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Performance Bounds on Spatial Coverage
Tasks by Stochastic Robotic Swarms

Fangbo Zhang ~, Andrea L. Bertozzi

Abstract—This paper presents a novel procedure for
computing parameters of a robotic swarm that guarantee
coverage performance by the swarm within a specified er-
ror from a target spatial distribution. The main contribution
of this paper is the analysis of the dependence of this error
on two key parameters: the number of robots in the swarm
and the robot sensing radius. The robots cannot localize or
communicate with one another, and they exhibit stochastic-
ity in their motion and task-switching policies. We model
the population dynamics of the swarm as an advection-
diffusion-reaction partial differential equation (PDE) with
time-dependent advection and reaction terms. We derive
rigorous bounds on the discrepancies between the target
distribution and the coverage achieved by individual-based
and PDE models of the swarm. We use these bounds to se-
lect the swarm size that will achieve coverage performance
within a given error and the corresponding robot sensing
radius that will minimize this error. We also apply the opti-
mal control approach from our prior work in [13] to compute
the robots’ velocity field and task-switching rates. We val-
idate our procedure through simulations of a scenario, in
which a robotic swarm must achieve a specified density of
pollination activity over a crop field.

Index Terms—Advection-diffusion-reaction (ADR) partial
differential equation (PDE), optimal control, stochastic sys-
tems, swarm robotics.

[. INTRODUCTION

N RECENT years, there has been a growing interest in the

development of robotic swarms [7] for a range of applica-
tions, including environmental sensing, exploration, mapping,
disaster response, surveillance, cooperative manipulation, and
even nanomedicine [29]. Indeed, advances in manufacturing,
computing, sensing, actuation, control, and other technologies
have already enabled the development of a variety of low-cost
robotic platforms that can be deployed in large numbers, e.g.,
[91, [16], [20].
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While the technology to create robotic swarms is progressing,
it remains a challenge to predict and control these systems’ col-
lective behaviors when they operate in uncertain, unstructured,
GPS-denied environments. Another constraint is that interrobot
communication may need to be minimized or excluded in order
to conserve power and reduce the possibility of detection by
adversaries. Importantly, control policies and verification meth-
ods for robotic swarms must accommodate nondeterministic
behaviors that arise in autonomous systems [1]. Stochasticity
in robots” motion and decisions can arise from inherent sensor
and actuator noise, especially in small highly resource-restricted
platforms. Stochasticity may also be intentionally introduced,
for example, when robots are programed to perform random
walks for probabilistic search and tracking missions [28], or to
switch probabilistically between behavioral states or tasks in
a manner similar to social insects. Social insect colonies pro-
vide a useful paradigm for robotic swarm control in that they
display robust collective behaviors that emerge from the decen-
tralized decisions of numerous individuals, which act on locally
perceived information [6].

Control methodologies for robotic swarms should be scalable
with the number of robots and reliant on limited human super-
vision, since situational awareness decreases with large robot
populations. Toward this end, we employ a methodology that is
based on models of the robots’ decision making and motion at
multiple levels of abstraction. The multilevel modeling frame-
work is adopted from the disciplines of stochastic chemical
kinetics and fluid dynamics, and it has been used by the authors
and others, e.g., in [13], [17], [27], to describe the population
dynamics of large numbers of robots. This framework has also
been used to model collective behaviors in biological swarms,
such as flocking, schooling, chemotaxis, pattern formation, and
predator—prey interactions [24].

In our modeling framework, the microscopic model is a dis-
crete model that represents the actions of individual robots. We
consider swarms of robots that display stochastic motion and
decision making as described above, while also moving accord-
ing to a programed deterministic velocity field. Each robot’s
stochastic movement can be modeled as a Brownian motion
with an associated diffusion coefficient. Since the motion of
each robot consists of a deterministic advection and a stochas-
tic Brownian walk, it is governed by a stochastic differential
equation (SDE). A robot’s stochastic transition between two be-
havioral states can be modeled as a chemical reaction with a
programmable transition probability rate.

Implementations of the microscopic model can be computa-
tionally expensive to simulate, requiring exhaustive parametric
studies, and intractable for analysis as the number of robots
increases. To overcome these limitations, the microscopic
model can be abstracted to a lower dimensional continuum
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representation, the macroscopic model, which consists of a
set of advection-diffusion-reaction (ADR) partial differential
equations (PDEs). These equations govern the spatiotemporal
dynamics of density fields of robots in different behavioral
states. The macroscopic model enables a quantitative char-
acterization of population behaviors, since it is amenable to
analytical treatment and numerical experiments. In addition,
techniques for control and optimization of PDEs can be applied
to compute values of the model parameters that produce a
desired global objective. These parameters define the robots’
programmable control policies for motion and state transitions,
and the resulting collective behavior of the robots follows the
macroscopic model prediction in expectation. Scalability of
this “top-down” control approach is ensured by the fact that the
dimensionality of the macroscopic model is independent of the
number of robots. Human supervisory control can be exercised
in the specification of the global objective and the set of tunable
model parameters and state transitions.

In recent years, there have been various applications of
control-theoretic techniques to PDE macroscopic models of
multiagent systems for the purpose of synthesizing agent con-
trollers that produce desired collective behaviors. ADR PDE
models, in particular, have been used by the authors to design
robot control policies that achieve target spatial distributions
of robot activity over a bounded domain [13] and that drive
the swarm to a distribution that is proportional to a locally
measured scalar field [12]. ADR PDEs have also been used to
control the probability density functions (pdfs) of multidimen-
sional stochastic processes [2], develop multiagent coverage and
search strategies that are inspired by bacterial chemotaxis [22],
and maximize the probability of swarm robotic presence in a de-
sired region [23]. Other work on PDE-based analysis and design
of agent control laws includes a study of multiagent consensus
protocols in an Eulerian framework [8]; strategies for confining
a population of agents, represented as a continuum, with a few
discrete leader agents [10]; and an approach to flocking control
for a group of agents governed by the kinetic Cucker—Smale
model [26].

The literature above addresses the problem of designing the
rules that govern robots’ behaviors and decisions. However,
there has been relatively little effort toward a principled
approach to determining the required number of robots and
optimal robot specifications, such as sensing and communi-
cation ranges, for a desired collective task. An impediment to
developing such an approach is the absence of a rigorous, gen-
eralizable analysis of the correspondence between continuum
and discrete models of a swarm [3]. Recent work on mean field
games [5], [15], [19] demonstrates the convergence of optimal
controls of a large number of agents to optimal controls of a
mean-field limit system. However, the work does not analyze
the convergence of the agent-based model to the mean-field
model for a fixed set of controls.

In this paper, we address this challenge for robotic swarms
that can be modeled as ADR PDEs at the macroscopic level.
We derive a rigorous error bound on the discrepancy between
the microscopic and macroscopic models, which depends on
the swarm population size (alternatively, the number of swarm
deployments), the robot sensing radius length, and the time dis-
cretization of the microscopic and macroscopic models. Our
derivation employs a representation of each robot as a circular
“blob function” [11], [21] with a small parameter that represents
the robot’s maximum sensing radius. We formulate the discrete

density functions of robots in different states and robots’ cumu-
lative activity over the domain by summing all of the correspond-
ing blobs. We show that as the number of robots approaches in-
finity, the discrete density functions converge to the continuous
solution of the macroscopic model. We illustrate our approach
for a simulated scenario in which a swarm of microaerial vehi-
cles must pollinate a crop field, similar to the problem in [13].
We apply the optimal control approach in [13] to compute ve-
hicle control policies that achieve a target spatial distribution of
pollination. We also use our derived error bound to estimate the
required swarm size that will achieve the target pollination dis-
tribution within a specified percentage of accuracy. In addition,
we demonstrate the effect of the maximum sensing radius on
the swarm performance and show that an optimal radius length
exists for a given swarm size. Notably, the analysis performed
here can also be applied to other stochastic control strategies for
robotic swarms, such as [12], [17], and [27].

