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ABSTRACT OF THE DISSERTATION 

Efficient Criminal Justice Policy and the Deterrent Effect 

of Capital Punishment 

by 

Jeffrey Thomas Grogger 

Doctor of Philosophy in Economics 

University of California, San Diego, 1987 

Professor Halbert White, Chairman 

The deterrent effect of capital punishment has been debated in scholarly and pol­

icy circles for at least two centuries. Much more recently, considerable efforts have been 

expended to characterize efficient operation of the entire criminal justice system, including 

its penal function. 

In the first chapter, data on daily U.S. homicides are analyzed to test whether 

severe punishments act as a deterrent to murder. Previous linear regression analyses are 

discussed, after which the Poission regression model is argued, then demonstrated, to pro­

vide a superior fit to the data. A specification test for the mean-variance equality implied 

by the Poisson model is derived, and negative binomial models utilized when these tests 
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reject the Poisson. Both parametric and non-parametric methods are used to test the 

deterrence hypothesis: previous findings of a deterrent effect are shown to be quite fragile. 

In the second paper, similar techniques are used to analyze a superior set of daily 

data from California over the period 1960-67. Specification tests for the negative bino­

mial model are developed and a technique is employed to account for the stochastic 

dependence among the estimated regression coefficients, thereby providing sharper tests of 

the deterrence hypothesis. 

In the third paper, the efficiency of criminal sanctioning policy is addversed. An 

illustrative model is posited, and optimality conditions derived and interpreted. Data 

from California counties are used to estimate standard economic models of crime for 

several categories of homicide and to test for efficiency in sanctioning. 
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CHAPTER I. 

Life or Death: The Deterrent Effect of Severe Punishments 

on Homicides in the United States 
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1. I n t r o d u c t i o n 

The question of whether capital punishment deters homicide has concerned legal 

scholars and practitioners, social scientists and the general public for decades. Over a 

century ago, learned thought on the matter followed the lines expressed by James 

Fitzjames Stephen (1864), who stated that "[n]o other punishment deters men so 

effectually from committing crimes as the punishment of death." He went on to say 

"This is one of those propositions which it is difficult to prove, simply because they are in 

themselves more obvious than any proof can make them...". A more recent assertion by 

Charles Black (1974) displays a much different attitude, although still quite extreme in its 

own right: "we do not know, and for systematic and visible reasons cannot know what 

the truth about this deterrent effect may be...A 'scientific'— that is to say, a soundly 

based-- conclusion is simply impossible, and no methodological path out of this tangle 

suggests itself." 

In the years since these declarations were made, much effort nevertheless has been 

given to determine empirically whether capital punishment deters homicide. Different 

data sources have been used, both cross-sections and time-series, and the various studies 

have employed different techniques to control for confounding influences in the data in 

attempt to isolate the effect of executions. These techniques range from the so-called 

matching technique, whereby data from adjacent jurisdictions with different capital pun­

ishment statutes are placed together and simply eyeballed for discernible differences, to 

multiple regression analysis and econometric simultaneous-equations methods. 

Generally, more recent studies have used better data and employed more sophis­

ticated analytical techniques. This study continues that trend, reanalyzing the excellent 

data collected by Phillips and Hensley (1984), and employing a statistical model which 

accounts for the non-negative integer nature of the dependent variable. This model 
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provides a fit superior to the simple linear regression model. Also, hypotheses concerning 

the deterrent effect of capital punishment are tested using both classical and non-

parametric techniques. Results are also presented on some questions of secondary 

interest, notably on the effect of unemployment on homicides in the United States. 

2. A Rev iew Of The Literature 

Early work by Sellin (1967) employed a matching technique, whereby homicide 

data from neighboring states is examined for visible deterrent effects. At least one of the 

states in a cohort would have a capital punishment statute, while the others would not. 

By using adjacent states, Sellin hoped to control for various socio-economic and political 

influences which could also affect the murder rate. Sellin's conclusion was that retention-

ist states had murder rates no lower than their abolitionist neighbors, indeed in many 

cases*- hcmicyjtes were actually greater in the retentionist states. Sellin (1980) later used 

the same technique to examine murders of police officers and a larger set of homicide 

data, and came to the same conclusion. 

Bailey (1976) employed similar techniques on data collected from individual state 

prison authorities. In addition to geographical proximity, he also matched states on the 

basis of socio-economic variables such as per capita income. His findings were much the 

same as Sellin's earlier work. 

Savitz (1958) and Graves (1967) used a similar technique to examine longitudinal 

data, that is, data collected from one geographical jurisdiction over a period spanning a 

death sentence or an actual execution. Savitz tabulated capital homicides in Philadelphia 

for eight weeks before and after the imposition of a death penalty, and found no evidence 

for deterrence among the four cases he examined. Graves compared homicide rates in 

California for weeks preceding and following an execution, and also found no definite 
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deterrent effect. 

Phillips (1980) appears to have been the first to employ formal statistical tests in 

a longitudinal matching study. He examined twenty-two well publicized executions in 

England from 1858 - 1921, tabulating the number of homicides in the weeks before and 
i 

after the executions. Applying a nonparametric test to the post-execution changes in 

homicides, he concluded that these highly publicized executions did indeed have a deter­

rent effect at the time. 

Two major shortcomings of all these studies are the imperfection of the control 

techniques employed, and the small samples used for analysis. These considerations led to 

a desire among researchers to employ more sophisticated statistical machinery, allowing 

larger sets of data to be analyzed and greatly improving their ability to isolate the effect 

of capital punishment from other influences. 

In the early 1970's, economist Isaac Ehrlich (1976) generated much controversy 

and criticism with his econometric analysis of annual U.S. homicide data. As both 

Ehrlich's work and that of his critics have been the subject of at least two detailed reviews 

(Friedman (1976), Zeisel (1976)), they will be but briefly covered here. 

Three studies (Passell and Taylor (1976), Bowers and Pierce (1976), and Klein, 

Forst, and Filatov (1978)), attempted with varying degrees of success to replicate 

Ehrlich's results. Two of the studies (Passell and Taylor, Bowers and Pierce) criticized 

the data as incomplete and inconsistently collected over the sample period. All three 

found that the apparent deterrent effect vanished when the model was estimated in a 

linear rather than log-linear functional form, and when a small number of observations 

was dropped from the sample. Passell, Taylor and Fisher, and Franklin and Nagin (1978) 

criticized the model as unidentified, and Klein et al. noted that the construction of the 

threat-of-execution measure negatively biased its coefficient. 
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Passell (1975) analyzed a cross-sectional data set for 1950 and 1960 using con­

structs similar to Ehrlich's to measure the perceived threat of execution. He estimated 

his model by ordinary and two-stage least squares, and under several transformations of 

the data. He found that , while greater probability of apprehension and more severe prison 

terms both exerted a deterrent effect, the threat of capital punishment accounted for no 

independent deterrence. 

Ehrlich (1977) then performed another study, using state data from 1940 and 

1950. Using Box-Cox (1964) transformations, he reported the log-linear functional form 

as optimal, rejecting the linear form. Again, his results indicated a strong deterrent 

effect. 

More recently, McManus (1985), using state data from 1950 and a Bayesian esti­

mation methodology, demonstrated the importance of the researcher's priors on empirical 

deterrence results. His priors ranged from the viewpoint that "only the threat of execu­

tion could deter homicides" to the view that only economic and social variables caused 

fluctuations in murders. Depending on the prior beliefs, posterior parameter estimates 

indicated that the threat of execution could have a negative, zero, or positive effect on the 

homicide rate. 

McManus found that the inclusion of a binary variable indicating whether a state 

conducted executions was particularly important: with the indicator included, three of his 

five prior belief schemes yielded a deterrent effect, while none of the priors indicated a 

firm deterrent effect when the indicator was treated as a "doubtful variable". This obser­

vation could help shed some light on the reasons for the differing conclusions of Passell 

and Ehrlich (1977): Ehrlich used such an indicator, while Passell omitted it. 

Recent research by Phillips and Hensley (1984) has employed a data set quite 

different from those used earlier. For their analysis, Phillips and Hensley have compiled 
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daily national homicide counts from computerized death certificates. They employed 

multiple regression analysis, including as regressors a single lagged dependent variable, 

binary variables for each day of the week, month, and year in the sample, as well as six 

national holidays. They are interested in both "rewards" and punishments for violence, 

and include the current value and four lags of those indicator variables of interest: their 

REWARD variable, equal to one on the day of a publicized heavyweight prize fight, and 

zero otherwise; the variable NEUTRAL, equal to one for days of a publicized acquittal of 

a suspected murderer; and PUNISH, set to unity on the day of a publicized life sentence, 

death sentence, or execution. 

They base their conclusion, that "homicides...decrease significantly after stories 

about murder trials and executions..." on the following test. In their reported regression 

equation, the standard t-statistic of the fourth lag of PUNISH is -2.43. From the stan­

dard normal tables, implicitly drawing on asymptotic normality of the estimated parame­

ters, they find that the probability of observing a (single) t-ratio of such magnitude under 

the null hypothesis is .0076. Further drawing on the large sample normality result, they 

conclude that the lack of correlation among the coefficients of the PUNISH variables 

implies their statistical independence. This independence result then is the basis for a 

binomial test, from which they conclude that "the probability of finding one or more 

significance levels of .0076 in 5 independent trials is .0374", or in the critical range for the 

null of no deterrence. 

While the data employed in this analysis are of greatly improved quantity and 

quality than those previously used to study the deterrence question, the stated 

significance level of the test employed may be quite far from the actual significance for a 

number of reasons. 
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First, it seems curious to us that Phillips and Hensley would use the asymptotic 

normality of the regression parameters as a basis for the binomial test, rather than calcu­

late significance levels directly from a five-variate normal distribution. This latter pro­

cedure is discussed in more detail and employed below. 

Further, our specification testing of a model nearly identical to Phillips and 

Hensley's led us to reject the null hypothesis of correct specification. The standard errors 

generated by standard regression packages may then be biased, resulting in a test of 

actual size even greater than ten percent. 

Another criticism of their model can be made that its functional form fails to 

account for the non-negative integer nature of the dependent variable. A linear model 

may generate predicted values either positive or negative, while the number of daily homi­

cides can take on only positive values. As such, a linear specification could not possibly 

•represent the true data generation process; rather than draw inferences from such a poten­

tially inconsistent model, it may be preferable instead to estimate and test a model which 

generates only non-negative predictions. 

Finally, we believe the most interesting hypothesis to test is whether the total 

number, or sum, of homicides falls in some given period after a severe punishment, not 

just on some arbitrary single day in that period. One of the primary arguments for 

using daily data to is to investigate short-term punishment effects. If the effect of severe 

punishments were to merely delay, rather than deter homicides, fallacious conclusions 

could be reached by simply testing the PUNISH coefficients individually rather than in 

sum. 

In order to overcome these potential obstacles, we have implemented a methodol­

ogy designed to be robust to the types of problems just discussed. After discussing the 

data below, we describe the technique employed, and present results. 
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3. The D a t a 

The data on daily U.S. homicides of white victims were provided to us by David 

P. Phillips. They were constructed from computerized death certificates, distributed by 

the Inter-University Consortium for Political Science Research and generated by the 

National Center for Health Statistics. Phillips and Hensley provide precise definitions of 

the categories of deaths included, and of the data on publicized life sentences and capital 

punishments, which they also provided. The unemployment rate used is total unemploy­

ment from the Bureau of Labor Statistics. The sample period is 1973-1979, providing 

2556 observations for analysis. Summary statistics are presented in Appendix Table A l . 

4. Methods A n d Results 

The analysis proceeded in two phases. In the first phase, we concentrated on the 

specification of the conditional mean of daily homicides under the null hypothesis of no 

deterrence. That is, we identified variables which enter the equation to be estimated, and 

the functional form in which they enter. We thereby controlled for all identifiable 

influences on the number of daily homicides, excluding the effect of the PUNISH variables. 

The goal of this step was to generate a series of white noise prediction errors, free of any 

systematic influence, except (under the alternative hypothesis) that of the punishment 

variable. These residuals, then, were used to conduct nonparametric tests of the deter­

rence hypothesis in the second phase of the research. The nonparametric tests were then 

compared with more familiar test procedures. 

In the first phase, we proceeded as follows. We first reproduced as closely as pos­

sible the earlier work of Phillips and Hensley. The results of this exercise are given in 

Table 1A, and are shown to be very close to theirs which are presented in Table IB. 

Although the NEUTRAL variable used by them was not available to us, we are 
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reasonably confident that any differences in the estimates can be attributed to this omis­

sion, differences in the holiday variables, and to the use of different software. 

The results are generally similar, except for the holiday dummies. Homicides are 

shown to have significant seasonal effects, being high in the summer, falling somewhat in 

the fall, then increasing in November and December before falling through the remainder 

of the winter and spring. The day-of-week effect is also strong, with homicides high on 

the weekend, then falling till the middle of the week before rising again. Yearly effects 

were significant, without, however, any steadily increasing trend over the sample period. 

We next dropped the judicial variables from the model, and tested for the inclu­

sion of longer lags of the dependent variable. Twenty lags were included initially, after 

which all lags having coefficients with t-statistics less than one were dropped. The test 

statistic for the joint null hypothesis that the remaining six coefficients are equal to zero 

is 17.063, greater than the critical value of 12.59 for a x? random variable at five per cent 

significance. The other coefficients in the model change only slightly with changes in the 

lag structure. 

In addition to the seasonal indicators we tested for the inclusion of several 

economic variables, including total unemployment, male unemployment, unemployment 

of males 20- 24, overall labor force participation rate, male participation, and personal 

income. All possible combinations of these variables were tested; to our surprise, the 

overall unemployment rate was the only one to enter significantly and with plausible sign. 

Again, no significant changes to other parameters resulted from inclusion of various 

groupings of economic variables, so all but total unemployment were dropped from the 

analysis. 

Finally, the binary variable MOON, which has the value one on days when the 

moon is full and zero otherwise, was generated to test, for homicide at least, the popular 
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notion that criminal activity increases when the moon is full (Riddle, Lieber). 

The results of least squares estimation on the benchmark variable set are 

presented in Table 2. One notes the overall similarity of this extended model to Phillips 

and Hensley's. Generally only imprecisely estimated coefficients differ between the 

models, while coefficients with relatively high t-ratios differ little. The effect of the full 

moon, as measured by the coefficient of MOON, is seen to be very insignificant. The 

effect of unemployment on the contrary is seen to be quite strong, with each percentage 

point increase in the unemployment rate leading to one additional homicide per day in the 

United States. 

A test by White (1980) for heteroskedasticity (or more generally, for model 

misspecification) was conducted on this linear model, and significantly rejected the null 

2 

hypothesis of no misspecification. When standard remedies for heteroskedasticity were 

employed, and yet the transformed model performed even worse on the 

heteroskedasticity/misspecification test, it was concluded that the model suffered from 

some more serious form of misspecification. 

We next estimated a log-linear model, in which the dependent variable is the log­

arithm of the number of homicides. The results of this estimation are given in Table 3. 

One will note that the parameter estimates are identical to the linear model in terms of 

signs and relative magnitude. 

This model was subjected to the same specification tests as the linear model. Its 

performance was very similar, again suggesting some rather opaque form of 

misspecification, possibly related to the inadequacy of the functional form of the model. 

The next model to be estimated was a Poisson regression model, discussed in 

detail by Hausman, Hall and Griliches (1984), and Gourieroux, Monfort, and Trognon 

(1984) (hereafter GMT). This model can be written as: 
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A?'exp(A,) 
pr{yt) = —*T~ 

A, = exp(X,j3) 

Where y, is the dependent variable homicides on day t, Xt is the vector of regressors, and 

fi is a vector of parameters to be estimated. 

This model was estimated by the method of maximum likelihood. The likelihood 

function for one observation can be written: 

/.() = y,Xt/3-exp(Xt0)-ln y,! 

with first derivatives 

2jL - Xt(Vl-X,0) i = / t - - - * 
op.-

This model has many favorable properties for the task at hand. First, the Pois­

son is a discrete distribution, defined only for non-negative integer values of yt. It thus 

explicitly accounts for the nature of our dependent variable, something which the linear 

and log-linear models fail to do. Next, the log likelihood function is globally concave, 

ensuring a unique maximum. Finally, the appropriateness of the specification is easy to 

check. One property of the Poisson specification is that the conditional mean, 

exp(Xtfi)-X„ should equal the conditional variance. Employing the information matrix 

testing framework (White (1982), Lancaster (1984)), a straightforward test for this condi­

tion is relatively easy to calculate. 

The results of this estimation are presented in Table 4. Of particular note is the 

robustness of the parameter estimates to the specification of the functional form of the 

model. The conditional Poisson estimates are very similar to the log-linear model in 
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magnitudes and signs and to the linear model in signs and relative magnitudes. The log-

likelihood shows an improvement in fit over the simple linear model. 

The results of the test for the appropriateness of the Poisson specification are 

reported in Table 5. The test statistic is nR2, where n = number of observations and 

R2=the. R2 from the artificial regression used to calculate the test statistic (see note 2 

above), corrected for the absence of a constant term. This statistic has a chi-square sam­

pling distribution with one degree of freedom; its value of 29.01 is greater than the criti­

cal value of 3.84 for a x l test at the 5% significance level. 

This rejection of the Poisson model led us to estimate a negative binomial regres­

sion model. The relationship between the Poisson and negative binomial probability 

models is well known (Greenwood and Yule (1920), Hausman et al. (1984), Gourieroux, 

et al. (1984)), and is obtained by assuming the Poisson parameter to have the gamma dis­

tribution with mean /x and variance —. The resulting compound distribution for y, is 
a 

then negative binomial with mean n and precision parameter a. As seen more clearly 

below, one can essentially think of the negative binomial model as allowing one to esti­

mate a model more consistent with count data displaying conditional "over dispersion", 

while retaining essentially the same specification of the conditional mean as with the Pois­

son model. 

The negative binomial model can be written as: 

r(—*—) i 
pr(yt\ X„0,a) = a+Vi [o/i]" [ 1 + W ' ^ 

T(±)T(yt+l) 

where T{) is the gamma function, and 
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fi, = exp{X,0) 

This model was also estimated by maximizing the likelihood, which is given as: 

/, = lnr(y,+—)-lnr(—)-lnr(y,+l)+s/,lna 
a a 

with first derivatives: 

o/« _ „ yt~^p{X,P) 

8ft "' l + a « p (*,/?) ' 

a; i « + l u i (y«+—)exp(X,^) 

where ^ ( 7 is the digamma function. 

The conditional expectation of this model is E(y,\ X,)=cxp[Xlfi), and its condi­

tional variance is var(y,\ Xt) = exp(X,fi)[l+aex])(Xtf})\. One can thus see that 

var(yt\ Xt) > E(yt\ Xt), as is true in the data, and how the nuisance parameter a parameter­

izes the variance. 

The negative binomial estimation results are contained in Table 6. The parame­

ter estimates are essentially the same as the Poisson estimates, while the standard errors 

are generally larger. This is exactly what one would expect: the conditional mean is 

essentially the same for both models, while imposition of the mean-variance equality on 

over-dispersed data leads to spuriously small estimated standard errors (see, e.g., 
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Cameron and Trivedi (1985)). The log likelihood is somewhat higher for this model. The 

nuisance parameter a is estimated very precisely, and implies an average variance-to-

mean ratio of roughly 1.2. 

Results from GMT (1984b) can be used to construct an interesting test of the 

specification of the negative binomial model. Their work indicates that the failure of the 

random disturbance term in the conditional mean to be gamma distributed may result in 

the inconsistency of the negative binomial estimator. They propose the quasi-generalized 

pseudo maximum likelihood estimator to obtain consistent estimates in this case. Essen­

tially, the QGPML estimator is a two-step procedure in which one first consistently esti­

mates the nuisance parameter, then inserts the value thus obtained into the pseudo-

likelihood function: 

y,X,0 - {y,+±)ln[l+&exp{X,fl\ 
a 

where a is the nuisance parameter estimate from the first step. A strongly consistent esti­

mate for a can be obtained from regressing \yt-exp{Xtp)} on exp(2X,); estimation of the 

vector p proceeds by maximizing the above objective function. 

The test of the specification of the negative binomial model can be conducted by 

comparing the estimate of a from the negative binomial model with the known consistent 

estimate obtained from the above regression. A significant divergence of the estimates 

indicates that the gamma distribution for the disturbance term is invalid, hence that the 

negative binomial estimator may be inconsistent. The value of d from the QGPML esti­

mator is .00502, while the value from the negative binomial model is .00606. The value of 

the t-statistic for the test of equality of these estimates is 1.0, failing to reject the 

appropriateness of the negative binomial specification. 
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Misspecification Tests 

Several static and dynamic information matrix tests (White [1982,1985]) were 

performed on this model. A test for twentieth-order serial correlation of the prediction 

errors failed to reject the null hypothesis of no correlation. Other tests are discussed and 

results presented in the Appendix. 

5. Tes t i ng T h e D e t e r r e n c e H y p o t h e s i s 

In this section, two sets of hypotheses are tested. First, tests for deterrent effects 

on each of twenty-one days following a severe punishment are conducted using non­

parametric techniques. These results are then compared to procedures employing more 

familiar asymptotic t-tests. This comparison shows the tests to be quite similar. For 

both the nonparametric and the classical procedures, care is taken to determine the size of 

the individual tests necessary to achieve a test of a desired overall size. Next, t-tests are 

used to test for longer-term deterrence, that is to test whether the sums of effects over 

periods of several days are different from zero. 

A. Testing for Deterrent Effects on Individual Days Following a Severe Punishment 

To test for a deterrent effect on the i day following a severe punishment, the set 

of prediction errors { u,=yt—exp(Xt)} was partitioned into a treatment sample of size M 

(= number of punishments) and a control sample of size N on the basis of the i lag of 

the variable PUNISH. That is, the i treatment subsample consists of all values of u, 

such that PUNISHt_i is equal to one, while the i control subsample includes the rest of 

the prediction errors. Denote the treatment subsamples as fi,={w,1,...,wlM} and the control 

samples as Ei=>{eiu . . . ,eiM) where fi,- \J U,={u,}, i=0,...,20. 
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For each partitioning then, a rank-sum statistic was calculated to test 

H;,: *,(n,) = *,(£,) 

where *,• and $,- are the distribution functions of Q,- and E{. The alternative hypothesis is 

that $,- stochastically dominates $,-. 

To conduct the tests, the statistics 

U:- —MN 

\/—MN{M+N+l) 

were calculated, where 

Uj is the Mann-Whitney U statistic. 

The statistic Zs has been shown to have a limiting normal distribution, and to be 

very nearly normally distributed for sample sizes as small as M=N=8 ( Mann and Whit­

ney, 1947). 

Some care must be taken in determining the size of the individual tests. To 

emphasize this point, consider a test of twenty independent test statistics. If the size of 

each test a( is set to the customary .05 level, one finds that the probability of observing at 

least one test statistic in the critical range is .66 , vastly greater than intended. 

The solution to the problem is straightforward, however, and will be described in 

terms of the problem at hand. We first note that, since the {u,} and {PUNISHt} are each 

independent sequences, the {Z,} are independent. To correct for the problem above, then, 

we propose to test the null hypothesis 
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HQi: min { A, } = 0 
i 

against 

Hu: min { A,- } < 0 

where A,- is the difference in location between *,• and $,-. 

Since min { A,- } necessarily corresponds to min{Z,}, Hoi is simple to test. To find 

the appropriate critical values, we solve for c the equation 

a=i'[min{Z1}<Ca]=l-i'[Z0^C,Z1^c,...,ZM^c] (1) 

=1-P(Z0)P(ZO • • • P{Z20) 

=1-P(Z0)2 1 

where a is the desired overall size and ca is the critical value corresponding to a. Invok­

ing the asymptotic normality of Zh we find c « -2.8 for the case illustrated. 

The results from the tests for individual lag effects are displayed in Table 8. One 

observes that , at overall size of 5 per cent, none of the twenty-one test statistics is 

significant. From equation (1), one notes though that the individual test size depends on 

the number of individual tests. If one restricts attention to the first five days after a pun­

ishment, then the test statistic of -2.397 just exceeds the critical value of -2.32. On the 

basis of this test, then, the result from Phillips and Hensley, that homicides decrease 

significantly on the fourth day following a publicized punishment, would be confirmed. 
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B. Comparison with Tests Based on T-Statistics 

Presented in Table 9 are the parameter estimates and t-ratios from estimation of 

a negative binomial model in which the first twenty-one lags of PUNISH were included in 

the conditional mean along with the other variables in the model reported in Table 6 

(other parameter estimates changed only slightly with the inclusion of these variables). 

Given the asymptotic normality of the parameter estimates and virtual diagonality of the 

relevant portion of the covariance matrix (covariances among the PUNISH variables are 

-5 all roughly 3*10" ), the discussion of individual test sizes in the previous section is 

directly applicable to tests based on the asymptotic t-ratios. As before, none of the indi­

vidual coefficients is significant for a 5 per cent test of twenty-one parameters. In this 

case, however, the fourth lag of PUNISH is insignificant also for a test of only the first five 

lags. Given the disagreement of the results of the two test procedures, as well as the 

* relative weakness of the rejection of the nonparametric test, a weakening of the conclu­

sions regarding the reduction in homicides on the fourth day following a severe punish­

ment seems to be in order. 

C. Tests for a Net Deterrent Effect 

Inspection of Tables 8 and 9, as well as Table 4 in Phillips and Hensley, reveals a 

strong increase in homicides on the sixteenth day following a publicized punishment. It 

would therefore be worthwhile to test whether the sum, or net effect of a punishment over 

the three week period examined is significantly different from zero. 

To conduct this test, we employ asymptotic t-tests of sums of subsets of the 

parameters reported in Table 9. The test with the most power to reject the null 

hypothesis of no net deterrence is one which includes only the most significant coefficients. 

The most significant estimates are those corresponding to the fourth and sixteenth lags of 
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PUNISH. The test statistic for 

Ho '• 0PUNISH4 + PPUNISHU ~ ° 

is -.165, clearly inside the acceptance range. The only other coefficient to approach 

individual significance is that of the nineteenth lag of PUNISH. The test statistic for 

Hi '• PPUNISH* + PpuNisma + PpvNisim ~ ° 

is -1.186, again clearly within the acceptance region. 

These tests suggest that, whether or not the effect on the fourth day is 

significantly negative, the net effect after three weeks is insignificantly different from zero. 

Before concluding that the effect of the punishments was merely to delay, rather 

than deter homicides, an analysis of the residuals associated with the fourth and sixteenth 

lags of the non-null elements of the PUNISH variable was conducted. The analysis was 

carried out to ensure that conclusions regarding the delay hypothesis drawn from the for­

mal testing procedures reflected systematic effects of the punishments, rather than data 

anomalies or factors unaccounted for by the regression models. Specifically, it seems rea­

sonable to require a finding that large negative changes in homicides on the fourth day 

following a particular punishment event be followed by large positive changes on the six­

teenth day following that event, in order to establish the existence of a delay effect. 

Table 10 contains the values of the predicition errors fron the model reported in 

Table 9 associated with the fourth and sixteenth lags of each of the twenty punishments 

used to construct the PUNISH variable. One notes that in only five cases is a negative 

residual at the fourth lag associated with a positive residual at the sixteenth. Further, 

these five cases include neither any of the largest negative fourth lag effects nor any of the 
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largest positive sixteenth lag effects. Finally, the simple correlation coefficient of the two 

series is in fact positive (p=0.228), further weakening any evidence of a delay effect. In 

short, the evidence in favor of the delay hypothesis appears to be quite weak. 

6. Summary And Conclusions 

The main results of the paper can be summarized in the following way. First, fol­

lowing earlier work, daily data on U. S. homicides were used to specify a regression model 

in which daily homicide counts were explained by a set of daily, monthly, and annual 

binary variables and the monthly unemployment rate. Extending this previous work, the 

dynamic structure of the model was enhanced, and careful attention paid to choose a sta­

tistical model that was more consistent with the data than the linear specification previ­

ously utilized. Specification tests were developed to test the appropriateness of the 

models proposed: the negative binomial regression model was shown to provide a sub­

stantially better representation of the data, based on hoth the results of the specification 

test and on the improvement in the log-likelihood. 

The objective of this portion of the exercise was to develop a suitably specified 

model of daily homicides, from which inferences could be drawn regarding the deterrent 

effect of severe punishments. Tests based on the improved model have a sounder basis 

than previous tests, which had utilized inconsistent standard errors generated by an evi­

dently misspecified linear regression model. 

Two deterrence hypotheses were tested, one regarding any single-day decline in 

homicides in a period following a severe punishment, the other pertaining to a decrease in 

the sum of homicides over the period examined. Two sets of tests were performed to 

examine the former hypothesis: one based on non-parametric procedures, the other on 

regression t-statistics based on asymptotically consistent standard errors. 
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The results from the tests for single-day effects were mixed. If one restricted 

attention to the first four days following a punishment, the non-parametric test rejected 

the null hypothesis of no deterrent effect. This result was not robust, however: the test 

based on t-statistics failed to reject in this case, and both tests failed to reject when longer 

periods following a punishment were considered. 

The tests of the second hypothesis pertaining to a decrase in the sum of homi­

cides over the three weeks following a severe punishment were also somewhat ambiguous. 

Formal tests based on the regression parameters and their standard errors failed to reject 

the null hypothesis of no decrease in the total number of homicides. However, an ancil­

lary data analysis revealed little evidence of a delay effect, rendering the interpretation of 

the formal test results rather difficult. 

In summary, the results of our analysis indicate that the finding of a deterrent 

effect associated with the type of punishments examined lacks robustness. Changes in the 

assumptions regarding the stochastic process underlying the data, and differences in test­

ing techniques lead to conflicting conclusions. In the near future, data from the more 

recent past, during which the use of such severe punishments has markedly increased, will 

become available. Tests of the deterrence hypothesis based on these new data should 

therefore have greater power than those conducted here. Until new evidence is provided, 

however, the sensitivity of the deterrence results indicate that previous conclusions pur­

porting the efficacy of severe punishments in deterring homicides should be regarded as 

tentative and subject to further corroboration. 
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Footnotes 

1. Phillips and Hensley perform a test for significance of the "impact of a punishment on 

the entire [following] 21-day period" by summing the variables PUNISH through PUN-

ISH20, then including that sum variable in their regression equation. This is equivalent 

to imposing that all coefficients be equal, then testing whether that one coefficient is 

significantly different from zero. As such, it is really a joint test for equality of the 

parameters and their difference from zero. From inspection of the coefficients in their 

Table 4, here reproduced as Table Nl , it is perhaps unsurprising that the test would reject 

this joint null. 

2. The residuals from the initial OLS regression were squared, then regressed on the 

explanatory variables and their squares and cross-products. Each observation was then 

divided through by the square root of the predicted squared residuals, and the model thus 

transformed estimated by OLS. 

3. Using the notation of White (1985), one finds that the diagonal element associated 

with the constant in the indicator matrix, m^rflnf^ n+vh i / i i i-iVhi/i| <-i is given by 

-~2 f 
m *eoni« l eoml~ u l ~At 

where 

u,=yt-cxp(Xtp) 

Xt=exp(Xtfi) 

The first term thus gives an estimate of the conditional variance of the model, while the 

second is the estimate of the conditional mean. Following Lancaster (1984), the test is 
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computed by regressing a vector of units on the score of the model, vhi/i|i-i> and on 

miconn.,conit.' The number of observations times R2 from this regression will be distributed 

as chi-square with one degree of freedom. 

