UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
The Acquisition of Programming Skills from Textbooks

Permalink
https://escholarship.org/uc/item/1bx758b0

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 20(0)

Authors
Klenner, Manfred
Hanneforth, Thomas

Publication Date
1998

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1bx758bb
https://escholarship.org
http://www.cdlib.org/

The Acquisition of Programming Skills from Textbooks

Manfred Klenner
Computational Linguistics
Heidelberg University, Karlstr. 2, D-69117 Heidelberg, Germany
klenner@janus.gs.uni-heidelberg.de

Thomas Hanneforth
Computational Linguistics
Potsdam University, Am Neuen Palais 10, D-14415 Potsdam, Germany
hannefor@rz.uni-potsdam.de

Abstract

We present a computer model for the acquistion of program-
ming languages from textbooks. Starting from a verbal de-
scription of the notational conventions that are used to describe
the syntactic form of programming commands, a meta gram-
mar is generated that parses concrete command descriptions
and builds up grammar rules for that commands. These rules
are realized as definite clause grammar rules that captures the
syntax of these commands. They can be used to parse and
generate syntactically correct examples of a command. How-
ever, to solve real programming problems also the semantics
of acommand and of its parameters needs to be acquired. This
is accomplished by the natural language parsing of the expla-
nations given in the text and the augmentation of the definite
clause command grammars with semantic structures.

Introduction

The acquisition of a programming language from textbooks
is a complex cognitive task that comprises two subtasks: the
acquistion of the syntax of the formal expressions of the
language and the acquistion of the corresponding (opera-
tional) semantics. Syntactic knowledge is necessary to gen-
erate well-formed, computer executable expressions. How-
ever, programming is a goal-directed task and expressions are
generated to solve specific problems. Thus, the semantics of
these expressions is crucial as well. A well-formed command
expression only accomplishes its task if it realizes an appro-
priate form (syntax) for the intended action (semantics).
Accordingly, textbooks give a syntactic and semantic de-
scription for each command. This is done in a heterogeneous
format: by a formal specification of the syntax and a ver-
bal description of the semantics (the general function, the
meaning and type of the parameters etc.). To understand the
syntactic description the user needs to know the notational
convention used in the textbook, e.g. functions are enclosed
in brackets with the first element denoting the function name
(Lisp), or optional parameters are enclosed in square brack-
ets (MS-DOS command syntax). These conventions are given
at the beginning of such textbooks, but often they are incom-
plete. However, such meta knowledge is necessary to under-
stand (i.e. parse) the formal description of single commands,
e.g. torecognize that path in CD [device:][path] is an op-
tional parameter of the command CD. The result of this pars-
ing process is a parse tree of the formal command expression
which needs to be operationalized. In our model this is done
by a rule constructor that generates a command grammar in

567

form of a Definite Clause Grammar (DCG). Such a definite
clause command grammar can be used to parse and generate
instances of the command, e.g. cd a:user.

Nothing has been said so far about the acquisition of the
meaning of commands, of which a verbal explanation is given
in the accompanying text together with the command syntax.
In this way, the general meaning of the command (e.g. CD
changes the current directory) and its parameters is provided.
The semantic interpretations must be related to the syntactic
constructions they explain. Only such a coupling guarantees
that semantic content and syntactic form will work together
correctly in a problem solving environment. The semantic
knowledge is necessary for the planning and reasoning pro-
cess, the syntactic knowledge for the realization stage. Learn-
ing failures can occur at each of the following stages: the
acquisition of the meta grammar, the acquisition of the com-
mand grammar and the acquistion of the syntactic-semantic
interface.

We assume that the learner is a novice with respect to the
programming language to be acquired. We confine ourselves
to the acquisition of an operating system language (MS-DOS)
which we think is easier to learn than a full-fledged program-
ming language like Lisp or Prolog.

We distinguish four learning stages in the acquistion of a
programming language:

e construction of a meta grammar from the notational con-

ventions that are introduced (verbally) in the text.

parsing of the formal command syntax with the meta gram-
mar and construction of an initial command grammar from
the derivation tree.

natural language parsing of the command definitions and
modification of the command grammar to incorporate the
corresponding semantic information.

parsing of command examples with the command grammar
and parsing of the corresponding verbal explanations. This
leads to further refinements of the command grammar.