In summary, the contribution of this paper is twofold.

1) We provide a rigorous analysis of the error bound be-
tween the aforementioned microscopic and macroscopic
models, which is still absent in the literature on stochas-
tic control of multiagent systems with state transitions.
This analysis, together with our optimal control approach
in [13] which approximates the target distribution using
the macroscopic model, provides a formal mathematical
validation of our swarm control strategy.

2) Based on the scaling laws that are observed in the error es-
timates, we propose a principled approach to determine
the required number of robots and optimal robot sens-
ing radius that will achieve a target distribution within a
specified error.

This paper is organized as follows. Section II describes our
task objective and the robot capabilities and behaviors, and
Section IIT outlines our design procedure for computing the
number of robots and the robots’ sensing radius, velocity, and
pollination rates. Section IV defines the microscopic model, the
blob function, and the actual density fields of robots and their
pollination activity, and Section V formulates the macroscopic
model, an operator splitting method for numerically solving
this model, and the expected density fields. Section VI summa-
rizes our optimal control approach, first presented in [13], to
designing robot control policies for target spatial coverage. In
Section VII, we provide our convergence analysis of the es-
timated error between the actual, expected, and target density
fields. We validate our analysis and design procedure with sim-
ulations in Section VIII and conclude in Section IX.

Il. TASK OBJECTIVE

In this section, we present the task objective of the robot
control scenario defined in [13], which is the basis of the analysis
in our paper. We consider a crop field Q € R? with several
rows of flowers to be pollinated by a swarm of N microaerial
vehicles. There are ny types of crops in the field, and I'; C Q
denotes the region of the field that is occupied by crops of type
j€{1,....,n;}. The task objective, which must be completed
within time 7', is to achieve a spatial distribution of pollination
activity over the field within a specified error 7, relative to a
target pollination distribution pq (), where € €.

The swarm originates from a location in the field called
the hive. The robots are assumed to have sufficient power to
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undertake brief flights from the hive, and they return to the hive
to recharge after a complete flight. Each robot is equipped with a
compass and thus can fly with a specified heading. However, the
robots’ stringent power constraints make it infeasible for them
to use interrobot communication or GPS sensors for global lo-
calization. A computer in the hive serves as a supervisory agent
and calculates the parameters of the robots’ motion and state
transitions prior to their flight.

Eachroboti € {1, ..., N} performs the following actions dur-
ing a flight. Upon deploying from the hive, each robot flies with
a combination of a time-dependent velocity field v(t) € R?
and a Brownian motion, which is characterized by a diffusion
coefficient parameter D > 0. We assume that the flowers are
distributed densely enough such that a robot can always detect
at least one flower within its sensing radius § when it flies over
the crop rows. The sensing radius can be adjusted within a max-
imum radius, which is determined by the capability of the robot.
When a robot is flying over crops of type j, it decides with a
time-dependent probability per unit time k;(t), the pollination
rate, to pause at a flower within its sensing range and hover for
pollination. The robot resumes flying with a fixed probability
per unit time k, which determines the time taken to pollinate.

I1l. DESIGN PROCEDURE FOR TARGET
PERFORMANCE BOUNDS

Here, we present a procedure for computing the number of
robots N, the robot velocity v(t), and the robot pollination rates
k; (t) and selecting the robot sensing radius J to achieve the task
objective defined in Section II. The details of certain steps in the
procedure are given in subsequent sections, as referenced below.
We illustrate this computational procedure in Section VIII for
an example pollination scenario.

1) Set values of the parameters ny, I';, T, po(x), va, D,
and k¢, defined in Section IT, and At and X, defined in
Section I'V.

2) Compute the robot control parameters v(t) and k;(¢),
defined in Section II, by applying the optimal control
technique described in Section VI to the macroscopic
model, defined in Section V.

3) Choose a value of § and two values of INV. Simulate the
microscopic model, defined in Section IV, for each value
of N with the chosen ¢ and the computed control param-
eters v(t) and k; ().

4) For each value of N, compare the actual distribution of
pollination in the microscopic model to the target dis-
tribution pq () and compute the discrepancy between
them.

5) Use the convergence analysis in Section VII to estimate
the required N such that the discrepancy is less than .

6) Simulate the microscopic model for several values of §
with the estimate of the required IV, and select the § that
yields the minimum discrepancy.

IV. MicroscopPIC MODEL
A. Robot Controller

We use the same robot controller as in our previous work
[13]. We discretize the time span of swarm deployment [0, T']

¢~ U([0,1])

¢ < k;j(t,)At and flying
over type j crop

Flying state Hovering state

Move according
to (5)

Stay stationary

¢ < ksAt

Fig. 1. State-transition diagram of robot controller for pollination.
The diagram outlines a program that would run on a single robot.

into M equal time steps

0=+t <tl<"‘<t]W:T7 tm,:mAt- (1

The controller that drives each robot is illustrated by the state-
transition diagram in Fig. 1. Robots switch stochastically be-
tween two states: Flying and Hovering. We define the index sets
of robots in each state at time ¢,,, :

F,, = {i :Robot i is Flying}
H; ,, = {i: Robot i is Hovering over crops of type j }.

All of the robots start from X € ) in the Flying state. At
the start of each time step At, each Flying robot that is over
crops of type j switches to Hovering at a flower with probabil-
ity k; (¢, )At, and each Hovering robot returns to Flying with
probability ky At. We choose At to be small enough such that
Ej(ty)At <1 and kyAt < 1, since these probabilities can at
most be 1. The robots’ state transitions can be modeled as the
following reactions, where ¢ € [0, 1] is a uniformly distributed
random number:

if p<kj(tm )At
e

iGFm iEHj,m—O—l

if @Skf At
-

(S Hj,m (S Fm+l- (2)

After generating ¢ and switching states if ¢ satisfies the con-
dition associated with its possible reaction in (2), each robot
executes the motion controller that is defined for its current
state over the duration At. We define the domain as unbounded,
and robots may exit and re-enter the bounded subregion of the
domain that represents the crop field. The position of robot ¢ at
time ¢,, , the beginning of the time step, is denoted by X' € R2.

Each Hovering robot stays at the location of the flower that it is
pollinating, i.e.,

X, =X,Vie U;‘li1Hj.m+l- 3)
Each Flying robot moves according to the SDE
dX(t) =v(t)At+ vV2DdB(t) 4)

where B(t) is the standard Brownian motion. We simulate this
motion using a first-order discretization of (4)

Xi =X +v(ty) At + V2DALAZL Vi € F, 44
)
where AZ!  are independent normally distributed random vari-
ables with zero mean and unit variance in R2.
B. Density Fields of Robots and Pollination Activity

In this section, we define the density fields of the microscopic
model. During a deployment, when a Flying robot switches to
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Fig. 2. Domain with three blob functions G (x), where 6 = 0.15.

the Hovering state for pollination, it randomly selects a flower
that it identifies within its sensing radius §. In order to compute
the density fields of robots and their pollination activity, we
model the pdf of the location that the robot chooses to pollinate
as a blob function G5(x). We define the blob function as

Ogexp( 12 >, if [z| <0
Gs(x) = |z[?/6% — (6)
0, otherwise
where C; =~ 2.1436 so that
Gs(x)dx = 1.
RZ
G satisfies the following properties:
1) G5 € C°(R?), and its support is {x : |z| < 6};
2) Ve, |Gs(x)| < Cye 1672 <572
3) Va, |0, Gs(x)| = O(67%) and |0, », Gs ()| = O(51),

i,j=1,2.

