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Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease characterized by loss of upper and lower motor
neurons. ALS is considered to be a complex trait and genome-wide association studies (GWAS) have implicated a few susceptibility
loci. However, many more causal loci remain to be discovered. Since it has been shown that genetic variants associated with
complex traits are more likely to be eQTLs than frequency-matched variants from GWAS platforms, we conducted a two-stage
genome-wide screening for eQTLs associated with ALS. In addition, we applied an eQTL analysis to finemap association loci.
Expression profiles using peripheral blood of 323 sporadic ALS patients and 413 controls were mapped to genome-wide
genotyping data. Subsequently, data from a two-stage GWAS (3,568 patients and 10,163 controls) were used to prioritize eQTLs
identified in the first stage (162 ALS, 207 controls). These prioritized eQTLs were carried forward to the second sample with both
gene-expression and genotyping data (161 ALS, 206 controls). Replicated eQTL SNPs were then tested for association in the
second-stage GWAS data to find SNPs associated with disease, that survived correction for multiple testing. We thus identified
twelve cis eQTLs with nominally significant associations in the second-stage GWAS data. Eight SNP-transcript pairs of highest
significance (lowest p = 1.27610251) withstood multiple-testing correction in the second stage and modulated CYP27A1 gene
expression. Additionally, we show that C9orf72 appears to be the only gene in the 9p21.2 locus that is regulated in cis, showing the
potential of this approach in identifying causative genes in association loci in ALS. This study has identified candidate genes for
sporadic ALS, most notably CYP27A1. Mutations in CYP27A1 are causal to cerebrotendinous xanthomatosis which can present as a
clinical mimic of ALS with progressive upper motor neuron loss, making it a plausible susceptibility gene for ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative

disease characterized by progressive muscle weakness caused by

loss of central and peripheral motor neurons. Symptoms typically

have a localized limb or bulbar onset and progress to other muscle

groups of the body. Denervation of respiratory muscles and

dysphagia leading to respiratory complications are the most

common causes of death. There is no cure for this rapidly

progressive disease.

Approximately 5% of patients have a family history of ALS [1].

All other cases are considered to have a sporadic form of the

disease. ALS is considered to be a disease of complex etiology with

both genetic and environmental factors contributing to disease

susceptibility [2]. These genetic factors are the subject of extensive

research [3]. Multiple genome-wide association studies (GWAS)

and candidate gene studies have been carried out, implicating

several genes in the susceptibility to ALS [4–8], but attempts to

replicate most of these genes have proven difficult [9–13].

Recently, our group has published a GWAS comprising over

4,800 patients and nearly 15,000 controls and identifying UNC13A

and 9p21.2 as susceptibility loci for sporadic ALS [7]. The 9p21.2

locus was recently replicated in an independent set of British

patients and controls [12] and also shown to be strongly associated

with ALS in Finland [14]. This locus was previously found to be

one of the linked loci in families with ALS and frontotemporal

dementia (FTD), and it was recently shown that a hexanucleotide

repeat expansion in C9orf72 was the basis of this linkage signal

[15,16].

Despite these large study samples, GWAS have been able to

explain only little of the genetic variation in ALS [4–7]. An

important drawback of GWAS is the burden of multiple-testing

correction, requiring even larger sample sizes in order to be able to

detect small effects. It is common practice to apply a strict

Bonferroni correction to GWAS data. With so many tests, there is

a high false-negative rate, as true associations are hidden in the fog

of random associations.

It has been established that gene expression levels can be

mapped to genomic variation as a quantitative trait in order to

detect so-called expression quantitative trait loci (eQTLs) [17–19].

