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Review Article

Cytokine and anti-cytokine therapies
in prevention or treatment of fibrosis in IBD

Noam Jacob1,2, Stephan R Targan1 and David Q Shih1

Abstract
The frequency of fibrosing Crohn’s disease (CD) is significant, with approximately 40% of CD patients with ileal disease

developing clinically apparent strictures throughout their lifetime. Although strictures may be subdivided into fibrotic,

inflammatory, or mixed forms, despite immunosuppressive therapy in CD patients in the form of steroids or immunomo-

dulators, the frequency of fibrostenosing complications has still remained significant. A vast number of genetic and epi-

genetic variables are thought to contribute to fibrostenosing disease, including those that affect cytokine biology, and

therefore highlight the complexity of disease, but also shed light on targetable pathways. Exclusively targeting fibrosis may

be difficult, however, because of the relatively slow evolution of fibrosis in CD, and the potential adverse effects of inhibiting

pathways involved in tissue repair and mucosal healing. Acknowledging these caveats, cytokine-targeted therapy has

become the mainstay of treatment for many inflammatory conditions and is being evaluated for fibrotic disorders. The

question of whether anti-cytokine therapy will prove useful for intestinal fibrosis is, therefore, acutely relevant. This review

will highlight some of the current therapeutics targeting cytokines involved in fibrosis.
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‘‘Regulatory’’ cytokines

Transforming growth factor beta (TGF�)

Given the significance of stricturing CD and its recalci-
trance to conventional immunosuppressive therapy,
numerous cytokine pathways have been examined
with regards to fibrosis.1,2,3 One such cytokine is
Transforming Growth Factor beta. TGFb is a ubiqui-
tously produced cytokine, and although often con-
sidered a ‘‘regulatory’’ molecule, it employs a myriad
of functions influencing proliferation, differentiation,
inflammation, immunoregulation, wound healing and
fibrosis.4 TGFb is arguably the most widely studied,
targeted, and discussed cytokine contributor to fibrosis.
Elevated levels of TGFb and its receptors have been
reported during the development of fibrotic disease of
virtually any organ, including heart, lungs, liver,
kidney, skin, and intestines; and genetic over-expres-
sion or exogenous administration of TGFb in animals
promotes widespread fibrotic disease.5 TGFb has
numerous effects with regards to fibrosis including acti-
vation and differentiation of fibroblasts to myofibro-
blasts with subsequent upregulation in the production

of extracellular matrix (ECM) proteins including colla-
gen and fibronectin, expression of adhesive receptors
and contractile elements, and inhibition of matrix
metalloproteinases (MMPs) and stimulation of tissue
inhibitor of metalloproteinase-1 (TIMP).4,6,7 TGFb
can also induce fibrogenesis via newly recognized mech-
anisms of fibrosis including epithelial to mesenchymal
transition and endothelial to mesenchymal transition.8

The role of TGFb and therapeutic targets in fibrosis is
further described below and summarized in Table 1.

The three main isoforms of TGFb: TGFb1, TGFb2,
and TGFb3, are secreted as latent precursor molecules
containing a latency-associated peptide region (LAP),
and complexed with latent TGFb binding proteins
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(LTBP). The cytokine is active when LTBP is removed
extracellularly via proteolytic cleavage by proteases
such as plasmin or thrombin, or by interactions of
LAP with other proteins such as thrombospondin-1
or integrins.4 TGFb signaling ensues through two
receptors, TGFbR1 and TGFbR2, which form trans-
membrane serine/threonine kinase, hetero- or homo-
dimeric complexes that induce phosphorylation of
Smad 2 and Smad 3 proteins. Once phosphorylated,
Smad 2 and 3 complexes with Smad 4, translocate to
the nucleus, and activate transcription. Regulation of
Smad 2/3 occurs via Smad 7, which prevents binding
of Smad2/3 to the receptor complex. Signaling of
TGFb is summarized in Figure 1. TGFb can also
signal through other pathways, however, including
extracellular signal-regulated protein kinases 1 and 2
(ERK1/2), c-Jun N terminal kinase, p38 kinases and
members of the Janus kinase/signal transducers and
activators of transcription (JAK/STAT) family.4,9