Fig. 2 illustrates a domain with three blob functions, each
with the same sensing radius parameter 9.

Remark IV.1: The blob function serves as a mean field ap-
proximation of pollination activity. That is, instead of modeling
arobot’s selection of a particular flower to pollinate, we consider
the probability density of the robot’s flower visits over multiple
deployments, or alternatively, the flower visits by a large number
of robots over a single deployment. Each crop row is modeled as
a continuum of possible pollination locations, and thus, a robot
can choose to hover at any position within the support of its
corresponding blob function.

For all ¥ C R?, we define the indicator function as

1y () 1,ifeeX
€r) =
. 0, otherwise.

We also define
dis(z,Y) := inf{|lxz —y| : y € 3}
¢ = {x: dis(z, X°) > ¢} (7)
out = {113 dlS($ E) < C} (8)

for some constant ¢ > 0, where 3¢ is the complement of X.
From these definitions, EC and 25 . are obtained by shrinking

ou

and expanding, respectlvely, the boundary of X by a layer of
width ¢. Hence, X% C ¥ C PN

m out*

Let X (t) be a stochastic process in R? that satisfies the SDE
(4). Forallt >s>0and o,y € R2, we denote the transition
probability measure by P(X,t|ly,s) = P(X(¢) € X| X (s) =
y) and the transition pdf by p. (x, t|y, s). These functions satisfy

P(S,tly.s) = / pe (@, 1]y, s)da
>

1 @~y — [{ w(r)dr|
pe(wvtlyv 5) = m eXp { 4D(t — S) }

In our simulation of the microscopic model, we discretize the
velocity v(t), and hence, the transition pdf from time ¢,, to time

t;n+1 1s given by
exp {—
©)

We now define the actual density fields of Flying robots and
Hovering robots, respectively, at each location € {2 and each
time t¢,,, as

p($7 tm+1 |’y, tm) -

47 DAt

|z —y — v(t,)At)?
4ADAt '

P (. t) Z Gs(x — X)) (10)
zEFm
1 <
4 L X
pQ(w’tm)_NZZ G5( m) (11)
Jj=1licH; ,

To confirm that these are robot density fields, note that

/ G0 m

The above identity strictly holds only when X? ¢ %) = — %9 ;

otherwise, the range of the blob will exceed the boundary and
will cause coverage outflow, an error introduced in Section VII.

~ 1s(X,).

Hence
/pl ((E t"b)dw ~ N Z ]12 m) (12)
iel,,
/pg(a:,tm)da:N 72 dooln(xi) a3
)

j=lic€H;

which are the numbers of Flying and Hovering robots, respec-
tively, that are in region X at time ¢,,, divided by V.

We also define the actual density fields of Flying and Hovering
robots, respectively, that are present after robots execute state
transitions according to reactions (2) but before they execute
their motion controllers during the time step At:

Py (@, ty) : N > Gi(z-X),)
1€, 1

2 (x,t,,) Z Y Gilw—X,). (14
j 1iceH; i1
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Note that by (3), the positions of Hovering robots is unchanged
during the time step, and therefore

ﬁg(azﬂﬁm) :Pg(%tm+1)~ (15)

We denote the density of robot state transitions from Flying to
Hovering between times t,,, and t,, +1 as FTH(x, t,, ), and the
density of transitions from Hovering to Flying as HTF(x, t,, ).
These densities can be expressed as

FTH 113 tm Z Z IL]'m :n)Gfs(w_X;n)
j 1iel,
ny

HTF(z, t,,) := Z > JimGslx—X,)
j lieH; n

where L;(x) = Ir, (), and I; j ,, and J; j, are independent
random variables with

P(Lijm=1)=At-kjn,
P(Jijm =1)=At-ky,

P(lijm=0)=1-At -kjm
P(Jijm =0)=1—At-ky

with indices 7 = 1, . , M and

kjm = kj(tn

SN,7=1,..np,andm=1,..
) Accordlng to the reaction network (2)

2 (x,ty,) = pd(x,ty) — FTH(z, t,,) + HTF(z, t,,)

P (x,ty) = pS(x, ty) + FTH(x, t,,) — HTF(x,t,,). (16)

Ateach timet,,, the total number of state transitions from Flying
to Hovering in the region X is given by

ny

/FTH(ﬂ?t d.’I)N*ZZLJm

j=11ieF,

777 )]]‘E (X:n )

a7

Since each transition from Flying to Hovering indicates a robot
pollination visit, FTH(x, t,,) is also the actual density field
of pollination activity at time t,,. Thus, the actual cumulative
density field of pollination activity by the swarm from time O to
time ¢, is given by

m—1
tm)= Y FTH(z,t,) (18)
7=0
We define the tuple of actual density fields as
P (@ tm) = (P (@t ), 95 (2 tn), P5 (1)) - (19)

The goal of our analysis is to compare pj to the expected density
field of pollination, which is defined in the next section.

V. MACROSCOPIC MODEL

A. Definition

The macroscopic model consists of a set of ADR PDEs that
describe the time evolution of the expected spatial distribution
of the swarm. The model presented here was first defined in
[13] for a similar pollination scenario. The states of the macro-
scopic model are py (x,t), p2(x,t), and p3(x,t), the expected
density fields of Flying robots, Hovering robots, and cumulative
pollination from time O to ¢, respectively. Using the parameters

v(t), kj(t),j =1,2,...,ns, ky, D, and L; that are defined in
the microscopic model, the macroscopic model is given by

%L = —v-Vpi +DAp — YL,
dp- )
Gt =L kiLipy — kg pa
9 ,
B =L kiLip
with initial conditions specifying that all robots start in the

Flying state and are distributed according to a blob function
centered at X :

p(x,0) = Gs(x — X)), p2(x,0) =0, p3(x,0) =0. (21)

The initial conditions of the macroscopic model and microscopic
model are consistent, i.e.,

kiLjp1 + kypa
(20)

pi(x,0) = p! (x,0), = 1,2,3. (22)
We define the tuple of expected density fields as
p(w7t) = (Pl(w7t)aPQ(m»t)ap3(337t))- (23)

B. Numerical Solution

We use the operator splitting method to numerically solve the
macroscopic model with the same time discretization as in (1).
We define the following three operators:

ADV,, (p) = (—v(tn) - Vp1, 0, 0)
REACTm ( (kpr Z kj m LJ P15

(24)

ny
Zk] ijpl - k’fPQ, Zk] mLJp1>

Jj=1 j=1
We split the macroscopic model (20), (21) into three parts:
dp

op
= = DIFF(p) (26)
op
E - REACTm (p) (27)

Denote the solution operators of (25)—(27) with respect to
time step At by H; (At), Hy(At), and H;(At), respectively.
That is, p(x,ty41) = Hi(At)p(x, 1y, ) if p(x, b 11) is the
solution of (25) with initial condition py (x) = p(x, t,, ). Using
these operators, we can compute the expected density fields at
time ¢,, 1 as

p(@,tn1) = Hi(At)Ha (At)Hy (At)p(, ty).  (28)
This is a first-order splitting method, i.e.,
/ |pe(x,T) — p(x,T)|de < CsAt (29)
RZ

where p, is the exact solution of model (20) and p is defined by
(28). We note that Cs depends on § and that lims_,g Cs = 0o
We choose the values of At and ¢ based on the numerical
simulation results in Section VIII to ensure that the above error
is small.
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We also define the expected density fields of Flying and Hov-
ering robots that are present after the reactions but before robot

motion during a time step
ﬁ,j((]},t,n) = Hg(At)pi(.’B,tm), 7= 172 (30)

which correspond to p? (x,t,), i = 1,2, in the microscopic
model. Equations (28) and (30) also yield

Pi (:B, tm+1) = Hl (At)HQ (At)/z (m, tm ), 7= 1, 2.
From the definitions of H;(At) and Hs(At), we have that

€19}

P1 (mv tm,+1) = / p1 (y7 tm )p(ma tn1 |y7 tm )dy (32)
R2

/)2(33’tm+1) = ﬁQ(IB,tm). (33)

Equation (32) holds because the transition pdf p(x, t,, 1|y, tm )
is also the Green’s function of the advection-diffusion equation
(see [25, Th. 2.1)).