Operationalization of Notational Conventions

Let the discussion become more concrete. In Figure 1, the
notational conventions of a textbook that introduces the op-
erating system MS-DOS and its commands are given. These
sentences can be viewed as instructions to build up a (meta)

mailto:hannefor@rz.uni-potsdam.de

. All DOS commands are given in upper case letters.

. The parameters of a command are specified in lower case letters.
The name of a parameter often characterizes its function.
Optional parameters are enclosed in square brackets ([parame-
ter]).

Multiple, but mutually exclusive parameters are enumerated in
angle brackets.

I O T

Figure 1: Notational conventions from a textbook

grammar for MS-DOS commands. With the aid of this gram-
mar, commands like CD or COPY can be understood, i.e. the
learner can determine what the command name is, whether its
parameters are optional or mutually exclusive, etc. Even in-
formation regarding the type of parameter is given (sentence
3). However, there is still some information left implicit and
some necessary conventions are even missing. To give an ex-
ample: The concept of a parameter is introduced without any
clear distinction of what different types of parameters there
are. For example, optional parameters are introduced, but
does that imply the existence of mandatory parameters? And
how will these parameters be marked? Also, no information
about linearization is given: does the command name precede
its parameters or vice versa? Additionally, special characters
(including the white space characters like blank and tab) are
not even mentioned.

The question is: How can these notational conventions be
utilized to understand and acquire the syntax of commands?
The answer is: It must be operationalized in form of a syntax
recognizer (e.g. a context-free grammar and a parser) that can
parse concrete system commands.

In Figure 2, we give a sketch of the meta knowledge neces-
sary to build up a context-free grammar (CFG) from natural
language input.

a CFG rule consists of a head and a body separated by an expan-

sion symbol (—)

the body consists of terminals and / or nonterminals

nonterminals are realized as CFG rules

. terminals are single characters like "A” or "["”

. optionality of rules is expressed by at least two alternative rules,
where one rule expandsto [] (zero expansion); i.e. the input string
is not decremented

. exclusiveness of rules is realized by alternative rules without a

Zero expansion

LB W

Figure 2: Knowledge about the construction of a CFG

The module responsible for the translation from the in-
structional text, i.e., the notational conventions, to a CFG is
called the meta rule constructor. The meta rule constructor is
based on a Definite Clause Grammar for the English construc-
tions which are used to specify the notational conventions. It
uses a Montague style rule-by-rule approach to map the En-
glish sentences to context-free rules, the logical language we
use. Every syntactic constituent receives a semantic value
which is compositionally constructed from the semantic val-
ues of the immediate subconstituents (the details of how this
is done will be given in a moment). The semantic value as-
signed to a syntactic constituent N is a pair <E,R> where

568

e E is an expression of the utilized logical language (a con-
stant or a lambda term)

e R is the set of rules constructed for the constituent which
consists of the union of the rule sets assigned to the subcon-
stituents of N, plus the value of E in case N is the sentence
symbol.

Consider the notational conventions from Figure 1 and the
resulting CFG in Figure 3 as it was built by the meta rule
constructor. Corresponding numbers between Figure 3 and
Figure 1 indicate that the grammar rule was derived from the
respective sentence.

1a) dos.command — upper_case letters
1b) upper case letters — upper_case_ letter
Ic) upper_case letters — upper_case_letter upper_case_letters

2a) parameter — lower_case letters

2b) parameters — parameter

2¢) parameters — parameler parameters

2d) lower_case_ letters — lower_case letter

2e) lower_case letters — lower_case letter lower_case_ letters

4a) optional parameter — '[' parameters ']’
4b) optional_parameters — optional_parameter
4c) optional parameters — optional_parameter optional_parameters

Sa) exclusive_parameters — '<' parameters ' >'

5b) exclusive_parameters — exclusive_parameter

5c) exclusive_parameters — exclusive_parameter
exclusive_parameters

Figure 3: Meta grammar

We cannot go through each rule, but will nevertheless com-
ment on some interesting translations. Sentence 1 mainly
gives rise to rule la, i.e.,

(Ex-1) dos_command — upper_case_letters.

