 0.85 to 1.20 (Wu, Adams, Wilson, & Haldane,
2007).  Figure 4 is the Wright Map for this analysis.

The Wright map has two distinct sections: the student ability and the item distribution.
Both of these distributions use the same scale, the logit scale. The student ability distribution is
shown on the left column, while the item thresholds are shown on the right. The logit scale is
located on the far right of the map. The numbers to the left of the icons for each item indicates
the xth threshold for that item. From Figure 4, it appears that there were few items that matched
the students at the top end of the distribution. For these students, the items were most likely easy
for them. However, for the rest of the students, there seemed to be good balance of items that
matched the student abilities. 

10



Figure 4. Wright Map from the partial credit analysis. Generated from the WrightMap package (Torres Irribarra & Freund, 2016).
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3.2 Results for RQ1: LLTM 

Results from the LLTM analysis are shown in Table 2. For the type feature, the embedded
content items were estimated to be the easiest,  while the content items were identified as the
most  difficult.  Argumentation  items  lie  somewhere  in  between.  The  results  suggest  that  the
variation across types is statistically significant ( χ2

=175.30, df =2, p<0.001 ). 

The variation between context features, on the other hand, is much smaller—maybe even
non-existent.  These  results  suggest  that  the  item  contexts  do  not  vary  in  their  difficulty
( χ2

=4.37, df =2, p=0.11) .  This finding is reassuring since the interest  was never on how
well students perform on items about the specific topics of dissolving sugar or chopping onions.

Surprisingly, the multiple-choice feature was estimated to increase the difficulty of an
item whereas the open-ended feature was estimated to decrease the difficulty. This result may be
due to the fact that some open-ended items required students to carry out a simple operation such
as “identify a claim,” while other items required students to carry out more complex operations
like “explain how the evidence supports your answer.” These two open-ended items should differ
in their difficulty—the first  is simply writing down a claim while  the latter  requires a more
thoughtful explanation. These differences are not accounted for in the LLTM and this shows one
of the limitations of decomposing item difficulties into only a handful of features. 

For the graphics feature, pictorial representations were found to be the most difficult,
followed by the schematic representations, and lastly by no graphics in the items. However, note
that the value for schematic representation is low, suggesting that it has little to no effect on item
difficulty. There is significant variation for this feature ( χ2

=49.29, df =2, p<0.001) . 

Items with AWL words were estimated to decrease the item difficulty by about 0.15 logit,
while items with no words from the AWL were estimated to increase the item difficulty by about
0.15  logit.  This  difference  was  statistically  significant ( χ2

=51.19, df =1, p<0.001) .  It  is
unusual that items with words from the AWL would be easier than items without words from the
list and this finding requires more investigation. 

3.3 Results for RQ2: LLTM with Interactions 

 To answer RQ2, a LLTM with interactions model was applied. Because the context item
feature was not statistically significant from the simple LLTM, it was excluded from this model.
Two interaction terms were added: type*format and type*AWL. Interactions between types with
graphics  were  not  modeled  because  all  embedded  content  items  had  some  sort  of  graphic
representation and none of the content items had pictorial representations. The results are shown
in Table 3. 
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Table 3

Results for RQ2: LLTM with Interactions

Item Feature Estimate
(SE)

p Feature
Interaction

Estimate
(SE)

p

Type <0.001 Type*AWL <0.001

     Argumentation   
    (ARG)

-0.18 (0.03) <0.001 ARG*Yes -0.30 (0.03) <0.001

     Embedded (EMB) -0.29 (0.05) <0.001 EMB*Yes 0.23 (0.04) <0.001

     Content (CON) 0.47* (0.04) <0.001 CON*Yes 0.06* (0.03) 0.05

ARG*No 0.30* (0.03) <0.001

Format <0.001 EMB*No -0.23* (0.04) <0.001

     Multiple-Choice  
     (MC)