We numerically solve the three operators over a square do-
main {2 with Neumann boundary conditions. The domain is de-
fined to be large enough to contain all the robots almost surely
over the entire duration of the deployment. For the advection
operator (25), we use the Lax—Friedrichs scheme. For the dif-
fusion operator (26), we use the Crank—Nicolson scheme and
apply the discrete cosine transform to solve it. Finally, we solve
the reaction operator (27) using the forward Euler scheme.

VI. OpPTIMAL CONTROL OF COVERAGE STRATEGIES

We briefly summarize the optimal control problem that is
solved in our previous work [13]. We use this approach to com-
pute the optimal robot velocity v(t) = [v1 (t) v2(¢)]” and polli-
nationrates k; (t),j = 1, ..., ny, that minimize the error between
a target distribution pq, and the expected pollination field p3 at a
given time 7. Note that the performance of the optimal control
method is not the focus of this paper.

For an open subset X C R?, L?(X) refers to the space of real-
valued square-integrable functions. The norm || - ||z2(x) is de-

fined as || f[|z2(x) = ([x | f(z)|*dz)/? for each f € L*(X).
The notation (-, -) 2y refers to the inner product on L?(X),

defined as [y f(x)g(x)dx for each f,g € L*(X). For a natu-
ral number m, || - || 22 (x)» and (-, )2 (x)n refer to the natural
extension of the norm and inner product on the product space
L?(X)™. The vector of control parameters is defined as

U = (ulau27"’7unf+2)
where u; = vi,up = vo,anduj o = kjforj =1,...,n;.Then,

the optimal control problem is the following:

min

1
J = Zlpa(-.T) — 2,
(o) XU, s (p,u) 2“/73(, ) PQ||L2(R2)

A
+ 5”“’”%2(0,T)" ; k=mnp+2 (34)

subject to (20) and (21). Hence, this is a PDE-constrained opti-
mization problem. Here, Y = C([0,77], L?(R?)?) is the space
of vector-valued continuous functions f : [0,7] — L*(R?)3,
and Uy is the set of admissible control inputs given by

U = {w € L*(0,T)" 72 . "™ <y (t) < u™™

vt € (0,7)}

where u™" and u!"®* are real-valued scalars defining the lower
and upper bounds on the control parameters. These bounds are
determined by the physical limitations on the robots, such as
their maximum velocity. The bounds on the pollination rates %,
j =1,...,ny, additionally depend on the time step At¢, accord-
ing to the constraint k; (t)At < 1.

The necessary conditions for optimality are used to derive a
gradient descent method for numerically computing the opti-
mal robot control parameters. Appendix A gives details on the
directional derivatives that are used in this method.

VII. L'-CONVERGENCE ANALYSIS

In this section, we present the main result of this paper: a
rigorous convergence analysis to estimate the error between the
expected density field p from the macroscopic model and the
actual density field p° from the microscopic model. Our result
shows that the error depends on the number of robots N, the
time discretization At, and the sensing radius 0.

In our analysis, we use the L' norm, which is the most nat-
ural norm for particle transportation, to quantify the degree of
coverage by the swarm. This is because the L' norms of p{ and
p} directly measure the numbers of Flying robots and Hovering
robots, respectively [see (12) and (13)], and the L' norm of pg
measures the cumulative number of crop visits [see (17) and
(18)], which is the metric of interest in the application. Note
that in the optimal control method in Section VI, we use the L2
norm in the objective function since it is convenient for optimal
control. This is due to the inner-product structure of L? spaces,
which makes them self-dual; ! function spaces lack this struc-
ture. Since our domain is a finite region, bounding the L? norm
also bounds the L' norm according to the Cauchy—Schwarz
inequality || - [y < C| - 2.

The error bound that we derive in this section consists of four
components: the time-discretization error, the coverage outflow,
the coverage insufficiency, and the sampling error. The time-
discretization error arises from our time-splitting method. The
coverage outflow happens at the boundary of the region of crop
rowsI';, 7 =1,2,...,ny:if arobot is pollinating inarow I'; ata
position that is very close to the boundary of I';, then part of the
corresponding blob may exceed I';, which generates some loss
of coverage. Coverage insufficiency arises when there are too
few robots in the swarm to cover the entire field, given the size
of 9, and can be improved by deploying more robots. The most
significant error component is the sampling error, which arises
from the stochasticity in the robot motion and task switching.
The error bound indicates the existence of an optimal ¢ for a
fixed swarm size, which we verify in simulation in Section VIII.

Let p(x,t,,) and p(x,t,,) be defined as in (19) and (28),
respectively. We also define the L' norm of a function f : R? x
[0,7] — R and the error functions as follows:

1) s = /2 \F (. )|dz, V5 C R?

ei(x,ty) = pi(x, t,) — pf(w,tm), 1=1,2,3
B, = maX{H(ﬁ(',tm)Hl, ||82('a tm)Hl}'

Theorem VIL.1: Assume that v(t) € C'([0,00]), D >0,

and k;(t) € C([0,00]), i = 1,...,ny. Suppose that 2 C R? is
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a large enough square such that  C €2, and 3¢ > 0 such that
X e Vm=1,.

m

WM, i=1,..,N

almost surely, and 6 < (, At < (. We deﬁne || as the area

of Q, C as an independent constant, I as U I, and TY and
Fgut as in (7) and (8). We also set
=k E;(
rt Z (i K
Py =maxP (Xi, eI, —T%) =0(j).

m

Then, when N is sufficiently large, the following estimates are
true with a probability greater than

1— QN[—‘?(InZ\ )AL +2]

At
(1) (Error in distributions of Hovering and Flying robots)

(35)

llei(,tm)||1 < CeXT [64\/5|Q|1\%\\; + P + At}, i=1,2

(36)
uniformly in m.
(i1) (Error in distribution of cumulative pollination)
les (- tm)|1 < CKTEXT |6 [ 4f\n| NP+ At}
Wi
(37)

uniformly in m.
Remark VII.2: In the inequalities (36) and (37), the error
terms are interpreted in the following way:
1) % Sampling error;
2) 6~*: Coverage insufficiency;
3) Ps: Coverage outflow;
4) At: Time-discretization error.

The sampling error is the main source of error in this model,
due to the significant stochasticity in the robot motion and state
transitions. The time-discretization error arises from the diffu-
sion of the blob functions outside of 2 in the macroscopic PDE
model. This error is not as significant as the other errors, since €2
is chosen to be large enough to contain the entire swarm almost
surely throughout the selected time span [0, 7.

Note that the task switching and the motion of the robots
depend on each other, i.e., the motion depends on which state a
robot is in, and the task switching depends on whether a robot
is above a crop region. We formulate the error of motion as

EM(m) = /R° ﬁlls (y, tm )p(.’ll, tm+1 |y7 tm)dy - p(lS (:137 tm+1)-
(38)

The first term is the expected density of Flying robots at ¢, 1
based on the actual density that is present after the reaction at
t,n, and the second term is the actual density at ¢, ;. We also
formulate the error of reaction as

ER(z) = —AtZkJ m Li(x)p}(x,t,,) + FTH(z, ,,)

+ Atk pd (2, t,) — HTF (2, t,,). (39)

Here, FTH(«, t,,) and HTF(«, t,,,) are the actual densities of
robot state transitions between Flying and Hovering, whereas
the other two terms are the expected densities of state transitions.
To prove Theorem VII.1, we track the iteration of the error £,
over the time span [0, T'] using the following proposition.