Recently, it has been shown that trait-associated SNPs are more

likely to be eQTLs [20], making the systematic analysis of eQTLs

in the context of a GWAS a promising tool for the discovery of

novel disease-causing genes. In addition, eQTLs can have local

and distant effects, allowing for the identification of parts of

biological networks related to disease. These networks might be

the link between several different genetic variants that appear to be

associated with a disease in a GWAS [19]. In practical terms, in

order to identify eQTLs associated with disease, both genome-

wide genotype data as well as genome-wide gene expression levels

have to be collected. The focused genetic mapping of gene

expression levels has frequently been applied to the fine-mapping

of risk loci resulting from GWAS, for example in the study of

asthma [21] and Crohn’s disease [22]. Furthermore, genome-wide

eQTL analysis has proven fruitful in the study of diseases including

obesity [23], hypercholesterolemia [24], celiac disease [25], and

late-onset Alzheimer disease [26]. In the present study, we have

performed a genome-wide screen for eQTLs associated with

susceptibility to ALS.

A schematic overview of our study design is shown in Figure 1.

We performed an initial screen for eQTLs in an eQTL discovery

set. The eQTL SNPs resulting from this screen that had a

nominally significant effect in a discovery set from our previously

published GWAS [7] were selected for follow-up in the eQTL

replication set. Ultimately, replicated eQTLs were tested for

significant effects in the GWAS replication data, correcting for

multiple testing.

Methods

Ethics Statement
All participants gave written informed consent and approval

was obtained from the Institutional Review Board of the

University Medical Center Utrecht. The present study was

conducted according to the principles expressed in the Declaration

of Helsinki.

GWAS Data
Genome-wide genotype data were derived from a previously

published GWAS of sporadic ALS in seven countries (The

Netherlands, Belgium, France, Ireland, United Kingdom, Sweden,

United States) [7]. All patients fulfilled the 1994 El Escorial criteria

for probable or definite ALS [27]. Cohorts for which genome-wide

SNP data were available were included. For both the discovery

and replication set, genotype files with Illumina Beadchip data

(HumanHap 300K, HumanCNV 370K, HumanHap 550K or

HumanHap 610K platforms) were merged and the following

quality control measures were taken. Only SNPs common to all

cohorts were used. Triallelic and C/G or A/T SNPs were

excluded. Genotype files were merged, and after each merge, a

flipscan (scan for possible allele swaps) was performed in PLINK

Figure 1. Study design. For each step, the number of resulting SNP-
transcript pairs in cis is shown.
doi:10.1371/journal.pone.0035333.g001
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v1.07 [28]. SNPs with call rate ,95%, minor allele frequency

,5%, deviation from Hardy-Weinberg equilibrium in controls

(p,161024), or with differing heterozygosity or missing rates

between cases and controls were excluded. Duplicate samples,

samples with a genotyping rate ,95%, samples without gender

information, or samples where the genotypic gender did not match

the phenotype file gender were excluded. LD-based SNP pruning

was used to determine a subset of SNPs in approximate linkage

equilibrium. This subset of SNPs was used to identify related

samples, which were subsequently removed (pi-hat .0.2). The

software package EIGENSTRAT was used to detect population

substructure by principal components analysis [29]. HapMap

phase III release 2 genotypes were added into this analysis in order

to determine population outliers. After removal of population

outliers, new principal components were calculated. More detailed

data on included subjects, genotyping methods, and quality

control are available in Text S1 and Table S5.

Expression Data
Genome-wide gene expression data were obtained from 805

Dutch individuals (357 patients and 448 controls), who were also

genotyped on either the HumanHap 300K, HumanCNV 370K or

HumanHap 550K platforms in the previously described GWAS

[7]. Patients were recruited at our referral clinic for motor neuron

disease at the University Medical Center Utrecht, The Nether-

lands. Included patients were diagnosed with probable or definite

sporadic ALS according to the 1994 El Escorial criteria [27].

Messenger RNA was collected and extracted from peripheral

whole blood using PAXgene tubes and PAXgene extraction kit

(Qiagen). Samples were hybridized to Illumina HumanHT-12v3

Expression BeadChips. Case and control samples were randomly

assigned to the chips and all chips were run in one batch. Before

quality control, expression levels were available for 48,803 probes.