0.75 (0.03) <0.001 CON*No -0.06* (0.03) 0.05

     Open-Ended (OE) -0.75* (0.03) <0.001

Graphics <0.001 Type*Format <0.001

     Schematic 0.06 (0.03) 0.05 ARG*MC -0.02 (0.03) 0.50

     Pictorial 0.25 (0.03) <0.001 EMB*MC 0.26 (0.04) <0.001

     None -0.31* (0.03) <0.001 CON*MC -0.25* (0.04) <0.001

ARG*OE 0.02* (0.03) 0.50

AWL 0.58 EMB*OE -0.26* (0.04) <0.001

     Yes -0.01 (0.02) 0.62 CON*OE 0.25* (0.04) <0.001

     No 0.01* (0.02) 0.62

Note*: Indicates the result is constrained for model to be identified.

The  interaction  term  type*format was  statistically  significant
( χ2

=51.03, df =2, p<0.001 ) .  Multiple-choice  embedded  content  items  contribute  an
additional 0.26 logit to the item difficulty, while multiple-choice content items are estimated to
decrease the item difficulty by 0.25 logit. For argumentation items, it appears that format does
not contribute much, if anything, to the item difficulty (i.e. the estimated parameter is small). 
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The  interaction  term  type*AWL was  also  statistically  significant
( χ2

=130.31, df =2, p<0.001 ) .  Argumentation  items  with  AWL  words  are  estimated  to
decrease  item  difficulty  by  0.30  logit,  whereas  embedded  content  items  are  estimated  to
contribute an additional 0.23 logit to the item difficulty. Lastly, content items with AWL words
are estimated to contribute an additional 0.06 logit to the item difficulty. The interaction term
shows some of the nuances of the effect of AWL—that is, with embedded content items, items
containing  words  from  the  AWL are  estimated  to  be  slightly  more  difficult.  However,  for
argumentation items, the opposite is true. Perhaps the conversational format of the argumentation
items is easier for comprehension even with the inclusion of AWL words.  Whether or not a
content item contains AWL words does not seem to contribute much to the item difficulty, as the
estimated parameter is small.  This result could be due to the familiarity of content items for
students, as they may be accustomed to encountering academic words in these types of items.  

3.4 Post-Hoc Analysis on Academic Word List Feature

A post-hoc analysis on the academic words appearing in the three types of items was
conducted to learn more about its effect. Figure 5 lists the words from the AWL found on the
assessment. From the list, most of the AWL words are on content items and include words like:
energy, structure, spheres, volume, predict, and contact. Only one word appears on the embedded
content  items:  chemical.  Lastly,  four  words  appear  on  the  argumentation  items:  released,
chemicals,  selected,  and created.  The word family “chemical”  is the only AWL word that is
present  on  both  embedded  content  and  argumentation  items.  “Chemical”  is  also  the  only
academic word listed in the embedded content items—and it is on one of the more difficult ones
too. This word is interesting because it is on the content progress map, so its difficulty may be
considered  partially  construct-relevant  for  the  embedded  content  item—though  maybe
appropriately not so for argumentation. 

This leads to a possibility of two academic word lists: (a) one where the academic jargon
is  specific to the content of the items, and (b) one where the AWL is  general across contexts.
Then,  the  following  words  can  be  categorized  into  group  (a):  energy,  structure,  spheres,
chemical, released, and volume, and group (b): selected, predict, contact, and created. Another
LLTM analysis was run with no interactions and using this categorization for AWL. The results
are shown in Table 4. Because context was not statistically significant in the previous LLTM
analysis, this variable was removed from the model.
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Academic Word List Item Type

Energy Content

Structure Content

Spheres Content

Chemical Embedded Content, 
Argumentation

Released Argumentation

Volume Content

Selected Argumentation

Predict Content

Contact Content

Created Argumentation

Figure 5.  The academic words on the LPS test  and the corresponding item type. Coxhead’s
(2000) Academic Word List (AWL) was used. 