Proposition VIL.3 (Iteration of error): For all m =
0,..., M — 1, we have that
Em-‘rl < (1 + AtK)Em + HER()Hl + ”EM()”l (40)

Proof of Proposition VII.3: We can decompose the error in
the following way. First, using (32), we derive the inequality:

|€l(watm+1)| = |p1($7tm+l) - pl{($;t7n+1)|

.- ﬁl (ya tm )P(fﬂa tm+1 |y7tm)dy - p(15 (CI!, tm+1)

<

1000 = 00l )

+ [EM(z)]. 1)

Then, by taking the L' norm of both sides of (41), we obtain

ler Gty )l < flpn (- m)*ﬁ?('im)”l+||EM(')||1(~42

For abbreviation, we omit («,t,,). By (16) and the definition
of ER(z) in (39),

11 =2l < ||(Pr — p1) — (B — PD)|, + llor — Al IIn
’VLf
< FTH—Atij,ijpl+Atkfp2—HTF + E,,
j=1
1
71,/
< 1AL Tk Li(pr — A0)|| + 1Atk (p2 — P31
j=1 1
+ ||ER()||1 +Em
< (1 + AtK)Em + HER()Hl (43)

Now, we combine (42) and (43) to obtain

ler (s tms )l < (14 ALK) By + [[ER() [ + [EM()]1.-
(44)
Similarly, by (15) and (33),
llea (- tms )l = o2 (s tms1) = P3(s tnsn)
= 1120 tm) = P3.(,tu) 1
< (72 = p2) = (75 — P3)I + llp2 = p3 1
< (1+AtK)Ey, + [[ER()[:. (45)
Combining (44) and (45), we arrive at
Eps1 < (14 AtK)Ey, + [[ERC)[1 + [[EM()]]1-
|

In the remainder of this section, we will focus on estimating
|IER(-)||1 and [|[EM(-)||1. To estimate the L' norm, we utilize
a spatial discretization. Denote €2 by [ag, ar] x [by, by], where
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V/|€2]. Select a spatial resolution to be

_ VIal

bf—b():af—ao:

(46)
[VN]
and discretize ) into cells of size h x h as follows:
O = {(ap +ih, by +jh) € Q:0<1i,j < [VN]}. &7

We note that there is no spatial discretization in the simulation
of the microscopic model, but the selection of & matters in the
analysis. The choice of h involves a tradeoff: smaller h yields a
more accurate estimate, while larger h provides a higher prob-
ability that the estimate is true. By (46), there are [v/N]? cells
in all, and hence, each cell contains one robot on average. For
F(x):R?* - R? = (fi(x), fo(x)), we introduce the infinity
norm

1F ()l = sup{|f1 ()], | f2(2)] - = € R?}.

Then, we have the following quadrature error.
Lemma VII.4 (Quadrature error): Suppose that
(R?). Then, the following inequality holds:

fecCc™®

1FOlhe = D 1f(@)]p?| < 202V F()]xoh-

aEQh

The proof of Lemma VIIL.4 is based on the mean value theo-
rem. A similar estimate can be found in [21, Lemma 6.2]. In the
rest of this paper, we always assume that IV is sufficiently large
for our estimates.

Claim VIL5 (Error of motion): There exists an independent
constant, C, such that
IEMO)|L < cAlovDs Y 4 g
1= \/N

with probability greater than 1 — NV [~ (o V)AL 2]

Proof of Claim VIL.5: We note that
IEM(C)[l = [[EM(C)]l1 0 + [EMC)[] o -

First, we estimate [[EM(-)||; o. We define the error of motion
for the ¢th robot:

1 .
Y;(m) L= N G(T(y - Xfrn)p(mathrl'yatm)dy
R?
1 Z . .
*NGﬁ(mfxm-&-l) lf7’6}7m+1 (48)
and Y;(x) =0 if ¢ € U;H, ,,+1. Then, by (10), (14), and the

definition of EM(z) in (38), we have

N
)= Yi(@)

Note that the robots are independent of one another, and thus,
Y;(x),i=1,...,N, are independent random variables for any
fixed a. These random variables have zero mean, i.e.,

E(Yi(z)) = 0.

The proof of (49) is given in Appendix A, Claim B.1.
Now, we apply Bennett’s inequality to obtain an upper bound
for [EM(x)].

(49)

Lemma VII.6: (Bennett’s inequality) Let Y; be independent
bounded random variables with E(Y;) = 0, Var(Y;) = o7, and
Y| < My.Let S =5, Yiand V > >, 02. Then, forn > 0,

1
P{[S| = n} < 2exp [— STV IB(Menvh| - (50)
where B(A) =207 2[(1 +A)In(1 + 1) — A}, A > 0, lim; o+
B(x) =1,and B(1) ~ 22t lnA as A — oo.

The proof of Lemma VIIL.6 can be found in [4] and [18]. A
direct computation yields

1
V()] < — ZVar(Yi(a: ) < NoT
Atln N

We set 7 = TR My=N"12 and V=N"16" in
Bennett’s inequality to obtain the following estimate:

P <|EM(w)| > At&%’?)

1
< 2exp | — 2772‘/'_1B(M077V_1)]
1 In N
= 2exp —i(lnN)QAtQB <Atjﬁ>}
1 Lot :
< 2exp | — 3(1nN)2At2} — oN~s(ImN)As (51)

where we used the fact that B (At 1\‘}%) > % when N is suffi-
ciently large. Hence, we have

_ InN
EM(a)|h? < AtQ 52
> IEM(@)lR? < A0l (52
ac,
with probability greater than 1 — 2N [-rnm)ae +2] Next, by
Lemma VII.4,
IEM()[l1.0 = Y [EM(e)|h?
QGQh
N
< 2AQIVEMO) [ < 203 [VYi()]xh.  (53)
i=1
We claim that foreach i =1, ..., N,
C
IVY; ()l < W"’\/ﬁmﬁ In N (54)

with probability greater than 1 — exp [—%At(ln N)?|, where
(5 is an independent constant. The proof of this claim is given
in Appendix A, Claim B.2.

Combining inequalities (52)—(54), and plugging in the choice
of h given by (46), we obtain

_InN _ InN

EM( )|, q < A6 20— + Co|QP >V DAt —=

[EM()[[;.0 < | |\/N 219 Wi
In N

< CAHQVD 2= (55)

with probability greater than 1 — 2N [-5)as H} where C
is an independent constant.
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Next, we consider [[EM(:)||; .. This error is caused by dif-
fusion: in the macroscopic model, the density of Flying robots
diffuses immediately to the entire R?, whereas in the micro-
scopic model, the actual density of Flying robots always stays
in 2.

We claim that

[EM(-)[|.qc < Af. (56)

The proof of this claim is given in Appendix A, Claim B.3. Now,
we combine (55) and (56) to obtain

IEM(-)[l < CAHQIV DS

with probability greater than 1 — N [=5 M)A 2] Thig com-
pletes the proof of Claim VIL.5. |
Claim VII.7 (Error of reaction): There exists an indepen-

dent constant, C, such that
[ERC)[L <

CKAts™ + AtKPF;

o f

with probability greater than 1 — C'N [~
Proof of Claim VIL.7: Define an intermediate term

Z > Atk L

j=1lieF,

(In N)At+2]

FTH (z, t,, (X! )Gs(z— X1,).

Omitting (x, t,, ), we have
[ER ()|
nf

= —AtijmL

< [SE(z)| + |OF(x)|

@)p} + Atk pb + FTH — HTF

where

SE(z) = [(FTH — FTH') + (Atk;p) — HTF)| (. t,)
nf

OF(w) = [ At> kjmLj(x)p) — FTH | (a, ).