Raw expression data were quantile normalized and log2

transformed [30] in R (2009, The R Foundation for Statistical

Computing). Using principal components analysis of expression

data, outlier arrays were detected. Non-pseudoautosomal Y

chromosome transcript expression levels were used for a gender

check. Outlier arrays, samples with inconsistent gender informa-

tion, and samples designated as duplicates in our GWAS data,

were removed from the raw data (n = 67). Also, non-autosomal

probes were excluded (n = 2,002). The thus obtained trimmed raw

dataset was again quantile normalized and log2 transformed. All

probe sequences were aligned to the NCBI build 36 reference

genome using UCSC’s Genome Browser function BLAT [31].

Non-specific probes, defined as no or multiple hits with a sequence

homology .95%, were removed (n = 7,234). RefSeq (updated on

27 September 2010) and UniGene (build #228, release date 29

October 2010) databases were used to determine probes mapping

to transcripts designated as retired and these probes were excluded

as well (n = 2,449), leaving 37,118 gene-expression probes.

eQTL Datasets
For the genetic mapping of gene expression, the subset of Dutch

individuals with both genome-wide genotype and expression data

was tested for population substructure by principal components

analysis of genomic data using EIGENSTRAT [29]. By inspecting

the first two principal components, two outlier samples (one case,

one control) were identified and excluded. Subsequently, new

principal components were calculated. Non-autosomal SNPs were

removed from the eQTL analysis. We randomly split our

expression dataset to form equally sized discovery and replication

sets (Table S1).

Statistical Analysis
For the GWAS data, association with disease was tested in a

logistic model using gender, dummy-coded nationality and the first

eight principal components in order to correct for ancestry as

covariates. To determine the number of principal components to

be included in the logistic regression model, the first ten principal

components from the EIGENSTRAT [29] analysis were tested for

association with case/control status (threshold p,0.05). For the

GWAS discovery set, eight principal components were included in

the logistic model, while for the GWAS replication set two

principal components were included. Analyses were performed in

PLINK v1.07 [28] and R (2009, The R Foundation for Statistical

Computing).

For all analyses involving expression data, Surrogate Variable

Analysis (SVA) was used to account for heterogeneity in gene

expression due to known and unknown environmental, technical

or demographic factors [32]. SVA captures these factors into

covariates for use in statistical models. Additionally, ‘riluzole use’

status was obtained, the only drug available to ALS patients with

proven effect on survival.

For the eQTL analyses, SNP genotypes coded as an additive

genetic model were tested for association with gene expression by

linear regression using disease status, age, gender, surrogate

variables (18 in the discovery set and 19 in the replication) and

riluzole use as covariates. Cis eQTLs were defined as SNPs

modulating transcript expression levels within a region of 1Mb

surrounding a probe’s genomic midpoint [26]. False-positive cis

effects may, however, occur due to SNPs that are located within a

transcript probe or that are in linkage disequilibrium (LD) with

SNPs mapping within a transcript probe [33]. We used the Broad

Institute SNAP tool v2.2 [34] to determine pairwise LD between

cis effect SNPs and SNPs mapping to a transcript probe in either of

the HapMap phase III release 2 or 1000 Genomes Pilot 1 CEU

panels. 21,863 SNP-transcript combinations (pairwise LD thresh-

old r2 .0.2) were excluded from analysis. Similarly, we removed

24,170 SNP-transcript combinations with an InDel overlapping

with a transcript probe, according to the Database of Genomic

Variants (version 10, November 2010) [35]. There were 3,541,781

possible SNP-transcript combinations in cis left for analysis. The

number of possible combinations in cis was used for Benjamini-

Hochberg false discovery rate (FDR) calculations. Significant cis

effects were those SNP-transcript pairs that had significant p

values at an FDR of 5% after 10,000 permutations. Permutations

were performed swapping case/controls labels so that each subject

is assigned the genotype vector of another random subject, while

the expression matrix is unchanged. This prevents the underes-

timation of the null distribution, thereby preventing the detection

of false-positive eQTLs, as described previously [36]. Analyses

were performed in PLINK [28] and R (2009, The R Foundation

for Statistical Computing).