4. Two other models were estimated to perform this test: one identical to the Model 

presented in Table 1A, but with the negative binomial likelihood, and one identical to the 

model in Table 7, but with the first five lags (including the contemporaneous value) of 

PUNISH included as well. The t-ratios corresponding to the PUNISH4 variable were -2.286 

and -2.216, respectively. 
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Appendix 

Several general specification tests of the model reported in Table 6 were per­

formed. Among these were dynamic information matrix tests for twentieth-order serial 

correlation of the prediction errors, and a more general test for the appropriateness of the 

dynamic specification of the model. Several static information matrix tests were also con­

ducted. 

For the dynamic tests, the vector of indicators can be written: 

where 

i,_A = 1 + aexp(X,_xP) 

and 

«, = y,-exp(X,0) 

Tests in various directions can be performed by selecting various portions of the 

XlX,_x matrix. For the serial correlation test, the indicators used were 

»l" l - l "t"l-20 

*" = ~n—' • • •' Ti— • 
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A more gene-al test of the dynamic specification was conducted using the indica­

tors: 

* j « 
«t"i-i "i"c-i 

~T~J— Vt-iyt-2 i • • • > —r\— Vt-nVt-ii 

For all tests, the test statistic was computed by regressing a unit vector on the 

scores from the model and the respective indicators. Test results are given in Tables A l 

and A2, respectively. The test statistic is nR2 from the auxiliary regression; as can be 

seen from the tables, neither test rejects the null of no misspecification. 

The static information matrix indicators take the general form 

u}-txp{Xtfl[l + 2atxp(Xtfi\ ffioi = vccn A| Aj —— 
[1 + aexP(Xt/3)\2 

= veeh XfXt dot 

where veeh denotes the "vec ha l f operator. 

It may be of interest to note that the term [1 + aexp(Xtp)\ is the ratio of the con­

ditional variance of the model to the conditional mean, while [1 + 2aexp(Xtj3)] is the ratio 

of the conditional third central moment to the conditional variance. 

The subsets of the X{X, matrix chosen for testing included the diagonal elements 

corresponding to the constant term, the lagged dependent variables, the day, month, and 

year indicators, and UNTOT. Results are presented on Tables A3 to A8, respectively. 

One notes that the only test for which the null hypothesis of no misspecification is not 

rejected is that corresponding to the variable UNTOT. 
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There are several reasons for which the model may have failed these tests, includ­

ing misspecification of the conditional mean and misspecification of higher-order 

moments. Given the robustness of the parameter estimates to changes in functional form 

and to inclusion/exclusion of the punishment variables, it seems likely that the failure of 

higher-order moment restrictions implied by the negative binomial likelihood is the cause 

of the failures in this case. 
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LINEAR REGRESSION OF HOMICIDE MODEL 
Dependent variable is HOM 

Mean of dependent variable 29.33 R2 0.45 
Standard error of regression 5.97 Adjusted R2 0.44 
Number of observations 2552 Log-likelihood -8159.49 

Variable 

INTERCEP 
HOM1 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y73 
Y74 
Y75 
Y76 
Y77 
Y78 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
PUNISH 
PUNISHl 
PUNISH2 
PUNISH3 
PUNISH4 
FIGHT 
FIGHT1 
FIGHT2 
FIGHT3 
FIGHT4 

Coefficient 

35.2818 
0.0357 

-7.4059 
-7.6434 
-8.4908 
-7.1631 
-4.4758 
4.1596 
0.8236 

-0.4836 
-0.4304 
-0.7118 
0.5050 
2.8343 
2.4584 
1.8383 
1.6563 
2.5206 
4.0288 

-6.4905 
-4.5086 
-3.7006 
-5.9457 
-4.1959 
-2.9202 
24.5257 
-0.0342 
4.5259 
6.1914 
0.0351 
2.3891 
0.3369 
1.0599 

-0.3322 
-1.2959 
-3.0272 
1.2761 
1.0081 
0.4267 
3.5027 
0.8573 

T-statistic 

35.33 
1.82 

-16.24 
-15.37 
-16.95 
-14.02 
-9.00 
8.73 
1.38 

-0.83 
-0.74 
-1.21 
0.86 
4.83 
4.23 
3.11 
2.85 
4.26 
6.85 

-14.02 
-9.98 
-8.25 

-12.99 
-9.32 
-6.55 
9.90 

-0.01 
1.97 
2.66 
0.01 
1.03 
0.25 
0.79 

-0.25 
-0.96 
-2.24 
0.99 
0.78 
0.33 
2.71 
0.66 
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PHILLIPS AND HENSLEY'S LINEAR REGRESSION MODEL 
Dependent variable is HOM 

R2 0.438 Adjusted R2 0.428 
Number of observations 2555 

Variable 

INTERCEP 
HOM1 
MON 
TUE 
WED 
THU 
FRI 
SAT 
JAN 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
Y73 
Y74 
Y75 
Y76 
Y77 
Y78 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
PUNISH 
PUNISHl 
PUNISH2 
PUNISH3 
PUNISH4 
REWARD 
REWARD1 
REWARD2 
REWARD3 
REWARD4 
NEUTRAL 
NEUTRAL1 
NEUTRAL2 
NEUTRAL3 
NEUTRAL4 

Coefficient 

39.06 
0.03 

-7.23 
-7.52 
-8.38 
-7.04 
-4.35 
4.12 

-3.41 
-2.80 
-4.11 
-4.08 
-4.31 
-3.12 
-0.80 
-1.20 
-1.78 
-1.95 
-0.94 
-6.55 
-4.55 
-3.75 
-6.03 
-4.34 
-3.08 
12.96 
-0.45 
2.91 
2.68 

-1.05 
5.32 
0.24 
0.85 

-0.58 
-1.54 
-3.32 
1.08 
0.91 
0.59 
3.54 
0.71 

-3.45 
0.79 
1.88 
0.30 

-0.34 

T-statistic 

37.14 
1.52 

-15.82 
-14.94 
-16.56 
-13.68 
-8.63 
8.55 

-5.75 
-4.64 
-6.92 
-6.83 
-7.05 
-5.24 
-1.35 
-2.02 
-2.93 
-3.30 
-1.52 

-12.05 
-9.96 
-8.28 

-13.04 
-9.53 
-6.83 
6.97 

-0.33 
1.68 
1.94 

-0.86 
3.06 
0.17 
0.62 

-0.42 
-1.12 
-2.43 
0.83 
0.70 
0.45 
2.72 
0.55 

-1.71 
0.39 
0.93 
0.15 

-0.17 



Table 2 

LINEAR REGRESSION OF HOMICIDE MODEL 
Dependent variable is HOM 

Mean of dependent variable 29.34 R2 0.45 
Standard error of regression 5.95 Adjusted R2 0.44 
Number of observations 2545 Log-likelihood -8132.81 

Variable 

INTERCEP 
HOM1 
HOM6 
HOM7 
HOM8 
HOM10 
HOM11 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y73 
Y74 
Y75 
Y76 
Y77 
Y78 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
MOON 
UNTOT 

Coefficient 

24.5093 
0.0306 
0.0370 
0.0334 
0.0391 

-0.0217 
0.0391 

-6.8906 
-6.7921 
-8.0262 
-6.8304 
-4.3351 
4.0776 
1.0829 

-0.0706 
-0.0693 
-0.2285 
0.8860 
2.8622 
2.4336 
1.9632 
1.9139 
2.4781 
3.8627 

-4.7143 
-3.7458 
-6.1510 
-7.0764 
-5.0319 
-2.7575 
24.4531 
-0.5007 
5.1278 
5.9266 

-0.0312 
2.3852 
1.0785 
0.3294 

T-statistic 

9.26 
1.56 
1.89 
1.71 
1.99 

-1.11 
2.00 

-14.27 
-11.20 
-12.56 
-11.25 

-7.28 
7.66 
1.80 

-0.12 
-0.12 
-0.38 
1.49 
4.82 
4.14 
3.29 
3.27 
4.15 
6.50 

-7.53 
-7.66 
-5.19 
-7.95 
-7.20 
-5.82 
9.84 

-0.22 
2.24 
2.56 

-0.01 
1.04 
2.76 
0.50 
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LOG-LINEAR REGRESSION OF HOMICIDE MODEL 
Dependent variable is LOGHOM 

Mean of dependent variable 3.34 R2 0.41 
Standard error of regression 0.21 Adjusted R2 0.40 
Number of observations 2545 

Variable 

INTERCEP 
HOM1 
HOM6 
HOM7 
HOM8 
HOM10 
HOM11 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y73 
Y74 
Y75 
Y76 
Y77 
Y78 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
MOON 
UNTOT 

Coefficient 

3.1565 
0.0011 
0.0008 
0.0011 
0.0014 

-0.0007 
0.0015 

-0.2340 
-0.2339 
-0.2816 
-0.2300 
-0.1324 
0.1226 
0.0357 

-0.0089 
-0.0032 
-0.0178 
0.0260 
0.0992 
0.0873 
0.0635 
0.0552 
0.0779 
0.1235 

-0.1602 
-0.1183 
-0.2131 
-0.2434 
-0.1710 
-0.0892 
0.6440 

-0.0235 
0.1726 
0.2105 
0.0288 
0.0961 
0.0414 
0.0015 

T-statistic 

33.60 
1.56 
1.17 
1.57 
2.02 

-1.05 
2.23 

-13.66 
-10.87 
-12.42 
-10.68 
-6.27 
6.49 
1.68 

-0.42 
-0.15 
-0.84 
1.24 
4.71 
4.19 
3.00 
2.65 
3.68 
5.86 

-7.21 
-6.82 
-5.07 
-7.70 
-6.90 
-5.31 
7.30 

-0.29 
2.12 
2.56 
0.35 
1.18 
2.99 
0.07 
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Table 4 

CONSTRAINED POISSON REGRESSION MODEL 
Dependent Variable is HOM 

LOG LIKELIHOOD: -8113.929 

Variable 

HOM1 
HOM6 
HOM7 
HOM8 
HOM10 
HOM11 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y73 
Y74 
Y75 
Y76 
Y77 
Y78 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
MOON 
UNTOT 
CONSTANT 

Coefficient 

0.0010 
0.0011 
0.0010 
0.0013 

-0.0006 
0.0015 

-0.2304 
-0.2313 
-0.2783 
-0.2295 
-0.1364 
0.1156 
0.0377 

-0.0039 
-0.0040 
-0.0101 
0.0306 
0.0972 
0.0834 
0.0671 
0.0653 
0.0842 
0.1278 

-0.1576 
-0.1206 
-0.1971 
-0.2331 
-0.1622 
-0.0860 
0.6174 

-0.0281 
0.1695 
0.1998 
0.0049 
0.0814 
0.0104 
0.0357 
3.2047 

T-statisti 

1.684 
1.872 
1.638 
2.103 

-0.965 
2.406 

-15.494 
-12.302 
-13.981 
-12.223 

-7.528 
7.483 
1.995 

-0.207 
-0.208 
-0.526 
1.632 
5.278 
4.558 
3.608 
3.557 
4.540 
6.986 

-8.164 
-8.172 
-5.454 
-8.533 
-7.649 
•6.084 
10.587 
-0.357 
2.567 
2.948 
0.066 
1.225 
0.513 
2.989 

39.436 
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TEST FOR SPECIFICATION OF CONSTRAINED POISSON MODEL 
Dependent variable is CONST 

Value of nR2 Test Statistic is 29.02 

Variable 

CONSTU 
HOMU1 
HOMU6 
HOMU7 
HOMU8 
HOMU10 
HOMU11 
MONU 
TUEU 
WEDU 
THUU 
FRIU 
SATU 
FEBU 
MARU 
APRU 
MAYU 
JUNU 
JULU 
AUGU 
SEPU 
OCTU 
NOVU 
DECU 
Y73U 
Y74U 
Y75U 
Y76U 
Y77U 
Y78U 
NYRU 
MEMU 
INDU 
LABU 
THXU 
CHRU 
MOONU 
Mil 

Coefficient 

-0.0280 
-0.0001 
-0.0002 
-0.0001 
0.0000 
0.0000 
0.0000 
0.0061 
0.0011 
0.0031 
0.0016 
0.0036 
0.0077 

-0.0034 
-0.0039 
-0.0045 
-0.0026 
-0.0053 
-0.0010 
-0.0012 
0.0010 

-0.0080 
-0.0046 
-0.0020 
0.0010 
0.0008 

-0.0217 
-0.0172 
-0.0070 
-0.0014 
0.0030 

-0.0113 
0.0063 

-0.0121 
0.0006 
0.0000 
0.0069 
0.0021 

T-statistic 

-0.39 
-0.13 
-0.33 
-0.26 
-0.08 
-0.02 
-0.07 
0.44 
0.06 
0.17 
0.09 
0.22 
0.54 

-0.19 
-0.22 
-0.24 
-0.14 
-0.30 
-0.06 
-0.06 
0.06 

-0.48 
-0.28 
-0.12 
0.06 
0.06 

-0.66 
-0.68 
-0.36 
-0.11 
0.04 

-0.17 
0.08 

-0.19 
0.00 
0.00 
0.63 
5.38 
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Table 6 

CONSTRAINED NEGATIVE BINOMIAL MODEL 
Dependent Variable is HOM 

LOG LIKELIHOOD: -8095.229 

Variable 

HOM1 
HGM6 
HOM7 
HOM8 
HOM10 
HOM11 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB • 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y73 
Y74 
Y75 
Y76 
Y77 
Y78 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
MOON 
UNTOT 
CONSTANT 
ALPHA 

Coefficient 

0.0010 
0.0011 
0.0010 
0.0013 

-0.0006 
0.0015 

-0.2302 
-0.2314 
-0.2782 
-0.2294 
-0.1359 
0.1161 
0.0370 

-0.0048 
-0.0047 
-0.0113 
0.0299 
0.0971 
0.0832 
0.0664 
0.0637 
0.0836 
0.1274 

-0.1572 
-0.1203 
-0.1991 
-0.2348 
-0.1633 
-0.0863 
0.6212 

-0.0273 
0.1685 
0.2004 
0.0050 
0.0840 
0.0366 
0.0102 
3.2029 
0.0061 

T-statisti 

1.563 
1.652 
1.492 
1.939 

-0.942 
2.240 

-14.369 
-11.423 
-12.981 
-11.333 
-6.943 
6.914 
1.818 

-0.236 
-0.232 
-0.551 
1.480 
4.896 
4.223 
3.313 
3.225 
4.184 
6.462 

-7.554 
-7.534 
-5.100 
-7.963 
-7.124 
-5.634 
9.442 

-0.327 
2.345 
2.727 
0.063 
1.165 
2.837 
0.464 

36.542 
5.819 
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UNCONSTRAINED NEGATIVE BINOMIAL MODEL 
Dependent Variable is HOM 

LOGLIKELIHOOD: -8054.598 

Variable 
HOM1 
HOM6 
HOM7 
HOM8 
HOM10 
HOM11 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y73 
Y74 
Y75 
Y76 
Y77 
Y78 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
MOON 
UNTOT 
CONSTANT 
PUNISH 
PUNISHl 
PUNISH2 
PUNISH3 
PUNISH4 
PUNISH5 
PUNISH6 
PUNISH7 
PUNISH8 
PUNISH9 
PUNISH10 
PUNISH11 
PUNISH12 
PUNISH13 
PUNISH14 
PUNISH15 
PUNISH16 
PUNISH17 
PUNISH18 
PUNISH19 
PUNISH20 
ALPHA 

Coefficient 
0.0009 
0.0010 
0.0010 
0.0012 

-0.0008 
0.0014 

-0.2270 
-0.2290 
-0.2774 
-0.2313 
-0.1365 
0.1165 
0.0289 

-0.0161 
-0.0162 
-0.0225 
0.0214 
0.0910 
0.0789 
0.0628 
0.0567 
0.0805 
0.1181 

-0.1558 
•0.1243 
-0.2050 
-0.2402 
-0.1658 
-0.0881 
0.6133 

-0.0219 
0.1754 
0.2070 
0.0028 
0.0986 
0.0369 
0.0116 
3.2231 
0.0112 
0.0465 

-0.0076 
-0.0510 
-0.1047 
-0.0592 
0.0461 

•0.0266 
-0.0331 
-0.0479 
0.0209 

•0.0029 
-0.0724 
-0.0469 
-0.0384 
•0.0144 
0.0943 

•0.0362 
-0.0103 
-0.0830 
•0.0472 
0.0057 

T-statistic 
1.425 
1.593 
1.519 
1.902 

-1.193 
2.211 

-14.071 
-11.257 
-12.897 
-11.396 
-6.936 
6.904 
1.407 

-0.783 
-0.779 
-1.081 
1.049 
4.553 
3.971 
3.106 
2.847 
3.998 
5.925 

-7.473 
-7.761 
-5.260 
-8.146 
-7.241 
-5.772 
9.297 

-0.262 
2.433 
2.807 
0.035 
1.366 
2.865 
0.527 

36.665 
0.244 
1.067 

•0.173 
-1.130 
-2.276 
-1.314 
1.037 

-0.572 
-0.738 
-1.066 
0.478 

•0.066 
-1.593 
-1.017 
-0.822 
•0.324 
2.230 

-0.813 
•0.234 
-1.820 
•1.016 
5.423 



Table 8 

TEST STATISTICS FOR RANK-SUM TESTS 

Grouping Variable 

PUNISH 
PUNISHl 
PUNISH2 
PUNISH3 
PUNISH4 
PUNISH5 
PUNISH6 
PUNISH7 
PUNISH8 
PUNISH9 
PUNISH10 
PUNISH11 
PUNISH12 
PUNISH13 
PUNISH14 
PUNISH15 
PUNISH16 
PUNISH17 
PUNISH18 
PUNISH19 
PUNISH20 

Z-Score 

0.242 
0.730 

-0.590 
-1.036 
-2.397 
-1.229 
0.276 

-0.559 
-0.596 
-0.663 
-0.549 
0.155 

-1.302 
-1.020 
-0.471 
-0.286 
2.332 

-0.605 
-0.008 
-1.437 
-0.569 
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Table 9 

PARAMETER ESTIMATES AND ASYMPTOTIC T-STATISTICS 
FROM NEGATIVE BINOMIAL MODEL WITH 21 LAGS 

OF PUNISH 

Variable Parameter T-Ratio 

PUNISH 

PUNISHl 

PUNISH2 

PUNISH3 

PUNISH4 

PUNISH5 

PUNISH6 

PUNISH7 

PUNISH8 

PUNISH9 

PUNISH10 

PUNISH11 

PUNISH12 

PUNISH13 

PUNISH14 

PUNISH15 

PUNISH16 

PUNISH17 

PUNISH18 

PUNISH19 

PUNISH20 

0.011 

0.046 

-0.008 

-0.051 

-0.105 

-0.059 

0.046 

-0.266 

-0.033 

-0.048 

0.021 

-0.003 

-0.072 

-0.047 

-0.038 

-0.014 

0.094 

-0.036 

-0.010 

-0.083 

-0.047 

0.24 

1.07 

-0.17 

-1.13 

-2.28 

-1.31 

1.03 

-0.06 

-0.74 

-1.07 

0.48 

-0.07 

-1.59 

-1.01 

-0.82 

-0.32 

2.23 

-0.81 

-0.23 

-1.82 

-1.02 
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LM TEST FOR SERIAL CORRELATION 
Dependent variable is CONST 

Value of nR2 Test Statistic is 13.39 
Variable Coefficient 
GRES 
HOMU1 
HOMU6 
HOMU7 
HOMU8 
HOMU10 
HOMU11 
MONU 
TUEU 
WEDU 
THUU 
FRIU 
SATU 
FEBU 
MARU 
APRU 
MAYU 
JUNU 
JULU 
AUGU 
SEPU 
OCTU 
NOVU 
DECU 
Y73U 
Y74U 
Y75U 
Y76U 
Y77U 
Y78U 
NYRU 
MEMU 
INDU 
LABU 
THXU 
CHRU 
UNTOTU 
MOONU 
DALPHA 
Ul 
U2 
U3 
U4 
U5 
U6 
U7 
U8 
U9 
U10 
U U 
U12 
U13 
U14 
U15 
U16 
U17 
U18 
U19 
U20 

0.0993 
0.0020 
0.0012 
0.0020 
0.0022 
0.0006 
0.0030 
0.0371 
0.0814 
0.1124 
0.1024 
0.0799 
0.0405 
0.0092 
0.0108 
0.0096 
0.0108 
•0.0076 
•0.0029 
•0.0054 
•0.0048 
•0.0024 
•0.0056 
•0.0016 
•0.0045 
•0.0061 
•0.0155 
•0.0143 
•0.0107 
-0.0046 
0.0026 
0.0016 

-0.0062 
•0.0014 
-0.0010 
0.0144 
0.0012 
0.0033 

-0.0004 
0.0023 
0.0009 
0.0009 
0.0007 
0.0011 

-0.0016 
0.0026 
0.0029 
0.0004 

•0.0007 
-0.0038 
•0.0007 
•0.0010 
•0.0004 
0.0005 

•0.0005 
•0.0005 
•0.0002 
0.0005 
0.0006 

T-statistic 
0.58 

-0.69 
0.55 

-0.65 
-0.80 
0.16 
1.05 

-1.19 
-1.24 
-1.71 
-1.82 
-1.52 
-0.96 
-0.40 
•0.48 
-0.39 
-0.45 
-0.34 
-0.13 
-0.23 
-0.21 
-0.11 
-0.26 
-0.06 
-0.13 
-0.21 
•0.28 
-0.27 
-0.28 
-0.20 
0.03 
0.02 

-0.07 
•0.02 
-0.01 
-0.23 
0.06 
0.22 

-0.31 
0.65 
1.17 
1.04 
0.79 
1.33 

-0.59 
0.73 
0.86 
0.45 

•0.16 
-1.13 
•0.86 
-1.16 
•0.41 
0.51 

•0.55 
•0.60 
•0.23 
0.62 
0.71 
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Table A2 

DYNAMIC IM SPECIFICATION TESTS 
Dependent variable is CONST 

Value of nR2 Test Statistic is 10.43 

Variable 

GRES 
HOMU1 
HOMU6 
HOMU7 
HOMU8 
HOMU10 
HOMU11 
MONU 
TUEU 
WEDU 
THUU 
FRIU 
SATU 
FEBU 
MARU 
APRU 
MAYU 
JUNU 
JULU 
AUGU 
SEPU 
OCTU 
NOVU 
DECU 
Y73U 
Y74U 
Y75U 
Y76U 
Y77U 
Y78U 
NYRU 
MEMU 
INDU 
LABU 
THXU 
CHRU 
UNTOTU 
MOONU 
DALPHA 
INDU 
INDL2 
INDL3 
INDL4 
INDL5 
INDL6 

Coefficient 

0.0625 
-0.0018 
0.0000 
0.0001 

-0.0001 
0.0000 

-0.0001 
-0.0050 
-0.0201 
-0.0214 
-0.0228 
-0.0216 
-0.0152 
0.0030 

-0.0023 
-0.0036 
-0.0005 
0.0014 
0.0069 
0.0041 
0.0046 
0.0031 
0.0027 
0.0096 

-0.0096 
-0.0070 
-0.0146 
-0.0153 
-0.0111 
-0.0051 
-0.0008 
-0.0026 
0.0033 

-0.0015 
-0.0015 
0.0142 

-0.0010 
0.0028 

-0.0002 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

T-statistic 

0.60 
-0.89 
-0.06 
0.13 

-0.10 
0.01 

-0.18 
-0.29 
-0.70 
-0.71 
-0.75 
-0.75 
-0.64 
0.14 

-0.11 
-0.16 
-0.02 
0.07 
0.32 
0.19 
0.22 
0.15 
0.13 
0.47 

-0.42 
-0.38 
-0.34 
-0.44 
-0.43 
-0.30 
-0.01 
-0.04 
0.04 

-0.02 
-0.01 
0.23 

-0.05 
0.21 

-0.22 
-1.12 
-1.91 
1.41 
0.25 

-0.58 
2.27 
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Table A3 

IM SPECIFICATION TESTS 
Dependent variable is CONST 

Value of nR2 Test Statistic is 2073.21 

Variable 

GRES 
HOMU1 
HOMU6 
HOMU7 
HOMU8 
HOMU10 
HOMUll 
MONU 
TUEU 
WEDU 
THUU 
FRIU 
SATU 
FEBU 
MARU 
APRU 
MAYU 
JUNU 
JULU 
AUGU 
SEPU 
OCTU 
NOVU 
DECU 
Y73U 
Y74U 
Y75U 
Y76U 
Y77U 
Y78U 
NYRU 
MEMU 
INDU 
LABU 
THXU 
CHRU 
UNTOTU 
MOONU 
DALPHA 
INDC 

Coefficient 

0.1916 
0.0007 
0.0007 

-0.0001 
-0.0001 
-0.0004 
0.0008 

-0.0125 
-0.0215 
-0.0244 
-0.0147 
-0.0177 
-0.0260 
-0.0055 
0.0020 

-0.0043 
-0.0035 
-0.0021 
0.0002 

-0.0129 
-0.0140 
0.0169 
0.0335 
0.0232 
0.0314 
0.0101 
0.0142 
0.0259 
0.0098 
0.0138 
0.0610 

-0.0076 
-0.0483 
-0.0012 
-0.0864 
-0.0033 
0.0067 
0.0020 
0.4381 

-0.2161 

T-statist 

5.17 
2.29 
2.47 

-0.42 
-0.42 
-1.25 
2.58 

-1.76 
-2.44 
-2.63 
-1.67 
-2.04 
-3.47 
-0.61 
0.22 

-0.45 
•0.39 
-0.24 
0.03 

-1.40 
-1.54 
1.97 
3.92 
2.75 
3.57 
1.42 
0.84 
1.99 
0.98 
2.02 
1.52 

-0.24 
-1.22 
-0.04 
-1.24 
-0.12 
0.75 
0.36 

104.13 
104.81 
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Table A4 

IM SPECIFICATION TESTS 
Dependent variable is CONST 

Value of nR2 Test Statistic is 410.42 

Variable 

GRES 
HOMU1 
HOMU6 
HOMU7 
HOMU8 
HOMU10 
HOMU11 
MONU 
TUEU 
WEDU 
THUU 
FRIU 
SATU 
FEBU 
MARU 
APRU 
MAYU 
JUNU 
JULU 
AUGU 
SEPU 
OCTU 
NOVU 
DECU 
Y73U 
Y74U 
Y75U 
Y76U 
Y77U 
Y78U 
NYRU 
MEMU 
INDU 
LABU 
THXU 
CHRU 
UNTOTU 
MOONU 
DALPHA 
INDL1 
INDL6 
INDL7 
INDL8 
INDL10 
INDL11 

Coefficient 

-0.0230 
0.0005 
0.0011 
0.0019 
0.0006 
0.0004 
0.0009 

-0.0177 
-0.0072 
-0.0141 
-0.0136 
-0.0189 
-0.0296 
0.0297 

-0.0061 
0.0021 
0.0088 
0.0005 

-0.0188 
-0.0036 
-0.0130 
0.0120 

-0.0029 
0.0026 

-0.0155 
-0.0063 
0.0455 
0.0119 
0.0152 
0.0034 
0.0110 

-0.0034 
0.0079 
0.0356 

-0.0032 
0.0160 
0.0084 

-0.0139 
0.0771 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

T-statistic 

-0.29 
0.81 
1.88 
3.03 
1.03 
0.57 
1.48 

-1.16 
-0.38 
-0.71 
-0.73 
-1.02 
-1.83 
1.52 

-0.32 
0.11 
0.46 
0.03 

-0.99 
-0.18 
-0.67 
0.65 

-0.16 
0.14 

-0.83 
-0.41 
1.24 
0.42 
0.71 
0.23 
0.13 

-0.05 
0.09 
0.50 

-0.02 
0.28 
0.44 

-1.15 
20.74 
-2.24 
-6.95 
-6.78 
-6.01 
-9.15 
-7.07 
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Table A5 

IM SPECIFICATION TESTS 
Dependent variable is CONST 

Value of nR2 Test Statistic is 111.26 

Variable 

GRES 
HOMU1 
HOMU6 
HOMU7 
HOMU8 
HOMU10 
HOMUll 
MONU 
TUEU 
WEDU 
THUU 
FRIU 
SATU 
FEBU 
MARU 
APRU 
MAYU 
JUNU 
JULU 
AUGU 
SEPU 
OCTU 
NOVU 
DECU 
Y73U 
Y74U 
Y75U 
Y76U 
Y77U 
Y78U 
NYRU 
MEMU 
INDU 
LABU 
THXU 
CHRU 
UNTOTU 
MOONU 
DALPHA 
INDD1 
INDD2 
INDD3 
INDD4 
INDD5 
INDD6 

Coefficient 

0.0107 
-0.0003 
-0.0006 
-0.0005 
-0.0002 
0.0000 

-0.0003 
0.0271 
0.0286 
0.0283 
0.0312 
0.0369 
0.0364 

-0.0046 
-0.0154 
-0.0128 
-0.0123 
-0.0105 
-0.0003 
-0.0041 
-0.0054 
-0.0282 
0.0080 

-0.0030 
0.0094 
0.0005 

-0.0184 
-0.0253 
-0.0070 
0.0014 
0.0137 
0.0159 
0.0015 
0.0076 

-0.0237 
0.0390 
0.0079 
0.0059 
0.0213 

-0.0122 
-0.0131 
-0.0121 
-0.0126 
-0.0125 
-0.0167 

T-statistic 

0.13 
-0.39 
-0.89 
-0.69 
-0.36 
-0.07 
-0.41 
1.66 
1.39 
1.32 
1.53 
1.83 
2.09 

-0.22 
-0.77 
-0.59 
-0.60 
-0.52 
-0.02 
-0.19 
-0.26 
-1.43 
0.40 

-0.16 
0.47 
0.03 

-0.48 
-0.85 
-0.31 
0.09 
0.15 
0.22 
0.02 
0.10 

-0.15 
0.64 
0.39 
0.46 
9.06 

-6.33 
-6.21 
-5.83 
-6.80 
-6.96 
-9.46 
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Table A6 

IM SPECIFICATION TESTS 
Dependent variable is CONST 

Value of nR2 Test Statistic is 383.17 

Variable 

GRES 
HOMU1 
HOMU6 
HOMU7 
HOMU8 
HOMU10 
HOMUll 
MONU 
TUEU 
WEDU 
THUU 
FRIU 
SATU 
FEBU 
MARU 
APRU 
MAYU 
JUNU 
JULU 
AUGU 
SEPU 
OCTU 
NOVU 
DECU 
Y73U 
Y74U 
Y75U 
Y76U 
Y77U 
Y78U 
NYRU 
MEMU 
INDU 
LABU 
THXU 
CHRU 
UNTOTU 
MOONU 
DALPHA 
INDM1 
INDM2 
INDM3 
INDM4 
INDM5 
INDM6 
INDM7 
INDM8 
INDM9 
INDM10 
INDM11 

Coefficient 

-0.0457 
-0.0007 
0.0002 
0.0003 

-0.0002 
0.0003 

-0.0003 
-0.0172 
-0.0178 
-0.0210 
-0.0249 
-0.0254 
-0.0255 
0.0033 

-0.0002 
0.0093 

-0.0021 
0.0023 
0.0086 
0.0100 
0.0003 
0.0002 
0.0087 
0.0067 
0.0307 
0.0022 

-0.0668 
-0.0296 
-0.0063 
0.0058 

-0.0097 
0.0147 

-0.0246 
0.0166 

-0.0086 
-0.0032 
-0.0139 
0.0205 
0.0781 

-0.0407 
-0.0402 
-0.0461 
-0.0414 
-0.0405 
-0.0434 
-0.0479 
-0.0442 
-0.0378 
-0.0383 
-0.0385 