As mentioned above, in addition to its profibrotic
effects, TGFb is a potent immune modulator central
to immune tolerance and development of innate and
adaptive immunoregulatory cells. Thus, the global
blockade of TGFb might upset critical balances in
immune homeostasis resulting in untoward effects, or
perhaps be ineffective owing to simultaneous blockade
of fibrogenic and regulatory functions. Several global
TGFb-blocking agents were either found to be ineffect-
ive or led to possible drug-associated mortality.10,11

While global blockade of TGFb might be problematic,

other strategies have focused on specific pathways in
TGFb signaling, synthesis, activation, or other down-
stream mediators and effects, with the hope of targeting
TGFb-driven fibrosis while sparing its immunomodu-
latory effects. Thus in light of this broad complexity of
function, antagonizing an individual receptor, rather
than the ligand itself, might be more attractive if it
proves more efficacious and specific. Accordingly,
blockade of TGFbR1 signaling by an injectable inhibi-
tor (SD-208) was evaluated in two experimental animal
models of intestinal fibrosis: anaerobic bacteria- and
trinitrobenzensulphonic acid-induced colitis (TNBS).
SD-208 reduced fibroblast activation, phosphorylation
of Smad2 and Smad3 proteins, and intestinal wall col-
lagen deposition in both models.12 Similarly, more
recent studies on blockade of TGFbR1 with oral inhibi-
tors have demonstrated efficacy in animal models of
renal fibrosis, carbon tetrachloride- or bile duct liga-
tion-induced cirrhosis,13,14 pressure-overload-induced
cardiac fibrosis,15 and bleomycin-induced pulmonary
fibrosis.16 These agents are currently being investigated
in oncologic trials, with pre-clinical testing ongoing for
fibrotic disorders.

With regards to TGFb synthesis, 5-methyl-1-phenyl-
2-[1H]-pyridone (pirfenidone) is a small, orally active
molecule that has demonstrated anti-fibrotic effects, in
part via inhibiting synthesis of TGFb. This agent has
been efficacious in patients with, and experimental
models of, pulmonary and renal fibrosis.17,18

Pirfenidone has been evaluated in randomized,

Table 1. Cytokine and drug targets in fibrosis.

Cytokine

Effect on

fibrosis Cellular/Molecular mechanism Drug (mechanism of action) References

TGFb " "fibroblast activation, proliferation

" Collagen, fibronectin, TIMP

# MMP

Promotion of EMT and EndoMT

Metelimumab, fresolimumab (anti-TGFb Ab)

SD-208, EW-7197, IN-1130, SM16 (TGFbR inhibitor)

Pirfenidone, ACEi/ARB, statin (#TGF syn/signaling)

Cilenglitide (integrin inhibitor, #TGFb activation)

10–16

17–22,23–28

31

IL-10 # T-reg associated suppression of

cell activation

Recombinant human IL-10 41

TNFa "/# Induction of TIMP, # MMP

# fibroblast collagen, CTGF, TGFb
Infliximab, adalimumab (anti-TNF Ab) 54–58

IL-4

IL-13

"

"

Fibroblast activation, " collagen

# MMP, " TGFb
Lebrikizumab, tralokinumab (anti-IL-13 Ab) 59–62

64–68

IFNg # # Fibroblast proliferation, migration

# collagen production

Recombinant human IFNg,

HSc025 (upregulates YB-1)

70–76

IL-17 " Activation of fibroblasts, " collagen

Promotion of EMT, " TGFb
Secukinumab (anti-IL-17 Ab) 84

TL1A " Activation of fibroblasts, " collagen

"TIMP

In development 99–105

TGFb: transforming growth factor beta; TIMP: tissue inhibitor of metalloproteinase-1; MMP: matrix metalloproteinase; EMT: epithelial-mesenchymal

transition; EndoMT: endothelial-mesenchymal transition; ACEi: angiotensin-converting enzyme inhibitor; ARB: angiotensin-receptor blocker; Ab: antibody;