Notably, FTH and FTH’ are supported in T? ., while
k;mLj(z)p) is supported in I'. Therefore, OF(x) measures
the coverage outflow at the boundary of I'. FTH and HTF are
the actual densities of robot state transitions between Flying
and Hovering, whereas FTH' and Atk 5 are the expected den-
sities of these state transitions; therefore, SE(x) measures the
sampling error of reaction.

First, we estimate ||OF(-)||;. We define L(x) = 1r (). Note
that by the definitions of L;(x) and L(x), we have that

nf

2) =Y L)

Now, using the definition of p‘ls from (10), we obtain

At &
— W Z ij,m (LJ (213)

i€l j=1

— Lj(X},))Gs (x — X))

Let us define

Zi =
S k(L ()= Ly (X3, )Ga (=X, ifi€Fy
{ 0, ifi e Uil H,j,p,
and

Then, Z; is coverage outflow of each individual robot, and

N N
IOF()[y < At Z; = AtY (Z]+ E(Z)). (57)
i=1 i=1
From the fact that Gj(x) is supported in {z:|z| <4},
it is straightforward to see that (Lj(x) — L;(X},))Gs(x —
X:n) =0if X: ¢ Fout - When Xin € Fgut an’
have
Zi < < [ |(L(x) = L(X5,))Gs(® — X, ) |da
N Jre
1 K
< — X! = —.
= N R? G5(w m)daj N
Hence

K
E(Z7) < 7P{Xm out 111} < 7P5' (58)

Note that Z/ are independent and identically distributed ran-
dom variables with E(Z!) = 0, so we can apply Bennett’s in-
equality (see Lemma VIL6) again to estimate | Y . Z/|. We set
n =K InN/vN and compute M, and V as follows: |Z!| <
K/N = Myand 3, Var(Z]) < NM§ = K*/N =: V. Plug-
ging 1, My, and V into Bennett s inequality, we arrive at

N 2
P > KN [—(IDN) } (59)
P VN 3
Combining (57)-(59), we obtain
In N
|OF()[l1 < AtK—= + AtKP; (60)

VN

with probability greater than 1 — 2exp [—#(In N)?].

Next, we estimate ||SE(-)||;. Since SE(z) is supported in €2,
we have that [|SE(-)|[1 = [[SE(")||; . We define

Wi(x) == ¢;Gs(x — X' ), i=1,..,N

m

where

1 ny
~ Z Atkj —Lijm)Lj(X),  ifi€Fy,

(Jijm — Atky), ifie Hj,,.

Z\H
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It can be verified that for a fixed «, the random variables W; (),

1 =1, ..., N, are independent, and
N
(@) =Y Wi(z), E(W;(x))=0
i=1
Wi(@)] < < and [SE(2)| <
N&2 02
AtK

Var(W;(z)) < 6 *Var(p;) < NZgh

Using the estimate of quadrature error (see Lemma VIIL.4),

> ISE(a

OLEQ),

ISEC) .0 = )Ih?| < 2|9/ VSE() [k

N
< 2101 |l IVGs (- —

i=1

X.)llh < 5Q/6” JZWh
i=1
61)

Next, we claim that

N
> el < 2AtK (62)
i=1

with probability greater than 1 — 2 exp [—C; At K N /2], where
(' is an independent constant. The proof of this claim is given
in Appendlx A, Claim B.4. Now, we apply Bennett S 1nequa1—
ity again to estimate SE(«). Setting = At M,y = N&Z ,

ol ’
V= ]Athf and plugging these parameters into (50), we obtain
P(|SE( ) > At—— In N ) < oN[-srnN)al
VN &
Hence,
In N
P Y ISE(@)h? < At 20| o=
o VN 63)
2 1 _ 2N[ IK (lnN)Af+2]
Combining (61)—(63), and noting that exp(—N) <
N N)AT+2 'we find that
Q3/2 . ,InN
SE()|; < 10At6‘3K‘ + At|Q6 ==
In N
< CyAtK§?|Q 64
=~ 2 | |\/N ( )
with probability greater than 1 — C5 N [~ (in V)AHQ} where

Cy and C are independent constants. Finally, by combining
(60) and (64), we conclude that

In N

|ER()||; < CKAtS ®|Q|—= i + AtKPF;s
with probability greater than 1 — CNl-7r (I N mt”], which
completes the proof of Claim VIL.7. |

We now show how Theorem VII.1 follows from

Proposition VII.3, Claim VIL.5, and Claim VIL.7.

Proof of Theorem VIL1: Set § =1+ KAt. By combining
the inequalities in Proposition VII.3, Claim VIL5, and Claim
VIL.7, we find that

Eni1 < BE, +C'K [Ata 4\F|Q\ Yo —|—AtP5 +At2}
(65)
with probability greater than 1 — C'N [+ N)Aﬁ”}, where

(" is an independent constant. Note that £, = 0. Iterating over
m by using (65), we obtain

m+1 _ 1 _ InN

- _InN
C'eiT {5%1} Q|—— + P + At]
| |\/N [

uniformly in m with probability greater than

B, < CKAt

IN

IN

c'T 1
1— N[ff(lnN)At +2]
A

(66)

Replacing C’ with C, this proves part (i) of the theorem.
To prove part (ii), we start with the following inequality:

||P3( 777)*Pg(wtm)||1

m—1 Ny

DD ki AL (ot

7=0 j=1

m—1
— > FTH(-t,)
7=0 1

m—1 Ny

SO ki L) (1)

7=0 j=1

IN

— (. tr)

m—1 Ny

S5 Atk L (i) -

7=0 j=1

— AL+ Ay

m—1

> FTH(-t,)
7=0

1

Here, A; is the cumulative error in the positions of the Flying
robots, and A5 is the cumulative error in reactions. We have that

m—1
A SAK Y E,
=0

ALK Y C'efT s [ 4\F|Q|— + P + At]
7=0 \/7

IA

_InN
= C'TKelT {54\/17 Ql—— + Py + At} ) 67
1 ~th (67)

Next, we estimate Ay. We have

m—11|| nr

Ay < I Atk L)
7=0 ||i=1

We note that the term ../, Atk; . L;(x)p} — FTH(z,t,)
comprises part of the error of reaction ER(x), according to
(39). Using an argument similar to the one in Claim VIL7, we

— FTH(-, ;)

1
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obtain
m—1
Ay <> [CKAt(S

+ AtKP5:|
7=0

3|Q|\/»
In N
10 —= Wii

Combining (67) and (68), we arrive at our conclusion:

=T [CKé + KP(;} . (68)

les (- tm)l1 < C”’KTeKT[ 4\F|m— + P +At}
Wii

uniformly in m with probability greater than expression
(66). Replacing C” with C, this completes the proof of
Theorem VIL1. u

Thus far, we have presented an estimate of the L' error be-
tween the expected density field p3 and the actual density field
0. We can compute the relative error between these density
fields as

lps (-, T) = p3 (-, 7)1y
o3 (-, 7)1 '

In practice, however, we would want to compare pg to the rarget
distribution pq. Moreover, since the user will be satisfied as
long as the crops are sufficiently pollinated, we can consider the
overpollinated portion as an inefficiency rather than an error.
Hence, we only count insufficient pollination as error. We define
the discrepancy v and efficiency as

REL =

(69)

G AmO =m0l )
Z
o IACT) A el
Effi = 71
e = T o

where p(z,T) A po(x) = min{p}(x,T), po(x)}. We also
define the intrinsic discrepancy, which does not depend on N
and 0, as

_ s T Apalt) = pa (Ol
Q= .
oo ()l

Note that we do not analyze the error between the target distribu-
tion and the macroscopic model in this paper, since the optimal
control is already studied in [13]. Given a desired discrepancy
~4, our goal is to select N and ¢ such that

(72)

Y < e (73)

Toward this end, we present the following corollary.
Corollary VIL.8: Under the same assumptions as in
Theorem VII.1, we have that

In N
7§79+O4<5+At+(1+5 )%) (74)

with probability greater than 1 — ST N [-5mN)Ae+2]

C} is a constant that depends on k; ( ) D,T;,T,and Q.
Proof: Since | min{a, c} — min{b, cH S \a -,

Here,

165 A pa(T) = pa ()l < llps A pa (- T) = pa ()
+ 1165 A pa (-, T) = p3 A pa (-, Tl
< llps Apa(T) = pa()ll + 165 T) — ps (-, T)|lr-

x10°°

velocity

reaction rates

0 50 100 150 200 250
t

Fig. 3. Top: Robot velocity field v(t) = (v (t), v2
pollination rates k1 (¢) and k2 ().