T-statistic 

-0.57 
-1.18 
0.39 
0.44 

-0.31 
0.42 

-0.51 
-1.11 
-0.93 
-1.04 
-1.28 
-1.34 
-1.55 
0.16 

-0.01 
0.45 

-0.11 
0.12 
0.45 
0.50 
0.02 
0.01 
0.47 
0.37 
1.61 
0.14 

-1.80 
-1.04 
-0.29 
0.39 

-0.11 
0.21 

-0.29 
0.23 

-0.06 
-0.06 
-0.72 
1.68 

19.39 
-14.97 
-14.53 
-15.84 
-14.48 
-14.79 
-16.03 
-16.51 
-15.16 
-15.90 
-16.05 
-15.82 
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Table A7 

IM SPECIFICATION TESTS 
Dependent variable is CONST 

Value of nR2 Test Statistic is 130.36 

Variable 

GRES 
HOMU1 
HOMU6 
HOMU7 
HOMU8 
HOMU10 
HOMUll 
MONU 
TUEU 
WEDU 
THUU 
FRIU 
SATU 
FEBU 
MARU 
APRU 
MAYU 
JUNU 
JULU 
AUGU 
SEPU 
OCTU 
NOVU 
DECU 
Y73U 
Y74U 
Y75U 
Y76U 
Y77U 
Y78U 
NYRU 
MEMU 
INDU 
LABU 
THXU 
CHRU 
UNTOTU 
MOONU 
DALPHA 
INDY1 
INDY2 
INDY3 
ESTDY4 
INDY5 
INDY6 

Coefficient 

0.0418 
0.0000 
0.0005 

-0.0004 
0.0002 
0.0001 

-0.0001 
0.0033 
0.0016 
0.0062 
0.0100 
0.0052 
0.0029 
0.0055 
0.0007 
0.0146 
0.0004 
0.0059 
0.0056 

-0.0041 
0.0049 
0.0039 

-0.0039 
0.0116 
0.0149 
0.0280 
0.0584 
0.0550 
0.0405 
0.0301 

-0.0043 
0.0224 
0.0038 
0.0161 

-0.0269 
-0.0308 
-0.0032 
-0.0115 
0.0279 

-0.0131 
-0.0198 
-0.0144 
-0.0172 
-0.0174 
-0.0167 

T-statiatic 

0.50 
-0.03 
0.74 

-0.58 
0.24 
0.15 

-0.08 
0.21 
0.08 
0.29 
0.50 
0.26 
0.17 
0.27 
0.04 
0.68 
0.02 
0.29 
0.28 

-0.20 
0.24 
0.20 

-0.20 
0.60 
0.73 
1.72 
1.50 
1.84 
1.76 
1.92 

-0.05 
0.31 
0.04 
0.21 

-0.17 
-0.50 
-0.16 
-0.90 
10.10 
-6.92 
-9.19 
-7.57 
-9.09 
-8.44 
-8.52 



Table A8 

IM SPECIFICATION TESTS 
Dependent variable is CONST 

Value of nR2 Test Statistic is 0.00 

Variable 

GRES 
HOMU1 
HOMU6 
HOMU7 
HOMU8 
HOMU10 
HOMUll 
MONU 
TUEU 
WEDU 
THUU 
FRIU 
SATU 
FEBU 
MARU 
APRU 
MAYU 
JUNU 
JULU 
AUGU 
SEPU 
OCTU 
NOVU 
DECU 
Y73U 
Y74U 
Y75U 
Y76U 
Y77U 
Y78U 
NYRU 
MEMU 
INDU 
LABU 
THXU 
CHRU 
UNTOTU 
MOONU 
DALPHA 
INDUN 

Coefficient 

-0.0010 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

-0.0002 
-0.0002 
0.0000 
0.0002 
0.0000 
0.0002 
0.0003 
0.0002 
0.0001 
0.0003 
0.0000 
0.0002 

-0.0001 
0.0001 
0.0003 
0.0001 
0.0002 
0.0001 

-0.0001 
-0.0001 
0.0000 
0.0001 
0.0001 

-0.0001 
0.0002 
0.0001 
0.0013 
0.0003 
0.0003 
0.0001 
0.0000 
0.0006 

T-statistic 

-0.01 
-0.01 
-0.01 
0.00 
0.01 
0.00 
0.02 
0.00 

-0.01 
-0.01 
0.00 
0.01 
0.00 
0.01 
0.01 
0.01 
0.00 
0.01 
0.00 
0.01 
0.00 
0.01 
0.01 
0.01 
0.01 
0.00 
0.00 
0.00 
0.00 
0.01 
0.00 
0.00 
0.00 
0.00 
0.01 
0.00 
0.01 
0.01 
0.03 
0.21 



Table N l 

Phillips and Hensley's Table 4 

Variable 

PUNISH 
PUNISHl 
PUNISH2 
PUNISH3 
PUNISH4 
PUNISH5 
PUNISH6 
PUNISH7 
PUNISH8 
PUNISH9 
PUNISH10 
PUNISHll 
PUNISH12 
PUNISH13 
PUNISH14 
PUNISH15 
PUNISH16 
PUNISH17 
PUNISH18 
PUNISH19 
PUNISH20 

Parameter 

0.17 
0.83 
-.065 

-1.64 
-3.44 
-1.79 
1.45 

-0.86 
-1.19 
-1.59 
0.04 
0.51 

-2.81 
-1.31 
-1.11 
-0.56 
2.95 

-0.88 
-0.11 
-2.58 
-1.75 

T-statistic 

0.13 
0.61 

-0.47 
-1.19 
-2.52 
-1.31 
1.06 

-0.63 
-0.87 
-1.16 
0.03 
0.38 

-2.06 
-0.96 
-0.81 
-0.41 
2.17 

-0.64 
-0.08 
-1.89 
-1.28 
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1. Introduction 

In the last several decades, researchers from several disciplines have studied the 

question of whether capital punishment deters homicide. A number of specific hypotheses 

have been tested, and data from widely differing sources have been analyzed using various 

techniques, from the simple to the highly sophisticated (See Grogger [1986] for a survey of 

a large body of this work). 

In this paper, techniques first advanced by Phillips [1983] and Phillips and Hens­

ley [1983], and extended by Grogger [1986] are utilized to analyze daily homicide counts 

from California over the period 1960-67. We are able to conduct more powerful tests of 

the deterrence hypothesis than carried out in those studies, however, for a number of rea­

sons. First, we use data from one legal jurisdiction, California, and are able to disaggre­

gate the total homicide count by victim's race, sex, and type of weapon used, and analyze 

these categories separately. Next, the independent variables used to conduct the tests of 

the deterrence hypothesis are based on thiry executions. Phillips and Hensley [1984] and 

Grogger [1986] utilized a punsihment variable comprised of twenty executions, death sen­

tences, of publicized life sentences. Finally, we employ improved statistical techniques for 

hypothesis testing. 

The data used in this study allow for much sharper and conceptually tighter tests 

of the deterrent effect of capital punishment than those reported by Phillips and Hensley 

[1984] or Grogger [1986]. First, the use of data from one legal jurisdiction, California, 

obviates problems of aggregation bias that may result in spurious findings when the data 

to be analyzed are aggregated over several jurisdictions with differing capital punishment 

statutes. Next, to the extent that any deterrent effect present in the data is likely to be 

small in magnitude, the analysis of finer subcategories of homicides helps to ensure that 

effects too small to be detected in the aggregate statistics are nonetheless revealed. By 
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analyzing distinct subcategories of homicides, one can test whether executions more 

effectively deter the murders of victims of a particular ethnic group or gender, or murder 

carried out using a particular type of weapon, such as firearms. Further, the occurrence 

of thirty executions in California over the period examined allows for tests of the deter­

rence hypothesis which are at the same time conceptually clearer and statistically more 

powerful than those based on a smaller number of composite punishments. Finally, the 

current study utilizes improved techniques for hypothesis testing, which allow one to drop 

the unlikely assumption, implicit in the earlier studies, that any changes in the number of 

homicides on a given day following an execution are independent of such responses on 

other days. More powerful tests of the deterrence hypothesis can therefore be constructed. 

In addition to the tests of the deterrence hypothesis, the paper sheds further light 

on the short-run effect of the unemployment rate on daily homicides. Several seasonal pat­

terns and holiday effects revealed in the data are also discussed. 

In the next section, the sources and characteristics of the homicide and execution 

data are discussed. The methodology used is described in Section III, followed by a dis­

cussion of the estimation in Section IV. Results are presented in Section V; the final sec­

tion then summarizes the results, and draws conclusions from them. 

2. T h e D a t a 

The data on daily homicide counts in California were compiled from computer­

ized death certificates provided by the California Department of Health Statistics, and 

include all deaths from causes E980-E983 in the Seventh Revision of the International 

Classification of Diseases. These include deaths from non-accidental poisonings, from 

assault by firearms and explosives, by cutting and piercing instruments, and by all other 

means, respectively, for the years 1960-1967. Unemployment data are from the California 
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Department of Labor. 

The detailed information provided in the death certificates allowed the total hom­

icide count to be broken down into several categories pertaining to the race and sex of the 

victim and type of weapon employed. In Table 1, definitions of these categories are given, 

and in Table 2 are presented summary statistics of the nineteen classes of homicides origi­

nally considered. There were 6458 homicides in California over the sample period, or an 

average of 2.2 per day. Of these, 4313, or 67 per cent of the victims were white, while the 

remaining 2145 victims were non-white. It is perhaps worth noting that the large max­

imum values reported for several categories occurred during the Watts riots in Los 

Angeles in August 1965. 

The execution data are summarized at the bottom of Table 2, and were obtained 

from the appendix of Bowers [1974]. One notes that over one-half of the executions 

occurred on Wednesdays; this includes one triple execution which occurred on August 8, 

1962. A double execution was carried out on Friday, January 8, 1960. There were nine 

executions in 1960, eight in 1961, and eleven in 1962. One occurred in 1963; the last exe­

cution carried out in California was in 1967. 

These execution data thus suggest a policy change during the sample period 

which, if not accounted for, might lead to a misspecification of the regression models 

estimated, resulting in flawed inferences. This problem was treated by conducting 

separate analyses of the data from the full sample period and from the 1960-63 period of 

more frequent executions. Summary statistics of the homicide data analyzed for this ear­

lier period are presented in Table 2B. 
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3. Methodology 

The statistical analysis was conducted in two stages. A model specification phase 

was first conducted, during which various statistical models were implemented and tested 

until, for each homicide category and estimation period, a suitable model was found. 

Linear models were first fitted, after which models were estimated which are more 

appropriate for dependent variables which are non-negative whole numbers. Regressors 

were identical for all models, and included seasonal indicators to control for day-of-week, 

month, year, and holiday effects, the unemployment rate, and twenty-one lags of the 

number of executions (NX-NX20). The full-sample models also contained the binary 

variable WATTS, equal to one on the days of the Watts riots in August 1965. The objec­

tive of the specification phase was to find a model as close to the "true model" of the data 

as possible, since the validity of statistical inferences can be undermined if based on a 

grossly misspecified model. 

After suitable specifications were found, attention was turned to the testing of the 

deterrent effect. Two deterrence hypotheses were considered. The first pertains to the 

possibility that deterrence may be evidenced by a decrease in homicides on any one day 

over some period following an execution, while the second is concerned with a possible 

decrease in the total number of homicides over the entire period. 

The first test was conducted as a test of significance of the largest negative t-ratio 

among the contemporaneous and lagged values of NX included in the regression models. 

The second is carried out as a test for the sum of these coefficients. 

A technical discussion of these estimation and testing procedures follows. At this 

point, the reader interested more in the substantive results and less in the technical 

methodology may, without loss of continuity, proceed to Section V, in which results are 
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presented. 

Model selection was made by the standard econometric practice of model 

specification, estimation, testing, and re-specification and re-estimation. Information cri­

teria, tests based on the consistency of quasi-generalized pseudo-maximum likelihood 

(QGPML) estimators, and tests derived from the information matrix testing framework 

of White (1985) were used to discriminate between the various non-nested probability 

models considered. For each dependent variable, the estimation/specification testing/re-

estimation process went as follows: 

1) A linear model was fitted by ordinary least squares. At this point, several 

categories of homicides were dropped from the analysis due to the marginal 

significance of the overall regression or extremely high standard errors of the vari­

ables of interest. Further discussion is provided in the next section. 

2) A Poisson regression model was fitted. This model can be written as: 

A,''exp(A() 
pr(y*) = ~~y7~ 

A, = cxp(X,fi) 

Where yt is the dependent variable, X, is the vector of regressors, and p is a vec­

tor of parameters to be estimated. 

The Poisson regression model is preferred over the usual linear regres­

sion model for a number of reasons. First, the Poisson probability model is a 

discrete distribution, defined only for non-negative integers, and thus explicitly 

accounts for this feature of the homicide counts. It further restricts predicted 

values to be non-negative, again consistent with the data. The usual normal pro­

bability model, on the other hand, for which ordinary least squares is the (quasi-) 
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maximum likelihood estimator, admits of fractional- as well as integral-valued 

data, and may generate predictions both positive and negative. For these rea­

sons, the Poisson model should provide more efficient estimates. 

This model was estimated by the method of maximum likelihood. The 

likelihood function for one observation can be written: 

/, = ytXt/3-exp(X,/3)-\n yt\ 

3) If the likelihood was higher than for the linear model, a test for the equality of 

the conditional mean and variance implied by the Poisson specification was 

employed. This test is based on the (1,1) element of the matrix of indicators 

from the information matrix testing framework (see White, 1982), and has been 

discussed elsewhere (Grogger [1986]). 

4) If the Poisson model was rejected, a negative binomial model was fitted. Another 

discrete distribution, this model was chosen for its greater flexibility in allowing 

the variance to exceed the mean, as occurs in many applications. The negative 

binomial model can be written as: 

r ( - ^ — ) i 
pr{y,\ Xt,{),a) = "+Vt [«„]" [ l + a / * ] ^ 

r ( - l ) r (y ( +i ) 

where T() is the gamma function, and 

/t, = exp(X,0) 

This model was also estimated by maximizing the likelihood, which is 

given as: 
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/, = lnT(y,+-i-)-lnr(—)-lnr(y,+l)+»,lno 
a a 

+ylXt/3-(yt+j-)ln[l+a<ixp(Xtj3)\ 

A test for the negative binomial specification was performed. The test is is of the 

general form presented by Hausman [1978], and based on the consistency of the 

so-called quasi-generalized pseudo maximum likelihood (QGPML) estimator of 

Gourieroux, Monfort, and Trognon (GMT). Define 7 = {J3,a) to be the maximum 

likelihood estimates of the negative binomial model, and 7 = (/?,«) to be the 

QGPML estimates. The negative binomial model is often motivated by positing 

that , while y, is distributed as Poisson with mean A, = exp(Xtfi), that Xt itself 

varies over the sample period according to a gamma distribution with mean A, 

and nuisance parameter a > 0. The resulting compound distribution for y, is the 

negative binomial, with mean A, and variance A, (1 + aA,) > A,. 

Assuming the correctness of the specification of the conditional mean, 

GMT demonstrate that both A*, = exp(X,y§) and A, = exp(XtJ3) are consistent for A0, 

the true parameter values, provided that A, is truly a gamma random variable. If 

the A, follow some other distribution, however, only 7 remains consistent for 70; 

the method of maximum likelihood applied to the presumed negative binomial 

model of y, may produce inconsistent estimates. The importance of a test for this 

condition is therefore evident. 

Under the null of no misspecification, both 7 and 7 are consistent. From 

standard maximum likelihood theory, we know that the maximum likelihood 

estimator attains the Cramer-Rao lower bound, while the QGPML estimator is 
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inefficient. Under these conditions, letting V{if>) represent the estimate of the 

covariance matrix of 1/), the Hausman test statistic, defined as 

# = ( 7 - 7 ) 1 ^ 7 ) - ^ H V - 7 ) 

is distributed as x2, with degrees of freedom equal to the dimensionality of 7. A 

one degree-of freedom test which essentially compares just the values of a and a , 

and requires the computation of only 7 and a can be constructed by restricting 

attention to the relevant portion of the above quadratic form. White [1985] has 

proposed a technique for calculating this test which greatly simplifies computa­

tion. This method was used to calculate the test statistics presented below. 

6) Models which failed the above test were then estimated by QGPML to ensure 

consistency. The QGPML model based on the negative binomial family was 

estimated by maximizing the negative binomial likelihood above w.r.t fi, but 

where a is replaced by a, which is strongly consistent for a. 

7) Finally, the selected model was subjected to various static and dynamic informa­

tion matrix tests as a last check on the specification. These can be thought of as 

joint directional tests for the specification of conditional higher-order moments as 

well as the conditional mean and variance. 

All nonlinear models were estimated by Newton-Raphson; t-statistics are based 

on standard errors of White(1985). We now turn to discussion of the procedures used in 

testing the deterrence hypothesis. 

The tests of the first deterrence hypothesis, that the number of homicides may 

fall on some single day folowing an execution, was conducted as a test of significance of 

the algebraic minimum of the twenty-one NX coefficients included in the regression 

models. Formally, the hypothesis tested for each model is: 
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H0: min { PNX>PNX\> • • • >PnX2o } - °-

vs. 

Ht: min{ PNX,PNXD • • • IPNXW } < 0. 

The critical value for a test of size a is that value c such that the probability that none of 

the coefficients is less than e is 1 — a, or algebraically, 

P{ PNX > e, •••> ftwrco > c ) = 1 - a 

Clearly, the critical value depends on the stochastic dependence among the estimated 

parameters. 

If the coefficients fiNX, . . . ,PNX2Q were independent, the test would be performed 

simply by comparing the asymptotic t-ratios of the (algebraically) smallest coefficient 

with the per cent critical value from the asymptotic normal distribution. Ideally, 

intermediate cases would be handled by directly evaluating the multivariate distribution 

function. This is currently technically impossible, however, for a normal distribution 

with more than three of four variates. 

While the NX coefficients are nearly uncorrelated (hence asymptotically, indepen­

dent) in all the models, they are not exactly so. Therefore, if one were to base the tests on 

the assumption of independence, the resulting acceptance region would be too large, lead­

ing ine to accept a false null hypothesis with greater probability than that implied by the 

nominal test size. Rather than accept this undesirable state of affairs, Kwerel's [1975] 

most stringent bounds were employed to conduct the tests with greater precision. 

Kwerel provides bounds on the minimum and maximum probability of the 

occurrence of at least one of m dependent events. That is, he gives values for pL, pv where 

PL < P\\Jxt\ < Pv 
i=i 
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by utilizing the identity 

P(U X) = S1-S2+---

where 

*i = S P[Xt) 

and so forth. He gives, under certain regularity conditions, 

PL = [25,/(y + 1)] [1 - C/j\ 

Pv = ^[i - i£j 
m 

where 

C = 5 2 /5 t 

j is the integer part of 2(7 + 1. 

To conduct the test, then, the value of the smallest t-ratio from a given model is 

needed. Using the result that asymptotically joint normal variates have asymptotically 

normal (joint) marginal distributions, one then uses the estimated covariance matrix to 

calculate St and S2. If pu < a, where a is the desired overall size of the test, one rejects 

the null hypothesis, while if pL > a, the null is not rejected. If pv < a < pL, the test is 

inconclusive. 

4. Est imat ion 

Tables 3A - 3LL contain the least squares regression results for each of the nine­

teen dependent variables originally considered. Regressors were identical for each model, 

including seasonal variables, the monthly state unemployment rate, and the 
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contemporaneous and twenty lagged values of NX. The full sample models also contain 

the binary variable WATTS, equal to unity during the Los Angeles race riots in August, 

1965, and zero otherwise. 

As indicated above, several models were dropped from the analysis at this stage. 

Models for the black population were dropped in favor of the very similar yet broader 

models of all non-whites. Most weapons categories were deleted due to insignificance of 

many parameters, both the seasonal and the execution variables. Due to the independent 

interest in crimes involving firearms of many in the criminal justice field, however, the 

models for firearm murders of whites and non-whites were retained. The race/sex 

categories were also dropped, for males due to their similarity with the respective race 

models, for females due to the low significance of the regressions. The models for white 

males were retained, however, due to the potentially significant deterrent effect found 

there. 

In summary, then, the dependent variables analyzed further were: NH, NHW, 

NHNW, NHWG, NHNWG, and NHWM. These six categories were examined further, 

both over the full 1960-1967 sample period and the 1960-1963 subsample. 

Poisson regression models for these categories are contained in Tables 5A - 5L. 

Judging from the values of the log-likelihoods presented in Table 4, the movement from 

the linear to the Poisson specification greatly improves the fit of the models to the data. 

This was to be expected, since the Poisson distribution accounts for the non-negative 

integer nature of the dependent variables, while the linear models do not. 

Examination of Tables 5A - 5L shows that the Poisson models, while fitting the 

data better, nonetheless are qualitatively quite similar to the linear models. 

The specification test described above for the appropriateness of the Poisson dis­

tribution was applied to all twelve of these models. Results are reported in Table 6. The 
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Poisson specification was rejected for all models estimated over the full sample period, 

and for the NH and NHWG models estimated over 1960-1963. Reexamination of Table 

2 indicates that these models have relatively high unconditional variance-to-mean ratios. 

It is likely then that a conditional variance-to-mean ratio greater than unity underlies the 

rejection of the Poisson specification. 

Conditional negative binomial models were then estimated for models which 

failed the Poisson specification test. These results are presented in Tables 7A - 7G. 

Parameter estimates are very similar to the Poisson models for all categories. From 

Table 4 one notes that the log-likelihoods increase little for these models over the Poisson 

values. The preference for the negative binomial specification must therefore stem from 

the rejection of the Poisson specification, rather than any information criteria. 

The QGPML test for the negative binomial specification described above was 

applied to these estimates, and the results are presented in Table 8. The negative bino­

mial specification is rejected for the NH, NHNW, and NHNWG models, but is not 

rejected for the others. Examination of Table 2 reveals that these dependent variables 

contain considerable outliers, and have particularly high estimated kurtosis coefficients. 

The heavy tails of these distributions then seem the likely causes for the rejection of these 

models. 

These three models were then estimated by the two-step method of GMT. 

Results are presented in Tables 9A - 9C, and are seen to be very similar to the negative 

binomial and Poisson estimates. 

5. Misspecification Tests 

Several static and dynamic information matrix tests were performed on the final 

specifications. These tests generally indicated the appropriateness of the dynamic 
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specification of the models. The tests are discussed and results presented in the Appendix. 

6. R e s u l t s 

The results of the study fall into two categories: general results of primarily 

secondary interest, and those concerning the tests of the deterrence hypotheses. These are 

discussed in turn below. 

A. General results 

Examining the results for the model of the total number of homicides from Table 

9A, one sees a strong day-of-week effect, with fewest murders occurring on Mondays , 

increasing steadily to Saturday when the largest number occurs. Homicides are more 

likely to occur in the latter half of the year, with October, August, and December being 

the highest three months. The number of homicides was trending steadily upward over 

the sample period, with roughly 1.5 more murders occurring daily on average in 1967 than 

in 1960. Unemployment is seen to have a marginally significant positive impact on the 

number of daily murders. New Year's and Labor Day exhibit strong increases in homi­

cides, but no other holidays. No negative coefficients of the NX variables approach 

significance. 

Examining the models for murders of whites and non-whites, given in Tables 7B 

and 9B, one notes their overall similarity with the NH model, with a few exceptions. The 

model for murders of white males, given in Table 7F, is seen to be quite similar to the 

models of all whites. The eleventh lag of NX in the model for white males has the largest 

negative t-ratio of all the models; more attention will be paid to this below. 
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The models of firearm killings of both racial groups, given in Tables 7D and 7E, 

seem lacking in overall significance, with many seasonal variables and NX coefficients 

insignificant. One sees that the fewest homicides of this type occur on Tuesdays, and that 

the unemployment effect is fairly strong. No negative NX coefficients approach 

significance, however. 

The regressions from the 1960-1963 data, reported in Tables 5G to 5L, are very 

much like those from the full sample, except that seasonal effects are less precisely 

estimated, particularly for the white subpopulation. The negative eleventh lag of NX in 

the white male regression is stronger, and apparently strong enough so that the eleventh 

lag of NX in the NHW model also approaches significance. Again, this will be discussed 

in detail below. 

B. Tests for Deterrence 

Tests of the deterrence hypotheses are based on parameter estimates from the 

final model specification for each category of homicide. A summary of these specifications 

is given in Table 10. 

The first set of results presented pertains to the test for a decrease in homicides 

on any single day in the three-week period following an execution. Given the somewhat 

unusual problem of testing for the (algebraic) minimum of twenty-one estimated 

coefficients, it may be useful to establish benchmark magnitudes for the critical values. 

At one extreme would be stochastic independence of the coefficients. In this case, utilizing 

the asymptotic normal distribution of the estimated t-ratios, the critical value for the test 

of the minimum coefficient at a level of 5 per cent is obtained by finding 

c.os = centra* = -2.82. At the other extreme of exact dependence, the critical value would 
"IT 

be the usual c,05 = —1.645. The effect of increasing the dependence among the parameters 
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is to reduce the size of the acceptance region corresponding to a test of a given overall 

size. To provide some intuition for the magnitude of this reduction we note that any 

coefficient with * ̂  —2.82 would be significant regardless of the dependence among the 

parameter estimates, while any coefficient with t > —1.645 would be always insignificant. 

The size of the acceptance region thus varies by 75 per cent between the two extremes. 

The problem for tests based on regression coefficients which fall between the two 

extremes is to find a computationally tractable method by which one may improve on 

tests conducted under the assumption of independence, which is sometimes referred to as 

the Bonferoni procedure. By "improvement" is meant reducing the size of the acceptance 

region in accord with the estimated dependence of the coefficients. 

Kwerel's technique, described above, provides such a method. For the benefit of 

readers who turned directly to the results, it is repeated here that Kwerel's method essen­

tially involves using the estimated regression coefficients and covariance matrix to calcu­

late upper and lower bounds, Pu and pL, for the rejection probability for a test of the 

significance of the negative NX coefficient with the largest t-statistic (in absolute value). 

For a test of size a, one rejects the null hypothesis of no single-day deterrent effect if 

pu < a, while failing to reject if pL > a. If pu a pL, the test would be inconclusive. 

Results from these tests are presented in Table 11. In the table are identified the most 

significant of the NX variables from each category of homicide. Also given are the 

estimated coefficients of those variables, their asymptotic t-ratios, and the values of ph 

and Pu. 

Perhaps the most striking feature of the table is the pronounced weakness with 

which any deterrent effects are evidenced. In five of the twelve models presented, the 

upper bound on the probability that the difference from zero of the strongest measured 

deterrent effect is solely a chance occurrence is equal to unity. For the remaider of the 
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models, this upper bound averages .56, and in only one case is lower than 35 per cent. 

The lower bounds are equally poor, averaging .49, with only three values below 35 per 

cent, and only one below 25 per cent. The model for white males, estimated over the 

1960-63 period, comes nearest to rejecting the null hypothesis, on the eleventh day follow­

ing an execution. The value of pv = .147, however, is still well above any customary 

significance level. Evidence of a deterrent effect by which homicides fall on any one day 

following an execution is thus seen to be very weak, and almost non-existent. 

We turn now to the tests for decreases in the total number of homicides over the 

entire three-week period following an execution. First, drawing on the logic underlying 

many non-parametric procedures, that negative effects should be evidenced by many nega­

tive changes relative to positive ones, the numbers of positive and negative coefficients 

from the NX lag structure from each model are presented in Table 12. The signs are 

divided about as evenly as possible, with no more than eleven of the twenty-one 

coefficients negative in any of the models. From this table, evidence of deterrent effects of 

this type would seem little stronger than that of the first type presented above. 

Of course, more powerful tests are provided by parametric techniques. Table 13 

contains the sums of the twenty-one NX coefficients from each model, and their asymp­

totic t-ratios. Most of these coefficient sums are seen to be rather small, and eight of the 

twelve are associated with t-statistics of less than one. Considerably larger negative 

coefficient sums are reported for the models of homicides of white males, and of non-

whites killed by firearms, over both sample periods. Again, however, the asymptotic t-

values fall well below the critical value for a one-sided test at five per cent. Thus, while 

evidence for this type of deterrent effect appears stronger than for the first type, it is still 

statistically insignificant. Not one of the many tests conducted leads one to reject the null 

hypothesis of no deterrent effect of either type. 
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7. S u m m a r y and Conclus ions 

This paper has presented considerable evidence against the hypothesis that execu­

tions exhibit a short-term deterrent effect on homicides. These conclusions are based on 

the largest set of the most disaggregated data yet brought to bear on the issue; on a sta­

tistical methodology employed to account for several important features of that data; and 

on a statistical testing technique designed to provide the most powerful tests available, 

given current computing techniques. 

In many ways, these results are even stronger, though, than the formal statistical 

machinery would suggest. At least two aspects of the initial set-up of the study should 

have had the effect of making rejection more likely. The total homicide count was disag­

gregated by victim's race, sex, and type of weapon used, to ensure that deterrent effects 

too small to be discerned in the aggregate counts or specific to certain types of murders 

would nonetheless be detected. The sample was then divided into two periods, to ensure 

that any deterrent effects present in the earlier period of relatively frequent executions 

would not be masked by the data from the later period in which only one execution 

occurred. Despite these features of the initial study design, and the considerable statistical 

technology applied, though, none of the twenty-four tests applied could reject the null 

hypothesis, that executions do not deter murder. 

Legal scholars and criminologists generally posit three motivations for the pun­

ishment of criminals, and for capital punishment in particular. They are retribution, 

incapacitation, and deterrence. Clearly, the retributive and incapacitative effects of capi­

tal punishment cannot be argued. Until better data or statistical methods provide con­

vincing evidence to the contrary, however, neither policy makers nor the public they serve 

can presume its efficacy as a deterrent. 
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F o o t n o t e s 

1. Baldus and Cole [1975] state this problem simply and concisely: 

To illustrate this problem, consider the simplified example of a nation composed 
of three states, two retentionist (Rl and R2) and one abolitionist (A). Assume 
that execution risk decreases in R l and remains constant in the other states, and 
that the murder rate increases in one state, not necessarily R l , and remains con­
stant in the other two. No matter which of the three states experiences the 
increase in murders, the nation as a whole would show an aggregate increase in 
murder rate and decrease in execution risk; analyzing these aggregate figures 
would suggest a deterrent effect. This inference would be justified only if the 
increase in the murder rate occurred in R l , where execution risk had decreased. 
If instead the murder rate increased in state A or R2, the aggregate correlation 
would be misleading, because the increase in the murder rate in one jurisdiction 
could not be attributed to lower execution risk in another. The actual behavior 
of the murder rate and execution risk in different jurisdictions is, of course, far 
more complicated than in this example. But the point remains that ... use of 
national data obscures the relationships between murder and execution rates and 
may yield results which seem consistent with a deterrent effect where no such 
effect actually exists. 

2. Longer lag structures were also examined. In no case were any significant effects 

present beyond the twenty-first lag. 

3. For the 1960-63 estimation period, the variable IND had to be dropped from the 

NHWG model. For this model, the dependent variable was zero for all observations such 

that IND-1. As such, one of the likelihood equations was 

£ -exp(X,0)=O. 
t-IND 

The algorithm attempted to satisfy this by setting PnfD—~°°> preventing convergence. 