This new division shows that items with AWL words specific to the science context of the
items is associated with a difficulty increase of approximately 0.21 logit, whereas the presence of
those  that  are  more  general  across  contexts  is  associated  with  a  difficulty  decrease  of
approximately 0.45 logit.  In contrast,  the absence of AWL words is associated with a higher
difficulty by about 0.24 logit. These results show some of the nuances of AWL words, especially
those used in a science context which have specific scientific meanings.  More general AWL
words were  found to  be  associated with  lower difficulty  of  an  item by almost  half  a  logit.
However,  it  is  still  unclear  why having no AWL words  would be  predicted to  increase  the
difficulty of an item compared to the general AWL words. 
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Table 4

Post-hoc LLTM analysis with updated AWL category

Item Feature Estimate (SE) p

Type <0.001

    Argumentation 0.14 (0.03) <0.001

    Embedded Content -0.57 (0.03) <0.001

    Content 0.43* (0.03) <0.001

Format <0.001

    Multiple-Choice 0.74 (0.02) <0.001

    Open-Ended -0.74* (0.02) <0.001

Graphics <0.001

    Schematic 0.14 (0.03) <0.001

    Pictorial 0.22 (0.03) <0.001

    None -0.36* (0.03) <0.001

Academic Words List (AWL) <0.001

   Specific 0.21 (0.04) <0.001

   General -0.45 (0.04) <0.001

   None 0.24* (0.03) <0.001

    Note*: Indicates the result is constrained for the model to be identified.

4 Discussion

The purpose of this paper was to investigate how well certain item features can explain
the item difficulties on the LPS assessment. There are several findings worth mentioning here.
First,  related  to  RQ1,  item  context  was  not  a  statistically  significant  predictor  for  item
difficulties. This is reassuring, since the context was not part of the intended construct. In fact,
these contexts were chosen in the hope that they would be familiar enough for students to limit
construct-irrelevant variance. The other features (type, format, graphics, and AWL words) were
statistically significant. 

In addition, some features were flagged for having large fit statistics. For instance, open-
ended items (part of the format feature) were identified as having more variation than predicted.
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This could be due to the fact that some open-ended items required much shorter responses, while
others required a more detailed explanation. Perhaps a finer-grained distinction between different
types of open-ended items may be useful for future analyses. This could even be done with the
multiple-choice items, where the number of response options varied from two to five. For this
assessment, two items had two response options, two had five response options, and 15 had four
response options. 

While this study had unexpected results (e.g. the effect of AWL words), the LLTM with
interactions showed the nuances of some of the effects. Some effects should be interpreted with
caution, since the LLTM can greatly reduce the number of estimated parameters (e.g. an original
39 items reduced to 5 item features). Incorporating interactions among the features can help with
identifying the feature effects in more detail. 

The interaction effects of  type*AWL are noteworthy. At first, it seemed strange that the
inclusion of academic words in items would decrease the difficulty. However, by examining the
interaction effects, we found that this was only true for argumentation items. For the embedded
content items, inclusion of AWL words increased the difficulty as we might have expected. It is
unclear  why  the  trend  is  different  for  argumentation  items.  One  possibility  may  be  due  to
subject-matter—argumentation items may appear more conversational (in general) than the other
two  item  types,  hence  the  inclusion  of  academic  words  may  not  actually  interfere  with
understanding the item. Of course, further investigations into this finding is needed.

The post-hoc LLTM analysis, with the division of AWL words into specific and general
categories,  shows that  the  presence  of  AWL specific  words  is  expected to  contribute  to  the
difficulty of an item, as does the absence of AWL words. The presence of AWL general words
was found to actually be associated with easier items. Future analyses examining AWL words in
specific science contexts will be needed to provide more information into how these words may
affect item difficulty. 