IL-10: interleukin-10: TNFa: tumor necrosis factor alpha; CTGF: connective tissue growth factor; IL-4: interleukin 4; IL-13: interleukin 13; IFNg: interferon

gamma; IL-17: interleukin 17; TL1A: TNF-like ligand 1A.
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double-blind, placebo-controlled clinical trials.
Pirfenidone reduced the rate of decline in lung function
as measured by changes in forced vital capacity or total
lung capacity, as well as improved mortality.19,20 It has
been approved in Europe and by the Food and Drug
Administration (FDA) for treatment of idiopathic pul-
monary fibrosis (IPF). Pirfenidone, however, has not
been uniformly beneficial in all clinical trials; it had
no clinical or histologic benefits in patients with mye-
lofibrosis,21 or primary sclerosing cholangitis, while
being associated with increased adverse events.22

Downregulating or decreasing production of TGFb
without adverse immunological effects has been demon-
strated by two classes of medications currently in wide-
spread use in primary care: HMG-CoA reductase
inhibitors (statins) and antagonists of the renin-angio-
tensin system (RAS). As the primary mediator of the
RAS, angiotensin may contribute to fibrogenesis via
induction of TGFb expression and promotion of colla-
gen production.23 With regards to intestinal fibrosis,
early studies have reported that angiotensin is increased
in the mucosa of Crohn’s disease (CD) patients.24 In
TNBS-induced colitis, administration of the angioten-
sin-converting enzyme (ACE) inhibitor (ACEi), capto-
pril, or the angiotensin receptor blocker (ARB),
losartan, reduced colonic inflammation and fibrosis
via reduction in TGFb1.25,26 Like antagonists of the
RAS, statins may be of benefit with regards to fibrosis,

in part, through decreasing expression of TGFb.
Simvastatin reduces TGFb1 expression in human fibro-
blasts by inhibition of Smad 3 phosphorylation.27 In
TNBS-induced colitis, it had anti-fibrotic effects char-
acterized by a dose-dependent decrease in the level of
connective tissue growth factor (CTGF) and induction
of apoptosis in fibroblasts.28 Given the safety and ubi-
quity of RAS antagonists and statins, future prospect-
ive investigations will be feasible and determine if they
are capable of favorably affecting fibrogenesis.

The activation of TGFb from its latent precursor
state serves as an important regulatory step in TGFb
signaling, which might be exploited as a therapeutic
target. Strategies of integrin inhibition, most recently
with vedolizumab, have proven effective with regards
to inflammation in inflammatory bowel disease (IBD)
and may affect fibrosis via their effects on TGFb acti-
vation. As mentioned above, integrins, particularly
those of the alphaV (aV)-type, can bind LAP and acti-
vate TGFb. aVb6 integrin is upregulated in various
fibrotic disorders and its blockade has been effective
in models of radiation- and bleomycin-induced pul-
monary fibrosis, as well as liver fibrosis.29 Similarly,
aVb3 integrin contributes to excess smooth muscle
cell proliferation and hyperplasia in intestinal strictures
of CD,30 and cilengitide, an aVb3 inhibitor, reduces the
development of fibrosis in chronic TNBS-induced col-
itis.31 Future studies will demonstrate if these, or the

Figure 1. Signaling of TL1A, TNFa, and TGFb.
TL1A: TNF-like ligand 1A; TNFa: tumor necrosis factor alpha; TGFb: transforming growth factor beta; TRADD: TNFRSF1A-associated via

death domain; RIP-1: receptor-interacting protein 1; NF-KB: nuclear factor -kappa B; TRAF-2: TNF receptor-associated factor 2; JNK1: c-Jun

N-terminal protein kinase 1; DR3: death domain receptor 3.
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currently used integrin inhibitors, will have favorable
effects with regards to fibrosis in IBD.