eQTL Selection
In order to link the identified eQTLs to disease, we made a

selection of significant cis effects in the eQTL discovery set. Recent

studies on the genetics of gene expression have shown that disease-

associated loci from GWAS are greatly enriched for eQTLs

[20,25]. Thus, we selected SNP-transcript pairs that had a

nominal SNP p value ,0.05 in our GWAS discovery data

(Figure 1).

Only these SNP-transcript pairs were used for follow-up in the

replication data. Patient characteristics for the expression

replication dataset are presented in Table S1. SNP genotypes

were correlated to gene expression levels following a similar

Mapping of Gene Expression in Sporadic ALS
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statistical analysis as used for our discovery set. Again, a 5% FDR

significance threshold was applied.

Subsequently, association with ALS for SNPs from the

replicated cis SNP-transcript pairs was tested in the GWAS

replication data by logistic regression using gender, dummy-coded

nationality and the first two EIGENSTRAT principal components

(these were significantly correlated to case/control status) as

covariates. Association test results were clumped based on LD (r2

.0.5) using PLINK, so that SNP p values could be obtained for

independent eQTLs. eQTLs with a replication pGWAS ,0.05 after

Bonferroni correction for the number of independent (LD-based

clumped) loci were considered to be significant (Figure 1).

Results

eQTL Discovery
After quality control, eQTL analyses were performed on

162 ALS cases and 207 controls in the eQTL discovery set with

data on 261,682 autosomal SNPs and 37,118 expression probes.

Patient characteristics are summarized in Table S1. At a

Benjamini and Hochberg false discovery rate (FDR) of 5%, we

detected 16,901 significant SNP-transcript pairs in cis (Figure 1).

GWAS Discovery
In the GWAS discovery set, 2,261 ALS cases and 8,328 patients

remained after quality control measures with genotypes for

268,952 SNPs. Details of included study populations are shown

in Table S2. Association analysis resulted in one SNP (rs12608932

in gene UNC13A) with genome-wide significance (p = 1.7610–8)

after Bonferroni correction for 268,952 SNPs. A Manhattan plot

of genome-wide results is shown in Figure S1. A quantile-quantile

plot of disease association p values is provided in Figure S2

(genomic control l= 1.03). There were 14,167 autosomal SNPs

with a nominal p value ,0.05. These SNPs were used to prioritize

eQTLs found in the eQTL discovery set (Figure 1).

From the eQTL discovery results, we selected the 1,108 SNP-

transcript pairs (755 eQTL SNPs) in cis with discovery pGWAS

,0.05 (Figure 1). To confirm the hypothesis that disease-

associated SNPs are more likely to be cis eQTLs [20], we searched

for enrichment for eQTLs in our list of SNPs with pGWAS ,0.05.

We first determined the number of cis eQTLs in the set of SNPs

with pGWAS ,0.05 (n = 755). Then, we randomly selected a subset

of 14,167 SNPs with pGWAS .0.05, matched for minor allele

frequency to the set of SNPs with pGWAS ,0.05 (in 5% frequency

bins). Subsequently, we determined the number of eQTLs present

in each of these sets of SNPs, using 100,000 permutations. By

determining how often more than the initial number of eQTLs

were observed, we showed that there was evidence for enrichment

for eQTLs in the set of disease-associated SNPs (empirical

p = 0.003).

eQTL Replication
The eQTL replication set comprised 161 ALS patients and 206

control samples (Table S1). 951 out of 1,108 selected SNP-

transcript pairs in cis were significantly replicated (Figure 1). The

eQTL SNPs of these SNP-transcript pairs were selected for

replication in the GWAS replication data.