But there are a number of other rules which were triggered by
this sentence (1b and 1c), which we will now explain in more
detail.
The semantic value of a singular noun like upper case letter
is the pair
(Ex-2) <upper_case_letter, { upper_case_letter — A,
upper_case_letter — B, ... }>,

i.e, the set of all lexical insertion rules for a single upper case
letter. By contrary, nouns like "DOS command” have the se-
mantic value <dos.command,} >, that is the set of asscoci-
ated rules is empty. The reason for this difference lies in the
different grammatical status of the corresponding nontermi-
nals. upper_case_letter is a nonbranching preterminal, which
dominates exactly one terminal symbol. Since the object lan-
guage consists of sequences of single letters or symbols, not
of preparsed tokens (finding these tokens is one of the goals
of our approach), the operational meaning of such a noun is
the set of rules used to recognize the corresponding terminal
symbols. On the other hand, DOS command is translated into
a nonterminal symbol for which we hope to find the relevant
expansion rules in subsequent steps, therefore the associated
rule set is empty. In other words: the human learner obviously

knows what upper case letters are but (s)he (as a novice) has
no idea about the nature of DOS commands.

It is now interesting to see how the recursive rules 1b and
1c in Figure 3, which are used to recognize sequences of up-
per case letters, are built. We think the trigger condition for
recursive rules is the plural of the nouns occurring in the nota-
tional conventions, in our example upper case letters. There-
fore, we assume the following plural formation DCG-rule:
n(pl,NPI_Sem) — n(sg,NSg_Sem), [s],

{ plural_semantics(NSg_Sem,NPl_Sem) }

That is: the plural of a noun is formed by appending the
letter s to the singular form. The predicate plural_semantics/2
is defined in Prolog as follows:
plural_semantics(<C1,Rulesl > ,<C2 Rules2>):-

concat(C1,s,C2) % e.g., concat(letter,s,letters)

NewRules =[C2 — C1,C2 — C1 C2],
union(Rules ! ,NewRules,Rules2).

Figure 4: Plural formation rule in Prolog

An example will illustrate this matter. The semantic value
of upper_case_letter was specified in (Ex-2) above. Plu-
ral_semantics/2 now introduces two new rules based on this
value:

Rule 1. upper_case_letters — upper_case_letter
Rule 2. upper_case_letters — upper_case_letter
upper_case_letters

that is upper_case_letters is used to recognize the lan-
guage {A, B, ..., Z }*. The semantic value of the plu-
ral noun upper case letters then consists of the pair < up-
per_case_letters,{ Rule 1, Rule 2 } U { all lexical insertion
rules for upper_case_letter } >.

Let us now see how rule Ex-1 was constructed. The gram-
mar for the notational conventions has two further rules (see
fig. 5).
v(sg,< Aydz(z — y), 0 >) — [are,given,in].
vp(Num,<VPSem,VPRules>) — v(Num,< VSem,VRules>),

np(_,<NPSem,NPRules>),
{ apply(NPSem,VSem,VPSem),

union(VRules, NPRules,VPRules) }.

Figure 5: Two rules of the Meta Rule Constructor

We regard verb complexes such as are given in” as man-
ifestations of a general definition operator which is repre-
sented by the context-free arrow — . The first component of
the semantic value of the VP are given in upper case letters
is therefore reconstructed as A x (x — upper_case_letters).

A final sentence rule (not shown here) applies the meaning
of the subject NP to the meaning of the VP, takes the union
of the rule sets of the NP and the VP and finally adds the rule
(Ex-1) dos_commands — upper_case_letters to this set®.

"We use a slightly modified Prolog syntax for the purpose of
exposition

2The addition of the last rule is covered by the special condition
in the definition of R regarding sentence symbols (see the definition
of the 2-tuple <E,R>,above).

569

As is easily seen, this grammar fragment is a bit too gen-
eral, but this does not matter because the meta grammar con-
structed in the first learning stage will later be refined by pars-
ing the actual DOS commands which we assume to be cor-
rectly specified. In other words: in principle we do not have
the problem of ungrammatical input, and therefore "wrong”
grammar rules will never be used in the second learning stage
and can be removed from the grammar after this stage.

Closing Knowledge Gaps in the Meta Grammar

After the derivation of the meta grammar from the notational
conventions, the learner should be able to parse the formal
command descriptions of the operating system language (e.g.
CDldevice:][path]). However, not only misconceptions of
the learner but also incomplete explanations given in text-
books can impede this. In our example, a top level rule is
missing, 1.¢., the rule that provides the information about the
sequence of the command name and its parameters. Addi-
tionally, no rule for the interpretation of special characters
(e.g. the colon in device:) has been introduced. We use a ro-
bust bottom up chart parser and a rule induction component
to overcome such knowledge gaps. Knowledge gaps at the
rule level (e.g. the missing top rule) are closed by investigat-
ing the resulting chart. The chart parser assigns partial parse
trees to command expressions and a rule induction compo-
nent generates all possible chart completions (see below for
an example). Knowledge gaps at the character level (e.g. ':')
are labeled unknown (e.g. unknown(:)) and integrated accord-
ing to the following heuristic: any preterminal rule allows a
category unknown to be integrated (gaps are closed on the
deepest level of a parse tree).