Another seemingly attractive option is the targeting
of specific signaling molecules in the TGFb cascade.
This option might appear favorable, as it may focus
on individual mediators of TGFb signaling rather
than broader targets such as TGFb itself. Two such
potential strategies are Smad 3 antagonism and Smad
7 agonism. Increased Smad 3 and decreased Smad 7
expression have been observed in intestinal strictures
in CD.32 Furthermore, in multiple animal models,
loss of Smad 3 or increase in Smad 7 confers resistance
to fibrosis in several organs.33–35 There has been recent
focus on inhibition of Smad 7 in IBD via antisense
oligonucleotides (and subsequent increase in Smad 3
transduction with potential TGFb-mediated shift
toward immune-regulation). This strategy may be trou-
bling with regards to fibrogenesis. An ideal solution
might be to clearly identify those patients that would
be more prone to develop fibrotic/stricturing disease vs
predominantly inflammatory pathology through func-
tional, genetic, and epigenetic studies.

Interleukin-10 (IL-10)

IL-10 has a well-known role with regards to immune
regulation as a prominent product of regulatory T cells
and their effects on intestinal inflammation.36 In con-
trast to TGFb, however, IL-10 has been shown to inhi-
bit fibrosis. Mice treated with IL-10 develop less liver
and lung fibrosis when administered carbon tetrachlor-
ide or bleomycin.37,38 Similarly, IL-10 deficiency aggra-
vates kidney inflammation and fibrosis in the unilateral
ureteral obstruction mouse model.39 With regards to
human IBD, however, although polymorphisms in the
IL-10 locus have been associated with IBD,40 treatment
of CD patients with recombinant IL-10 has not been
significantly effective (Table 1).41

‘‘Inflammatory’’ cytokines

Tumor necrosis factor alpha (TNF�)

Like TGFb, TNFa is a pleiotropic cytokine, classically
considered proinflammatory with important immuno-
modulatory properties. A variety of cell types can elab-
orate TNFa, including activated macrophages, B cells,
T cells, keratinocytes, and fibroblasts. Depending on
the conditions, TNFa can trigger either pro-inflamma-
tory or anti-inflammatory pathways by engaging one or
both of two distinct transmembrane receptors: TNFR1,
and TNFR2. In addition to its pro-inflammatory
effects, TNFa may potentiate fibrosis via induction of
TIMP-1 expression and reduction in MMP-2 activity
and collagen degradation.42 Treatments targeting

TNFa are perhaps some of the most widely used anti-
cytokine therapies for inflammatory disorders, but evi-
dence for the role of these agents in preventing fibrosis
is somewhat mixed. In some animal models of liver
and renal fibrosis, TNF blockade reduced organ
inflammation and fibrogenesis,43,44 but a recent clinical
study investigating adalimumab for fibrotic kidney dis-
ease (FSGS) failed to meet its primary outcome.45 An
open-label pilot study in 16 systemic sclerosis patients
demonstrated improvement in skin scores with reduc-
tion in collagen secretion noted from cultured lesional
fibroblasts (Table 1).46–48

In contrast, there is evidence to suggest that TNFa is
a potentially anti-fibrogenic cytokine and its blockade
might consequently promote fibrosis. In some studies,
TNFa can exhibit anti-fibrotic properties by reducing
the expression of collagen and CTGF in dermal fibro-
blasts,49 and via suppression of TGFb signaling through
nuclear factor (NF)-kappa (K) B induction of Smad 7 in
other cell types.50 Disparate effects may be cell specific
and segregate at the level of the individual TNF recep-
tors, as globally impaired signaling through TNFR1
accelerates wound-healing, increases collagen deposition,
and angiogenesis at wound sites in TNFR1-deficient
mice,51 whereas impaired signaling in TNFR2-deficient
intestinal myofibroblasts results in reduced cell prolifer-
ation and decreased collagen synthesis.42