GWAS Replication
After quality control, there were 1,307 ALS cases and 1,835

controls in the GWAS replication set with genotypes for

266,492 SNPs (Table S2). 577 cis eQTL SNPs were tested for

association in the GWAS replication data. Using linkage

disequilibrium-based clumping of association results [28], 322

independent clumps could be formed. This number of clumps was

used for Bonferroni correction, as these clumps designate

independent loci. Table 1 shows clumps with a nominal pGWAS

,0.05 in the replication set. Ultimately, we identified 1 cis eQTL,

comprising 8 SNP-transcript pairs, which was significantly repli-

cated, and the transcript of which mapped to gene CYP27A1. The

results for this locus are listed in Table S3, also indicating that the

explained variance of gene expression that is achieved by the

linear models ranged from 48–65%. The relationships between the

SNPs and gene-expression levels are shown in Figure S3.

Fine-mapping of Loci UNC13A and Chromosome 9p21.2
In addition to our genome-wide screen for eQTLs associated

with sporadic ALS, we specifically examined possible relevant cis

effects in two previously associated loci (gene UNC13A and

chromosome 9p21.2) [7,12]. The detection of cis effects might fine-

map these loci. For the UNC13A locus (SNP rs12608932),

multiple-testing correction was applied for 41 possible SNP-

transcript pairs in cis (as determined by a genomic distance of

,500kb between the SNP and a probe’s midpoint). One SNP-

transcript pair had a nominal p value ,0.05, the transcript of

which mapped to gene PGLS (pEQTL = 0.01). However, when

using a 5% Benjamini-Hochberg FDR for the locus as multiple-

testing correction, no SNP-transcript pairs reached statistical

significance. For the chromosome 9p21.2 locus, we looked for cis

eQTLs within a 130kb LD block comprising previously associated

SNPs (rs2814707 and rs3849942). Multiple-testing correction for

the testing of 328 SNP-transcript pairs was applied using a 5%

FDR. Two SNP-transcript pairs reached the threshold for

statistical significance and were associated with C9orf72 isoform a

expression levels (Table 2 and Figure S4). SNP rs1565948

modulated C9orf72 gene expression in both eQTL discovery and

replication sets and was associated with susceptibility to ALS in the

joint GWAS data; however, no association with ALS was found in

the GWAS replication set alone (Table 2).

Discussion

The present study reports the results of a large and

comprehensive genome-wide screening of the genetics of gene

expression in an attempt to find novel genetic variants that

associate with sporadic ALS. We used a two-stage approach to

minimize the chance of false-positive findings, both for eQTL

discovery purposes and for the detection of novel SNP-ALS

associations. eQTLs were used for prioritizing GWAS results, as it

has been established that SNPs that are truly associated with

disease are more likely to be eQTLs [20,25,37]. In the present

study, we show that the number of eQTLs is greater than expected

by chance (p = 0.003) among the SNPs with a nominal association

with ALS, compared to frequency-matched SNPs, also indicating

that eQTLs may be useful in the prioritization of GWAS results in

ALS. We identified eight SNPs in one cis eQTL, modulating

CYP27A1 gene expression levels, which replicated in the second

eQTL dataset and second GWAS set. The eQTL SNPs within this

locus are part of a large linkage disequilibrium (LD) block

comprising a total of ten genes (Figure 2). The figure clearly shows

that the strongest eQTL associations exist for SNPs modulating

CYP27A1 expression, explaining up to 65% of variation in gene

expression of this gene. Additionally, we show that C9orf72 appears

to be the only gene in the 9p21.2 locus that is regulated in cis,

showing the potential of this approach in identifying causative

genes in association loci in ALS.