(t)). Bottom: Robot

Hence
168, T) = ps () s
llpe ()11
By Theorem VII.1, 3 an independent constant Cj > 0 such that

v < o+

. InN
|wun—munmscuﬁ+m+<+a>“).

VN
Divide both sides by ||pq(-)||1 and apply it to the previous
inequality, and (74) is proved. |
VIII. SIMULATION RESULTS

In this section, we illustrate the design procedure in
Section III for a simulated crop pollination scenario. Simula-
tion results beyond those required for the design procedure are
also presented to validate our convergence analysis.

1) Set the parameter values. We set the example crop
field to be a unit square, Q= [0,1]?, which has five
rows of ny; =2 different types of crops. The regions
of type 1 crops and type 2 crops are defined, respec-
tively, as Ty = {(xy,25) : 21 € [0.05,0.15] U [0.45,0.55] U
[0.85,0.95], 25 € [0.05,0.95]} and T = {(z1,22):21 €
[0.25,0.35] U [0.65,0.75], 25 € [0.05,0.95]}. Let the target
pollination distribution be

pa(@) = 6 1r, (@) + 12 Ir, ()

which is shown in the top left of Fig. 4. The other simulation pa-
rameters are Xy = (0.4,0.2),T = 240,k; = 0.2, D = 0.0005,

yg = 0.25, vt = it = (.01, 8% = i = (.01, and
At = 0.5.

We note that our choice of At = 0.5 is based on empiri-
cal tests of a range of At values, each of which satisfies the
Courant—Friedrichs—Levy condition needed to solve the advec-
tion operator in the macroscopic PDE model. We found that the
numerical solution of the macroscopic model does not change
significantly for At € (0,1.5]. This is because, as shown in
Fig. 3, the robots’ optimized velocity components v (t), va ()
and pollination rates k; (¢), k2 (t) do not display sharp variations
over any time period of 1.5 units, which means that the typical

(75)
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Micro, N=200

LAY,

’

Fig. 4. Top left. Target pollination distribution pq (x). Top right. Ex-
pected pollination distribution p3(x,7") from the macroscopic model.
From middle left to bottom right. Actual pollination distribution pg (a,T)
from the microscopic model with § = 0.015 and N = 200, 400, 800, and
1600 robots. The field is [0, 1]2.

TABLE |
MEAN ~, REL, AND EFFICIENCY FOR EACH VALUE OF N

N Mean~y  Mean REL  Mean Efficiency
6400  0.1912 0.1968 0.8881
3200  0.2139 0.2636 0.8667
1600  0.2486 0.3601 0.8257
800 0.3065 0.4997 0.7615
400 0.3924 0.7017 0.6643
200 0.5284 0.9845 0.5177

time scales of vy (t), v (1), k1 (1), and ko (t) are much larger than
the time scale resolved with a choice of At € (0, 1.5]. Further-
more, we note that the choice of At has little effect on the error
bounds (36) and (37), as explained in Remark VIIL.2.

2) Apply the optimal control technique to compute the robot
control policies. Using the parameters above, we run the optimal
control technique described in Section VI to compute the robots’
velocity v(t) and pollination rates & (¢) and ko (¢), which are
plotted in Fig. 3.

3) Simulate the microscopic model. We simulate the micro-
scopic model with the optimized values of v(t), k1 (¢), and ko (t)
from Step 2 and the robot sensing radius 6 = 0.015. While the
design procedure only requires simulations for two distinct val-
ues of the swarm size N, here, we simulate the microscopic
model for all the values of N shown in Table I. We run 100
simulation trials for each value of .

4) Compute the discrepancy v between the actual and target
pollination distributions. For each simulation of the microscopic
model, we compute the resulting actual pollination density field,

x Mean vy
* Mean REL
@ o8t 1
wos
S =
[0}
=06 1
5z
o
g 0.4+ i
s x -
x
= -
0.2- ‘ = ‘ L e
0 2000 4000 6000
1
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* Mean vy
: 0-8/ — Linear fitting of Mean REL 7
3 - - -Linear fitting of Mean y
206 g
) -7
o -
o -
o 0.4 - g
j
©
(]
=02 i
0 ; ‘ !
0.02 0.04 0.06 0.08
N0
Fig. 5. Top figure: Swarm size N versus mean REL and mean ~,

both averaged over 100 simulations of the microscopic model for each
value of N. The corresponding standard deviations are shown as error

bars. Bottom figure: 1/+/N versus mean REL and mean ~. The solid and
dashed lines are the linear fittings of mean REL and mean ~, respectively.

p3 (z, T), and calculate the discrepancy -y from (70), the relative
error REL from (69), and the efficiency from (71). Table I shows
the mean ~, REL, and efficiency for each value of N over 100
simulation trials.

Note that as the swarm size N increases, the mean values of 7y
and REL decrease. This is due to the convergence of the actual
pollination density p3 (z, T') to the expected pollination density
p3(x,T) with increasing N. We illustrate this convergence in
Fig. 4, which plots p§ (x, T') resulting from several values of N
(one simulation trial per N) alongside p3(x,T’) and the target
distribution pq (). To obtain ps(x,T"), we numerically solved
the macroscopic model over the domain Q = [—1,2]? with h =
0.006. The intrinsic discrepancy for this scenario was computed
to be yo = 0.1413.

5) Estimate the required N such that the discrepancy 7 is less
than 4. From Corollary VIL.8, we have that

, InN

v < d+¢

B VN
where ¢ is the error determined by At and 4, and ¢} is a
coefficient that depends on §. Since

(76)

InN <N

when N is sufficiently large, we conjecture that

1

y=c1 te \/—N
In the bottom subfigure of Fig. 5, the linear fitting of mean ~y
against 1/+/N verifies (77). This figure also shows that there is a
linear relationship between the mean value of REL and 1/+/N.

(77)
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Fig. 6. Relationship among ¢, N, and ~. Each data point is averaged

over 100 simulations of the microscopic model with the corresponding
values of N and §.

Now, for v; = 0.25, we show how to select the number of
robots that are needed to achieve the specification (73). We
solve for ¢; and cs in (77) using the mean y for NV; = 200 and
Ny = 400 from Table I. The resulting two equations

1 1
0.5284 =c; + co—, 0.3924 =c; + co—
VN VN,

yield ¢; = 0.06407 and ¢y = 6.567. We plug these coefficients
into (77) and choose the smallest N such that

(78)

v < 4 = 0.25.

This yields N ~ 1249.

Remark VIII 1: Therobots in this scenario act independently
of one another, since there are no interactions such as communi-
cation. Hence, a swarm with a large population N will achieve
the same distribution of pollination over one deployment as a
swarm with a smaller population of aN, o € (0,1), over !
deployments. This deployment strategy can be used when the
required value of NV for some v, exceeds the number of available
robots.