The output of the parser for the MS-DOS command
CD[device: J[path] is given in Figure 6.
Edges Partial Parse Trees

1-2 dos.command(upper.case letters('CD')),
2-9 optional_parameters(

2-3

34 optional parameter(parameters(
parameter(lower_case letters(device)),

4-5 parameter(unknown(:))),

5-7 '

7-8 optional_parameters(optional _parameter(parameters(
parameter(lower_case_letters(path))),

8-9 T

Figure 6: Trace of CD[device:][path]

This parse tree is slightly simplified for ease of readabil-
ity (we removed the nodes for lower_case_letter and up-
per_case_letter and contracted the letters to words). The
chart parser identifies two constituents: a simple constituent
dos_command (CD), and a more complex constituent op-
tional_parameters with the terminals device, : and path.
No connection can be established between these two con-
stituents due to the missing top rule. However, the chart
edges provide linearization information, 1.e., edge 1-2 cov-
ering dos_command precedes edge 2-9 covering the optional
parameters. In this case, the completion of the parse tree

is a simple task, a new edge 1-9 called command is intro-
duced that covers dos_command and optional parameters.
The corresponing top rule is command — dos_.command op-
tional_parameters. This rule completes the meta grammar.
It is, however, too restrictive, since exclusive_parameters are
not captured. In order to generalize it, a new expression,
say, command_parameters, that replaces optional_parameters
in the command rule, needs to be introduced. This will
then expand to all known rules for parameters (e.g., op-
tional_parameters and exclusive_parameters). We will not
further elaborate on this.

Generating Grammars from Parse Trees

Given a derivation tree built from parsing a command expres-
sion with the meta grammar, the learner is able to construct a
context-free Definite Clause Grammar representation of that
command expression. In our example, CD[device: [[path]
was assigned the parse tree given in Figure 6 before the miss-
ing edge, 1-9, was induced by the system. In Figure 7 the
completed parse tree is given.
Edges Parse Tree
1-9 command(

dos_command('CD'"),

optional_parameter(device),

unknown(:),
optional_parameter(path))

Figure 7: Completed and pruned trace of CD[device: J[path]

This parse tree has been pruned (compared to fig. 6) accord-
ing to the following operationalization criterion:

the root node is operational (here: command)

the heads of recursive rules are not operational

the most specific domain concepts are operational (here:
dos_command, optional_parameter)

all leaves of non-branching preterminals are operational (here:
path, device, but not “[*")

the label unknown is operational

o R W=

The notion of an operationalization criterion is adopted
from Explanation-based Learning (EBL, Mitchell & Kedar-
Cabelli (1986)). In general, only those node labels (i.e., rule
heads) that are crucial for the definition of the command
grammar are operational. This principle is best exemplified
by criterion 3 which states that only the most specific domain
concepts are operational. To give an example: Although pa-
rameter 1s a domain-specific concept, optional parameter is

as a subconcept of parameter - more specific and thus pa-
rameter is not operational while optional parameter is. On
the other hand, lower_case_letter is surely not domain spe-
cific at all and thus is not operational. Remember, however,
that domain-specific concepts are not part of the background
knowledge of a novice. So they need to be identified and
acquired during text understanding. This is accomplished
through the specialization of already existing concepts (e.g.
dos command is a command, where command as a con-
cept is known in advance) or through the integration of un-
known words (concepts) without further semantic classifica-
tion. Note, that our operationalization criterion is structurally

I;

defined, since the requirement to be the most specific concept
is a taxonomic property.