Consequently, with regards to intestinal fibrosis, the
evidence for specific use of TNF antagonists as anti-
fibrotic agents (as opposed to anti-inflammatory
agents) has remained vague. In early reports of TNF
blockade, obstructive complications were observed in
some patients, with initial concerns that these agents
may promote excessive fibrotic changes accompanying
mucosal healing. In vitro studies, however, showed that
TNF blockade decreased myofibroblast collagen pro-
duction52 in CD patients treated with infliximab.
Later multivariable analyses from the observational
Crohn’s Therapy, Resource, Evaluation, and
Assessment Tool (TREAT) registry and the A
Crohn’s Disease Clinical Trial Evaluating Infliximab
in a New Long-term Treatment Regimen (ACCENT)
I multicenter trial determined that, rather than TNF-
antagonist use, disease duration, severity, location, and
new corticosteroid use are factors associated with stric-
ture formation.53 Positive results have now been seen in
a few patients with inflammatory or mixed stenosis,54,55

as well as small case series reporting intralesional injec-
tion of infliximab.56 Data from population-based
cohorts seem to suggest that these agents may reduce
the need for surgery in the short term57 with the rate of
surgery ranging between 27% and 61% within the first
five years after diagnosis before the introduction of bio-
logics, and between 25% and 33% after the introduc-
tion of anti-TNF agents.58 Indeed, anti-TNF agents are
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recommended to reduce the risk of postoperative recur-
rence after surgery. Discerning between unique anti-
fibrotic effects in these cases and modification of the
fibrotic program due to reduction in inflammation
may be difficult.

T helper (Th)2 cytokines

The Th2 cytokines, interleukin-4 (IL-4) and interleukin
(IL-13), have been implicated in fibrogenesis (Table 1).
Both are elevated in fibrotic disease and promote fibro-
blast activation, proliferation, and collagen synthe-
sis.59,60 For example, IL-4 is found at increased
concentrations in the bronchoalviolar lavage of
patients with IPF.61 IL-4 also increases the expression
of collagen in cultured hepatic fibroblasts.62 Similarly,
IL-13 is involved in many Th2-mediated diseases and
has a role in fibrosis as well. Deriving from a common
receptor subunit (IL-4Ralpha), IL-13 shares overlap-
ping functions with IL-4. IL-13 signals by interacting
with a complex receptor system composed of
IL-4Ralpha and two IL-13 binding proteins,
IL-13Ra1 and IL-13Ra2. IL-13 receptors are expressed
on a vast array of cells, including human hematopoietic
cells, endothelial cells, fibroblasts, multiple epithelial
cell types, and smooth muscle cells.63 Increased IL-13
messenger RNA (mRNA) was found in intestinal sam-
ples of fibrotic CD patients. Fibroblasts from these
samples expressed elevated levels of IL13Ra1 and sub-
sequently downregulated MMP in response to IL-13.64

Importantly, however, elevated IL-13 production was
not detected in ulcerative colitis (UC) or strictured
CD,65 questioning if anti-IL-13 therapy would be an
appropriate strategy in IBD. In vivo inhibition of
IL-13Ra2 expression reduced production of TGFb1
in oxazolone-induced colitis and led to a marked
decrease of collagen deposition in bleomycin-induced
lung fibrosis.66 Similarly, IL-13 blockade reduces
experimental hepatic fibrosis.67 In TNBS-induced col-
itis, inhibition of IL-13 signaling by administration of
small interfering RNA targeting the IL-13Ra2, reduces
fibrosis and expression of TGFb.68 Given the suggested
experimental benefits of IL-13 antagonism, IL-13 anti-
bodies such as lebrikizumab and tralokinumab are cur-
rently being evaluated for anti-fibrotic efficacy in
pulmonary fibrosis (ClinicalTrials.gov identifiers:
NCT01872689, NCT01629667). Given the benefit in
pre-clinical investigations, clinical studies targeting
the IL-13 or IL-13 receptor may be envisioned for
fibrosis in CD.