4. A rather anomalous situation arose with regard to the NH model for the 1960-63 sam­

ple period. Although the Poisson specification was rejected, the maximum likelihood esti­

mate of a, the negative binomial nuisance parameter, was negative. This is not permissi­

ble for a proper distribution; as such, the Poisson estimates were used for inference. 
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A p p e n d i x 

The final specification of each model was subjected to several dynamic and static 

information matrix tests for general misspecification. The tests were performed by 

regressing a unit vector on the scores of the model plus various elements of the relevant 

indicator matrix. The test statistic is nR2 from this auxiliary regression, and is distributed 

X2,, where m= the number of indicators included. 

For the dynamic tests, the indicator matrix takes the form 

where 

g,-\ = Xt_x( yt-X — exP(-^(-A^)) f° r Poisson models, 

v ( yt ~ exp(X,_x0)) nnmxr J r 
=X. « — — — for n.b. and QGPML models 

1 + aezp(X(-XP) 

In the negative binomial case, the ML estimate of a is used to conduct the tests, 

while the QGPML estimate is used for those models. 

For the static tests, the indicator matrix takes the form 

mot = vechXt X,(u2 — Xt) for the Poisson specification, 

\u? - exp(X,p)}[l + 2aexp(Xip)\ 
= veeh X. X. 

[1 + aexp(X(p)\2 

for the n.b. and QGPML specifications, where veeh denotes the "vec h a l f operator, and 

"< = </<- exp(.Y(£). 

Dynamic tests were performed for A = 1 and diagonal elements of m,|,_! 

corresponding to the month and year variables. These results are presented in Table A l , 

where on notes the null of no misspecification is not rejected. 

Static tests were performed for diagonal elements corresponding to the constant 

term, the day, month, and year indicators, UNEMP and WATTS. Results presented in 

Table A2 indicate the failure of many of these tests, primarily of the negative binomial 

and QGPML models. There are several reasons for which the model may have failed these 

tests, including misspecification of the conditional mean and misspecification of higher-

order moments. In particular, one sees by examining Table 2 that the tests seem sensitive 
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to outliers in the dependent variable, failing for cases where the kurtosis measure is large, 

but not when it is small. Given the robustness of the parameter estimates to changes in 

functional form, it seems likely that the failure of higher-order moment restrictions 

implied by the Poisson and negative binomial likelihoods is the cause of the failures in this 

case. 

Fortunately, the model with the most nearly significant deterrence variable, 

NHWM for the 1960-63 period, was not rejected by the misspecification tests. 
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VARIABLE DEFINITIONS 
Dependent Variables 
NH 
NHW 
NHNW 
NHB 
NHWM 
NHNWM 
NHBM 
NHWF 
NHNWF 
NHBF 
NHWG 
NHNWG 
NHBG 
NHWK 
NHNWK 
NHBK 
NHWO 
NHNWO 
NHBO 

Independent Variables 
Execution Measure 
NX 
NXJ 
Binary Indicators 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
WATTS 

Unemployment 
UNEMP 

Homicide Counts for: 
Total Population 
Whites 
Non-whites 
Blacks 
White Males 
Non-white Males 
Black Males 
White Females 
Non-white Females 
Black Females 
Whites, by Firearms 
Non-whites, by Firearms 
Blacks, by Firearms 
Whites, by Knives 
Non-whites, by Knives 
Blacks, by Knives 
Whites, by Other Weapons 
Non-whites, by Other Weapons 
Blacks, by Other Weapons 

Number of Executions 
j * Lag of NX 
Equal to 1 on: 
Monday 
Tuesday 
Wednesday 
Thursday 
Friday 
Saturday 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
New Year's 
Memorial Day 
Independence Day 
Labor Day 
Thanksgiving 
Christmas 
August 13-17, 1965 
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Category 

Table 2 

SUMMARY STATISTICS OF CALIFORNIA HOMICIDE DATA 

Minimum Maximum Sum Mean Standard Deviation 

NH 
NHW 
NHNW 
NHB 
NHWM 
NHNWM 
NHBM 
NHWF 
NHNWF 
NHBF 
NHWG 
NHNWG 
NHBG 
NHWK 
NHNWK 
NHBK 
NHWO 
NHNWO 
NHBO 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

28 
11 
17 
17 
9 

17 
17 
5 
3 
3 
9 

16 
16 
3 
3 
3 
7 
4 
4 

6458 
4313 
2145 
1996 
2884 
1652 
1540 
1429 
493 
456 

2085 
1182 
1120 
764 
580 
546 

1464 
383 
330 

2.21 
1.47 
0.73 
0.68 
0.99 
0.57 
0.53 
0.48 
0.17 
0.16 
0.71 
0.40 
0.38 
0.26 
0.20 
0.19 
0.50 
0.13 
0.11 

1.76 
1.34 
0.97 
0.94 
1.07 
0.86 
0.83 
0.73 
0.43 
0.41 
0.93 
0.74 
0.72 
0.55 
0.45 
0.44 
0.76 
0.38 
0.35 

Number of Executions by Day of Week 

Monday 

2 

Tuesday 

3 

Wednesday 

16 

Thursday 

3 

Friday 

6 
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Table 2B 

SUMMARY STATISTICS OF CALIFORNIA HOMICIDE DATA, 1960-63 

Category 

NH 

NHW 

NHNW 

NHB 

NHWM 

NHNWM 

NHBM 

NHWF 

NHNWF 

NHBF 

NHWG 

NHNWG 

NHBG 

NHWK 

NHNWK 

NHBK 

NHWO 

NHNWO 

NHBO 

Minimum 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Maximum 

8 

7 

5 

5 

7 

5 

5 

4 

2 

2 

4 

4 

4 

3 

2 

2 

5 

4 

4 

Sum 

2680 

1812 

868 

806 

1177 

654 

605 

635 

214 

201 

863 

424 

400 

298 

262 

247 

651 

182 

159 

Mean 

1.86 

1.26 

0.60 

0.56 

0.82 

0.45 

0.42 

0.44 

0.15 

0.14 

0.60 

0.29 

0.28 

0.21 

0.18 

0.17 

0.45 

0.13 

0.11 

Standard Dev 

1.51 

1.18 

0.83 

0.80 

0.95 

0.71 

0.68 

0.68 

0.40 

0.37 

0.84 

0.57 

0.55 

0.49 

0.43 

0.42 

0.68 

0.38 

0.36 
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LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 
Dependent variable is NH 

Mean of dependent variable 2.22 R2 0.14 
Standard error of regression 1.65 Adjusted R2 0.12 
Number of observations 2902 Log-likelihood -5543.75 

Variable 

INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NX11 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 

0.2984 
-0.5036 
-0.4820 
-0.4691 
-0.3593 
0.3401 
0.6379 
0.1602 
0.1280 
0.2098 
0.3818 
0.2560 
0.5898 
0.9354 
0.6720 
0.9386 
0.5918 
0.8364 

-0.3396 
0.0396 

-0.0017 
0.2661 
0.7535 
0.8582 
1.3013 
1.6777 

-0.2406 
-0.0010 
1.8386 
0.5063 
0.4736 
0.2021 
0.4069 

-0.4431 
0.0140 

-0.0401 
0.1874 

-0.1905 
-0.1812 
0.2034 

-0.3807 
•0.2129 
0.2602 

-0.2849 
0.0516 

-0.1339 
0.2540 
0.1842 
0.3884 

-0.2658 
0.3755 
0.2931 
0.5955 

T-statistic 

0.40 
-4.28 
-4.12 
-3.97 
-3.03 
2.91 
5.45 
1.00 
0.82 
1.11 
1.95 
1.51 
3.21 
4.54 
2.56 
3.49 
2.89 
4.41 

-2.05 
0.32 

-0.01 
2.09 
5.92 
5.32 
8.20 
2.64 

-0.41 
0.00 
3.07 
0.84 
0.80 
1.92 
1.41 

-1.53 
0.05 

-0.14 
0.65 

-0.66 
-0.63 
0.70 

-1.32 
-0.74 
0.90 

-0.99 
0.18 

-0.49 
0.93 
0.67 
1.42 

-0.97 
1.37 
1.07 
2.17 



Table 3B 
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LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 
Dependent variable is NHW 

Mean of dependent variable 1.48 R2 0.08 
Standard error of regression 1.30 Adjusted R2 0.07 
Number of observations 2902 Log-likelihood -4843.60 

Variable 

INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NX11 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 

0.5736 
•0.3647 
-0.3161 
-0.3103 
-0.2483 
0.0018 
0.2760 
0.0348 

-0.0440 
0.0652 
0.1367 
0.0492 
0.2627 
0.4747 
0.3199 
0.5013 
0.2393 
0.4744 

-0.2214 
0.0522 

-0.0208 
0.2046 
0.3856 
0.4894 
0.8098 
1.1420 

-0.2822 
-0.3043 
1.0097 

-0.2447 
0.0242 
0.1050 
0.1237 

-0.2670 
0.0261 

-0.1252 
0.0252 

-0.1867 
-0.0951 
-0.0172 
-0.1757 
-0.0142 
0.4416 

-0.2855 
0.0135 

-0.0215 
0.3339 
0.0558 
0.1384 

-0.1761 
0.2159 

-0.0427 
0.3846 

T-statistic 

0.98 
•3.94 
-3.44 
-3.35 
-2.67 
0.02 
3.01 
0.28 

-0.36 
0.44 
0.89 
0.37 
1.82 
2.93 
1.55 
2.38 
1.49 
3.18 

-1.70 
0.53 

-0.21 
2.04 
3.86 
3.86 
6.50 
2.29 

•0.60 
-0.65 
2.15 

-0.52 
0.05 
1.27 
0.54 

-1.17 
0.12 

-0.55 
0.11 

•0.82 
-0.42 
-0.08 
-0.77 
-0.06 
1.95 

-1.26 
0.06 

-0.10 
1.55 
0.26 
0.64 

-0.82 
1.00 

-0.20 
1.78 



Table 3C 
LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 

Dependent variable is NHNW 
Mean of dependent variable 0.74 R2 0.10 
Standard error of regression 0.94 Adjusted R2 0.08 
Number of observations 2902 Log-likelihood -3896.00 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NX11 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
-0.2752 
-0.1390 
-0.1659 
•0.1588 
-0.1111 
0.3383 
0.3618 
0.1254 
0.1721 
0.1447 
0.2451 
0.2067 
0.3271 
0.4607 
0.3521 
0.4373 
0.3525 
0.3620 

-0.1181 
-0.0126 
0.0191 
0.0615 
0.3679 
0.3688 
0.4914 
0.5357 
0.0416 
0.3033 
0.8289 
0.7511 
0.4494 
0.0970 
0.2832 

-0.1761 
-0.0121 
0.0851 
0.1622 

•0.0038 
•0.0861 
0.2206 

-0.2050 
•0.1988 
-0.1815 
0.0006 
0.0381 

-0.1123 
-0.0799 
0.1284 
0.2501 

-0.0897 
0.1596 
0.3359 
0.2109 

T-statistic 
-0.65 
-2.08 
-2.51 
-2.37 
-1.65 
5.11 
5.46 
1.38 
1.96 
1.35 
2.20 
2.15 
3.14 
3.94 
2.36 
2.87 
3.04 
3.37 

•1.26 
-0.18 
0.26 
0.85 
5.10 
4.03 
5.47 
1.49 
0.12 
0.90 
2.44 
2.20 
1.34 
1.62 
1.73 

-1.07 
-0.07 
0.52 
0.99 

-0.02 
-0.52 
1.35 

-1.25 
-1.21 
-1.11 
0.00 
0.23 

-0.72 
-0.51 
0.83 
1.61 

-0.58 
1.03 
2.16 
1.36 



Table 3D 

81 

LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 
Dependent variable is NHB 

Mean of dependent variable 0.69 R2 0.09 
Standard error of regression 0.90 Adjusted R2 0.08 
Number of observations 2902 Log-likelihood -3788.68 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NX11 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
•0.2020 
-0.1432 
-0.1818 
-0.1808 
-0.1241 
0.3001 
0.3328 
0.1299 
0.1657 
0.1044 
0.2262 
0.1704 
0.2761 
0.4175 
0.3001 
0.3866 
0.2966 
0.3349 

-0.1104 
-0.0028 
0.0212 
0.0462 
0.3490 
0.3509 
0.4444 
0.5788 

-0.0563 
0.3664 
0.8724 
0.8155 
0.3632 
0.0864 
0.2026 

-0.1965 
0.0263 
0.1002 
0.0419 

-0.0092 
-0.0514 
0.1999 

-0.1905 
-0.2172 
-0.1708 
-0.0213 
0.0395 

-0.1122 
-0.0735 
0.1646 
0.2318 

-0.0817 
0.1286 
0.1739 
0.2082 

T-statistic 
-0.50 
-2.23 
•2.85 
-2.81 
•1.92 
4.70 
5.21 
1.48 
1.95 
1.01 
2.11 
1.84 
2.75 
3.71 
2.09 
2.63 
2.65 
3.23 

-1.22 
-0.04 
0.31 
0.66 
5.02 
3.98 
5.13 
1.67 

-0.17 
1.13 
2.67 
2.48 
1.12 
1.50 
1.28 

-1.24 
0.17 
0.63 
0.26 

•0.06 
•0.32 
1.26 

•1.21 
-1.37 
-1.08 
-0.14 
0.25 

-0.75 
-0.49 
1.10 
1.55 

-0.55 
0.86 
1.16 
1.39 



Table 3E 
LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 

Dependent variable is NHWM 
Mean of dependent variable 0.99 R2 0.08 
Standard error of regression 1.04 Adjusted R2 0.06 
Number of observations 2902 Log-likelihood -4196.67 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NX11 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
0.2706 

•0.2346 
•0.2381 
-0.1807 
-0.1643 
0.0984 
0.2854 

-0.0296 
-0.0983 
-0.0312 
0.0272 

-0.0209 
0.1191 
0.3115 
0.1861 
0.3135 
0.1836 
0.2528 

-0.2344 
-0.0051 
0.0059 
0.1616 
0.2804 
0.3348 
0.5728 
0.3965 

-0.1948 
-0.4255 
0.9460 

-0.4646 
-0.0070 
0.0931 
0.1509 

-0.1308 
0.0715 

-0.1126 
0.0683 

-0.1471 
0.0852 

-0.1352 
-0.1602 
-0.0553 
0.1923 

-0.3531 
0.0015 

-0.1324 
0.0388 

-0.2565 
0.1682 

-0.0987 
0.0604 

-0.0060 
0.3067 

T-statistic 
0.58 

-3.17 
•3.24 
-2.43 
•2.20 
1.34 
3.88 

-0.29 
-1.01 
-0.26 
0.22 

-0.20 
1.03 
2.40 
1.13 
1.86 
1.43 
2.12 

-2.25 
-0.06 
0.07 
2.02 
3.50 
3.30 
5.74 
0.99 

-0.52 
-1.14 
2.51 

-1.23 
-0.02 
1.40 
0.83 

-0.72 
0.39 

•0.62 
0.37 

-0.81 
0.47 

-0.74 
-0.88 
-0.30 
1.06 

•1.94 
0.01 

-0.77 
0.22 

-1.49 
0.98 

-0.57 
0.35 

•0.04 
1.78 



Table 3F 
LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 

Dependent variable is NHNWM 
Mean of dependent variable 0.57 R2 0.08 
Standard error of regression 0.83 Adjusted R2 0.07 
Number of observations 2902 Log-likelihood -3563.29 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NX11 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
•0.1087 
-0.1144 
-0.1169 
-0.0947 
-0.0823 
0.3225 
0.3129 
0.0836 
0.1397 
0.0972 
0.1528 
0.1246 
0.2206 
0.3426 
0.2079 
0.3361 
0.2505 
0.2354 

-0.048f 
0.0351 
0.0545 
0.0935 
0.3550 
0.3025 
0.3857 
0.5378 

-0.1798 
0.3586 
0.6216 
0.3813 
0.5304 
0.0519 
0.1265 

-0.0818 
0.0603 

-0.0328 
0.0506 

•0.0218 
0.0118 
0.1568 

-0.1540 
-0.1158 
-0.1722 
-0.0043 
-0.0335 
•0.0692 
-0.1448 
0.1911 
0.2423 

-0.0834 
0.1833 
0.1991 
0.1558 

T-statistic 
-0.29 
-1.92 
•1.98 
-1.59 
-1.37 
5.46 
5.29 
1.03 
1.78 
1.02 
1.54 
1.45 
2.37 
3.29 
1.57 
2.48 
2.42 
2.46 

-0.57 
0.56 
0.85 
1.45 
5.52 
3.71 
4.81 
1.68 

-0.60 
1.19 
2.05 
1.25 
1.77 
0.97 
0.87 

-0.56 
0.41 

-0.22 
0.34 

•0.15 
0.08 
1.07 

-1.05 
-0.79 
•1.18 
-0.03 
•0.23 
-0.50 
-1.04 
1.38 
1.75 

-0.60 
1.33 
1.44 
1.12 



Table 3G 
LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 

Dependent variable is NHBM 
Mean of dependent variable 0.53 R2 0.08 
Standard error of regression 0.80 Adjusted R2 0.07 
Number of observations 2902 Log-likelihood -3460.62 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NX11 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
-0.0124 
-0.1285 
-0.1420 
•0.1295 
-0.1014 
0.2731 
0.2656 
0.0903 
0.1336 
0.0718 
0.1316 
0.0877 
0.1847 
0.3005 
0.1484 
0.2856 
0.1964 
0.2112 

-0.0331 
0.0469 
0.0636 
0.0936 
0.3404 
0.2869 
0.3601 
0.5691 

-0.1596 
0.3984 
0.6616 
0.4342 
0.4314 
0.0392 
0.0995 

-0.1120 
0.0927 

-0.0230 
-0.0508 
-0.0359 
0.0349 
0.1594 

-0.1491 
-0.1404 
-0.1671 
-0.0387 
-0.0080 
-0.0763 
-0.1160 
0.2198 
0.2707 

-0.0803 
0.1416 
0.0328 
0.1462 

T-statistic 
-0.03 
•2.24 
•2.49 
-2.25 
-1.75 
4.79 
4.66 
1.15 
1.76 
0.78 
1.38 
1.06 
2.06 
2.99 
1.16 
2.18 
1.97 
2.28 

-0.41 
0.77 
1.03 
1.50 
5.48 
3.65 
4.66 
1.84 

-0.55 
1.37 
2.27 
1.48 
1.49 
0.76 
0.70 

-0.79 
0.66 

-0.16 
-0.36 
-0.25 
0.25 
1.13 

-1.05 
-0.99 
-1.19 
-0.27 
•0.06 
•0.57 
•0.87 
1.64 
2.03 

-0.60 
1.06 
0.25 
1.09 



Table 3H 
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LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 
Dependent variable is NHWF 

Mean of dependent variable 0.49 R2 0.03 
Standard error of regression 0.73 Adjusted R2 0.01 
Number of observations 2902 Log-likelihood -3170.66 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NX11 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
0.3030 

-0.1300 
-0.0779 
-0.1296 
-0.0840 
•0.0966 
-0.0094 
0.0644 
0.0543 
0.0964 
0.1095 
0.0702 
0.1437 
0.1632 
0.1338 
0.1878 
0.0557 
0.2216 
0.0130 
0.0573 

-0.0267 
0.0430 
0.1053 
0.1546 
0.2371 
0.7454 

-0.0874 
0.1212 
0.0637 
0.2198 
0.0312 
0.0119 

-0.0272 
-0.1361 
-0.0454 
-0.0126 
-0.0431 
-0.0396 
-0.1803 
0.1180 

•0.0154 
0.0411 
0.2493 
0.0676 
0.0120 
0.1109 
0.2951 
0.3123 

•0.0299 
-0.0774 
0.1555 

-0.0367 
0.0779 

T-statistic 
0.93 

•2.50 
-1.51 
-2.49 
-1.61 
•1.87 
-0.18 
0.91 
0.79 
1.16 
1.26 
0.94 
1.77 
1.79 
1.15 
1.58 
0.62 
2.65 
0.18 
1.04 

-0.48 
0.76 
1.87 
2.17 
3.39 
2.66 

-0.33 
0.46 
0.24 
0.83 
0.12 
0.26 

-0.21 
-1.06 
-0.35 
-0.10 
-0.34 
-0.31 
-1.41 
0.92 

-0.12 
0.32 
1.96 
0.53 
0.09 
0.92 
2.44 
2.58 

-0.25 
-0.64 
1.29 

-0.30 
0.64 



3152 
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LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 
Dependent variable is NHNWF 

Mean of dependent variable 0.17 R2 0.03 
Standard error of regression 0.43 Adjusted R2 0.01 
Number of observations 2902 Log-likelihood -1646.30 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NX11 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
-0.1666 
-0.0246 
-0.0490 
-0.0641 
•0.0288 
0.0159 
0.0489 
0.0418 
0.0324 
0.0475 
0.0924 
0.0821 
0.1065 
0.1182 
0.1442 
0.1012 
0.1020 
0.1266 • 

-0.0700 
-0.0477 
-0.0354 
-0.0320 
0.0129 
0.0663 
0.1057 

-0.0021 
0.2214 

-0.0553 
0.2073 
0.3697 

•0.0810 
0.0452 
0.1567 

-0.0943 
-0.0724 
0.1179 
0.1116 
0.0181 

-0.0979 
0.0638 

-0.0510 
-0.0830 
-0.0092 
0.0049 
0.0716 

-0.0432 
0.0649 

•0.0628 
0.0078 

•0.0063 
•0.0237 
0.1368 
0.0551 

T-statistic 
-0.86 
-0.80 
-1.61 
•2.08 
-0.93 
0.52 
1.60 
1.00 
0.80 
0.97 
1.80 
1.85 
2.22 
2.20 
2.10 
1.44 
1.91 
2.56 

-1.62 
-1.46 
-1.07 
-0.96 
0.39 
1.58 
2.55 

-0.01 
1.43 

•0.36 
1.33 
2.35 

-0.52 
1.64 
2.07 

-1.25 
•0.96 
1.56 
1.47 
0.24 

-1.29 
0.84 

-0.68 
-1.10 
-0.12 
0.06 
0.95 

-0.60 
0.91 

-0.88 
0.11 

-0.09 
-0.33 
1.91 
0.77 



Table 3J 
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LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 
Dependent variable is NHBF 

Mean of dependent variable 0.16 R2 0.03 
Standard error of regression 0.41 Adjusted R2 0.01 
Number of observations 2902 Log-likelihood -1521.62 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
-0.1897 
-0.0147 
-0.0398 
-0.0513 
-0.0228 
0.0270 
0.0672 
0.0396 
0.0321 
0.0327 
0.0946 
0.0827 
0.0914 
0.1171 
0.1517 
0.1010 
0.1002 
0.1238 

-0.0774 
-0.0497 
-0.0425 
-0.0474 
0.0085 
0.0639 
0.0843 
0.0097 
0.1033 

-0.0320 
0.2108 
0.3813 

-0.0681 
0.0472 
0.1031 

-0.0845 
-0.0664 
0.1232 
0.0927 
0.0267 

•0.0862 
0.0405 

-0.0414 
-0.0768 
-0.0037 
0.0174 
0.0475 

-0.0358 
0.0425 

•0.0553 
-0.0390 
-0.0014 
-0.0130 
0.1411 
0.0619 

T-statistic 
-1.02 
-0.50 
-1.36 
-1.74 
-0.77 
0.92 
2.30 
0.99 
0.83 
0.69 
1.93 
1.95 
1.99 
2.27 
2.31 
1.50 
1.96 
2.61 

-1.87 
-1.59 
-1.34 
-1.49 
0.27 
1.58 
2.13 
0.06 
0.69 

-0.22 
1.41 
2.53 

-0.46 
1.79 
1.42 

-1.17 
•0.92 
1.70 
1.28 
0.37 

-1.19 
0.56 

-0.57 
•1.06 
-0.05 
0.24 
0.66 

-0.52 
0.62 

-0.81 
-0.57 
-0.02 
-0.19 
2.06 
0.90 



Table 3K 
LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 

Dependent variable is NHWG 
Mean of dependent variable 0.71 R2 0.05 
Standard error of regression 0.92 Adjusted R2 0.04 
Number of observations 2902 Log-likelihood -3836.60 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NX11 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
-0.0230 
-0.1363 
-0.1776 
•0.0685 
•0.0258 
0.1066 
0.1164 

-0.0400 
-0.0571 
0.1364 
0.2292 
0.0986 
0.1461 
0.3074 
0.2209 
0.3712 
0.3141 
0.3023 

-0.1921 
-0.0842 
-0.0879 
-0.0112 
0.1724 
0.2336 
0.4360 
0.3333 
0.0677 

-0.1297 
0.3226 

-0.1973 
0.1793 
0.0910 
0.0179 

-0.1543 
0.0034 

-0.1240 
0.2055 

-0.0320 
-0.0290 
0.0812 

-0.0102 
-0.0982 
0.3587 

-0.1576 
-0.0106 
0.0162 
0.1969 

-0.0312 
0.0121 

-0.1216 
0.0658 

-0.0222 
0.2425 

T-statistic 
-0.06 
-2.09 
-2.74 
-1.05 
-0.39 
1.64 
1.79 

-0.45 
-0.66 
1.30 
2.11 
1.05 
1.43 
2.69 
1.51 
2.49 
2.77 
2.87 

-2.09 
-1.22 
-1.25 
-0.16 
2.44 
2.61 
4.95 
0.94 
0.20 

-0.39 
0.97 

-0.59 
0.54 
1.55 
0.11 

-0.96 
0.02 

-0.77 
1.28 

•0.20 
-0.18 
0.50 

-0.06 
-0.61 
2.23 

-0.98 
-0.07 
0.11 
1.29 

-0.20 
0.08 

-0.80 
0.43 

-0.15 
1.59 



Table 3L 
LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 

Dependent variable is NHNWG 
Mean of dependent variable 0.41 R2 0.09 
Standard error of regression 0.71 Adjusted R2 0.07 
Number of observations 2902 Log-likelihood -3109.20 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NX11 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
-0.4442 
-0.0709 
-0.1039 
-0.0307 
•0.0205 
0.2786 
0.2275 
0.0593 
0.1121 
0.1694 
0.1644 
0.1817 
0.1798 
0.4160 
0.2969 
0.3767 
0.2384 
0.2535 

•0.1169 
-0.0046 
•0.0319 
0.0150 
0.2708 
0.3097 
0.3981 
0.4120 

-0.0096 
0.4545 
0.2108 
0.5633 
0.4480 
0.0847 
0.1372 

-0.1063 
-0.1226 
0.1920 
0.0698 

-0.1177 
0.0319 
0.0300 

-0.1571 
-0.2073 
-0.0614 
0.0420 
0.1085 

-0.1200 
-0.1610 
0.0740 
0.1425 

-0.1379 
0.1043 
0.2919 
0.1813 

T-statistic 
-1.38 
-1.39 
•2.06 
•0.60 
•0.40 
5.52 
4.50 
0.85 
1.67 
2.08 
1.94 
2.48 
2.26 
4.67 
2.61 
3.24 
2.70 
3.10 

-1.63 
-0.09 
-0.58 
0.27 
4.92 
4.44 
5.81 
1.50 

-0.04 
1.77 
0.81 
2.17 
1.75 
1.86 
1.10 

-0.85 
-0.98 
1.53 
0.56 

-0.94 
0.25 
0.24 

-1.25 
-1.66 
-0.49 
0.34 
0.87 

-1.01 
-1.36 
0.63 
1.20 

-1.16 
0.88 
2.46 
1.53 



Table 3M 
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LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 
Dependent variable is NHBG 

Mean of dependent variable 0.39 R2 0.09 
Standard error of regression 0.69 Adjusted R2 0.07 
Number of observations 2902 Log-likelihood -3031.29 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
N X U 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
-0.4386 
-0.0604 
-0.1039 
-0.0286 
•0.0228 
0.2640 
0.2195 
0.0697 
0.1132 
0.1462 
0.1640 
0.1822 
0.1623 
0.3864 
0.2732 
0.3620 
0.2228 
0.2541 

•0.1185 
-0.0082 
-0.0366 
0.0050 
0.2717 
0.2982 
0.3699 
0.4235 

-0.0022 
0.4793 
0.2329 
0.5853 
0.3327 
0.0832 
0.1234 

-0.0861 
-0.1015 
0.2152 
0.0894 

-0.1059 
0.0500 
0.0154 

-0.1328 
-0.1824 
-0.0725 
0.0586 
0.1184 

-0.1069 
-0.1499 
0.0867 
0.1061 

-0.1258 
0.1159 
0.1885 
0.1622 

T-statistic 
-1.40 
-1.22 
-2.11 
-0.57 
-0.46 
5.37 
4.46 
1.03 
1.73 
1.84 
1.99 
2.55 
2.10 
4.46 
2.47 
3.20 
2.59 
3.19 

-1.70 
•0.16 
-0.69 
0.09 
5.07 
4.39 
5.54 
1.59 

-0.01 
1.92 
0.92 
2.31 
1.33 
1.88 
1.01 

-0.71 
-0.83 
1.77 
0.73 

-0.87 
0.41 
0.13 

-1.09 
•1.50 
-0.60 
0.48 
0.97 

-0.93 
-1.30 
0.75 
0.92 

•1.09 
1.01 
1.63 
1.40 



Table 3N 

91 

LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 
Dependent variable is NHWK 

Mean of dependent variable 0.26 R2 0.05 
Standard error of regression 0.54 Adjusted R2 0.03 
Number of observations 2902 Log-likelihood -2311.38 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
N X U 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
0.0830 

-0.0511 
-0.0383 
-0.1128 
-0.0722 
0.0534 
0.1486 
0.0873 
0.0755 
0.0292 
0.0468 

-0.0028 
0.1479 
0.0790 
0.1171 
0.1040 
0.0396 
0.1219 
0.0130 
0.0656 
0.0513 
0.1054 
0.1253 
0.1354 
0.2209 • 
0.0712 

-0.0851 
-0.1877 
0.2366 

-0.1749 
-0.1930 
0.0052 
0.1224 
0.0092 

-0.0241 
-0.0978 
-0.0441 
•0.0898 
0.0054 
0.0164 

•0.0404 
•0.0197 
•0.0774 
-0.0857 
0.0752 
0.0739 

-0.0656 
0.0046 

-0.0262 
-0.0936 
0.1079 
0.0724 
0.0845 

T-statistic 
0.34 

-1.32 
-1.00 
-2.91 
-1.86 
1.39 
3.87 
1.65 
1.48 
0.47 
0.73 

-0.05 
2.45 
1.17 
1.36 
1.18 
0.59 
1.96 
0.24 
1.60 
1.23 
2.52 
3.00 
2.56 
4.24 
0.34 

-0.44 
-0.96 
1.20 

-0.88 
-0.99 
0.15 
1.29 
0.10 

-0.25 
-1.03 
-0.46 
-0.94 
0.06 
0.17 

-0.43 
-0.21 
-0.82 
•0.90 
0.79 
0.82 

-0.73 
0.05 

-0.29 
-1.04 
1.20 
0.81 
0.94 



Table 3 0 
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LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 
Dependent variable is NHNWK 

Mean of dependent variable 0.20 R2 0.04 
Standard error of regression 0.45 Adjusted R2 0.02 
Number of observations 2902 Log-likelihood -1751.87 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
0.0626 

-0.0799 
-0.0639 
-0.0951 
-0.0641 
0.0645 
0.1017 
0.0196 
0.0119 
0.0107 
0.0816 
0.0075 
0.0917 
0.0583 
0.0594 
0.0520 
0.0597 
0.1106 