There are many possibilities for future explorations, especially if there is another round of
data collection with this particular assessment. One easy extension is to add other item features
that may have predictive ability for estimating difficulty. Differential facet functioning (DFF; Xie
& Wilson, 2008) is another possible extension. For future studies, if there were a more diverse
sample with distinct groups to explore, then DIF and DFF can provide powerful explanatory
information to the LPS items and constructs.
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Appendix 

A.1 Content Learning Progressions from the LPS Project

The structure of matter learning progression is hypothesized to include six related, but
distinct constructs. Shown in Figure A.1, the constructs for this progression are represented by
boxes with the arrows pointing towards more sophisticated constructs.  Thus,  the progression
starts at the bottom, with Macro Properties (MAC) as the easiest, followed by the Changes of
State  and other Physical Changes (PHS),  and ends with Particulate  Explanations of Physical
(EPC)  and  Chemical  (ECC)  Changes  as  the  most  difficult.  Two  additional  constructs,
Measurement  and  Data  Handling  (MDH)  and  Density  (DMV),  were  identified  as  auxiliary
constructs—constructs that aid in the understanding of the four core ones but not necessarily
central.  This classification was helpful because, due to time and resource constraints,  not all
constructs could be investigated in great detail. This allowed the research team to prioritize and
gather  high  quality  empirical  evidence  for  the  constructs  of  most  interest.  Although  not
illustrated in Figure A.1,  each construct contains more detailed descriptions,  called construct
maps. Each construct map covers increasingly sophisticated descriptions of student thinking in
these areas. 

This  study  used  items  from  only  one  content  construct:  Particulate  Explanation  of
Physical Changes (EPC). This was chosen because concepts from this construct fit well with the
argumentation items on the assessment, as they covered similar ideas. The construct map for
EPC is shown in Figure A.2. EPC contains two strands, A: molecular models of physical changes
and  B: molecular representations of different states of matter.  Strand A consists of three sub-
strands,  describing phenomena for mixing and dissolving,  compression and gases,  and phase
change  and  heating.  Strand  B  consists  of  two  sub-strands,  density  and  arrangements  and
movements.  Both  strands  contain  three  levels;  Level  1  describes  the  simpler  levels  of
understanding  within  each  sub-strand,  whereas  Level  3  describes  the  more  complex  and
sophisticated understandings within each sub-strand. 

A.2 Scientific Argumentation Learning Progression from the LPS Project

In addition to the content learning progression, a separate progression was developed for
scientific  argumentation,  which  is  shown  in  Figure  A.3.  Unlike  for  content,  this  learning
progression reads from top to bottom, with the less sophisticated argumentation practices listed
at the top and the most sophisticated at the bottom. It is based on Toulmin’s (1958) model of
argumentation and contains three main elements:  claims,  evidence,  and warrants.  Claims are
statements that an arguer states is true.  Evidence  are the data used to support these claims and
these depend on the warrants, or the explanations of how the evidence supports the claims. 
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Figure A.1.  Structure of matter learning progression from the Learning Progressions in Science
(LPS) Project. 

The first column in the progression represents the three distinct levels (Levels 0, 1, and
2), each with its own sublevels (e.g. Levels 1a, 2a). Like for content, higher numbers represent
more difficult practices and a deeper understanding of the area. The second and third columns
represent  whether  an  argument  requires  students  to  construct  ones’ own element  or  critique
someone else’s, while the fourth column includes a description of the level. These columns are
based on the notion that argumentation is a dialectic between construction and critique (Ford,
2008). The construction of scientific claims, for instance, are subject to the critique and scrutiny
by the community. Scientists often engage in both practices. In some more difficult levels (e.g.
Level 2A), both of these skills—constructing and critiquing—are required. 

After some earlier analyses were completed,  the research team decided to incorporate
cognitive load theory into this progression as well. The idea is that the more elements that are
required  in  an  argument,  the  more  sophisticated  argumentation  skills  are  required.  The  last
column in the learning progression provides a visual representation of this addition. The grayed
figures indicates which element is needed to successfully argue at a certain level and one can
observe that the highest level in this progression also contains the most required elements.  