As shown in Table S3, the SNPs modulating transcript levels

had small effect sizes in our joint GWAS association results, the

Mapping of Gene Expression in Sporadic ALS
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highest odds ratio (OR) being 1.13. We used PS v3.0 [38] for

statistical power calculations to determine the required sample size

for a third genotypic replication of such SNPs. In order to replicate

an association for one SNP with minor allele frequency 0.35 at

a= 0.05, one would require a minimum of 2,250 cases and 2,250

controls to achieve 80% power for detecting an effect with OR

1.13. As shown in Table 1, several eQTL SNPs did not reach

Bonferroni corrected significance in the replication data alone, but

do show stronger effects in the joint GWAS data, indicating that

statistical power of the GWAS replication set might be a limiting

factor. By testing these SNPs in a third independent replication

cohort, additional true associations may be detected. The required

sample size for such an effort would, however, increase

dramatically when adding more tests. Further international

collaboration, therefore, is needed in order to achieve sufficient

statistical power for the replication of SNPs with small effect sizes.

We searched MEDLINE, Gene Ontology and OMIM

databases to identify links to known pathways in ALS pathogenesis

for CYP27A1. The CYP27A1 gene is involved in cholesterol

metabolism and has been associated with cerebrotendinous

xanthomatosis (CTX), which can present with progressive upper

motor neuron signs and is a known clinical mimic for primary

lateral sclerosis [39,40]. Two heterozygous mutations in CYP27A1

have been reported in a patient with atypical CTX and

frontotemporal dementia characteristics [41]. Furthermore, pre-

viously, serum cholesterol levels have been implicated in modifying

survival and in the onset of respiratory impairment in ALS patients

[42–44]. The combination of our results and these prior data make

CYP27A1 a plausible candidate gene for ALS.

The strengths of our study are the meticulous pruning of

expression probes as present on the expression array, with regard

to non-specific mapping in the human transcriptome, or harboring

SNPs that might interfere with hybridization of probes to the

array, resulting in false-positive eQTLs [33]. In addition,

permutation schemes were applied, preserving the LD structure

within subjects, also minimizing the detection of false-positive

eQTLs. Finally, a two-stage approach, both for eQTLs discovery

purposes and for the detection of novel SNP-ALS associations,

ensures robustness of the results.

A drawback of the present study lies in the use of whole blood

instead of neuronal tissue for the measurement of mRNA

expression levels. As neuronal tissue is inaccessible in living ALS

patients, one could consider the use of human neuronal tissue from

autopsy. However, in post-mortem material of ALS patients, most

affected motor neurons will have degenerated and one would be

investigating exclusively end-stage disease expression profiles. We

have investigated the proportion of overlapping eQTLs between

our study and other studies, including two studies on human brain

tissue (Table S4) [24,26,45,46]. Studies of the genetics of gene

expression appear to have modest overlap in the eQTLs identified.

For example, 36.1% of genes mapped by a cis eQTL in

lymphocytes were identified in a study using lymphoblastoid cell

lines [24,45]. A smaller overlap (22%) was found between two

studies on brain tissue, which may partly be due to low statistical

power [26,46]. In the present study, 37 – 52% of the genes

mapped by cis eQTLs in human brain tissue studies appeared to

be present in our data (Table S4). The proportion of overlap with

studies on blood-derived tissues was comparable (41 – 45%).

Considering the relatively high concordance of genes mapped by

cis eQTLs in our screen with those found in human brain tissue,

we consider blood to be a valid starting point for genetic mapping

of gene expression in ALS. A large collection of central nervous

system tissue control samples may, however, further boost the

discovery of novel genetic variants that are associated with ALS.
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The focused analysis of variants in the chromosome 9p21.2