-0.0141 
-0.0152 
0.0196 
0.0523 
0.0481 
0.0347 
0.0400 
0.0972 

-0.0797 
0.0237 
0.1161 
0.0853 

-0.1354 
0.0150 
0.0468 

-0.0992 
0.1451 

-0.1174 
0.0782 
0.0602 

-0.0499 
0.0682 

-0.0796 
0.0205 

-0.1265 
-0.0235 
•0.0612 
-0.0080 
0.0542 
0.0098 
0.0919 

-0.0058 
0.0781 
0.0036 

-0.0378 

T-statistic 
0.31 

-2.51 
-2.02 
-2.98 
-2.00 
2.04 
3.21 
0.45 
0.28 
0.21 
1.54 
0.16 
1.84 
1.04 
0.83 
0.71 
1.08 
2.15 

-0.31 
-0.45 
0.57 
1.52 
1.40 
0.80 
0.93 
0.57 

•0.50 
0.15 
0.72 
0.52 

-0.84 
0.52 
0.60 

-1.26 
1.85 

-1.50 
1.00 
0.77 

•0.64 
0.87 

-1.01 
0.26 

•1.62 
-0.30 
-0.78 
-0.11 
0.73 
0.13 
1.24 

•0.08 
1.05 
0.05 

•0.51 



Table 3P 
LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 

Dependent variable is NHBK 
Mean of dependent variable 0.19 R2 0.04 
Standard error of regression 0.44 Adjusted R2 0.02 
Number of observations 2902 Log-likelihood -1677.04 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
0.0920 

-0.0801 
•0.0727 
-0.1124 
-0.0662 
0.0540 
0.0948 
0.0141 
0.0019 

-0.0006 
0.0607 

-0.0208 
0.0719 
0.0425 
0.0353 
0.0445 
0.0306 
0.0979 

•0.0099 
-0.0050 
0.0230 
0.0498 
0.0453 
0.0289 
0.0374 
0.1114 

-0.0665 
0.0369 
0.1253 
0.1006 

-0.1292 
0.0118 
0.0306 

•0.0938 
0.1516 

•0.1412 
•0.0386 
0.0635 

•0.0442 
0.0503 

-0.0739 
0.0268 

-0.1180 
-0.0451 
•0.0551 
•0.0289 
0.0681 
0.0211 
0.0978 
0.0007 
0.0558 

•0.0152 
-0.0306 

T-statistic 
0.47 

-2.58 
•2.36 
-3.61 
•2.12 
1.75 
3.07 
0.33 
0.05 

-0.01 
1.17 

•0.47 
1.48 
0.78 
0.51 
0.63 
0.57 
1.96 

-0.23 
-0.15 
0.69 
1.48 
1.35 
0.68 
0.89 
0.67 

-0.42 
0.24 
0.79 
0.63 

-0.82 
0.43 
0.40 

-1.23 
1.98 

•1.85 
•0.50 
0.83 

-0.58 
0.66 

-0.97 
0.35 

-1.55 
•0.59 
-0.72 
-0.40 
0.94 
0.29 
1.35 
0.01 
0.77 

•0.21 
-0.42 



Table 3Q 
LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 

Dependent variable is NHWO 
Mean of dependent variable 0.50 R2 0.03 
Standard error of regression 0.75 Adjusted R2 0.01 
Number of observations 2902 Log-likelihood -3269.86 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU-
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
0.5136 

-0.1773 
-0.1001 
•0.1290 
•0.1502 
-0.1582 
0.0110 

•0.0125 
•0.0624 
•0.1004 
-0.1394 
-0.0465 
-0.0312 
0.0882 

•0.0181 
0.0262 

-0.1144 
0.0502 

•0.0424 
0.0709 
0.0157 
0.1104 
0.0880 
0.1204 
0.1530 
0.7374 

•0.2649 
0.0131 
0.4505 
0.1275 
0.0379 
0.0088 

•0.0166 
-0.1218 
0.0468 
0.0966 

-0.1362 
-0.0648 
•0.0715 
•0.1148 
•0.1250 
0.1037 
0.1604 

•0.0422 
•0.0511 
-0.1116 
0.2026 
0.0824 
0.1524 
0.0391 
0.0423 

. -0.0929 
0.0576 

T-statistic 
1.52 

-3.30 
-1.88 
-2.39 
-2.78 
-2.96 
0.21 

-0.17 
•0.88 
-1.17 
-1.56 
-0.60 
-0.37 
0.94 

-0.15 
0.21 

-1.22 
0.58 

-0.56 
1.24 
0.27 
1.90 
1.51 
1.63 
2.11 
2.54 

-0.98 
0.05 
1.65 
0.46 
0.14 
0.18 

•0.13 
-0.92 
0.35 
0.73 

-1.03 
•0.49 
-0.54 
-0.87 
•0.94 
0.78 
1.22 

-0.32 
•0.39 
-0.89 
1.62 
0.66 
1.22 
0.31 
0.34 

•0.74 
0.46 



Table 3R 
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LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 
Dependent variable is NHNWO 

Mean of dependent variable 0.13 R2 0.02 
Standard error of regression 0.38 Adjusted R2 0.00 
Number of observations 2902 Log-likelihood -1244.92 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
0.1064 
0.0118 
0.0019 

-0.0330 
•0.0264 
•0.0047 
0.0326 
0.0464 
0.0481 

-0.0354 
-0.0008 
0.0175 
0.0555 

-0.0136 
•0.0042 
0.0086 
0.0544 

•-0.0021 
0.0128 
0.0072 
0.0314 

-0.0059 
0.0489 
0.0244 
0.0534 
0.0265 
0.1309 

-0.1749 
0.5021 
0.1024 
0.1367 

-0.0026 
0.0992 
0.0294 

-0.0347 
0.0105 
0.0143 
0.0537 

•0.0681 
0.1224 
0.0317 

•0.0120 
0.0065 

•0.0179 
•0.0092 
0.0157 
0.0269 
0.0445 
0.0156 
0.0539 

•0.0228 
0.0404 
0.0674 

T-statistic 
0.63 
0.44 
0.07 

-1.23 
-0.98 
•0.18 
1.23 
1.27 
1.36 

-0.83 
•0.02 
0.45 
1.33 

-0.29 
-0.07 
0.14 
1.17 

•0.05 
0.34 
0.25 
1.09 

-0.20 
1.69 
0.67 
1.48 
0.18 
0.97 

-1.29 
3.69 
0.75 
1.01 

-0.11 
1.51 
0.45 

-0.53 
0.16 
0.22 
0.81 

-1.03 
1.86 
0.48 

•0.18 
0.10 

•0.27 
•0.14 
0.25 
0.43 
0.71 
0.25 
0.87 

•0.37 
0.65 
1.08 



Table 3S 
LINEAR REGRESSIONS ON CALIFORNIA HOMICIDES 

Dependent variable is NHBO 
Mean of dependent variable 0.11 R2 0.02 
Standard error of regression 0.35 Adjusted R2 0.00 
Number of observations 2902 Log-likelihood -1056.42 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
0.1445 

•0.0028 
-0.0051 
-0.0398 
-0.0352 
-0.0179 
0.0184 
0.0460 
0.0506 

-0.0411 
0.0015 
0.0089 
0.0419 

•0.0114 
-0.0084 
•0.0199 
0.0433 

-0.0170 
0.0179 
0.0105 
0.0348 

-0.0086 
0.0320 
0.0238 
0.0370 
0.0438 
0.0125 

•0.1498 
0.5142 
0.1296 
0.1596 

-0.0086 
0.0487 

-0.0166 
•0.0238 
0.0262 

•0.0089 
0.0332 

•0.0572 
0.1343 
0.0162 

-0.0616 
0.0197 

•0.0349 
-0.0238 
0.0236 
0.0083 
0.0568 
0.0279 
0.0434 

•0.0432 
0.0005 
0.0765 

T-statistic 
0.91 

•0.11 
-0.21 
-1.59 
•1.39 
-0.72 
0.74 
1.34 
1.53 

-1.02 
0.04 
0.25 
1.07 

•0.26 
-0.15 
-0.35 
0.99 

-0.42 
0.51 
0.39 
1.29 

-0.32 
1.18 
0.69 
1.10 
0.32 
0.10 

-1.18 
4.03 
1.01 
1.26 

-0.38 
0.79 

-0.27 
•0.38 
0.43 

•0.14 
0.54 

-0.93 
2.18 
0.26 

-1.00 
0.32 

•0.57 
-0.39 
0.41 
0.14 
0.97 
0.48 
0.74 

-0.74 
0.01 
1.31 



Table 3T 
LINEAR REGRESSIONS OF CALIFORNIA HOMICIDES 

1960-63 Subsample 
Dependent variable is NH 
Mean of dependent variable 1.86 R2 0.10 
Standard error of regression 1.45 Adjusted R2 0.07 
Number of observations 1441 Log-likelihood -2557.18 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
0.8270 

•0.3680 
•0.2680 
-0.4486 
-0.3759 
0.2567 
0.6621 

-0.3919 
-0.3361 
-0.2427 
0.1112 

-0.0795 
0.2511 
0.4228 
0.1804 
0.3431 
0.0280 
0.3207 

-0.3381 
0.0250 

-0.0320 
0.4373 
0.2377 

-0.4351 
1.2710 
0.5483 
0.8368 
0.1833 
0.4281 

-0.4331 
0.0752 

-0.0596 
0.2282 

•0.2214 
-0.2996 
0.1257 

-0.3986 
•0.1146 
0.2621 

•0.4856 
-0.0129 
•0.2538 
0.2487 
0.1732 
0.4475 

•0.2797 
0.2781 
0.2615 
0.4551 

T-statistic 
1.07 

•2.46 
•1.80 
-2.96 
-2.47 
1.73 
4.45 

-1.87 
-1.69 
-1.05 
0.49 

-0.38 
1.12 
1.71 
0.61 
1.12 
0.12 
1.44 

-2.13 
0.23 

•0.28 
0.51 
0.32 

-0.59 
1.70 
0.73 
1.13 
1.66 
1.64 

-1.66 
0.29 

-0.23 
0.87 

-0.85 
-1.15 
0.48 

-1.53 
•0.44 
1.01 

-1.86 
-0.05 
•1.03 
1.01 
0.70 
1.81 

-1.13 
1.13 
1.06 
1.84 



Table 3U 
LINEAR REGRESSIONS OF CALIFORNIA HOMICIDES 

1960-63 Subsample 
Dependent variable is NHW 
Mean of dependent variable 1.26 R2 0.07 
Standard error of regression 1.16 Adjusted R2 0.04 
Number of observations 1441 Log-likelihood -2235.91 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
1.0422 

•0.3060 
-0.1642 
-0.2957 
-0.2446 
•0.0069 
0.3508 

-0.3490 
-0.3483 
-0.2810 
-0.0429 
-0.1635 
0.1049 
0.1510 
0.0447 
0.1145 

•0.1408 
0.0657 

-0.1941 
0.0474 

-0.0389 
-0.0075 
-0.0724 
-0.4725 
0.4104 

-0.2976 
0.1992 
0.0703 
0.1758 

•0.2893 
0.0722 

-0.1488 
0.0326 

•0.2112 
-0.1959 
-0.0889 
•0.1927 
0.0451 
0.4209 

•0.4486 
-0.0348 
-0.1182 
0.3236 
0.0411 
0.1588 

•0.1923 
0.1305 

-0.0625 
0.2894 

T-statisI 
1.68 

-2.56 
-1.38 
-2.44 
-2.01 
•0.06 
2.95 

-2.08 
-2.19 
-1.52 
•0.23 
-0.98 
0.58 
0.76 
0.19 
0.47 

•0.73 
0.37 

-1.53 
0.54 

-0.43 
-0.01 
-0.12 
-0.80 
0.69 

•0.49 
0.34 
0.80 
0.84 

-1.38 
0.34 

-0.71 
0.16 

•1.01 
•0.94 
•0.43 
•0.92 
0.22 
2.02 

-2.15 
•0.17 
-0.60 
1.64 
0.21 
0.80 

-0.97 
0.66 

-0.32 
1.46 



Table 3V 
LINEAR REGRESSIONS OF CALIFORNIA HOMICIDES 

1960-63 Subsample 
Dependent variable is NHNW 
Mean of dependent variable 0.60 R2 0.08 
Standard error of regression 0.82 Adjusted R2 0.04 
Number of observations 1441 Log-likelihood -1727.51 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
-0.2151 
•0.0620 
•0.1038 
•0.1529 
•0.1313 
0.2636 
0.3113 

-0.0429 
0.0122 
0.0384 
0.1540 
0.0840 
0.1462 
0.2718 
0.1358 
0.2286 
0.1688 
0.2550 

-0.1439 
•0.0224 
0.0069 
0.4448 
0.3102 
0.0374 
0.8606 
0.8459 
0.6376 
0.1130 
0.2523 

•0.1438 
0.0030 
0.0891 
0.1955 

-0.0103 
-0.1037 
0.2146 

•0.2058 
-0.1597 
-0.1587 
•0.0371 
0.0219 

•0.1356 
-0.0749 
0.1321 
0.2887 

•0.0875 
0.1476 
0.3240 
0.1657 

T-statisl 
•0.49 
-0.74 
•1.24 
-1.79 
•1.54 
3.15 
3.72 

-0.36 
0.11 
0.29 
1.20 
0.71 
1.16 
1.96 
0.81 
1.33 
1.24 
2.04 

-1.61 
-0.36 
0.11 
0.92 
0.74 
0.09 
2.05 
2.00 
1.53 
1.82 
1.72 

-0.98 
0.02 
0.61 
1.33 

-0.07 
-0.71 
1.46 

-1.40 
-1.09 
•1.08 
-0.25 
0.15 

•0.98 
-0.54 
0.95 
2.08 

-0.63 
1.06 
2.34 
1.19 



Table 3W 
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LINEAR REGRESSIONS OF CALIFORNIA HOMICIDES 
1960-63 Subsample 

Dependent variable is NHB 
Mean of dependent variable 0.56 R2 0.08 
Standard error of regression 0.78 Adjusted R2 0.04 
Number of observations 1441 Log-likelihood -1665.31 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
-0.2176 
-0.0836 
•0.1350 
•0.1821 
-0.1728 
0.2183 
0.2764 

-0.0304 
0.0185 
0.0032 
0.1496 
0.0335 
0.1231 
0.2719 
0.1529 
0.2201 
0.1463 
0.2737 

-0.1468 
-0.0116 
0.0071 
0.5033 
0.0924 

" 0.0913 
0.8635 
0.9036 
0.3875 
0.1134 
0.1664 

-0.1608 
0.0350 
0.0982 
0.0637 

-0.0172 
-0.0669 
0.1895 

-0.1867 
•0.1546 
•0.1541 
•0.0686 
0.0196 

-0.1343 
•0.0727 
0.1709 
0.2624 

•0.0823 
0.1081 
0.1547 
0.1632 

T-statistic 
•0.52 
-1.04 
-1.69 
•2.23 
-2.11 
2.73 
3.45 

-0.27 
0.17 
0.03 
1.22 
0.30 
1.02 
2.05 
0.95 
1.33 
1.13 
2.28 

-1.72 
-0.20 
0.12 
1.09 
0.23 
0.23 
2.15 
2.23 
0.97 
1.91 
1.18 

-1.14 
0.25 
0.70 
0.45 

-0.12 
-0.48 
1.35 

-1.33 
•1.10 
•1.10 
-0.49 
0.14 

-1.01 
-0.55 
1.28 
1.98 

-0.62 
0.81 
1.16 
1.23 



Table 3W 
LINEAR REGRESSIONS OF CALIFORNIA HOMICIDES 

1960-63 Subsample 
Dependent variable is NHWM 
Mean of dependent variable 0.82 R2 0.06 
Standard error of regression 0.93 Adjusted R2 0.03 
Number of observations 1441 Log-likelihood -1922.11 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
0.5301 

-0.1537 
•0.0912 
-0.1688 
•0.0940 
0.0768 
0.3705 

•0.2944 
-0.2904 
-0.1755 
-0.0833 
-0.1582 
-0.0541 
0.0326 
0.0381 
0.0873 

-0.0705 
•0.0206 
-0.2221 
-0.0127 
-0.0029 
0.0748 
0.0802 

-0.1964 
0.5256 

•0.5316 
-0.0445 
0.0731 
0.2000 

•0.1786 
0.1239 

•0.1158 
0.0883 

•0.1498 
0.0572 

-0.1643 
•0.1896-
0.0183 
0.1975 

•0.4133 
-0.0098 
-0.1938 
0.0721 

•0.2843 
0.2361 

-0.1103 
0.0120 

-0.0147 
0.2417 

T-statistic 
1.06 

-1.60 
-0.95 
-1.73 
•0.96 
0.80 
3.87 

-2.19 
-2.27 
-1.18 
-0.57 
-1.18 
-0.38 
0.20 
0.20 
0.44 

•0.45 
•0.14 
-2.17 
-0.18 
•0.04 
0.14 
0.17 

-0.41 
1.10 

-1.10 
-0.09 
1.03 
1.19 

-1.06 
0.74 

•0.69 
0.52 

-0.89 
0.34 

•0.98 
-1.13 
0.11 
1.18 

-2.46 
•0.06 
-1.22 
0.45 

-1.79 
1.49 

•0.69 
0.08 

-0.09 
1.52 
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Table 3X 
LINEAR REGRESSIONS OF CALIFORNIA HOMICIDES 

1960-63 Subsample 
Dependent variable is NHNWM 
Mean of dependent variable 0.45 R2 0.07 
Standard error of regression 0.69 Adjusted R2 0.04 
Number of observations 1441 Log-likelihood -1489.46 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
3AT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
0.0278 

-0.0299 
•0.0851 
•0.0943 
•0.1029 
0.2163 
0.2651 

-0.0816 
-0.0131 
0.0183 
0.0393 
0.0097 
0.0473 
0.1481 

•0.0021 
0.1696 
0.1033 
0.0943 

•0.0595 
0.0270 
0.0440 
0.5897 

•0.0568 
•0.0739 
0.4733 
0.8841 
0.8401 
0.0551 
0.0825 

-0.0736 
0.1217 

-0.0199 
0.0618 

•0.0423 
-0.0073 
0.1423 

-0.1665 
•0.0904 
-0.1626 
-0.0477 
•0.0628 
•0.0891 
•0.1374 
0.1934 
0.2867 

•0.0562 
0.1715 
0.1776 
0.1041 

T-statistic 
0.08 

•0.42 
-1.20 
-1.30 
-1.42 
3.06 
3.74 

-0.82 
-0.14 
0.17 
0.36 
0.10 
0.44 
1.26 

-0.01 
1.16 
0.90 
0.89 

-0.79 
0.51 
0.82 
1.44 

-0.16 
•0.21 
1.33 
2.46 
2.38 
1.05 
0.66 

-0.59 
0.98 

-0.16 
0.50 

-0.34 
•0.06 
1.14 

-1.34 
-0.73 
•1.31 
-0.38 
-0.50 
-0.76 
•1.17 
1.64 
2.44 

-0.48 
1.46 
1.51 
0.88 



Table 3Y 
LINEAR REGRESSIONS OF CALIFORNIA HOMICIDES 

1960-63 Subsample 
Dependent variable is NHBM 
Mean of dependent variable 0.42 R2 0.07 
Standard error of regression 0.66 Adjusted R2 0.04 
Number of observations 1441 Log-likelihood -1423.53 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
0.0748 

-0.0576 
•0.1265 
-0.1358 
•0.1480 
0.1684 
0.2185 

•0.0628 
-0.0127 
-0.0047 
0.0283 

-0.0336 
0.0190 
0.1310 

-0.0042 
0.1500 
0.0814 
0.1006 

-0.0512 
0.0394 
0.0526 
0.6336 

•0.0262 
-0.0224 
0.4777 
0.9318 
0.5923 
0.0493 
0.0534 

•0.0995 
0.1477 

•0.0165 
-0.0473 
-0.0567 
0.0217 
0.1439 

•0.1552 
-0.0916 
-0.1631 
-0.0877 
-0.0369 
•0.0909 
•0.1095 
0.2265 
0.3088 

-0.0594 
0.1249 
0.0059 
0.0982 

T-statist 
0.21 

•0.85 
-1.87 
-1.97 
-2.14 
2.49 
3.23 

-0.66 
-0.14 
-0.05 
0.27 

-0.35 
0.19 
1.17 

•0.03 
1.08 
0.74 
0.99 

-0.71 
0.79 
1.03 
1.63 

-0.08 
-0.07 
1.41 
2.72 
1.76 
0.98 
0.45 

•0.84 
1.24 

-0.14 
•0.40 
-0.47 
0.18 
1.21 

-1.31 
-0.77 
-1.38 
-0.74 
•0.31 
•0.81 
-0.97 
2.02 
2.75 

-0.53 
1.11 
0.05 
0.87 
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Table 3Z 
LINEAR REGRESSIONS OF CALIFORNIA HOMICIDES 

1960-63 Subsample 
Dependent variable is NHWF 
Mean of dependent variable 0.44 R2 0.04 
Standard error of regression 0.68 Adjusted R2 0.01 
Number of observations 1441 Log-likelihood -1455.76 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
0.5121 

•0.1523 
•0.0730 
-0.1269 
-0.1506 
-0.0837 
-0.0197 
-0.0546 
-0.0579 
-0.1056 
0.0405 

-0.0053 
0.1590 
0.1184 
0.0065 
0.0272 

-0.0703 
0.0863 
0.0280 
0.0602 

-0.0360 
-0.0823 
-0.1527 
-0.2760 
-0.1152 
0.2340 
0.2438 

•0.0028 
-0.0242 
-0.1107 
-0.0517 
-0.0329 
-0.0557 
•0.0613 
•0.2531 
0.0754 

-0.0031 
0.0268 
0.2234 

-0.0352 
-0.0250 
0.0756 
0.2515 
0.3254 

-0.0773 
-0.0819 
0.1185 

•0.0478 
0.0477 

T-statisI 
1.42 

-2.19 
-1.06 
-1.80 
•2.13 
-1.21 
•0.28 
-0.56 
-0.63 
•0.98 
0.38 

•0.05 
1.52 
1.03 
0.05 
0.19 

•0.63 
0.83 
0.38 
1.17 

•0.69 
-0.21 
-0.44 
-0.80 
-0.33 
0.67 
0.71 

•0.05 
•0.20 
-0.91 
-0.43 
-0.27 
-0.46 
•0.50 
•2.08 
0.62 

•0.03 
0.22 
1.84 

-0.29 
-0.21 
0.66 
2.18 
2.83 

•0.67 
•0.71 
1.03 

-0.42 
0.41 



Table 3AA 
LINEAR REGRESSIONS OF CALIFORNIA HOMICIDES 

1960-63 Subsample 
Dependent variable is NHNWF 
Mean of dependent variable 0.15 R2 0.05 
Standard error of regression 0.40 Adjusted R2 0.02 
Number of observations 1441 Log-likelihood -693.78 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
-0.2429 
•0.0321 
•0.0187 
•0.0586 
•0.0284 
0.0473 
0.0462 
0.0388 
0.0253 
0.0201 
0.1148 
0.0743 
0.0989 
0.1237 
0.1379 
0.0590 
0.0655 
0.1607 

-0.0844 
-0.0494 
-0.0372 
•0.1449 
0.3670 
0.1113 
0.3873 

•0.0382 
-0.2025 
0.0579 
0.1697 

•0.0703 
-0.1188 
0.1091 
0.1338 
0.0320 

-0.0963 
0.0723 

•0.0393 
•0.0692 
0.0038 
0.0106 
0.0846 

-0.0465 
0.0624 

-0.0613 
0.0021 

•0.0313 
•0.0240 
0.1465 
0.0616 

T-statistic 
-1.14 
-0.78 
-0.46 
•1.41 
-0.68 
1.16 
1.13 
0.68 
0.47 
0.32 
1.83 
1.30 
1.61 
1.83 
1.68 
0.70 
0.99 
2.63 

-1.94 
-1.64 
-1.21 
-0.62 
1.80 
0.55 
1.89 

•0.19 
-1.00 
1.91 
2.37 

-0.98 
-1.65 
1.52 
1.86 
0.45 

-1.34 
1.01 

•0.55 
•0.96 
0.05 
0.15 
1.18 

-0.69 
0.92 

-0.90 
0.03 

-0.46 
-0.35 
2.16 
0.91 



Table 3BB 
LINEAR REGRESSIONS OF CALIFORNIA HOMICIDES 

1960-63 Subsample 
Dependent variable is NHBF 
Mean of dependent variable 0.14 R2 0.05 
Standard error of regression 0.38 Adjusted R2 0.02 
Number of observations 1441 Log-likelihood -637.17 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NXU 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
-0.2924 
•0.0260 
•0.0085 
•0.0463 
•0.0249 
0.0499 
0.0579 
0.0324 
0.0312 
0.0079 
0.1212 
0.0671 
0.1041 
0.1408 
0.1571 
0.0701 
0.0648 
0.1731 

•0.0957 
•0.0510 
-0.0454 
•0.1303 
0.1186 
0.1137 
0.3858 

-0.0282 
-0.2048 
0.0641 
0.1129 

-0.0613 
-0.1127 
0.1147 
0.1110 
0.0395 

•0.0886 
0.0456 

•0.0315 
-0.0629 
0.0089 
0.0191 
0.0565 

•0.0434 
0.0368 

•0.0557 
•0.0465 
•0.0229 
•0.0168 
0.1488 
0.0650 

T-statistic 
-1.43 
-0.66 
-0.22 
-1.16 
-0.62 
1.27 
1.47 
0.59 
0.60 
0.13 
2.01 
1.22 
1.76 
2.16 
2.00 
0.87 
1.02 
2.94 

-2.29 
-1.76 
-1.53 
-0.58 
0.61 
0.58 
1.96 

-0.14 
-1.05 
2.20 
1.64 

-0.89 
-1.63 
1.67 
1.61 
0.57 

-1.29 
0.66 

•0.46 
•0.91 
0.13 
0.28 
0.82 

-0.67 
0.56 

•0.85 
-0.71 
-0.35 
•0.26 
2.29 
1.00 



Table 3CC 
LINEAR REGRESSIONS OF CALIFORNIA HOMICIDES 

1960-63 Subsample 
Dependent variable is NHWG 
Mean of dependent variable 0.60 R2 0.04 
Standard error of regression 0.83 Adjusted R2 0.01 
Number of observations 1441 Log-likelihood -1757.19 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 
0.1958 

-0.1120 
-0.1250 
-0.0519 
0.0197 
0.1721 
0.1219 

-0.1968 
-0.2137 
-0.0715 
0.0820 

-0.1470 
-0.0572 
0.0945 
0.0306 
0.1641 
0.1343 
0.0123 

-0.1918 
-0.0913 
•0.1010 
0.3487 
0.1752 

-0.4671 
0.3157 

-0.2108 
0.4557 
0.0823 
0.0412 

•0.2021 
-0.0124 
-0.1235 
0.2088 

-0.0338 
•0.0644 
0.0638 

-0.0364 
•0.0940 
0.4021 

-0.2518 
-0.0432 
0.0096 
0.1783 

-0.0541 
0.0162 

-0.1266 
0.0388 
0.0047 
0.2263 

T-statisI 
0.44 

-1.30 
-1.47 
•0.60 
0.22 
2.02 
1.43 

-1.64 
-1.87 
-0.54 
0.63 

•1.23 
-0.44 
0.67 
0.18 
0.93 
0.97 
0.10 

•2.11 
-1.45 
-1.57 
0.71 
0.41 

-1.10 
0.74 

-0.49 
1.07 
1.30 
0.28 

-1.35 
-0.08 
-0.83 
1.39 

•0.22 
•0.43 
0.43 

-0.24 
•0.63 
2.69 

•1.68 
•0.29 
0.07 
1.26 

•0.38 
0.12 

•0.89 
0.27 
0.03 
1.59 
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Table 3 D D 

LINEAR REGRESSIONS OF CALIFORNIA HOMICIDES 
1960-63 Subsample 

Dependent variable is NHNWG 

Mean of dependent variable 0.29 R2 0.07 
Standard error of regression 0.56 Adjusted R2 0.04 
Number of observations 1441 Log-likelihood -1175.01 

Variable 
INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 

-0.5476 
•0.0558 
•0.0787 
-0.0265 
-0.0408 
0.1659 
0.1323 
-0.1223 
-0.0055 
0.1261 
0.1367 
0.0563 
0.0640 
0.2773 
0.1702 
0.2639 
0.1500 
0.2045 
-0.1652 
-0.0134 
-0.0452 
0.4147 
0.0519 
0.3697 
0.3641 
0.8251 
0.6811 
0.1238 
0.1204 
-0.0955 
•0.1014 
0.1968 
0.0831 
•0.1270 
0.0125 
0.0043 
•0.1423 
•0.1560 
•0.0363 
•0.0075 
0.1028 
-0.1439 
•0.1633 
0.0672 
0.1707 
•0.0967 
0.1116 
0.2867 
0.1583 

T-statistic 

•1.84 
•0.97 
-1.38 
•0.46 
-0.70 
2.91 
2.32 

-1.52 
-0.07 
1.42 
1.56 
0.70 
0.74 
2.93 
1.49 
2.25 
1.62 
2.39 

•2.72 
-0.32 
-1.05 
1.26 
0.18 
1.30 
1.27 
2.86 
2.40 
2.93 
1.21 

-0.95 
-1.01 
1.97 
0.83 

•1.26 
0.12 
0.04 

•1.42 
•1.56 
-0.36 
-0.08 
1.03 

-1.52 
-1.72 
0.71 
1.81 

-1.02 
1.18 
3.03 
1.67 



Table SEE 

LINEAR REGRESSION OF CALIFORNIA HOMICIDES 
1960-63 Subsample 

Dependent variable is NHBG 

Mean of dependent variable 0.28 R2 0.07 
Standard error of regression 0.54 Adjusted R2 0.04 
Number of observations 1441 Log-likelihood -1123.13 

Variable 

INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 

-0.5468 
-0.0334 
•0.0735 
•0.0222 
-0.0459 
0.1600 
0.1354 

-0.1005 
0.0053 
0.0973 
0.1451 
0.0578 
0.0544 
0.2679 
0.1749 
0.2585 
0.1460 
0.2147 

-0.1644 
•0.0158 
-0.0502 
0.4219 
0.0539 
0.3897 
0.3527 
0.8419 
0.4319 
0.1208 
0.1045 

•0.0738 
-0.0829 
0.2146 
0.1021 

-0.1200 
0.0290 

-0.0129 
-0.1173 
-0.1345 
-0.0547 
0.0072 
0.1068 

-0.1324 
-0.1546 
0.0787 
0.1295 

-0.0911 
0.1212 
0.1760 
0.1372 

T-statistic 

-1.90 
-0.60 
-1.34 
-0.40 
-0.82 
2.91 
2.46 

-1.30 
0.07 
1.14 
1.72 
0.75 
0.66 
2.94 
1.59 
2.28 
1.64 
2.61 

-2.80 
-0.39 
-1.21 
1.33 
0.20 
1.42 
1.28 
3.02 
1.58 
2.96 
1.08 

-0.76 
-0.86 
2.23 
1.05 

•1.24 
0.30 

-0.13 
-1.22 
-1.39 
-0.57 
0.07 
1.11 

-1.45 
-1.69 
0.86 
1.42 

-1.00 
1.33 
1.93 
1.50 



Table 3FF 

LINEAR REGRESSION OF CALIFORNIA HOMICIDES 
1960-63 Subsample 

Dependent variable is NHWK 

Mean of dependent variable 0.21 R2 0.05 
Standard error of regression 0.48 Adjusted R2 0.02 
Number of observations 1441 Log-likelihood -975.01 