Before going into the details of the learning algorithm, let
us discuss the learning result, i.e., the resulting DCG of CD
(fig. 8). Note that the generated DCG accepts list represen-
tations like ['CD' ,a,:,user] rather than a stream of characters
like ['C',/D', ",a,:,u,s,e,r]. We assume that streams of char-
acters are preprocessed and grouped (by humans) according
to the following principles:

characters of the same type (e.g., lower case letters) are concate-
nated (e.g. [d,e,v,i,c,e,] is transformed to [device,:])

2. characters of different types (e.g., 'a’ and'[') indicate transitions,
they separate character groups, thus ['C',D',[' d.e,v,ice,,]]is
transformed to ['CD','[' ,device,:,']']

3. blanks are separators and can be removed

570

The command grammar derived from the pruned explana-
tion tree (fig. 7) is given in Figure 8.

command — dos_command, opt_param._l, opt_param_2,
dos_command — ['CD'].

opt_param.l — [Var], {device(Var)}, [:].

opt_param_1 — [].

opt_param_2 — [Var], {path(Var)}.

opt_param_2 — [].

device(.). path(.).

Figure 8: Command grammar of CD

The grammar reads as follows: A DOS command is real-
ized as a rule dos_command (which expands to the terminal
'CD') followed by two nonterminials, i.e. the optional pa-
rameters. The first optional parameter is either a device (the
first rule of opt_param_I) or is not realized at all (the second
rule of opt_param_I). The second optional parameter is either
a path (the first rule of opt_param_2) or is not realized at all
(the second rule of ept_param_2).

Now, what a device is and what a path is are initially
unknown to the learner, although (s)he may already have
some background knowledge about such domain-specified
concepts. In some textbooks the notion of a path is itself
explained at some length, while in others it is only intro-
duced in passing. We assume here that device and path are
left unspecified initially, and thus assert two non-restrictive
(i.e., always succeeding) type predicates (device(-), path(_-))
to the knowledge base. As text understanding proceeds, these
knowledge gaps will eventually be closed, for example from
apposition phrases like device a in start the program from de-
vice a. As a result, device(a) is asserted to the knowledge
base (a Prolog knowledge base, thus asserta is used).

The learning algorithm to generate a command grammar
from an parse tree is given in Figure 9. It is restricted to those
parts that are relevant to our example. Input is a parse tree
such as the one from Figure 7, output is a DCG command
grammar like the one given in Figure 8. Note that the knowl-
edge specified in Figure 2 is also relevant to the construction
a DCG grammar.

In general, each nonterminal node of the parse tree has
one of two rule types attached to it: optional or exclusive,

cf. Figure 2. Currently, only optional parameter is of
type optional. This type information is learned during the
construction of the meta grammar, especially while parsing
phrases like “optional parameters” (cf. item 4 of fig. I).
All other rule labels are marked by default as exclusive
(e.g. dos.command). Additionally, each preterminal node
has a leaf rype attached to it. There are two leaf types:
constant and variable. For example in dos_command(CD)
the type of CD is constant since dos_command is a com-
mand and commands are known to have unique names. Con-
versely, optional_parameter is a parameter and parameters
denote variables. Given a tree with the tree structure tree =
node(..,subtree_i,..), where i > 0, and subtree_i is either a
nonterminal with a tree structure or a terminal, i.e., a leaf:

1. transform(tree): each nonterminal node forms the head of a new

rule. The rule skeleton is <node_label> — .. (node_label is a
unique identifier, if node is unambigous in tree, node_label =
node, e.g. command is unique with respect to the tree from fig.
7 thus command — .. and not e.g. command_l — ..)

. if node is (also) a preterminal, i.e., tree = node(subtree) where
subtree denotes a terminal, then

(a) if the leaf type of node is constant (this is also true for the la-
bel unknown) then construct the body in the following man-
ner: put the leaf entry in square brackets to be read off from
the input string (e.g. dos_command — ['CD']).

(b) if the leaf type of node is variable then expand the body to
[Var], {Type(Var)}, where Type is the name of leaf. Assert
Type(Var) to the knowledge base as a predicate. For exam-
ple: optional_parameter(path) is expanded to: opr_param 2 —
[Var], {path(Var)}

3. if the rule type of node is optional (additionally) generate a head
with an empty body (i.e., < node label> — [])

if node is not a preterminal then for all subtree, of
node(.., subtree,, ..) generate a unique label, attach it to the rule
for node label such that the label of subtree,, label,, appears in
the rule body before the label of subtree,4;, label, 41, and call
transform(subtree,).