locus, which was previously associated with ALS [7,12], did not

identify rs2814707 or rs3849942 as eQTL SNPs. We did,

however, find evidence of two other SNPs (rs10122902 and

rs1565948), located within a large LD block surrounding the

previously associated markers, to be correlated with altered

expression levels of C9orf72 isoform a. SNP rs1565948 was

associated with ALS in our joint GWAS data. The rs10122902

variant was not associated with ALS in our joint GWAS, but was

previously shown to be part of a haplotype with rs3849942, in

which the major allele of rs10122902 was associated with

increased risk of ALS [12]. Genetic variation in the chromosome

9p21.2 locus, therefore, appears to be associated with altered

gene expression of C9orf72. The recent discovery of the intronic

hexanucleotide repeat expansion in C9orf72 on a common

haplotype in 9p21.2 linked families with ALS and FTD

[15,16,47] thus illustrates the potential of the combined use of

gene expression and genotyping in search for causative genes in

human diseases. The mechanism though of the recently

discovered repeat expansion in C9orf72 remains to be estab-

lished. There could be a direct effect of expression levels of

isoforms of C9orf72, or a ‘‘trans’’-like effect through RNA-

toxicity, as shown in other repeat expansions diseases including

fragile X-associated tremor/ataxia syndrome (FXTAS) [48].

Other types of experiments are needed to elucidate this

mechanism.

In summary, our genome-wide study of the genetics of gene

expression has identified one cis eQTL for sporadic ALS, which

modulates CYP27A1 expression and additionally points to C9orf72

in the chromosome 9p21.2 locus as the gene involved in ALS

pathogenesis. To further identify eQTLs relevant to ALS, the

concomitant analysis of epigenetic and other level -omic data, e.g.

proteomic or metabonomic can be used, as recently shown in a

model organism [49]. These studies are preferably performed in

‘ALS target tissues’, including post-mortem central nervous system

tissues and induced pluripotent stem cells differentiated to a

neuronal or glial lineage. Such studies may provide us with more

insight into novel pathogenic pathways and networks causal to this

devastating disease.

Supporting Information

Text S1 GWAS quality control.

(DOC)

Figure 2. Regional linkage disequilibrium (LD) near the CYP27A1 locus on chromosome 2. Top: the position of GWAS SNPs and RefSeq
genes located within the regional LD block are drawn. On the X-axis, genomic position in kb, aligned to NCBI genome build 36 coordinates. On the
left Y-axis, 2log10(p values) for the strongest cis eQTL association for a gene in the replication data, the vertical position of genes (drawn as arrows)
are aligned to this axis and thus represent statistical significance. For one gene (RQCD1), no SNP-transcript pair and, therefore, no eQTL p value was
available in our data. This gene is shown as a dashed arrow. On the right Y-axis, 2log10(p values) from the replication GWAS analysis for SNPs within
the region (black line), SNPs modulating CYP27A1 expression are shown as black dots, other SNPs are grey. Bottom: pairwise linkage disequilibrium
for HapMap phase III release 2 SNPs (CEU+TSI populations). The LD plot was created in Haploview v4.2 [50], using the standard D’/LOD color scheme.
doi:10.1371/journal.pone.0035333.g002
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Figure S1 Manhattan plot of autosomal SNP association
p values in the GWAS discovery set.

(PDF)

Figure S2 Quantile-quantile plot of observed 2log10 (p
values) versus the expectation under the null for the
genome-wide association results in the GWAS discovery
set.

(PDF)

Figure S3 Plots for SNP genotype vs. expression level
correlations for eQTL SNPs modulating CYP27A1 ex-
pression levels.

(PDF)

Figure S4 Plots for SNP genotype vs. expression level
correlations for eQTL SNPs modulating C9orf72 expres-
sion levels.

(PDF)

Table S1 Expression study populations.

(PDF)

Table S2 GWAS populations and genotyping platforms.

(PDF)

Table S3 Results for replicated eQTLs associated with
CYP27A1 expression levels.
(PDF)

Table S4 cis eQTL overlap with previous studies.
(PDF)

Table S5 Details of quality control of genome-wide
genotype data.
(PDF)
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