Variable 

INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 

0.2063 
•0.0323 
•0.0053 
-0.1138 
-0.0410 
0.0349 
0.1808 
0.0201 

-0.0002 
0.0004 
0.0757 
0.0451 
0.1718 
0.0170 
0.0876 
0.0423 
0.0010 
0.1073 
0.0331 
0.0684 
0.0493 

-0.1295 
-0.1699 
-0.2656 
-0.2337 
•0.1382 
-0.2339 
•0.0130 
0.1362 
0.0009 

-0.0056 
•0.0985 
-0.0630 
•0.0924 
-0.0071 
-0.0395 
•0.0529 
•0.0052 
•0.1133 
-0.1172 
0.0749 
0.0341 

•0.0653 
•0.0079 
•0.0155 
•0.0961 
0.0849 
0.0441 
0.0481 

T-statistic 

0.80 
-0.65 
-0.11 
-2.25 
-0.81 
0.70 
3.64 
0.29 
0.00 
0.00 
0.99 
0.65 
2.30 
0.21 
0.88 
0.41 
0.01 
1.44 
0.63 
1.86 
1.32 

•0.45 
•0.69 
•1.07 
-0.94 
-0.55 
-0.95 
•0.35 
1.57 
0.01 

-0.06 
•1.13 
-0.72 
•1.06 
•0.08 
•0.45 
-0.61 
•0.06 
•1.30 
-1.35 
0.86 
0.41 

•0.79 
•0.10 
•0.19 
-1.16 
1.03 
0.54 
0.58 



Table 3GG 
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LINEAR REGRESSION OF CALIFORNIA HOMICIDES 
1960-63 Subsample 

Dependent variable is NHNWK 

Mean of dependent variable 0.18 R2 0.05 
Standard error of regression 0.43 Adjusted R2 0.02 
Number of observations 1441 Log-likelihood -792.69 

Variable 

INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 

0.0073 
-0.0099 
-0.0033 
•0.0512 
-0.0454 
0.1112 
0.1387 

-0.0167 
-0.0052 
0.0106 
0.0624 
0.0102 
0.0908 
0.0634 
0.0489 
0.0630 
0.0505 
0.1150 

•0.0182 
-0.0156 
0.0189 

•0.1692 
•0.1520 
•0.1967 
0.1119 
0.1332 

-0.2184 
0.0189 
0.0410 

-0.0959 
0.1269 

-0.1156 
0.1051 
0.0590 

-0.0586 
0.0662 

-0.0723 
0.0322 

•0.1224 
-0.0069 
-0.0707 
-0.0102 
0.0517 
0.0192 
0.1067 
0.0015 
0.0691 

•0.0038 
-0.0701 

T-statistic 

0.03 
-0.23 
-0.08 
•1.15 
-1.01 
2.55 
3.17 

•0.27 
-0.09 
0.16 
0.93 
0.17 
1.38 
0.88 
0.56 
0.70 
0.71 
1.76 

•0.39 
•0.48 
0.57 

-0.67 
-0.70 
-0.90 
0.51 
0.60 

-1.00 
0.58 
0.53 

•1.25 
1.65 

-1.51 
1.37 
0.77 

-0.76 
0.86 

•0.94 
0.42 

-1.60 
-0.09 
-0.92 
-0.14 
0.71 
0.26 
1.47 
0.02 
0.95 

-0.05 
-0.96 

r 



Table 3HH 
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LINEAR REGRESSION OF CALIFORNIA HOMICIDES 
1960-63 Subsample 

Dependent variable is NHBK 

Mean of dependent variable 0.17 R2 0.05 
Standard error of regression 0.42 Adjusted R2 0.02 
Number of observations 1441 Log-likelihood -753.51 

Variable 

INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 

0.0033 
•0.0197 
•0.0160 
-0.0770 
-0.0597 
0.0843 
0.1247 

•0.0224 
•0.0161 
0.0042 
0.0391 

•0.0243 
0.0845 
0.0523 
0.0531 
0.0671 
0.0293 
0.1151 

•0.0204 
•0.0056 
0.0215 

•0.1409 
•0.1310 
-0.1921 
0.1041 
0.1444 

-0.2229 
0.0218 
0.0259 

-0.0874 
0.1368 

-0.1396 
•0.0188 
0.0631 

-0.0539 
0.0491 

•0.0637 
0.0424 

•0.1126 
-0.0321 
-0.0643 
•0.0323 
0.0681 
0.0335 
0.1156 
0.0091 
0.0433 

-0.0230 
-0.0634 

T-statistic 

0.01 
•0.46 
-0.38 
-1.78 
-1.37 
1.99 
2.93 

•0.37 
-0.28 
0.06 
0.60 

-0.41 
1.32 
0.74 
0.62 
0.77 
0.42 
1.81 

-0.45 
-0.18 
0.67 

•0.57 
-0.62 
•0.90 
0.49 
0.67 

•1.05 
0.69 
0.35 

-1.17 
1.83 

•I..87 
-0.25 
0.84 

-0.72 
0.66 

•0.85 
0.57 

-1.51 
•0.43 
-0.86 
-0.46 
0.96 
0.47 
1.64 
0.13 
0.61 

•0.33 
-0.90 
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LINEAR REGRESSION OF CALIFORNIA HOMICIDES 
1960-63 Subsample 

Dependent variable is NHWO 

Mean of dependent variable 0.45 R2 0.05 
Standard error of regression 0.68 Adjusted R2 0.02 
Number of observations 1441 Log-likelihood -1457.88 

Variable 

INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 

0.6400 
-0.1618 
-0.0339 
-0.1300 
-0.2232 
-0.2139 
0.0481 

•0.1724 
-0.1344 
•0.2099 
•0.2005 
-0.0616 
•0.0097 
0.0395 

-0.0735 
-0.0920 
-0.2761 
-0.0540 
-0.0355 
0.0703 
0.0128 

-0.2267 
-0.0777 
0.2603 
0.3284 
0.0514 

-0.0226 
0.0010 

-0.0015 
-0.0881 
0.0902 
0.0733 

•0.1131 
•0.0849 
•0.1244 
-0.1132 
•0.1034 
0.1443 
0.1321 

•0.0796 
-0.0665 
•0.1619 
0.2106 
0.1031 
0.1580 
0.0305 
0.0068 

•0.1113 
0.0150 

T-statistic 

1.77 
-2.32 
•0.49 
-1.84 
•3.15 
-3.09 
0.69 

-1.77 
-1.45 
•1.94 
-1.88 
-0.63 
-0.09 
0.34 

-0.53 
-0.64 
•2.45 
-0.52 
-0.48 
1.37 
0.24 

-0.57 
-0.22 
0.75 
0.94 
0.15 

-0.06 
0.02 

-0.01 
-0.72 
0.74 
0.60 

•0.93 
•0.69 
•1.02 
•0.93 
•0.85 
1.18 
1.09 

•0.65 
•0.55 
-1.41 
1.83 
0.89 
1.37 
0.26 
0.06 

-0.97 
0.13 



Table 3JJ 
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LINEAR REGRESSION OF CALIFORNIA HOMICIDES 
1960-63 Subsample 

Dependent variable is NHNWO 

Mean of dependent variable 0.13 R2 0.03 
Standard error of regression 0.38 Adjusted R2 0.00 
Number of observations 1441 Log-likelihood -616.43 

Variable 

INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 

0.3252 
0.0038 

•0.0218 
•0.0752 
•0.0452 
-0.0136 
0.0404 
0.0961 
0.0229 

-0.0984 
-0.0450 
0.0175 

•0.0086 
-0.0689 
-0.0833 
•0.0983 
•0.0316 
-0.0645 
0.0395 
0.0066 
0.0332 
0.1993 
0.4103 

-0.1357 
0.3846 

-0.1124 
0.1749 

-0.0297 
0.0909 
0.0475 

•0.0225 
0.0079 
0.0074 
0.0578 

-0.0575 
0.1441 
0.0088 

-0.0359 
0.0000 

•0.0227 
•0.0102 
0.0185 
0.0366 
0.0457 
0.0113 
0.0077 

•0.0332 
0.0411 
0.0774 

T-statistic 

1.61 
0.10 

•0.56 
-1.91 
•1.14 
-0.35 
1.04 
1.77 
0.44 

-1.63 
-0.76 
0.32 

-0.15 
-1.07 
-1.07 
-1.23 
•0.50 
-1.11 
0.96 
0.23 
1.13 
0.89 
2.13 

-0.70 
1.98 

-0.57 
0.91 

-1.04 
1.34 
0.70 

•0.33 
0.12 
0.11 
0.85 

-0.85 
2.12 
0.13 

-0.53 
0.00 

-0.34 
-0.15 
0.29 
0.57 
0.71 
0.18 
0.12 

•0.52 
0.64 
1.20 
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LINEAR REGRESSION OF CALIFORNIA HOMICIDES 
1960-63 Subsample 

Dependent variable is NHBO 

Mean of dependent variable 0.11 R2 0.03 
Standard error of regression 0.36 Adjusted R2 0.00 
Number of observations 1441 Log-likelihood -536.46 

Variable 

INTERCEP 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 

0.3258 
-0.0305 
-0.0455 
-0.0829 
-0.0673 
-0.0261 
0.0163 
0.0925 
0.0293 

-0.0983 
-0.0346 
0.0000 

-0.0158 
•0.0484 
•0.0750 
-0.1055 
-0.0290 
•0.0561 
0.0379 
0.0098 
0.0358 
0.2224 
0.1695 

-0.1064 
0.4067 

-0.0827 
0.1785 

-0.0293 
0.0360 
0.0005 

•0.0188 
0.0232 

•0.0196 
0.0398 

-0.0421 
0.1533 

•0.0057 
•0.0625 
0.0132 

-0.0436 
•0.0229 
0.0305 
0.0139 
0.0586 
0.0173 

•0.0003 
•0.0564 
0.0017 
0.0895 

T-statistic 

1.71 
-0.83 
-1.25 
-2.22 
-1.80 
-0.71 
0.45 
1.80 
0.60 

-1.73 
-0.62 
0.00 

-0.29 
•0.80 
-1.02 
-1.40 
-0.49 
-1.02 
0.97 
0.36 
1.29 
1.05 
0.93 

-0.58 
2.22 

•0.45 
0.98 

-1.08 
0.56 
0.01 

-0.29 
0.36 

-0.30 
0.62 

•0.65 
2.39 

•0.09 
•0.97 
0.21 

-0.68 
-0.36 
0.50 
0.23 
0.96 
0.28 
0.00 

-0.93 
0.03 
1.47 



Table 4 

LOG-LIKELIHOODS FOR VARIOUS ESTIMATORS 

Variable 

NH 
NHW 
NHNW 
NHWG 
NHNWG 
NHNWG 

OLS 

-5544.0 
-4843.9 
-3896.2 
-3836.8 
-3109.4 
-4196.9 

Full Sample 

Poisson 

-5158.4 
-4457.5 
-3216.9 
-3249.3 
-2278.7 
-3733.6 

Negative Binomial 

-5146.2 
-4450.7 
-3212.6 
-3238.2 
-2276.0 
-3730.0 

1960-63 Subsample 

NH 
NHW 
NHNW 
NHWG 
NHNWG 
NHWG 

-2557.6 
-2236.3 
-1727.9 
-1757.6 
-1175.4 
-1922.5 

-2416.0 
-2059.8 
-1452.4 
-1480.4 
-941.6 

-1693.6 

-2416.0 

-1475.5 



Table 5A 

POISSON REGRESSION MODEL 
Dependent Variable is NH 

LOG LIKELIHOOD: -5158.409 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
WATTS 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

•0.241 
-0.220 
-0.214 
•0.160 
0.134 
0.242 
0.082 
0.062 
0.087 
0.177 
0.121 
0.269 
0.360 
0.307 
0.421 
0.274 
0.373 

-0.160 
0.020 
0.004 
0.136 
0.310 
0.391 
0.553 
0.586 

-0.157 
0.000 
0.705 
0.224 
0.164 
0.089 
1.236 
0.197 

-0.304 
0.031 
0.010 
0.101 

•0.138 
•0.158 
0.099 

-0.246 
-0.077 
0.124 

-0.147 
0.024 

•0.114 
0.127 
0.101 
0.176 

•0.109 
0.172 
0.144 
0.275 

-0.082 

T-statistic 

-4.860 
-4.460 
-4.322 
-3.254 
2.998 
5.514 
1.209 
0.926 
1.086 
2.113 
1.657 
3.520 
4.216 
2.775 
3.764 
3.178 
4.772 

-2.279 
0.368 
0.068 
2.499 
5.868 
5.713 
8.340 
2.892 

-0.558 
0.001 
3.626 
0.965 
0.788 
2.015 
7.679 
1.693 

-1.878 
0.264 
0.087 
0.888 

-0.925 
•1.024 
0.789 

-1.588 
•0.608 
1.205 

-1.073 
0.181 

•0.805 
1.103 
0.891 
1.769 

-0.894 
1.661 
1.232 
2.642 

•0.259 



Table 5B 

POISSON REGRESSION MODEL 
Dependent Variable is NHW 

LOG LIKELIHOOD: -4457.491 

Variable 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
WATTS 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 
-0.254 
-0.211 
-0.208 
•0.163 
0.000 
0.158 
0.028 

•0.035 
0.034 
0.090 
0.030 
0.175 
0.279 
0.211 
0.326 
0.160 
0.307 

-0.157 
0.039 

•0.013 
0.151 
0.250 . 
0.331 
0.508 
0.576 

-0.265 
•0.242 
0.594 

•0.196 
0.008 
0.067 
0.825 
0.090 

•0.263 
0.034 

•0.062 
0.034 

-0.194 
•0.108 
-0.021 
-0.152 
0.003 
0.241 

•0.230 
0.010 

•0.031 
0.225 
0.048 
0.104 

-0.117 
0.145 

-0.053 
0.256 

•0.212 

T-statistic 
-4.235 
-3.578 
-3.503 
-2.754 
0.005 
2.935 
0.348 

•0.429 
0.353 
0.889 
0.341 
1.892 
2.705 
1.576 
2.410 
1.536 
3.257 

-1.834 
0.593 

-0.186 
2.298 
3.855 
3.972 
6.300 
2.368 

-0.740 
-0.716 
2.416 

-0.573 
0.029 
1.239 
3.375 
0.601 

-1.386 
0.235 

-0.424 
0.240 

-1.050 
-0.616 
•0.129 
•0.874 
0.022 
2.107 

-1.317 
0.063 

-0.199 
1.779 
0.339 
0.795 

•0.780 
1.150 

-0.331 
2.066 

-0.554 
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Table 5C 

POISSON REGRESSION MODEL 
Dependent Variable i3 NHNW 
LOG LIKELIHOOD: -3212.607 

Variable 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
WATTS 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 
-0.217 
-0.247 
-0.235 
-0.164 
0.371 
0.407 
0.198 
0.264 
0.205 
0.364 
0.312 
0.467 
0.528 
0.510 
0.619 
0.511 
0.518 

-0.168 
-0.027 
0.035 
0.098 
0.423 
0.512 
0.640 
0.624 
0.045 
0.366 
0.909 
0.787 
0.454 
0.136 
1.663 
0.404 

•0.392 
0.037 
0.132 
0.227 

-0.030 
-0.310 
0.322 

•0.512 
•0.242 
-0.206 
•0.006 
0.047 

•0.386 
•0.208 
0.202 
0.304 

-0.088 
0.219 
0.462 
0.314 

•1.745 

T-statistic 
-2.382 
•2.684 
-2.551 
-1.793 
4.636 
5.141 
1.575 
2.149 
1.374 
2.361 
2.322 
3.310 
3.341 
2.508 
3.003 
3.229 
3.553 

-1.324 
-0.271 
0.345 
0.984 
4.477 
4.118 
5.299 
1.645 
0.097 
0.962 
2.692 
2.338 
1.347 
1.687 
6.079 
2.187 

-1.257 
0.177 
0.687 
1.130 

-0.116 
•0.955 
1.616 

-1.546 
-0.992 
-0.877 
-0.026 
0.191 

-1.198 
•0.754 
1.025 
1.890 

-0.403 
1.142 
2.684 
1.598 

-3.043 



Table 5D 

POISSON REGRESSION MODEL 
Dependent Variable is NHWG 
LOG LIKELIHOOD: -3249.286 

Variable 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
WATTS 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 
•0.200 
•0.261 
•0.087 
-0.027 
0.134 
0.146 

-0.051 
•0.101 
0.182 
0.316 
0.139 
0.199 
0.354 
0.294 
0.496 
0.426 
0.407 

•0.267 
-0.131 
-0.131 
•0.009 
0.206 
0.319 
0.542 
0.397 
0.100 

•0.227 
0.445 

-0.280 
0.195 
0.U7 
1.323 
0.032 

•0.306 
0.031 

•0.173 
0.275 

-0.080 
•0.089 
0.124 

•0.008 
-0.134 
0.387 

-0.309 
•0.023 
0.010 
0.266 

-0.043 
0.042 

•0.184 
0.104 

•0.061 
0.335 

-1.314 

T-statistic 
-2.295 
-2.961 
•1.022 
-0.317 
1.678 
1.844 

•0.414 
•0.828 
1.314 
2.199 
1.092 
1.471 
2.370 
1.519 
2.552 
2.874 
2.996 

-2.223 
-1.369 
-1.344 
-0.095 
2.257 
2.667 
4.733 
1.021 
0.239 

-0.449 
1.136 

-0.610 
0.539 
1.520 
4.671 
0.144 

-1.104 
0.150 

-0.732 
1.539 

•0.318 
-0.341 
0.592 

•0.035 
-0.569 
2.525 

•1.119 
•0.097 
0.044 
1.518 

-0.197 
0.215 

-0.788 
0.527 

-0.256 
1.913 

-2.402 



Table 5E 

POISSON REGRESSION MODEL 
Dependent Variable is NHNWG 
LOG LIKELIHOOD: -2278.674 

Variable 
MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
WATTS 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 
-0.206 
-0.287 
-0.049 
-0.035 
0.566 
0.481 
0.201 
0.333 
0.464 
0.469 
0.513 
0.497 
0.826 
0.797 
0.976 
0.660 
0.678 

-0.308 
-0.035 
•0.108 
0.038 
0.521 
0.754 
0.907 
0.796 

•0.107 
0.919 
0.542 
0.968 
0.716 
0.216 
2.102 
0.359 

•0.435 
-0.244 
0.390 
0.213 

-0.777 
0.027 
0.067 

•0.916 
•0.568 
-0.081 
0.111 
0.303 

-1.716 
-1.260 
0.238 
0.310 

•0.471 
0.269 
0.648 
0.487 

•3.127 

T-statistic 
-1.670 
-2.258 
-0.408 
-0.287 
5.473 
4.597 
1.175 
1.997 
2.353 
2.228 
2.858 
2.578 
3.945 
2.942 
3.574 
3.080 
3.484 

-1.805 
-0.255 
•0.774 
0.278 
4.184 
4.562 
5.676 
1.708 

-0.149 
2.175 
1.046 
2.405 
1.831 
2.026 
8.913 
1.440 

-1.003 
•0.739 
1.964 
0.785 

-1.364 
0.072 
0.207 

-1.602 
-1.435 
-0.278 
0.385 
1.089 

-1.726 
•1.808 
0.907 
1.513 

•1.212 
1.061 
3.299 
2.030 

-4.083 



Table 5F 
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POISSON REGRESSION MODEL 
Dependent Variable is NHWM 

LOG LIKELIHOOD: -3733.638 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
WATTS 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX/ 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 

Coefficient 

-0.257 
•0.255 
•0.189 
•0.173 
0.081 
0.233 

-0.013 
-0.142 
-0.161 
-0.111 
•0.108 
0.007 
0.116 

-0.034 
0.079 
0.040 
0.123 

•0.178 
•0.022 
0.004 
0.166 
0.247 
0.228 
0.425 
0.300 

•0.296 
•0.624 
0.773 

•0.647 
•0.018 
-0.010 
0.916 
0.152 

•0.209 
0.082 

•0.094 
0.075 

•0.271 
0.069 

•0.235 
•0.245 
-0.046 
0.166 

•0.570 
•0.015 
•0.256 
0.019 

-0.416 
0.155 

•0.093 
0.058 

•0.041 
0.290 

T-statistic 

-3.482 
-3.470 
-2.593 
-2.375 
1.202 
3.590 

•0.137 
-1.495 
-1.768 
-1.248 
-1.175 
0.082 
1.404 

-0.409 
1.000 
0.470 
1.469 

-1.946 
-0.264 
0.044 
2.085 
3.163 
3.143 
6.172 
0.925 

•0.653 
-1.238 
2.752 

-1.273 
-0.053 
-0.683 
3.288 
0.859 

•0.914 
0.486 

-0.513 
0.431 

•1.107 
0.358 

•0.998 
-1.064 
-0.248 
1.133 

-2.122 
•0.072 
-1.105 
0.105 

-1.720 
1.042 

-0.527 
0.344 

-0.210 
1.929 
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Table 5G 

POISSON REGRESSION MODEL: 1960-63 SUBSAMPLE 
Dependent Variable is NH 

LOG LIKELIHOOD: -2415.979 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR . 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

-0.214 
-0.150 
-0.264 
-0.220 
0.124 
0.299 

•0.213 
•0.189 
-0.153 
0.059 

-0.045 
0.128 
0.202 
0.087 
0.173 
0.007 
0.158 

•0.170 
0.017 

-0.012 
0.214 
0.132 

•0.283 
0.611 
0.325 
0.367 
0.093 
0.224 

-0.304 
0.033 

-0.029 
0.102 

•0.138 
•0.209 
0.077 

-0.259 
•0.056 
0.092 

-0.293 
-0.002 
-0.164 
0.133 
0.090 
0.177 

•0.138 
0.124 
0.140 
0.223 
0.096 

T-statistic 

-2.731 
-1.955 
-3.291 
-2.749 
1.740 
4.327 

-1.991 
-1.855 
-1.280 
0.521 

•0.426 
1.165 
1.671 
0.584 
1.135 
0.058 
1.472 

-2.198 
0.305 

•0.216 
0.553 
0.341 

-0.623 
1.940 
0.880 
1.189 
1.692 
1.893 

-1.812 
0.276 

-0.242 
0.879 

-0.909 
•1.309 
0.587 

•1.616 
-0.438 
0.863 

•1.911 
-0.011 
•1.119 
1.134 
0.773 
1.744 

-1.108 
1.144 
1.184 
2.056 
0.245 
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POISSON REGRESSION MODEL: 1960-63 SUBSAMPLE 
Dependent Variable is NHW 

LOG LIKELIHOOD: -2059.790 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

•0.258 
•0.129 
-0.247 
•0.200 
•0.004 
0.234 

-0.279 
-0.287 
•0.239 
•0.027 
•0.127 
0.079 
0.103 
0.035 
0.087 

•0.114 
0.050 

•0.148 
0.037 

•0.029 
0.004 

-0.083 
•0.467 
0.325 

•0.323 
0.141 
0.052 
0.142 

•0.291 
0.051 

-0.101 
0.024 

-0.201 
•0.184 
•0.069 
•0.167 
0.030 
0.203 

-0.423 
•0.022 
•0.100 
0.222 
0.030 
0.099 

-0.140 
0.085 

-0.058 
0.200 
0.073 

T-statistic 

-2.715 
-1.421 
-2.582 
-2.106 
-0.051 
2.786 

-2.142 
-2.306 
•1.650 
•0.195 
-1.000 
0.596 
0.704 
0.194 
0.474 

•0.773 
0.385 

-1.555 
0.552 

-0.419 
0.008 

-0.164 
-0.799 
0.770 

•0.545 
0.338 
0.769 
0.945 

-1.461 
0.349 

•0.665 
0.159 

-1.054 
-0.999 
-0.399 
•0.931 
0.202 
1.721 

•2.104 
•0.133 
-0.608 
1.716 
0.206 
0.748 

•0.920 
0.635 

-0.352 
1.543 
0.153 



• Table 51 

POISSON REGRESSION MODEL: 1960-63 SUBSAMPLE 
Dependent Variable is NHNW 
LOG LIKELIHOOD: -1452.370 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

•0.118 
-0.197 
•0.300 
•0.274 
0.375 
0.438 

-0.083 
0.001 
0.012 
0.232 
0.119 
0.218 
0.377 
0.161 
0.322 
0.244 
0.368 

-0.212 
-0.034 
0.018 
0.579 
0.508 
0.068 
1.113 
1.113 
0.734 
0.173 
0.382 

-0.326 
0.007 
0.107 
0.257 

•0.013 
-0.279 
0.332 

•0.540 
•0.247 
-0.231 
•0.072 
0.038 

•0.367 
•0.169 
0.214 
0.303 

•0.130 
0.204 
0.439 
0.278 

-1.750 

T-statistic 

•0.855 
•1.400 
-2.041 
•1.846 
3.036 
3.575 

•0.438 
0.008 
0.057 
1.148 
0.635 
1.098 
1.762 
0.601 
1.193 
1.149 
1.949 

-1.588 
•0.345 
0.188 
0.965 
0.856 
0.095 
2.333 
2.298 
1.589 
1.823 
1.987 

•1.054 
0.036 
0.568 
1.352 

-0.053 
•0.875 
1.657 

-1.550 
-1.000 
-0.976 
-0.306 
0.158 

•1.157 
•0.627 
1.093 
1.920 

•0.595 
1.083 
2.619 
1.406 

•2.589 
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POISSON REGRESSION MODEL: 1960-63 SUBSAMPLE 
Dependent Variable is NHWG 
LOG LIKELIHOOD: -1480.390 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

-0.206 
•0.232 
•0.093 
0.026 
0.256 
0.195 

-0.313 
-0.370 
-0.138 
0.120 

-0.260 
-0.134 
0.117 
0.019 
0.232 
0.191 
0.009 

-0.279 
-0.141 
•0.155 
0.444 
0.275 
0.517 

-0.339 
0.591 
0.117 
0.086 

•0.432 
•0.009 
•0.200 
0.267 

-0.092 
-0.133 
0.109 

-0.056 
•0.140 
0.397 

-0.633 
•0.078 
0.020 
0.231 

•0.086 
0.025 

•0.206 
0.062 
0.005 
0.319 

-1.068 

T-statistic 

-1.464 
-1.657 
-0.669 
0.195 
2.040 
1.523 

•1.682 
•2.034 
•0.668 
0.623 

-1.379 
-0.680 
0.557 
0.075 
0.887 
0.946 
0.049 

-2.086 
-1.467 
-1.586 
0.743 
0.464 
0.862 

-0.466 
1.148 
1.222 
0.386 

•1.405 
-0.040 
•0.816 
1.438 

•0.350 
•0.483 
0.499 

•0.236 
•0.593 
2.574 

•1.822 
-0.297 
0.088 
1.274 

-0.385 
0.128 

-0.850 
0.298 
0.020 
1.778 

•1.571 
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POISSON REGRESSION MODEL: 1960-63 SUBSAMPLE 
Dependunt Variable is NHNWG 
LOG LIKELIHOOD: -941.615 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

-0.208 
-0.312 
-0.086 
-0.175 
0.490 
0.403 

-0.439 
-0.048 
0.339 
0.419 
0.141 
0.133 
0.717 
0.385 
0.722 
0.410 
0.539 

•0.452 
•0.027 
-0.124 
0.937 
0.141 
1.129 
1.130 
1.636 
1.160 
0.356 
0.333 

-0.417 
-0.310 
0.368 
0.225 

-0.750 
0.046 
0.012 

•0.809 
-0.526 
-0.100 
•0.031 
0.307 

•1.670 
-1.215 
0.232 
0.320 

-0.382 
0.295 
0.644 
0.489 

•3.651 

T-statistic 

•1.023 
-1.482 
-0.424 
•0.831 
2.771 
2.261 

-1.541 
-0.186 
1.149 
1.442 
0.522 
0.444 
2.383 
0.996 
1.895 
1.341 
2.047 

-2.433 
-0.191 
-0.881 
1.256 
0.138 
1.530 
1.506 
2.920 
2.207 
2.671 
1.273 

-0.947 
•0.866 
1.734 
0.817 

-1.313 
0.123 
0.034 

-1.415 
-1.317 
-0.324 
-0.093 
1.101 

-1.679 
-1.744 
0.841 
1.515 

-0.994 
1.171 
3.243 
2.013 

-3.795 



Table 5L 

POISSON REGRESSION MODEL: 1960-63 SUBSAMPLE 
Dependent Variable is NHWM 
LOG LIKELIHOOD: -1693.611 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

•0.204 
-0.113 
•0.226 
-0.122 
0.092 
0.378 

•0.351 
-0.359 
-0.220 
-0.094 
-0.189 
-0.062 
0.014 
0.035 
0.088 

-0.089 
•0.031 
-0.264 
-0.021 
-0.006 
0.092 
0.090. 