Figure 9: A sketch of the learning algorithm

Acquiring the Semantics of System Commands

So far, a context-free grammar of the syntax of a command
has been acquired. However, reasoning and planning pro-
cesses depend on the semantics of commands as well. The
semantics of a command such as CD or COPY normally can-
not be explained in a brief sentence. The general function of
the command, its preconditions and effects, the role of each
parameter and the dependencies among them - all these things
need to be introduced.

We capture this by augmenting the command DCGs with
semantic and conceptual structures by means of a component
called the DCG refiner. This module, however, is not yet a
stable part of our model, we are still exploring and experi-
menting with various approaches and data formats. To give
an impression of the learning tasks and the problems that need
to be solved, we describe the model's present state.

In the following we distinguish the command parser (COM
parser), which - given a command grammar like the CD gram-

571

mar in Figure 8 - parses command examples like ['CD’,
a,:] from the natural language parser (NL parser), which
is a unification based, FUG-style parser (Kay, 1985) that
parses the English explanation of the given DOS command
e.g. CD changes the The COM parser assigns parse
trees to command examples, while the NL parser assigns
(semantic) feature structures to sentences. Both results are
combined to construct augmented DCG rules of the form:
rule(SemanticStructure) — SemanticStructure is a com-
mon feature structure composed of attribute-value pairs (writ-
ten: attribute=value) that capture morpho-syntactic informa-
tion but are also used to incorporate the lexical semantics of
words. Feature structures are manipulated with a single oper-
ation called unification. We use a two place unification pro-
cedure called merge: merge(A,B) combines A and B such that
- if unification was successful - both denote exactly the same
set of features®.

Consider once again the CD command and its def-
inition: CD changes the current directory. The
COM parser yields the parse tree dos_command(CD).
The NL parser generates the following feature structure
(only the relevant features are kept): [type=change_loc,
source=[directory=Dir,property=current|]|-]. This feature
structure is derived from the semantics of the verb change
and the nominal element current directory. Change denotes
a change_loc(ation) situation with a source object that is a di-
rectory. We currently do not incorporate planning knowledge
(e.g. the preconditions and effects of the change_loc situa-
tion) into these representations, although this is planned for
the near future. Figure 10 shows the augmented DCG for CD.
Each rule has received a semantic argument (SemC, SemOl,
Sem02), which are merged to an overall semantic structure
SemC.

dos_command(SemC) —+ ['CD'], ;;; replaces dos_command — ['CD']
{merge(SemC,[type=change.loc,
source=[directory=Dir,property=current|_],
opt.param_1=SemO]l, opt_param_2=SemO2|_]|.},
opt_param_1(SemO1),
opt_param_2(SemO2).

opt_param_1([device=Var|_]) = [Var],{device(Var)},[:].
opt_param_I ([device=unspec|-]) — [].
opt_param_2([path=Var|_]) — [Var], {path(Var)}.
opt_param_2([path=unspec|.]) — [].

device:(). path(_).

Figure 10: DCG with semantic structures

Note that the variable Var in the optional rules is not yet
connected to any variable at the top level rule command. We
can give only a brief and incomplete description of the DCG
refiner.

Features structures are assigned to a rule level (top rule,
embedded rules) according to the following principles:

3 Feature structures are modeled in form of open prolog lists, i.e.,
[...|-]. Prolog variables are written in initial caps.

1. initialization stage (the first augmentation of a command DCG

with semantic structures):
(a) the top level rule is augmented with those features that come
from the verb concept (e.g., change loc).

(b) The (optional) rules are assigned their test predicates (those
enclosed in braces) as features. For example, rule opt_param_I
receives device=Var as a feature.

2. refinement stage (subsequent modifications of a DCG):

(a) feature structure augmentation: Features are attached to the
least general level under the condition that all already encoun-
tered (stored) positive examples can still be captured by the
command grammar.

(b) feature lifting and feature lowering: Features can be lifted
from deeper to higher rules and vice versa. If, for example,
a new command instance is encountered that does not match
the semantics at a given level, the mismatched parts are pushed
down to compatible rules.

grammar specialization and grammar generalization: Exam-
ples might also trigger the assertion of new rules (rule order:
more specific rules precede more general rules). This is a
grammar specialization. Also, rule generalization is possible
if two or more rules broadly share the same feature structures.

Related Work

In this paper, the acquisition of a formal language is focused
on. However, our approach differs from other approaches
from computational learning theory (e.g., Gold (1967)). In
our case the grammar is not learned by way of induction from
the processing of exhaustive examples. Instead, the grammar
itself is provided according to some verbally introduced no-
tational conventions and further explanations in the form of
natural language texts.