19



Levels EPC Strand A : Molecular models of physical change EPC Strand B:  Molecular representations of different states of
matter

Mixing and 
Dissolving

Compression of 
gases

Phase change and heating Density Arrangements and 
Movements

3 Can explain that when a 
solid or liquid is heated, it 
occupies more volume 
because of the faster 
movements of molecules  

Can explain why with the same 
number of different molecules in the 
same volume, the densities of the two
materials cannot be the same.
Can explain why with different 
numbers of the same molecules in a 
given volume, the two materials 
cannot have the same density.
Can explain why with different 
numbers of different molecules in a 
given volume, the two materials can 
have the same density.

Knows that in ice the 
spaces between the 
molecules are empty.

2 Knows that, when 
two different 
substances are mixed,
the molecules of the 
substances mix 
together at random 
Knows that when 
sugar is dissolved in 
water, the sugar can’t
be seen because it has
split up and the 
pieces are mixed in 
the water.  

Knows that when a 
volume of gas is 
compressed (or 
expanded), the 
molecules move 
closer together (or 
further apart) and 
are still distributed 
at random, but the 
molecules do not 
change their size or 
their mass  

Knows that in phase 
changes, the molecules 
speed up - from solid to 
liquid and from liquid to gas

Can give a partial explanation why 
with the same number of different 
molecules in the same volume, the 
densities of the two materials cannot 
be the same.
Can give a partial explanation why 
with different numbers of the same 
molecules in a given volume, the two
materials cannot have the same 
density.
Can give a partial explanation why 
with different numbers of different 
molecules in a given volume, the two
materials can have the same density.

Can explain effects of the 
free movement of gas 
particles.
Can describe the 
movements of molecules 
in ice, water and water 
vapor.
Knows that the particles 
of a gas move freely to fill
any space.

1 Knows that when a 
substance is 
dissolved, the 
substance’s mass is 
conserved.

Knows that when a 
gas is compressed 
(or expanded), the 
number of 
molecules in that 
gas does not change

Can recognize that with the same 
number of different molecules in the 
same volume, the densities of the two
materials cannot be the same.

Can describe the 
arrangements of 
molecules in ice, water 
and water vapor.

Figure A.2.  Construct map for Particulate Explanations of Physical Changes (EPC).
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Lev. Constructing Critiquing Description
Representation of

elements

0 No evidence of facility with argumentation. 

0a
Constructing a
claim

Student states a relevant claim.

0b
Identifying a 
claim

Student identifies another person’s claim. 

0c
Providing 
evidence 

Student supports a claim with a piece of evidence.

0d
Identifying 
evidence

1a
Constructing a
warrant

Student constructs an explicit warrant that links their claim to evidence.

1b
Identifying a 
warrant

Student identifies the warrant provided by another person.

1c
Constructing a
complete 
argument

Student makes a claim, selects evidence that supports that claim, and constructs 
a synthesis between the claim and the warrant. 
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1d
Providing an alternative 
counter argument

Student offers a counterargument as a way of rebutting another person’s claim.

2a Providing a counter-critique
Student critiques another’s argument.  Fully explicates the claim that the 
argument is flawed and justification for why that argument is flawed.

2b

Constructing a
one-sided 
comparative 
argument

Student makes an evaluative judgment about the merits of two competing 
arguments and makes an explicit argument for the value of one argument.  No 
warrant for why the other argument is weaker. 

2c
Providing a two-sided 
comparative argument

Student makes an evaluative judgement about two competing arguments and 
makes an explicit argument (claim + justification) for why one argument is 
stronger and why the other is weaker (claim + justification).

2d
Constructing a counter claim 
with justification

This progress level marks the top anchor of our progress map. Student explicitly
compares and contrasts two competing arguments, and also constructs a new 
argument in which they can explicitly justify why it is superior to each of the 
previous arguments. 

Figure A.3. Argumentation learning progression from the Learning Progressions in Science Project (LPS). 
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