-0.333 
0.554 

-1.117 
-0.057 
0.078 
0.234 

-0.279 
0.128 

-0.123 
0.101 

•0.225 
0.066 

•0.272 
•0.280 
0.029 
0.147 

•0.766 
-0.009 
•0.307 
0.085 

•0.459 
0.211 

-0.109 
0.020 

-0.024 
0.256 

-0.487 

T-statistic 

-1.711 
•0.977 
-1.863 
-1.023 
0.838 

, 3.627 
-2.204 
-2.357 
•1.257 
•0.553 
•1.222 
-0.376 
0.075 
0.158 
0.392 

•0.504 
•0.196 
•2.216 
-0.251 
-0.073 
0.156 
0.153 

-0.465 
1.188 

-1.103 
-0.098 
0.927 
1.309 

-1.128 
0.738 

-0.648 
0.560 

-0.911 
0.338 

-1.063 
•1.162 
0.158 
0.972 

-2.454 
-0.042 
-1.268 
0.465 

-1.816 
1.403 

•0.599 
0.111 

-0.120 
1.615 

-0.822 
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Variable 

NH 
NHW 
NHNW 
NHWG 
NHNWG 
NHWM 

NH 
NHW 
NHNW 
NHWG 
NHNWG 
NHWM 

RESULTS OF TEST FOR POISSON SPECIFICATION ( chisql) 

Full Sample 

Test Statistic 

15.38* 
10.16* 
7.26* 

19.44* 
4.35* 
6.68 

1960-63 Subsample 

5.91 
.86 

3.60* 
11.10 

.14 

.576 

significant at 5 per cent 
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Table 7A 

NEGATIVE BINOMIAL REGRESSION MODEL 
Dependent Variable is NH 

LOG LIKELIHOOD: -5146.208 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
WATTS 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

-0.242 
•0.221 
-0.218 
-0.163 
0.126 
0.243 
0.080 
0.059 
0.082 
0.171 
0.117 
0.264 
0.353 
0.296 
0.411 
0.266 
0.369 

-0.157 
0.021 
0.005 
0.137 
0.311 
0.389 
0.550 
0.599 

-0.155 
•0.009 
0.701 
0.227 
0.171 
0.086 
1.224 
0.199 

-0.303 
0.036 
0.001 
0.100 

•0.141 
-0.162 
0.103 

-0.246 
•0.075 
0.122 

-0.156 
0.023 

•0.116 
0.129 
0.097 
0.184 

•0.112 
0.167 
0.144 
0.278 

-0.055 

T-statistic 

•4.609 
•4.246 
-4.154 
•3.131 
2.631 
5.172 
1.121 
0.842 
0.964 
1.938 
1.527 
3.254 
3.887 
2.525 
3.458 
2.911 
4.434 

-2.116 
0.366 
0.088 
2.383 
5.545 
5.366 
7.829 
2.715 

-0.530 
•0.032 
3.289 
0.917 
0.765 
1.831 
6.046 
1.613 

-1.816 
0.294 
0.011 
0.818 

-0.903 
-1.006 
0.785 

•1.530 
•0.567 
1.084 

-1.083 
0.162 

-0.788 
1.063 
0.806 
1.748 

-0.862 
1.489 
1.171 
2.520 

-0.164 
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Table 7B 

NEGATIVE BINOMIAL REGRESSION MODEL 
Dependent Variable is NHW 

LOG LIKELIHOOD: -4450.731 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
WATTS 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

-0.253 
•0.210 
-0.209 
-0.163 
•0.002 
0.160 
0.026 

-0.037 
0.030 
0.087 
0.028 
0.173 
0.273 
0.205 
0.321 
0.155 
0.304 

-0.156 
0.040 

•0.012 
0.151 
0.251 
0.329 
0.507 
0.578 

-0.264 
-0.249 
0.592 

•0.196 
0.007 
0.065 
0.823 
0.090 

•0.263 
0.038 

-0.067 
0.036 

-0.195 
-0.109 
•0.021 
-0.154 
0.004 
0.238 

•0.235 
0.010 

•0.032 
0.229 
0.045 
0.107 

-0.118 
0.143 

-0.052 
0.260 

-0.200 

T-statistic 

-4.045 
•3.410 
-3.367 
-2.641 
•0.031 
2.828 
0.309 

-0.438 
0.293 
0.823 
0.310 
1.787 
2.533 
1.466 
2.266 
1.421 
3.080 

-1.746 
0.573 

-0.172 
2.201 
3.707 
3.790 
6.019 
2.209 

-0.716 
-0.707 
2.255 

-0.553 
0.026 
1.161 
2.989 
0.565 

•1.352 
0.252 

•0.434 
0.243 

-1.021 
•0.599 
-0.122 
•0.848 
0.028 
1.907 

-1.293 
0.058 

-0.197 
1.728 
0.306 
0.789 

-0.756 
1.070 

•0.312 
2.002 

•0.500 



Table 7C 

NEGATIVE BINOMIAL REGRESSION MODEL 
Dependent Variable is NHNW 

LOG LIKELIHOOD: -3212.607 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
WATTS 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

-0.217 
-0.247 
-0.235 
•0.164 
0.371 
0.407 
0.198 
0.264 
0.205 
0.364 
0.312 
0.467 
0.528 
0.510 
0.619 
0.511 
0.518 

•0.168 
•0.027 
0.035 
0.098 
0.423 
0.512 
0.640 
0.624 
0.045 
0.366 
0.909 
0.787 
0.454 
0.136 
1.663 
0.404 

•0.392 
0.037 
0.132 
0.227 

-0.030 
-0.310 
0.322 

-0.512 
-0.242 
-0.206 
-0.006 
0.047 

•0.386 
•0.208 
0.202 
0.304 

-0.088 
0.219 
0.462 
0.314 

-1.745 

T-statistic 

-2.382 
•2.684 
•2.551 
-1.793 
4.636 
5.141 
1.575 
2.149 
1.374 
2.361 
2.322 
3.310 
3.341 
2.508 
3.003 
3.229 
3.553 

-1.324 
•0.271 
0.345 
0.984 
4.477 
4.118 
5.299 
1.645 
0.097 
0.962 
2.692 
2.338 
1.347 
1.687 
6.079 
2.187 

-1.257 
0.177 
0.687 
1.130 

-0.116 
-0.955 
1.016 

•1.546 
-0.992 
•0.877 
•0.026 
0.191 

•1.198 
-0.754 
1.025 
1.890 

-0.403 
1.142 
2.684 
1.598 

-3.043 



Table 7D 

NEGATIVE BINOMIAL REGRESSION MODEL 
Dependent Variable is NHWG 
LOG LIKELIHOOD: -3238.215 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
WATTS 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

-0.196 
•0.260 
-0.088 
-0.026 
0.128 
0.147 

•0.053 
•0.102 
0.177 
0.312 
0.135 
0.193 
0.343 
0.289 
0.486 
0.421 
0.400 

•0.262 
•0.131 
•0.128 
-0.008 
0.210 
0.319 
0.543 
0.439 
0.098 

-0.245 
0.447 

-0.283 
0.197 
0.115 
1.298 
0.029 

•0.311 
0.042 

•0.181 
0.281 

•0.085 
•0.084 
0.123 

•0.012 
•0.132 
0.372 

-0.324 
•0.026 
0.004 
0.276 

-0.045 
0.046 

-0.185 
0.109 

-0.058 
0.341 

-1.302 

T-statistic 

•2.127 
-2.782 
-0.971 
-0.294 
1.494 
1.728 

-0.411 
-0.796 
1.200 
2.041 
0.997 
1.338 
2.154 
1.405 
2.346 
2.670 
2.758 

•2.057 
-1.288 
-1.248 
•0.077 
2.163 
2.517 
4.448 
1.075 
0.222 

-0.455 
1.067 

-0.585 
0.502 
1.411 
3.592 
0.117 

-1.075 
0.196 

-0.718 
1.465 

•0.321 
•0.303 
0.548 

-0.049 
-0.536 
2.058 

-1.110 
-0.104 
0.017 
1.501 

-0.197 
0.222 

•0.750 
0.519 

•0.231 
1.826 

-2.239 



Table 7E 
NEGATIVE BINOMIAL REGRESSION MODEL 

Dependent Variable is NHNWG 
LOG LIKELIHOOD: -2275.978 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
WATTS 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

-0.213 
-0.295 
•0.058 
•0.044 
0.545 
0.479 
0.200 
0.333 
0.465 
0.464 
0.509 
0.491 
0.824 
0.789 
0.967 
0.653 
0.673 

-0.304 
•0.031 
•0.104 
0.042 
0.522 
0.754 
0.904 
0.824 

-0.108 
0.921 
0.542 
0.986 
0.739 
0.212 
2.055 
0.367 

-0.439 
•0.237 
0.377 
0.205 

•0.784 
0.022 
0.074 

•0.916 
-0.564 
•0.085 
0.106 
0.298 

-1.719 
-1.254 
0.240 
0.327 

•0.471 
0.261 
0.656 
0.485 

-3.095 

T-statistic 

-1.693 
-2.280 
-0.474 
•0.355 
5.087 
4.463 
1.142 
1.962 
2.313 
2.162 
2.777 
2.490 
3.852 
2.843 
3.459 
2.984 
3.376 

-1.743 
•0.222 
-0.730 
0.306 
4.094 
4.476 
5.538 
1.731 

•0.149 
2.096 
1.019 
2.371 
1.838 
1.942 
6.953 
1.462 

-0.999 
-0.703 
1.765 
0.723 

-1.363 
0.059 
0.227 

-1.594 
-1.408 
•0.287 
0.358 
1.040 

•1.728 
-1.792 
0.899 
1.580 

-1.202 
0.982 
3.253 
1.962 

-3.948 
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Table 7F 

NEGATIVE BINOMIAL REGRESSION MODEL 
Dependent Variable is NHWM 
LOG LIKELIHOOD: -3729.974 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
WATTS 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

-0.249 
•0.248 
•0.182 
•0.165 
0.086 
0.242 

-0.026 
-0.108 
•0.051 
0.015 

-0.028 
0.112 
0.253 
0.173 
0.294 
0.175 
0.238 

•0.261 
•0.009 
0.012 
0.174 
0.264 
0.335 
0.532 
0.321 

-0.293 
-0.621 
0.773 

•0.652 
-0.015 
0.087 
0.911 
0.163 

•0.198 
0.098 

•0.088 
0.091 

•0.255 
0.085 

•0.219 
-0.226 
•0.033 
0.172 

-0.550 
0.000 

-0.238 
0.041 

•0.398 
0.175 

•0.082 
0.078 

•0.024 
0.314 

-0.702 

T-statistic 

-3.279 
-3.273 
-2.427 
-2.197 
1.235 
3.586 

-0.260 
-1.079 
-0.420 
0.118 

-0.256 
0.970 
1.966 
1.030 
1.733 
1.357 
2.026 

-2.387 
-0.105 
0.140 
2.121 
3.259 
3.192 
5.217 
0.961 

-0.635 
-1.215 
2.632 

-1.263 
-0.043 
1.279 
3.007 
0.889 

-0.853 
0.569 

-0.466 
0.508 

-1.026 
0.426 

-0.917 
-0.963 
-0.173 
1.102 

•2.021 
0.002 

-1.010 
0.221 

-1.620 
1.147 

•0.449 
0.451 

•0.121 
2.031 

-1.455 
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Table 7G 

NEGATIVE BINOMIAL REGRESSION MODEL: 1960-63 SUBSAMPLE 
Dependent Variable is NHWG 

LOG LIKELIHOOD: -1475.471 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
NYR 
MEM 
LAB 
THX 
CHR 
UNEMP 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

•0.210 
-0.229 
•0.091 
0.030 
0.253 
0.198 

•0.306 
•0.366 
-0.130 
0.125 

-0.255 
-0.136 
0.112 
0.026 
0.235 
0.193 
0.013 

-0.275 
-0.139 
-0.153 
0.487 
0.255 
0.520 

-0.329 
0.558 
0.118 
0.076 

-0.432 
0.004 

-0.209 
0.280 

-0.090 
-0.120 
0.110 

-0.054 
-0.142 
0.375 

-0.636 
•0.075 
0.008 
0.247 

-0.090 
0.019 

•0.204 
0.069 
0.005 
0.329 

-1.078 

T-statistic 

-1.407 
-1.544 
•0.622 
0.207 
1.880 
1.451 

-1.544 
•1.894 
-0.593 
0.602 

-1.270 
-0.641 
0.494 
0.094 
0.836 
0.885 
0.064 

•1.915 
-1.351 
-1.457 
0.762 
0.394 
0.808 

-0.435 
0.958 
1.147 
0.304 

-1.355 
0.018 

-0.787 
1.384 

-0.328 
•0.412 
0.467 

-0.211 
-0.570 
1.981 

•1.762 
-0.276 
0.034 
1.282 

-0.376 
0.091 

-0.794 
0.308 
0.022 
1.699 

-1.480 
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Table 8 

HAUSMAN TESTS FOR NEGATIVE BINOMIAL SPECIFICATION 

1960-1967 Period 

Category Test Statistic (x2 ) 

NH 2481.2 

NHW 2251.9 

NHNW 1149.2 

NHWM 1764.4 

NHWG 1047.6 

NHNWG 2066.2 

1960-1963 Period 

NHWG 1964.7 



Table 9A 
QUASI-GENERALIZED PSEUDO-MAXIMUM LIKELIHOOD MODEL 

Dependent Variable is NH 
LOG LIKELIHOOD: -2757.439 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
WATTS 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
N X U 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

-0.242 
-0.222 
-0.224 
-0.168 
0.116 
0.244 
0.076 
0.053 
0.070 
0.159 
0.110 
0.252 
0.335 
0.270 
0.386 
0.247 
0.357 

-0.151 
0.024 
0.009 
0.140 
0.312 
0.383 
0.544 
0.623 

-0.150 
-0.030 
0.698 
0.233 
0.186 
0.079 
1.212 
0.205 

-0.300 
0.047 

-0.017 
0.101 

-0.144 
-0.171 
0.113 

-0.247 
-0.076 
0.117 

-0.180 
0.021 

-0.119 
0.132 
0.086 
0.196 

-0.119 
0.158 
0.148 
0.287 
0.004 

T-statistic 

-3.893 
•3.588 
-3.597 
-2.708 
1.991 
4.247 
0.896 
0.636 
0.692 
1.520 
1.206 
2.604 
3.096 
1.943 
2.731 
2.278 
3.602 

-1.713 
0.348 
0.128 
2.052 
4.667 
4.465 
6.504 
2.185 

-0.442 
-0.095 
2.558 
0.775 
0.664 
1.409 
3.905 
1.377 

-1.604 
0.314 

-0.113 
0.687 

-0.819 
-0.945 
0.731 

-1.368 
-0.485 
0.844 

•1.074 
0.131 

-0.716 
0.913 
0.595 
1.481 

-0.789 
1.153 
1.014 
2.114 
0.009 
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QUASI-GENERALIZED PSEUDO-MAXIMUM LIKELIHOOD MODEL 
Dependent Variable is NHNW 
LOG LIKELIHOOD: -3066.064 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
WATTS 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
NXU 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

-0.226 
-0.259 
-0.253 
-0.178 
0.350 
0.402 
0.200 
0.261 
0.204 
0.348 
0.298 
0.451 
0.515 
0.476 
0.577 
0.493 
0.506 

-0.163 
-0.024 
0.041 
0.106 
0.419 
0.505 
0.619 
0.700 
0.061 
0.346 
0.906 
0.807 
0.519 
0.123 
1.623 
0.469 

-0.379 
0.026 
0.098 
0.207 

-0.047 
-0.332 
0.360 

-0.516 
-0.259 
-0.217 
•0.040 
0.040 

-0.399 
-0.231 
0.182 
0.322 

-0.098 
0.201 
0.486 
0.322 

-1.643 

T-statistic 

-2.167 
-2.470 
-2.403 
-1.698 
3.706 
4.281 
1.388 
1.857 
1.197 
1.969 
1.939 
2.768 
2.823 
2.033 
2.432 
2.710 
3.017 

-1.112 
-0.211 
0.361 
0.928 
3.815 
3.530 
4.441 
1.502 
0.114 
0.747 
2.131 
1.903 
1.233 
1.323 
3.613 
2.112 

-1.124 
0.108 
0.425 
0.880 

-0.162 
-0.942 
1.543 

-1.439 
-0.930 
-0.813 
-0.152 
0.145 

-1.151 
-0.755 
0.783 
1.589 

•0.392 
0.887 
2.303 
1.400 

•2.492 
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QUASI-GENERALIZED PSEUDO-MAXIMUM LIKELIHOOD MODEL 
Dependent Variable is NHNWG 
LOG LIKELIHOOD: -2214.715 

Variable 

MON 
TUE 
WED 
THU 
FRI 
SAT 
FEB 
MAR 
APR 
MAY 
JUN 
JUL 
AUG 
SEP 
OCT 
NOV 
DEC 
Y61 
Y62 
Y63 
Y64 
Y65 
Y66 
Y67 
NYR 
MEM 
IND 
LAB 
THX 
CHR 
UNEMP 
WATTS 
NX 
NX1 
NX2 
NX3 
NX4 
NX5 
NX6 
NX7 
NX8 
NX9 
NX10 
N X U 
NX12 
NX13 
NX14 
NX15 
NX16 
NX17 
NX18 
NX19 
NX20 
CONSTANT 

Coefficient 

-0.227 
-0.304 
-0.071 
-0.057 
0.520 
0.471 
0.193 
0.333 
0.471 
0.451 
0.495 
0.471 
0.819 
0.760 
0.938 
0.629 
0.658 

-0.297 
-0.018 
-0.088 
0.058 
0.523 
0.757 

.0.894 
0.907 

-0.105 
0.930 
0.554 
1.046 
0.811 
0.201 
2.008 
0.398 

-0.452 
-0.226 
0.341 
0.185 

-0.802 
0.007 
0.094 

-0.912 
-0.561 
•0.094 
0.088 
0.288 

•1.727 
-1.241 
0.249 
0.372 

-0.463 
0.238 
0.690 
0.480 

-3.014 

T-statistic 

-1.665 
•2.188 
-0.533 
-0.425 
4.391 
3.961 
1.020 
1.815 
2.162 

, 1.944 
2.499 
2.205 
3.513 
2.524 
3.090 
2.655 
3.043 

-1.567 
-0.121 
-0.576 
0.389 
3.754 
4.136 
5.031 
1.660 

-0.137 
1.824 
0.939 
2.156 
1.724 
1.695 
4.424 
1.423 

•0.980 
-0.633 
1.343 
0.602 

-1.346 
0.018 
0.274 

-1.548 
-1.332 
-0.291 
0.270 
0.918 

-1.718 
-1.741 
0.860 
1.547 

-1.130 
0.818 
2.898 
1.734 

-3.545 
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Table 10 

Variable 

NH 
NHW 
NHNW 
NHWG 
NHNWG 
NHWM 

NH 
NHW 
NHNW 
NHWG 
NHNWG 
NHWM 

SUMMARY OF FINAL SPECIFICATIONS 

Full Sample 

Specification 

QGPML 
Negative Binomial 
QGPML 
Negative Binomial 
QGPML 
Negative Binomial 

1960-63 Subsample 

Poisson 
Poisson 
Poisson 
Negative Binomial 
Poisson 
Poisson 

See Note 2 



Category 

Table 11 

TESTS FOR SINGLE-DAY DETERRENT EFFECTS 

1960-1967 Period 

Variable Coefficient T-statistic pL Pu 

NH 

NHW 

NHNW 

NHWM 

NHWG 

NHNWG 

NX1 

NX1 

NX8 

NXU 

NXU 

NX14 

-0.300 

-0.263 

-0.516 

-0.550 

-0.324 

-1.241 

-1.604 

-1.352 

-1.439 

-2.021 

-1.110 

-1.741 

0.544 

0.668 

0.640 

0.349 

0.760 

0.489 

1.000 

1.000 

1.000 

0.444 

1.000 

0.822 

1960-1963 Period 

NH 

NHW 

NHNW 

NHWM 

NHWG 

NHNWG 

N X U 

NXU 

NX8 

N X U 

N X U 

NX14 

-0.293 

-0.423 

-0.540 

-0.766 

-0.636 

-1.215 

-1.911 

-2.104 

-1.550 

-2.454 

-1.762 

-1.744 

0.408 

0.299 

0.574 

0.136 

0.475 

0.479 

0.571 

0.364 

1.000 

0.147 

0.786 

0.816 
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Table 12 

NUMBERS OF POSITIVE AND NEGATIVE SIGNS 
AMONG DETERRENCE VARIABLES 

1960-1967 Period 

Category Negative Signs Positive Signs 

NH 9 12 

NHW 10 11 

NHNW 10 11 

NHWM 11 10 

NHWG 11 10 

NHNWG 9 12 

1960-1963 Period 

NH 10 11 

NHW 11 10 

NHNW 10 11 

NHWM 11 10 

NHWG 10 11 

NHNWG 10 11 
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Table 13 

TESTS FOR DECREASES IN TOTAL NUMBER OF HOMICIDES OVER 
THREE-WEEK PERIOD FOLLOWING EXECUTIONS 

Category 

NH 
NHW 
NHNW 
NHWM 
NHWG 
NHNWG 

NH 
NHW 
NHNW 
NHWM 
NHWG 
NHNWG 

1960-1967 Period 

Sum of Coefficients 

0.235 
-0.047 
0.197 

-1.095 
0.183 

-3.046 

1960-1963 Period 

-0.177 
-0.673 
0.184 

-1.576 
-0.530 
-2.940 

T-statistic 

0.298 
-0.058 
0.144 

-1.066 
0.154 

-1.414 

-0.260 
-0.810 
0.149 

-1.455 
-0.408 
-1.392 
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Table A l 

RESULTS OF DYNAMIC INFORMATION MATRIX TESTS 
DIAGONAL ELEMENTS: MONTHS 

Full Sample 

Model 

NH 

NHW 

NHNW 

NHWG 

NHNWG 

NHWM 

Test Statistic (x?) 

8.7 

13.6 

14.2 

17.1 

11.6 

15.7 

1960-63 Subsample 

NH 

NHW 

NHNW 

NHWG 

NHNWG 

NHWM 

12.5 

14.8 

9.2 

24.0* 

26.9 

21.5 

* 
significant at 5 per cent 



Table A2 

Model 

RESULTS OF DYNAMIC INFORMATION M A T R I X TESTS 

DIAGONAL ELEMENTS: YEARS 

Full Sample 

Test Statistic (x?) 
NH 

NHW 

NHNW 

NHWG 

NHNWG 

NHWM 

NH 

NHW 

NHNW 

NHWG 

NHNWG 

NHWM 

8.4 

12.5 
* 

7.3 

16.2 

13.9 

11.9 

1960-63 Subsample 

6.2 

8.5 

6.0 

11.5 

6.2 

1.4 

* 
significant at 5 per cent 



Table A3 

RESULTS OF STATIC INFORMATION MATRIX TESTS 
DIAGONAL ELEMENTS: CONSTANT 

Full Sample 

Model 

NH 

NHW 

NHNW 

NHWG 

NHNWG 

NHWM 

Test Statistic (x?) 

867.1* 

683.1* 

742.0 

898.5 

291.9 

721.7* 

1960-63 Subsample 

NH 

NHW 

NHNW 

NHWG 

NHNWG 

NHWM 

5.9 

.86 

3.6 

654.6 

.14 

.6 

* 
significant at 5 per cent 



Table A4 

RESULTS OF STATIC INFORMATION MATRIX TESTS 
DIAGONAL ELEMENTS: DAYS 

Full Sample 

Model 

NH 

NHW 

NHNW 

NHWG 

NHNWG 

NHWM 

Test Statistic (x|) 

** 
841.3 

* 
47.3 

663.4* 

118.7 

197.9 

38.3 

1960-63 Subsample 

NH 

NHW 

NHNW 

NHWG 

NHNWG 

NHWM 

11.0 

7.8 

13.3 

121.6 

14.3 

12.5 

* 
significant at 5 per cent 
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Table A5 

RESULTS OF STATIC INFORMATION MATRIX TESTS 
DIAGONAL ELEMENTS: MONTHS 

Full Sample 

Model 

NH 

NHW 

NHNW 

NHWG 

NHNWG 

NHWM 

Test Statistic (x?i) 

888.0 

122.8* 

702.9* 

337.2* 

345.6* 

87.1 

1960-63 Subsample 

NH 

NHW 

NHNW 

NHWG 

NHNWG 

NHWM 

26.0 

25.4 

13.8 

236.0* 

21.0 

11.2 

significant at 5 per cent 



Table A6 

RESULTS OF STATIC INFORMATION MATRIX TESTS 
DIAGONAL ELEMENTS: YEARS 

Full Sample 

Model 

NH 

NHW 

NHNW 

NHWG 

NHNWG 

NHWM 

Test Statistic (x?) 

735.4 

41.2 

559.2 

34.5 

213.0* 
* 

19.2 

1960-63 Subsample 

NH 

NHW 

NHNW 

NHWG 

NHNWG 

NHWM 

5.3 

2.3 

6.9 

20.6 

2.3 

9.5 

* 
significant at 5 per cent 
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Table A7 

RESULTS OF STATIC INFORMATION MATRIX TESTS 
DIAGONAL ELEMENTS: UNEMP 

Model 

NH 

NHW 

NHNW 

NHWG 

NHNWG 

NHWM 

NH 

NHW 

NHNW 

NHWG 

NHNWG 

NHWM 

Full Sample 

Test Statistic (x?) 

782.1* 
* 

34.0 

588.8* 

179.3* 

219.4 
* 

11.3 

1960-63 Subsample 

9.1 

2.0 
* 

4.8 

121.0 

.72 

1.4 

* 
significant at 5 per cent 
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Table A8 

RESULTS OF STATIC INFORMATION MATRLX TESTS 
DIAGONAL ELEMENTS: WATTS 

Full Sample 

Model 

NH 

NHW 

NHNW 

NHWG 

NHNWG 

NHWM 

Test Statistic (xf) 

2.6 

3.2 

2.9 

0.3 

3.2 

3.8 

significant at 5 per cent 
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1. In t roduct ion 

Beginning with Becker's [1968] seminal work, researchers have developed and 

tested the so-called economic theory of crime, that explains criminal behavior as a 

rational response to the relative costs and benefits of legitimate and illegitimate earnings 

and consumption prospects. 

While these efforts are generally viewed as economists' main contribution to the 

field of criminal justice, other researchers have analyzed the role of plea bargaining, either 

as an instrument by which the prosecutor may conserve scarce judicial resources (Landes 

[1971], Rhodes [1976]), or as a method by which to screen guilty suspects, and provide 

insurance against the conviction of innocent ones (Grossman and Katz [1983]). 

One aspect of crime and justice which has yet to receive attention from econom­

ists, however, is the efficient use of various sanctions to control several different categories 

of crime. The problem of efficiently allocating resources to control crimes of differing 

severity and deterrability is particularly well-suited to the methods of economic analysis, 

and of increasing policy relevance in an era of secularly increasing crime rates and fiscal 

restraint. This problem is analyzed in this paper, and tested using data on various 

categories of homicides committed in California over the period 1976-1984. 

In the first section, the basic model is set out, optimality conditions obtained and 

interpreted, and the tests to be employed described. In Sections II and III, the data and 

estimation methods are discussed. Tests of the efficiency hypothesis are reported in Sec­

tion r / , along with other results relating to the fit of the data to the economic model of 

crime. These results are summarized and conclusions drawn in the final section. 
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1. The Model 

It is assumed that there are n different types of crimes, the levels of which are 

given by the vector c = (c1,c2,...lc
n). The direct costs imposed on society in terms of lost 

and damaged property as well as psychic losses are given by the social (dis)utility func-

o rr 
tion U(c). It is assumed that U{ = — r < 0, t'=l,...n. Society, through its law enforcement 

9c' 

and judicial functions, has a number of policy measures, or sanctions, available to it to 

control crime. For the iih crime type, the levels of these sanctions are denoted 

a'' — {s[,s2, . • • ,s'm). These aj are expressed in whatever units are natural for the given 

sanction. For example, an aj may represent an apprehension or conviction probability, 

the average fine or prison sentence imposed for the t'* crime, or the proportion of capital 

punishments imposed. Collectively, the m sanctions available to control each type of 

crime are denoted by a = (a1,*2,...^"). Each crime is related to the level of sanctions by an 

aggregate crime function, which, drawing on previous research, can be thought of as the 

aggregated first-order conditions of potential criminals, who respond to the level of sanc­

tions and to legitimate employment and consumption prospects so as to maximize their 

expected utility. These reaction functions, which serve as behavioral feasibility con­

straints to society, are given as c' = f'{a',ip'), where V"' is a vector of economic and socio-

demographic variables which influence the overall level of crime but are not under the 

control of the criminal justice authorities. It is assumed that /} = ——• < 0 for all i and j . 
' 9«; 

This last assumption is based on empirical evidence rather than theory ( see Block and 

Heineke for a model in which this condition may not hold), but is the only relevant case 

to consider. Any "sanction" such that fj > 0 would optimally be set to zero. Finally, the 

budget constraint of the criminal justice authorities is given by C(s)^C, where 
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Noting that efficiency will require the exhaustion of the budget C, the criminal 

justice authorities' problem can be written as 

min L = U(e) + £A,[c'' - / '[ / ,*')] 
i - i 

+ li[C-C(a)\ 

where A = (A^Aj, . . . ,A„) and n are Lagrange multipliers. From the first-order conditions, 

one obtains 

and 

fj/cj Xk 

ff/CJ A, 

cj c; 

* i * = l «. j=*,-,m (1) 

:'=!,...,n, /,/=!,...,m (2) 

Now, A,- is the shadow value of reducing the level of the »'A crime by one unit, 

valued in social utility units, or the social disutility weight attributed to the i,h crime 

type. More heinous crimes will thus have a larger A,. Equation (1) can thus be inter­

preted as stating that resources expended on a given sanction should be allocated such 

that the marginal deterrent effect on crime type i from the marginal dollar spent on the 

sanction, relative to the marginal deterrent effect on crime type k from the marginal dol­

lar expended on that sanction, should be in proportion to the ratio of disutility weights 

attributed to those crimes by society. Equation (2) states that, for a given crime type, 

sanction levels should be chosen such that the marginal deterrent effect of each sanction 

from the last dollar spent on it are equal across sanctions. 

Equations (1) and (2) can be combined to yield 

A, -4 = A # (3) 
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That is, that sanction levels should be chosen such that marginal deterrent effect on crime 

t achieved by the marginal expenditure on sanction j equals the marginal deterrent effect 

on crime k achieved by the marginal expenditure on sanction /, when weighted by the 

respective crimes' social disutility weights. This condition (3) must hold across all crime 

types and sanctions. 

Examination of equation (3) reveals that the relative values of three factors 

influence the optimal level of a given sanction to control a specific type of crime: the 

severity of the crime (A,), the effectiveness of the sanction in deterring the crime (fj), and 

the cost of the sanction in controlling the crime (Cj). Crimes viewed as more serious by 

society will generally be sanctioned more severely, while more effective and less costly 

sanctions will find greater utilization. Barring any sort of principal-agent problems which 

would cause law enforcement officials' and prosecutors' objective functions to differ from 

the social welfare function, then, these are the potentially testable implications of the 

theory. We turn now to a discussion of how these predictions might be tested empirically. 

To test the model requires data and an estimation and testing strategy that 

allows one to isolate these three potentially counteracting influences. One such strategy 

would be to estimate aggregate crime functions of the type reported by earlier authors 

across several types of crimes, and base tests on these estimates. Two issues are apparent 

when considering such a strategy, however: the difficulty in establishing relative social 

disutility weights for many crime categories (e.g., assault and robbery), and the lack of 

any a priori notion of the relative deterrability of most crimes. 

To overcome these obstacles, the empirical analysis in this paper is based on 

crime functions estimated for several types of homicides. Specifically, data are used on 

rates of spousal and familial homicides, and on homicides known to have been committed 

pursuant to a robbery or burglary (hereafter, property crime homicides), as well as the 
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overall homicide rate. Use of such data substantially solves both problems above. First, 

one may posit that society abhors all killings per se; it is likely that societal expressions of 

greater displeasure with certain types of murders, as evidenced by desires for harsher 

penalties for certain types of homicides, may already reflect the notion that certain types 

of homicides are more deterrable than others. Second, intuition and empirical evidence 

suggests that property crimes fit the economic model of crime reasonably well, and are 

thus likely to be more deterrable than "crimes of passion" such as the slaying of one's 

spouse or other family member. 

When crime categories are equally disdained by society, equation (1) reduces to 

fi ft 

Cj Cj K } 

Assuming that costs of sanction j are roughly equal across categories, equation 

(4) indicates that efficiency requires greater sanctions against the more deterrable class of 

homicides. Together with our a priori notions of deterrability, then, the model predicts 

that criminal justice authorities should allocate greater sanctioning resources against pro­

perty crime homicides than familial or spousal homicides. 

We turn now to a description of the data used in the empirical analysis, then to a 

discussion of the tests employed. 

3. The Data 

The data employed in the analysis are from California, collected over the period 

1976-1984. The county was used as the unit of observation, which is the smallest unit for 

which data on many of the variables analyzed were available. The observations are of 

annual magnitudes; the data set is thus a time-series of cross sections. 
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The criminal justice variables were compiled from various data bases maintained 

by the California Department of Justice's Bureau of Criminal Statistics (BCS). Homicide 

counts were taken from the BCS Homicide File. This file includes a great deal of informa­

tion on each incident of homicide, including (when known) the relationship of the victim 

to the offender, and the events precipitating the crime. For this study, these data ele­

ments were used to tally familial, spousal, and property crime homicides, as well as the 

total number of homicides committed. These counts were transformed into rates by 

dividing them by the total county population (in 100,000's), provided by the California 

Department of Finance. It is important to note that the homicide rates so constructed are 

rates of deaths by homicide, rather that rates of homicide events. The empirical results 

presented below should therefore be interpreted accordingly. 

Three sanction variables are employed, including measures of the probability of 

arrest for homicide, of conviction, given arrest, and of receiving a death sentence, given 

1 2 conviction. ' 

The unemployment rate used, UNEMP, is from the California Department of 

Labor, and the personal income variable, PINC (in 100's), from the federal Department of 

Commerce's Local Area Personal Income. The variable WHITE is the percentage of the 

county population classified as white in the 1980 Census. 