Other approaches to knowledge acquisition from texts are
concerned with the extraction of declarative knowledge nec-
essary to define new concepts (e.g. Gomez (1995), Hahn et al.
(1996)). In this paper, however, we are concerned with the
acquisition of procedural knowledge as Norton (1983) is. In
his work, a paragraph of an elementary textbook on program-
ming was manually simplified and automatically translated
by a parser into Prolog clauses. In his system, however, learn-
ing is reduced to natural language understanding, which is not
sufficient in our learning scenario.

Another system concerned with the acquisition of proce-
dural knowlegde is SIERRA (VanLehn, 1987) which models
the acquisition of basic mathematical skills like subtraction.
VanLehn demonstrates that the techniques of top down and
bottom up parsing can be used to fix knowledge gaps in a
procedural network (representing the subtraction procedure).
He concludes from his experiments that those sequences of
lessons that only provoke minimal gaps in the procedural net-
work are best, since these gaps can then be easily identified
and fixed (VanLehn's felicity conditions a term borrowed
from Austin's speech act theory). In our system, the grammar
to parse the training examples first needs to be learned from
natural language input and formal command descriptions, a
complex learning task in its own right which has not been
considered relevant for SIERRA. Additionally, each training
example in our case is accompanied by verbal descriptions
which guide the learning process. A good verbal description

(c)

572

might establish a kind of felicity condition in our learning en-
vironment.

Conclusion and Outlook

Our model is a multi-strategy approach which seeks to ex-
plain how programming novices acquire programming skills
from textbooks. While we do not expect the learner to
have any domain-specific knowledge, (s)he is considered to
have the full natural language competence of an adult. Our
model incorporates various analysis-based learning methods.
Knowledge about the operationalization of knowledge (how
to build CFGs from text) is used to induce meta grammars
(from notational conventions). These meta grammars are of-
ten incomplete due to omissions in the explanatory text. In
the sense of explanation-based learning, an incomplete do-
main theory has been acquired. Command grammars are then
acquired by applying the learned meta grammars (bottom up)
to formal command expressions in the textbook. An explana-
tion structure is built while parsing the command expressions.
Knowledge gaps in the meta grammar are closed by the in-
duction of rules that complete the explanation trees. Next,
these completed explanation trees are translated to command
grammars in DCG format. Again, background knowledge
about the construction of procedural knowlege is used. With
the aid of command grammars, command instances and their
textual explanations are parsed and used to further refine the
command grammar. The DCG rule refiner augments the com-
mand DCG with semantic structures which are generalized
and specialized as new examples are integrated. Eventually,
the command grammar captures (programming language spe-
cific) syntactic, semantic and conceptual knowledge that can
be used in understanding and planning processes in the field
of programming. A lot of work remains to be done, however.
Especially, an empirical evaluation of the model is pressing.

Acknowledgements: We would like to thank Bryan Jurish and
Ina Bornkessel for valuable comments on a version of this

paper.

References

Gold, E.M. (1967). Languageidentification in the limit. Information
and Control, 10:447-474.

Gomez, F. (1995). Acquiring knowledge about the habitats of ani-
mals from encyclopedic texts. In KAW'95 - Proc. Knowledge
Acquisition Workshop. Banff, Canada.

Hahn, U., M. Klenner & K. Schnattinger (1996). Leaming
from texts: a terminological metareasoning perspective. In
S. Wermter, E. Riloff & G. Scheler (Eds.), Connectionist, Sta-
tistical and Symbolic Approaches to Learning in Natural Lan-
guage Processing, pp. 453—468. Berlin: Springer.

Kay, M. (1985). Parsing in functional unification grammar. In
L. Karttunen D.R. Dowty & A.M. Zwicky (Eds.), Natural
Language Parsing, pp. 251-278. Cambridge University Press:
Cambridge.

Mitchell, TM.; Keller, RM.; & S.T. Kedar-Cabelli (1986).
Explanation-based generalization: a unifying view. Machine
Learning, 1:47-80.

Norton, L.M. (1983). Automated analysis of instructional text. Ar-
tificial Intelligence, 20:307-344.

VanLehn, K. (1987). Leamning One Subprocedure per Lesson. Arii-
ficial Intelligence, 31:1-40.

	cogsci_1998_567-572