Th1 cytokines

In contrast to pro-fibrotic cytokines produced by Th2
cells, Th1 cells, through production of interferon

gamma (IFNg), have opposing anti-fibrotic effects.
IFNg has been shown to inhibit fibroblast proliferation
and migration.69 IFNg signaling was shown to suppress
the production of TGF-b via Y box-binding protein
(YB-1), and an orally administered compound that pro-
motes nuclear translocation of YB-1 resulted in the
improvement of murine liver fibrosis and TNBS-
induced murine chronic colitis.70–72 Several other
models have demonstrated the potent anti-fibrotic
activity of IFNg. In the case of schistosomiasis-induced
fibrosis, treatment with IFNg reduces collagen depos-
ition associated with chronic granuloma formation.73

Similar results were obtained in models of pulmonary
and kidney fibrosis.74,75 These outcomes were not repli-
cated in human studies, however. A randomized trial of
subcutaneously injected recombinant IFNg did not
demonstrate improvement in survival of patients with
IPF (Table 1).76

Th17 cytokines

The family of interleukin-17 (IL-17) cytokines is com-
posed of IL-17A-F, which act through the IL-17 recep-
tor. Early evidence suggested that a main function of
IL-17 is the promotion of chemokine production for
granulocyte activation and increasing inflammation.77

With regards to pro-fibrotic effector functions, IL-17
stimulates activation pathways in human colonic myo-
fibroblasts78 and maintains fibrotic activity in various
other cell types including stellate cells79 and lung epi-
thelial cells.80 Treatment of mice with anti-IL-17A
monoclonal antibody administered after the onset of
myocarditis abrogates cardiac fibrosis and preserves
ventricular function.81 Similarly, IL-17A increases the
synthesis and secretion of collagen and promotes the
epithelial-mesenchymal transition in alveolar epithelial
cells in a TGFb1-dependent manner. Neutralization of
IL-17A promotes the resolution of bleomycin-induced
acute inflammation, attenuates pulmonary fibrosis, and
increases survival in this model.80 In IBD, however,
IL-17’s contribution to disease pathogenesis is complex
as both human and animal data suggest a dual inflam-
matory and protective role. With regards to its role in
intestinal fibrosis, in vitro intestinal samples from
fibrosing CD patients express elevated levels of
IL-17A and IL17-stimulated myofibroblasts from CD
strictures generate more collagen and TIMP-1.82 The
role of IL-17 concerning clinical disease development
in animal models of IBD has yielded disparate results
depending on the model used.83 In a clinical trial of
patients with inflammatory CD, blockade of IL-17A
by administration of the anti-IL-17A antibody, secuki-
numab, failed to meet its primary endpoint (Table 1).84

Post hoc analysis identified that a subgroup of patients
who responded to IL-17 blockade carried a TNFSF15
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(rs4263839) single nucleotide polymorphism (SNP).
The potential functional consequences of this allele
include elevated production of TNF-like ligand 1A
(TL1A) protein. Under TL1A-upregulated conditions
in adoptive transfer-induced colitis, IL-17A deficiency
ameliorated colonic inflammation via reducing Th1 and
Th9 effector responses while enhancing regulatory
responses.85 Thus, there exists a subset of patients
(those that overexpress TL1A owing to, for example,
a TNFSF15 variant) who could potentially benefit from
IL-17 blockade. Given the potential profibrotic role of
TL1A overexpression in this subset of patients who
have a propensity toward fibrostenosis (as discussed
below), IL-17 blockade may have a positive impact
on fibrosis, as well as inflammation.

TL1A

TL1A (a protein encoded by TNFSF15) is a member of
the TNF superfamily that binds to death domain recep-
tor 3 (DR3, also known as TNFRSF25), expressed on a
variety of cell types.86–88 Modulating an array of
immune responses, TL1A can be expressed by endothe-
lial cells induced by interleukin-1b (IL-1b) and TNFa,
macrophages and dendritic cells in response to Toll-like
receptor stimulation, as well as in some lymphoid lin-
eage cells.89–92 The role of TL1A in fibrosis is further
described below and summarized in Table 1.