Previous studies (Ehrlich [1973,1975,1977], Vandaele [1973],Passell [1975]) have 

considered the possible endogeneity of the probability of arrest measure, and have used 

per capita police expenditures in an instrumental variables framework to correct for it. 

Quite curiously, though, none of these studies considered the possible endogeneity of the 

other judicial policy variables. For our purposes, several other variables were collected to 

serve as instruments for the PCON and PDS measures, as well. 
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Per capita police expenditures, POLEXP, serve as an instrument for the arrest 

probability measure. Similarly, judicial expenditures per capita, JUDEXP, serve as an 

instrument for conviction probability. The variable PLBG, the ratio of pre-trial guilty 

verdicts to all dispositions in all Superior Court criminal cases, serves as an instrument 

for both PCOH
 a n d PDSI

 aa a measure of prosecutors' propensity to seek harsher sentences. 

Another instrument for PDS is REPVOT, the percentage of Republicans among registered 

voters. This serves as a measure of community preferences for the imposition of capital 

punishments, as may find expression in the prosecutor's recommendations at sentencing. 

More conservative communities are thought to favor death sentences. 

The variables were collected for all 58 counties for nine years. After some prelim­

inary data analysis, data from the smaller counties were found to be so affected by small 

5 

sample problems as to be of little use for the analysis. The twenty-five largest counties 

were therefore chosen for analysis , leaving 225 observations for the estimations reported 

below. 

The names and definitions of all variables used are summarized in Table 1. The 

data are summarized in Table 2. On notes that property-crime related murders 

accounted for roughly 13 per cent of the total, while familial and spousal homicides made 

up sixteen and eight percent, respectively. 

4. Estimation Methods 

The equations estimated are given as 

Homicide rateH = ot0 + a^P^.. + a2PC0N..+asPDS..+«4 UNEMPi} + a5P/M7tf + a„ YDti + atf (5) 

where the j subscript denotes the category of homicides, t denotes observations within the 

class, YDfj is a vector of dummy variables for the years 1977-1984, and tig is a random 

disturbance term. 
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Ordinary least squares (OLS) estimates of equation (5) are presented in Table 3. 

Instrumental variables (IV) estimates are given in Table 4. These IV estimates are 

obtained by estimating equation (5), with actual values of the policy variables 

PARR,PcoN,and PDS replaced by predicted values obtained by regressing each of the vari­

ables on their respective instruments and UNEMP,PINC, and YD. One notes that the 

overall fit of the model, as given by the joint x2 or R2 statistics, varies across categories. 

Further discussion of this point is deferred to the next section. 

5. Results 

The results of the study fall into two categories. The first concerns the overall fit 

of the data to the economic model of crime, and the second pertains to the test of the 

efficiency results from the model presented in Section I. 

A. The Overall Performance of the Economic Model of Crime 

We first present a general discussion of the adequacy of the economic model of 

crime to represent the different homicide rates under study. Examining the OLS estimates 

in Table 3, one notes that the PARR and PCON variables have their traditional sign in the 

overall and property crime models, while only PCON
 13 negative in the familial and spousal 

models. Further, the capital punishment variable is positive in all models. 

There are several possible explanations of this occurrence. First, while positive 

signs would lead one to necessarily reject Ehrlich's [1975] model, the less restrictive 

models of Block and Heineke [1975] and Witte [1980] are not necessarily ruled out by such 

results. However, the magnitude and apparent significance of the PDS coefficients is trou­

bling; without appealing to a very severe form of risk preference, it would appear difficult 

to explain this result within the model. Another more plausible explanation is that the 
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models are misspecified, due to the endogeneity of the judicial variables, and that the 

resultant bias in the least-squares estimates is misleading. 

Hausman's [1978] test can be used to detect model misspecification arising from 

simultaneity bias. To conduct the test, one first forms predicted values of the suspected 

endogenous sanction variables by regressing them on the maintained exogenous variables 

UNEMP, PINC, and YD, and their respective instruments. The homicide rate variables 

are then regressed on both actual and predicted values of the sanction variables, and on 

the exogenous variables. The test is then conducted as a test of the joint significance of 

the coefficients of the predicted sanction variables. 

Parameter estimates, test statistics, and significance levels are reported in Table 

5. One sees that the null hypothesis of no simultaneity is rejected most convincingly for 

the models of property crime homicides and the overall homicide rate, but not for the 

models of familial or spousal killings. These results suggest that the misspecification of the 

HRAT and HPRAT models is likely due to endogeneity of the sanction variables, while 

the HRRAT and HSRAT models likely suffer from some other, possibly deeper, form of 

misspecification. 

Instrumental variables techniques were employed to correct for the simultaneity 

problem. Results from this exercise largely confirm those of the Hausman tests. Examin­

ing Table 4, one observes that all judicial variables in the HRAT and HPRAT equations 

have traditional signs, and the PARR and Peon coefficients are significant at the five per 

cent level in both equations. Furthermore, the signs of the variables UNEMP and PINC 

are correct under traditional preference restrictions as well. The coefficient of PINC is 

significant in both equations, as is the UNEMP coefficient in the HPRAT model. The mar­

ginal significance of the UNEMP coefficient in the HRAT equation may be due to the 

slight collinearity detected between the PINC and UNEMP variables. 
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One notes also that increasing proportions of non-white residents correlate 

strongly with higher rates of homicide. This result holds for all categories examined, and 

has been reported by other Finally, the Wald statistics for overall model fit at the bottom 

of Table 4 are seen to be quite large for both of these homicide categories, strongly 

affirming the joint significance of the included regressors. researchers, as well. 

Turning to a discussion of the familial and spousal homicide rates, it should be 

noted that the results of the Hausman tests for these categories have two implications. 

First, as mentioned above, ordinary least squares should provide unbiased, consistent 

parameter estimates. Table 3 thus serves as the basis for the following discussion. 

Second, any apparent model failures are likely due to other, possibly deeper, forms of 

misspecification. 

One notes first that the economic model of crime explains quite little of the vari­

ance of either familial or spousal homicide rates. Examining the R2 measures at the bot­

tom of Table 3, one sees that the model explains only 22 and 13 percent of the variance of 

the respective categories. 

More seriously, the PARR and PDS measures enter both equations with non-

traditional sign, as does the unemployment rate. At this point, one must choose between 

the economic model of crime as an explanation for such offenses on the one hand, and 

such basic tenets as the assumption of risk aversion on the other. Further, even if one is 

willing to reject these usual risk preference assumptions, one is left having to explain why 

an increase in the probability of conviction, given arrest, might deter such murders, but 

an increase in the arrest probability has the opposite effect. One is tempted to conjecture 

that explanations would entail truly bizarre preferences over different types of risk. 

Finally, given the lack of simultaneity bias for these categories, both OLS and IV 

should provide consistent parameter estimates. For a properly specified model, then, 



164 

these estimates should be roughly equal. Comparing the coefficients for these categories 

from Tables 3 and 4, however, one sees that some of these coefficients change sign, and 

several differ by orders of magnitude, further eroding ones confidence in the model's abil­

ity to serve as an adequate representation of the data. 

Further insights into the adequacy of the economic model of crime may be gained 

from comparing the elasticities of the homicide rates with respect to the explanatory vari-

ables, defined as ex = —r-— for dependent variable y and explanatory variable X. These 
9 A y 

elasticities, evaluated at the variable means, are given in Table 6 for those coefficients 

which enter the equations with traditional sign. One sees that the PARR variable has 

roughly three times the effect on property crime homicides as on the overall rate, while 

the conviction threat measure has somewhat less than twice the impact in the latter 

category as the former. It may be interesting to note that, if one ignores the 

insignificance of the PDS coefficient, the ranking of the judicial elasticities for both of these 

categories is that required by Ehrlich's [1975] theoretical model, that 

epAiut < epcoN < epDs < °' Given the statistical insignificance of epDS from zero, however, it 

would be erroneous to interpret this finding as corroborating his results. 

The rate of property crime homicides is seen to be almost three times as sensitive 

to changes in the unemployment rate as homicides overall. These felony murders are also 

more responsive to changes in personal income. This seems in accord with intuition that 

suggests that property crimes, of which homicide is a probabilistic outcome, should be 

particularly responsive to changes in legitimate earnings opportunities. 

We also see that the effects of those explanatory variables with traditional signs 

are much weaker in the models of familial and spousal murders than in the property crime 

and overall equations. Again, this observation is consistent with the intuition suggested 

above. 
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Finally, before presenting the tests of the model presented in Section I, we turn 

attention to results pertaining to the deterrent effect of capital punishment. In the 

models of familial and spousal homicide rates, the PDS coefficient has positive sign. There 

seems to be little of inferential value here, however, given the small t-values of the 

coefficients and gross misspecification of the model which generated them. 

In the HRAT and HPRAT equations, however, the PDS variable has plausible 

signs. The t-values are quite low, however: one cannot reject the null hypothesis that 

increases in the probability of a death sentence have no deterrent effect. We now proceed 

to discuss the empirical tests of the theoretical predictions derived in Section I. 

B. Tests of the Model of Efficient Sanctioning Policy 

In this context, the results of the Hausman tests have behavioral as well as techn­

ical implications. A finding of endogeneity between a particular homicide rate and the 

sanction variables indicates that police and prosecutorial efforts respond to changes in the 

level of homicides of that type, with increases in criminal activity calling forth increases in 

criminal justice sanctioning. The theoretical predictions and ensuing discussion from Sec­

tion I suggest that increases in property crime homicides should call forth such a response, 

while rising spousal or familial homicide rates may not. 

Turning again to Table 5, we see that these predictions are confirmed. The test 

statistics at the bottom of the table strongly suggest that sanctioning levels are responsive 

to changes in the rates of property crime homicides, and to changes in the overall rate. 

Among these categories of homicides, a measure of the relative responsiveness of 

criminal justice policy can be obtained by comparing the coefficients of the sanction vari­

ables from the IV estimates in Table 4 with those from the OLS estimates in Table 3. 

The ratio of the IV estimate of the PARR variable to the OLS estimate in the HRA T model 
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is 9.2, while the corresponding ratio for the PCON measure is 17.4 . The respective ratios 

in the HPRAT category are 15.9 and 66.1 . This finding appears to strengthen the 

confirmation of the theory, as it suggests that the criminal justice response is strongest for 

the category of homicide believed to be most deterrable. 

On the other hand, the test statistics at the bottom of Table 5 indicate no 

response of sanction levels to changes in familial or spousal homicide rates. This again is 

as predicted by the theory, as such crimes were posited to be less deterrable on a priori 

grounds. 

Of course, a more direct test of the theory could be conducted by comparing 

actual sanctions and law enforcement and prosecutorial expenditure levels for each 

category of homicide. Such finely detailed data that would be necessitated by this 

approach were not available to us, however: by and large, the broad predictions of the 

theory, that the greatest criminal justice resources be expended where they are most 

effective, is confirmed the the available data. 

6. Summary and Conclusions 

The main results tsf the study can be summarized in the following way. First, 

law enforcement and judicial policy efforts appear to be allocated in a broadly efficient 

manner, responding to potentially more deterrable types of homicide, but not to those one 

might characterize as crimes of passion. 

Next, the standard economic model of crime appears to offer an adequate expla­

nation for overall homicide rates, and for rates of homicides committed pursuant to 

crimes of acquisition. As an explanation of familial and spousal murder rates, however, 

the model is quite poor. 
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Homicides committed pursuant to crimes of acquisition are more sensitive to 

changes in both significant sanction variables. Increases in the arrest threat measure are 

roughly three times as effective in deterring property crime murders as homicides overall, 

while increased probability of conviction has roughly twice the effect in the property crime 

as in the overall category. Increases in the unemployment rate are related to increases in 

both of these categories of homicide: the effect of such increases on property crime murd­

ers is roughly three times that on murders overall. The effects of changes in personal 

income are stronger in the former category, as well. Increased death sentences had no 

effect on homicide rates in California over the period examined. 

It should also be noted that the results indicate considerable responsiveness of 

homicide rates to changes in unemployment and income. Effective manpower programs 

are therefore likely to have societal benefits beyond their direct employment and income 

effects, which should be included in program design and evaluation. 

Finally, to the extent that these results may in part be determined by unmeas­

ured infiuences specific to California, research to corroborate or refute these results, based 

on data from other jurisdictions, would be invaluable to increasing understanding. 



168 

Footnotes 

1. The probability of arrest measure used is the ratio of clearances for homicide to the 

number of homicides. Unfortunately, these clearance data are not reported as line items, 

but rather only in summary fashion. Thus, the calculation of crime-type-specific arrest 

probabilities is impossible. The probability of conviction measure is taken as the ratio of 

convictions for murder to the number of arrest dispositions for murder. The threat of 

execution measure, PDS, is the ratio of the number of death sentences imposed to the 

number of murder convictions. 

•2. No measure of alternative penal sanctions, such as length of imprisonment, was 

included for several reasons. First, it is difficult to conceive of a useful measure of 

expected sentence length when the unit of observation is the county, while sentencing sta­

tutes apply statewide. The measure typically used is the average length of time served by 

prisoners released in the current period. When this measure was employed in the current 

analysis, it entered with traditionally plausible sign, but was highly insignificant. As it 

caused minimal changes in other parameter values, it was dropped from the analysis. 

Further, California's determinate sentencing law was enacted in 1978, under which per­

sons convicted of a given offense receive (and serve) a set term. This bears on the analysis 

in two ways. First, the average sentence of prisoners currently released from prison, who 

were necessarily sentenced under earlier indeterminate sentencing practices, is likely to be 

an inadequate measure of expected sentence for individuals currently contemplating a 

crime. Second, it suggests that the expected sentence should equal the statutory sentence, 

which is then equal across counties and over time (at least since 1978). The effect of this 

expected sentence variable is therefore subsumed in the constant term. While the deter­

minate sentencing law then precludes estimation of the effect of alternative sanctions, it 
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also ensures that the other parameters estimated are not corrupted by omitted variable 

bias. 

3. Both of these measures are from California Department of Finance sources. 

4. Data for PLBG were obtained from the Annual Report of the California Judicial Coun­

cil. 

5. For example, while the mean homicide rates for the more and less populous counties 

were roughly equal, the variance of the latter was twice that of the former. Further, in 

tiny Alpine county, population 1100, homicide rates per 100,000 would swing from zero, 

or roughly one standard deviation below the mean, to 111, or more than ten standard 

deviations above the mean, as the result of one homicide there. 

6. Results from the top 20 and top 31 counties, or all those included in a Metropolitan 

Statistical Area, were very similar. 

7. Further specification tests were performed on the reduced forms of the homicide equa­

tions, both as a further, general check on the adequacy of the models, and to ensure that 

rejection of the exogeneity hypothesis was in fact attributable to simultaneity bias, rather 

than some other form of misspecification detected by the tests. These test results, and 

the reduced form equations on which they are based, are reported in the Appendix. In 

general, these tests indicate the overall adequacy of the specification of the models, and 

suggest that the rejection of the exogeneity tests in the HRAT and HPRAT equations was 

due to simultaneity bias. 
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Appendix 

In Table Al are presented the four reduced form homicide equations implied by 

the instrumental variables estimation reported in Section III. Table A2 contains several 

Xig test statistics used both to test the general adequacy of the specifications and to deter­

mine whether rejection of the exogeneity tests reported in Section IV might be due to 

some form of misspecification other than simultaneously bias. 

The tests were conducted by comparing OLS estimates of the reduced form with 

weighted or generalized least squares (GLS) estimates, where the weights used were vari­

ous functions of the instrumental variables. Under the null hypothesis of no model 

misspecification, OLS and GLS estimates are both consistent, and OLS estimates are 

efficient, as well. Hausman's method can be used in such circumstances to compute gen­

eral tests of model specification. The test statistics presented in Table A2 take the gen­

eral form 

H = [POLS - POLS) ' [ HPOLS) - KPOLS)]'1 0GLS ~ POLS) 

The statistic H has an asymptotic x2 distribution with degrees of freedom equal to the 

number of parameters in the model. 

Turning to the results of the tests in Table A2, one sees that the null hypothesis 

of no misspecification is accepted at the 5 per cent level for all tests except one. The 

rejection of the null when the observations were weighted was largely due to changes in 

the estimated REPVOT and PINC coefficients. Taken as a whole, however, the test 

results appear to indicate the overall adequacy of the specification of these equations, and 

bolster our confidence that the rejection of the exogeneity tests in the HRAT and HPRAT 

models was in fact due to simultaneity bias. 
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Table 1 

VARIABLE DEFINITIONS 

Variable Definition 

HRAT Overall Homicide Rate 

HPRA T Rate of homicides known to 
have been committed pursuant 
to robberies or burglaries 

HRRA T Rate of homicides in which 
victim and offender are known 
to be related. 

HSRA T Rate of homicides in which 
victim and offender are known 
to be married. 

PARR Arrest probability 

PCON Probability of conviction for 
murder, given conviction 

PDS Probability of receiving a death 
sentence, given conviction 

UNEMP Unemployment rate 

PINC Real personal income per capita 
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Table 2 

SUMMARY STATISTICS 

Variable 

HRAT 

HPRAT 

HRRAT 

HSRAT 

PARR 

PCON 

PDS 

UNEMP 

PINC 

POLEXP 

JUDEXP 

PLBG 

REPVOT 

Mean 

9.32 

1.28 

1.39 

0.69 

0.71 

0.43 

0.037 

8.52 

43.41 

67.48 

0.03 

72.41 

34.88 

Standard deviation 

4.74 

1.12 

0.81 

0.54 

0.14 

0.22 

0.089 

2.69 

7.96 

19.07 

0.005 

9.62 

6.05 



Table 3 

ORDINARY LEAST SQUARES ESTIMATION RESULTS 

Variable 

CONSTANT 

PARR 

PCON 

PDS 

UNEMP 

PINC 

WHITE 

777 

778 

179 

780 

781 

782 

783 

784 

R2 

Adjusted R2 

Standard Error 

HRAT 

47.11 
(13.10) 

-5.15 
(-3.50) 

-3.23 
(-3.65) 

8.67 
(5.35) 

0.21 
(1.93) 

-0.13 
(-3.66) 

-0.37 
(-15.90) 

1.11 
(1.34) 

1.19 
(1.58) 

2.37 
(3.38) 

2.47 
(2.71) 

1.58 
(1.77) 

-1.06 
(-1.49) 

-2.16 
(-2.94) 

-1.19 
(-1.53) 

.60 

.58 

3.08 

HPRAT 

6.61 
(6.59) 

-1.06 
(-2.63) 

-0.14 
(-0.48) 

0.79 
(1.65) 

0.13 
(3.48) 

0.011 
(1.12) 

-0.079 
(-10.60) 

0.52 
(2.36) 

0.44 
(2.36) 

0.54 
(3.01) 

0.64 
(2.91) 

0.69 
(3.04) 

0.18 
(0.84) 

-0.14 
(-0.71) 

0.077 
(0.40) 

.49 

.45 

0.83 

Category 
HRRAT 

5.10 
(6.29) 

0.72 
(1.83) 

-0.46 
(-2.30) 

0.56 
(1.09) 

-0.0062 
(-0.24) 

-0.078 
(-3.46) 

-0.034 
(-5.76) 

0.042 
(0.16) 

-0.022 
(-0.15) 

0.11 
(0.51) 

-0.16 
(-0.68) 

0.039 
(0.18) 
-0.19 

(-0.83) 

-0.26 
(-1.30) 

-0.20 
(-0.92) 

.22 

.17 

0.74 

HSRAT 

2.55 
(4.30) 

0.29 
(1.06) 

-0.24 
(-1.76) 

0.27 
(0.68) 

-0.021 
(-1.17) 

-0.015 
(-2.60) 

-0.012 
(-2.89) 

-0.17 
(-0.96) 

-0.17 
(-0.94) 

-0.042 
(-0.25) 

-0.26 
(-1.51) 

-0.026 
(-0.15) 

-0.30 
(-1.78) 

-0.37 
(-2.23) 

-0.30 
(-1.91) 

.13 

.07 

0.52 

t-statistics (in parentheses) based on standard errors of White (1985) 



Table 4 

INSTRUMENTAL VARIABLES ESTIMATION RESULTS 

Variable 

CONSTANT 

PARR 

PCON 

PDS 

UNEMP 

PINC 

WHITE 

777 

778 

779 

780 

781 

782 

783 

784 

Joint x?5 
Standard Error 

HRAT HPRAT 

99.65 
(8.55) 

-47.23 
(-3.30) ( 

-56.18 
(-3.31) ( 

-13.70 
(-0.61) ( 

0.26 
(1.28) 

-0.32 
(-4.65) ( 

-0.19 
(-4.29) ( 

-3.10 
(-2.05) ( 

-2.13 
(-1.56) ( 

0.66 
(0.41) ( 

-0.56 
(-0.34) ( 

-4.91 
(-2.60) ( 

-11.97 
(-2.86) ( 

-12.45 
(-4.46) 

-13.30 
(-4.56) 

211.31 1 

3.06 

23.62 
(8.18) 

16.86 
-4.76) 

12.05 
-2.87) 

-7.07 
-1.28) 

0.094 
(1.90) 

-0.059 
-3.44) 

-0.024 
-2.19) 

-1.01 
-2.70) 

-0.78 
-2.30) 

-0.31 
-0.79) 

-0.64 
-1.56) 

-0.92 
-1.97) 

-2.05 
-1.97) 

-2.68 
[-3.87) 

-3.04 
[-4.22) 

89.41 

0.76 

Category 
HRRAT 

3.00 
(1.07) 

5.28 
(1.53) 

-7.07 
(-1.73) 

-10.27 
(-1.90) 

0.058 
(1.22) 

-0.0087 
(-0.52) 

-0.022 
(-2.06) 

-0.037 
(-0.10) 

-0.17 
(-0.52) 

0.66 
(1.69) 

0.20 
(0.50) 

-0.58 
(-1.28) 

-1.58 
(-1.57) 

-0.68 
(-1.02) 

-0.74 
(-1.05) 

53.48 

0.74 

HSRA1 

0.18 
(0.09) 

5.13 
(2.14) 

-6.00 
(-2.11) 

-5.32 
(-1.42) 

0.042 
(1.26) 

0.0042 
(0.04) 

-0.0069 
(-0.93) 

-0.036 
(-0.14) 

-0.12 
(-0.50) 

0.49 
(1.82) 

0.19 
(-0.68) 

-0.54 
(-1.70) 

-1.63 
(-2.33) 

-0.85 
(-1.82) 

-0.82 
(-1.67) 

35.09 

0.51 

t-statistics in parentheses 
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Table 5 

HAUSMAN TESTS FOR ENDOGENEITY 

Coefficients 

PARR 

PCON 

PDS 

PARR 

PCON 

PDS 

F 

prob FSi20a 

HRAT 

-4.70 

-2.70 

8.66 

-36.57 

-57.67 

-32.06 

11.65 

0.00 

HPRAT 

-0.89 

0.032 

0.77 

-15.59 

-12.52 

-9.83 

16.48 

0.00 

Category 

HRRAT 

0.59 

-0.47 

0.69 

5.20 

-6.68 

-9.57 

1.81 

0.145 

HSRAT 

0.19 

-0.25 

0.34 

5.23 

-5.83 

-5.19 

2.30 

0.075 
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Table 6 

ELASTICITIES OF VARIABLES WITH TRADITIONAL SIGNS* 

Elasticity Category 

HRAT HPRAT HRRAT HSRAT 

eP/uul -3.61 -9.38 

ePcm -2.57 -4.00 -0.14 -0.15 

eP„„ -0.0055 -0.021 

rDS 

eUNEMP 0'23 0.63 

(•Pine -1.50 -2.00 -0.87 -0.94 

evaluated at sample means 

¥ 



Table A l 

REDUCED FORM ESTIMATES OF THE HOMICIDE EQUATIONS 

Variable Category 

CONSTANT 

POLEXP 

JUDEXP 

PLBG 

REPVOT 

UNEMP 

PINC 

WHITE 

777 

778 

779 

780 

781 

782 

783 

784 

R2 

Standard Error 

HRAT 

28.70 
(5.31) 

0.10 
(5.07) 

0.008 
(0.07) 

-0.02 
(-0.76) 

0.07 
0-45) 
0.28 

(2.08) 

-0.12 
(-3.13) 

-0.28 
(-7.27) 

-0.90 
(-0.90) 

-1.91 
(-1.74) 

-0.46 
(-0.41) 

0.25 
(0.24) 

0.34 
(0.34) 

-1.38 
(-1.41) 

-2.95 
(-2.87) 

-2.14 
(-2.08) 

.59 

3.13 

HPRAT 

1.99 
(1.49) 

0.03 
(6.36) 

-0.21 
(-0.83) 

-0.006 
(-0.88) 

' 0.003 
(0.29) 

0.14 
(4.29) 

0.006 
(0.57) 

-0.05 
(-4.73) 

-0.06 
(-0.25) 

-0.51 
(-1.88) 

-0.37 
(-1.36) 

-0.05 
(-0.21) 

0.18 
(0.77) 

-0.14 
(-0.60) 

-0.62 
(-2.45) 

-0.44 
(-1.72) 

.56 

0.77 

HRRAT i 

7.13 
(5.61) | 

-0.004 
(-0.80) (• 

-0.04 
(-1.80) (• 

-0.01 
(-2.13) ( 

0.009 
(0.88) ( 

-0.02 
(0.76) ( 

-0.03 
(-3.03) ( 

-0.43 
(-4.76) ( 

0.12 
(0.52) ( 

0.05 
(0.20) ( 

0.20 
(0.77) 

-0.09 
(-0.36) (• 

0.22 
(0.97) 

0.10 
(0.46) (• 

-0.20 
(-0.08) (• 

0.04 
(0.16) ( 

.22 

0.74 



Table A2 

HAUSMAN TESTS FOR GENERAL MISSPECIFICATION 

Weights 

Square root of: 

POLEXP 

TOTEXP" 

REPVOT 

Notes: 

HRAT 

7.53 

7.52 

4.85 

Catt 

HPRAT 

7.35 

7.35 

34.39 

Jgory 

HRRAT 

2.33 

2.31 

15.90 

HSRAT 

5.81 

5.78 

~ 

a - TOTEXP = POLEXP + JUDEXP 

* - Significant at 5 per cent 
Dashed cell indicates non-positive definiteness of 
covariance matrix. Other instruments (JUDEXP, PLBG) 
were also used as weights, but covariance matrices 
were not positive definite. 



179 

References 

Baldus, D., and J. Cole. "A Comparison of the Work of Thorsten Sellin and Issac Ehrlich 

on the Deterrent Effect of Capital Punishment." Yale Law Review, December 

1975, pp. 170-186. 

Becker, G. "Crime and Punishment: An Economic Approach." Journal of Political Econ­

omy, March/April 1968, pp. 169-217. 

Block, M. K., and J. M. Heineke. "A Labor Theoretic Analysis of the Criminal Choice." 

American Economic Review, June 1975, pp. 314-325. 

Block, M. K., and R. C. Lind. "An Economic Analysis of Crimes Punishable by Impris­

onment." Journal of Legal Studies, June 1975, pp. 479-492. 

Blumstein, A., J. Cohen and D. Nagin. "Report of the Panel on Research on Deterrent 

and Incapacitative Effects" in Deterrence and Incapacitation: Estimating the 

Effects of Criminal Sanctions on Crime Rates. Washington: National 

Academy Press, 1978. 

Blumstein, and J. Cohen, eds. Criminal Careers and "Career Criminals". Washington: 

National Academy Press, 1986. 

Bowers, W. and G. Pierce. "The Illusion of Deterrence in Isaac Ehrlich's Research on 

Capital Punishment." Yale Law Journal, December 1975, pp. 187-208. 



180 

Department of Commerce, Local Area Personal Income, various years. 

Ehrlich, I. "Participation in Illegitimate Activities: a Theoretical and Empirical Investi­

gation". Journal of Political Economy, May /June 1973, pp. 521-565. 

Ehrlich, I. "The Deterrent Effect of Capital Punishment: A Question of Life and Death." 

American Economic Review, June 1975, pp. 397-417. 

Ehrlich, I. "Capital Punishment and Deterrence: Some Further Thoughts and Additional 

Evidence." Journal of Political Economy, August 1977, pp. 741-788. 

Fisher, F., and D. Nagin. "On the Feasibility of Identifying the Crime Function in a 

Simultaneous Model of Crime Rates and Sanction Levels." in A. Blumstein, J. 

Cohen and D. Nagin, Deterrence and Incapacitation: Estimating the Effects of 

Criminal Sanctions on Crime Rates Washington, D.C.: National Academy of 

Sciences, 1978. 

Friedman, Lee S. "The Use of Multiple Regression Analysis to Test for a Deterrent Effect 

of Capital Punishment: Prospects and Problems" Unpublished manuscript, 

1976. 

Hausman, J.A. "Specification Tests in Econometrics." Econometrica, November 1978, 

pp. 1251-1271. 

Klein, L., B. Forst, and V. Filatov. "The Deterrent Effect of Capital Punishment: An 

Assessment of the Estimates." in A. Blumstein, J. Cohen and D. Nagin, 



181 

Deterrence and Incapacitation: Estimating the Effects of Criminal Sanctions 

on Crime Rates Washington, D.C.: National Academy of Sciences, 1978. 

Manski, C. F. "Prospects for Inference on deterrence through Empirical Analyses if Indi- -

vidual criminal Behavior." in A. Blumstein, J. Cohen and D. Nagin, Deter­

rence and Incapacitation: Estimating the Effects of Criminal Sanctions on 

Crime Rates Washington, D.C.: National Academy of Sciences, 1978. 

McManus, M. "Estimates of the Deterrent Effect of Capital Punishment: The Importance 

of the Researcher's Prior Beliefs." Journal of Political Economy, April 1985, 

pp. 417-425. 

Myers, S. L. "Estimating the Economic Model of Crime: Employment versus Punishment 

Effects." Quarterly Journal of Economics, February 1983, pp. 157-175. 

Passell, P. "The Deterrent Effect of the Death Penalty: A Statistical Test." Stanford Law 

Review, November 1975, pp. 61-80. 

Passell, P. and J. Taylor. "The Deterrence Controversy: A Reconsideration of the Time-

Series Evidence." in H. Bedau and C. Pierce, eds., Capital Punishment in the 

United States, New York: AMS Press, 1976. 

Peck, J. K. "The Deterrent Effect of Capital Punishment: Ehrlich and his Critics." Yale 

Law Journal, January 1976, pp. 359-367. 

Petersilia, J., S. Turner, J. Kahan, and J. Peterson. "Granting Felons Probation." no. 



182 

R-3186-NIJ, Rand Corporation, January 1985. 

Schmidt, P., and A. D. Witte. An Economic Analysis of Crime and Justice. Orlando: 

Harcourt Brace, 1984. 

Sjoquist, D. L. "Property Crime and Econimic Behavior: Some Empirical Results." 

American Economic Review, June 1973, pp. 439-446. 

Thompson, J.W., M. Sviridoff, and J.E. McElroy. Employment and Crime: A Review of 

Theories and Research. Washington, D.C.: National Institute of Justice, 

1981. 

White, H. " "Specification Testing in Dynamic Models." mimeo, University of California, 

San Diego, August 1985. 

Witte, A. D. "Estimating the economic Model of Crime with Individual Data." Quar­

terly Journal of Economics, February 1980, pp. 57-84. 

Zeisel, H. "The Deterrent Effect of the Death Penalty: Facts vs. Faiths", The Supreme 

Court Review, 1976. 