Much of the previous literature has focused on the
TL1A-DR3 pathway with regards to immune function
with recent evidence now suggesting its importance
concerning fibrosis. As DR3 shares homology with
TNFR1, consequently, like with other TNF receptors,
developmental, immunoregulatory, and pro-inflamma-
tory effects have been described. DR3 activation of
NF-KB in human cell lines upregulates cellular inhibi-
tor of apoptosis 2 (c-IAP2), an NF-KB-dependent anti-
apoptotic protein, which protects against apoptosis.93

Conversely, however, DR3 in embryonic cells can
induce Fas-associated death domain protein (FADD)-
and caspase-8-dependent apoptosis, and early work on
DR3-deficient mice demonstrated that it is required for
negative selection in the thymus.94,95 Despite its
initially recognized role as a pro-apoptotic receptor,
DR3 has been shown to be upregulated on Th17
cells, and TL1A-DR3 interaction promotes T cell
expansion and cytokine production during immune
responses.96–98 Along these lines, the pro-inflammatory
effects of TL1A-DR3 binding likely contribute to this
pathway’s effect on fibrosis. More direct evidence has
demonstrated that DR3 is an important receptor for
fibroblast development, maturation, and function.
Indeed, DR3 is expressed on human and mouse pri-
mary intestinal fibroblasts, and DR3-deficient mice dis-
play reduced numbers of colonic fibroblasts. DR3

deletion, in addition to conferring developmental/
proliferative deficiencies in intestinal fibroblasts, also
results in reduced fibroblast activation (as evidenced
by decreased expression of alpha smooth muscle
actin) and expression of collagen induced by TL1A
stimulation.99

Specifically with regards to the TL1A-DR3 pathway
in IBD, a TNFSF15 haplotype is associated with higher
TL1A expression, increased risk of CD, intestinal
fibrostenosis, and greater need for surgery.100–102

In mice, constitutive TL1A overexpression causes spon-
taneous ileitis with increased collagen deposition.103,104

Under colitogenic conditions induced by chronic dex-
tran sulfate sodium (DSS) treatment or adoptive T-cell
transfer, increased inflammation, fibrosis, and fibroste-
notic lesions in the gut are seen.105 These results support
the role of TL1A in induction of intestinal inflammation
and suggest its contribution to fibrogenesis in the gut.
The potential for TL1A as a therapeutic target in intes-
tinal fibrosis was demonstrated in a recent study evalu-
ating the effect of anti-TL1A antibodies (Ab) in chronic
DSS and adoptive T-cell transfer models of IBD.
Treatment with neutralizing TL1A Ab attenuated dis-
ease and reversed colonic fibrosis. Additionally, TL1A
blockade reduced the number of fibroblasts and myofi-
broblasts in colonic cell isolates and lowered expression
of CTGF, TGFb1 and insulin-like growth factor 1
(IGF-1).99 Current studies are underway to evaluate
the direct and indirect contributors in the TNFSF15/
TL1A pathway to intestinal fibrosis.

Concluding remarks and future directions

Cytokine targeting has proven to be robustly effective
in targeting inflammation in IBD. Given the pleiotropy
of many cytokines, cytokine targeting with regards to
intestinal fibrosis has been challenging. Moreover, the
genetic variability present across patient populations
may result in different pathogenesis of disease with
regards to cytokine pathways, and thus broad cytokine
targeting may result in disparate rates of response.
Indeed, this has been observed with regards to anti-
TNF agents in terms of inflammation and may be
one source of failure of some clinical trials with newer
anti-cytokine agents. A potential future approach to
overcome this difficult aspect of cytokine-targeting
may require careful selection of patients based on gen-
etic or biochemical characteristics. Indeed, as noted
above, post hoc analysis of the trial with anti-IL17
identified that a subgroup of patients who responded
to IL-17 blockade carried a TNFSF15 (rs4263839)
SNP. Subsequent work in animal models suggested
that under elevated levels of TL1A conditions, IL-17
blockade could be beneficial. Thus, patient selection
for such genetic or biochemical traits as candidates
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for a specific anti-cytokine treatment may result in
greater success with these agents. Additionally, there
are promising lines of targets used for other fibrotic
conditions that may be of benefit in CD and warrant
investigation. Given the variables that contribute to
fibrostenosis in CD, targeting of multiple points in
the fibrotic pathway, including the cytokines them-
selves, may be an option. Future investigations into
novel fibrogenic molecules and pathways may lead to
additional and more selective therapeutic targets as well
as the identification of specific patient groups that
could best benefit from such individualized treatment.
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