6) Select the value of § that yields the minimum ~y for the
required N. For the selected value of N, there exists an optimal
value of § that yields a minimum value of the discrepancy - for
that V. We illustrate this in Fig. 6, which plots the mean value
of v over 100 simulation trials with respect to different pairs of
0 and N. We note that the range of § in our study and the choice
of At = 0.5 yield a very small error (< 0.01) in the operating
splitting method (29).

Fig. 6 reflects a tradeoff in choosing ¢ that is predicted by our
error analysis: for a given swarm size N, small ¢ yield a low
coverage outflow near the crop boundary but a high coverage
insufficiency, whereas large 0 yield a high coverage outflow and
a low coverage insufficiency. As the plot shows, the optimal ¢§
becomes smaller as the swarm size N increases. From Step 5, we
find that NV ~ 1249 is the smallest NV for which the discrepancy
does not exceed ;. Thus, we can choose any N > 1249, such
as N = 1600. Then, from Fig. 6, we can pick the optimal § for
N = 1600 to further decrease the discrepancy, which gives us
0 ~ 0.024 and v = 0.23. In practice, the sensor limitations will
impose an upper bound on J that may be lower than the optimal
value. For example, if we choose N = 1600 and the possible
range of § for the sensor is [0, 0.020], then according to Fig. 6,
we should choose ¢ to be 0.020 instead of 0.024.

We further illustrate the effect of § with the results in Fig. 7,
which plots p(x,T) resulting from a relatively small robot

b =0.020, y = 0.5748

|15

Fig. 7. Top left. Target pollination distribution pq (). From top right
to bottom right: Actual pollination distribution pg (2, T) from the micro-
scopic model with N = 100 robots and 6 = 0.015, 0.020, and 0.030. The
discrepancy + is shown for each value of ¢. The field is [0, 1]2.

population N = 100 and several values of § (one simulation
trial per 0) alongside the target distribution pg (x). The figure
shows that when NV is fixed at 100, the discrepancy -y is very
large and coverage is fairly sparse when ¢ = 0.015, and in-
creasing § to 0.030 yields a lower discrepancy and improved
coverage.

IX. CONCLUSION

In this work, we derived analytical bounds on the error be-
tween a target spatial distribution of coverage activity and the
actual coverage distribution that is achieved by a swarm of N
robots whose population dynamics can be described by an ADR
PDE. We consider scenarios in which the environment is known
and the robots’ capabilities are highly constrained, in that they
have no interrobot communication or global position informa-
tion. The analytical bound revealed an almost linear relationship
between the coverage error and N =7, thus providing a conve-
nient way to choose a swarm size that produces a coverage
distribution within a maximum allowable error. Our analysis
also indicated the existence of an optimal robot sensing radius
that minimizes the discrepancy between the actual and target
coverage distributions for each swarm size, which provides a
theoretical basis for selecting a particular sensing range. We
verified our analytical results through simulations of a crop pol-
lination scenario. We hope that the detailed analysis presented
here will inspire the analysis and design of other distributed
systems with a significant stochastic component.

In future work, we are interested in extending our error anal-
ysis to models of robotic swarms with pairwise interaction rules
between robots, such as collision avoidance maneuvers. This
extension will require additional interaction terms in the macro-
scopic PDE model of the swarm dynamics.

APPENDIX A

We consider a reduced objective functional J corresponding
to J in the optimal control problem (34). We define the following
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reduced problem:

Z:U,— Y, min J(u):=J(E(u),u)
uelU,q

where = is a control-to-state mapping, which maps a control,
u, to p, the corresponding solution of the macroscopic model
(20), (21). The directional derivative of J is used in a gradient
descent method to numerically compute the optimal robot con-
trol parameters. The expression for this derivative is given in the
following claim, which is proved in [13].

Claim A.1: The reduced objective functional J is direc-
tionally differentiable along each h € L>(0,T)"/ "2, where
L*>(0,T) is the space of essentially bounded functions on the
interval (0, T). The directional derivative of .J has the form

T npt2

dJ h / Z h; B;p, >L1(R2)3 +)L<’LL h>L° (0,7)" 72

where y is the solution of the backward-in-time adjoint equation

nf

5’91

=v-V DA k;jL;(
ot =v-Vy + yl'ﬁ‘; (=y1 +y2 +y3)
yo
- SEP
ot Y1 1Y2
3?!3
=0
ot

with the final time condition

1 (x,T) =y (2, T) = 0, y3(x,T) = p3(x,T) — pa(x)

and the input operators { B; } defined as

—200 200

T

Bi=| 0 00[,Bo=| 0 00
L 0 00 0 00
[—Li_5 0 0

Bi: L,'_Q 00 3<l<nf+2
| Lis 00

The solution y of the above PDE plays the role of the covector
in optimal control theory. However, a straightforward applica-
tion of the maximum principle for finite-dimensional control
systems to infinite-dimensional systems is not possible in gen-
eral. Although there does exist a more general maximum princi-
ple for infinite-dimensional control systems such as those gov-
erned by PDEs [14], this result is not applicable to our system
due to the unboundedness of the control operators B; and Bs.
An alternative approach to derive necessary conditions based on
the first-order derivative of the control-to-state map is to use the
Lagrange multiplier technique to formally derive the optimal-
ity conditions and then rigorously prove the necessity of these
conditions and the differentiability of the control-to-state map.
This approach is outlined in [30] and was applied in our prior
work [13].

APPENDIX B

Claim B.1: Let Y;(x) be defined as in (48). Then, for each
1 =1,...,N and each z,

E(Y(z)) = 0.
Proof: Note thatifi € F, 1,
E (Gs(x - X},11))

—F {E {G,; (:c X v

v(t, ) At—V2DAL AZm ‘X} }

. } ) g
~5| [ G5 (o=, — vt at-y) 47TDAtem,dy}
i 1 |z—v(tm )Af—y"z
= E G I X7 R 7#(1 /
| /R 6(y ”L)47TDAte 1D y:|
- E /7 Gﬁ(y - X:'n )p(mat777,+1 y,tm)dy:|
where we applied the change of variable y' =  — v(¢,,,) — y.

This proves our statement for ¢ € F), ;1. In addition, Y;(x) = 0
foreachi ¢ F,, 1.
|
Claim B.2: Foreachi=1,..., N,

VYOl € SVDAG N

with probability greater than 1 — exp [f
C'is an independent constant.

Proof: Tt is straightforward to see that for each 7 €
U;jHjm+1, VYi(z) = 0. Foreachi € F, 1,

$At(In N)?|, where

1
VYi() = & | VGs(@ —y)p(y; At)dy
RZ
1
- NVG(S (Il?l -V 2DAtAZ,,L)
where
x =x—v(t,)At — X',
1 ly®
(y: A1) AxDAt P ( 4DAt
Note that
VY (x)| < Wy 4+ W,
with
Wi= g [ IVGs(e ~v)
1= N Jgo s\ =Y
- VG(F(:B/ -V 2DAtAZm - y)‘ p(yvAt)dy
1
WQ = — VG(S \/7AZ771 - ) (y7At)dy
— VGs(x' — V2DAtAZ,,)
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Since AZ,, = (AZ}, ,AZ2) ~ W (0,1),

P <_n_1211)§ |IAZ! | < \/AtlnN> > 1—exp [;At(lnN)Q}

By the mean value theorem

1
W= [P Gales () VEDIAZ (s A1)
RZ
S L‘DN .malx2 |8.'E,.’EJ GO| m{li,}g |AZ72n (79)
i,j=1, =1

N
!
< N@Anﬂ In N

with probability greater than 1 — exp [—3At(In N)?]. Here, C’
is an independent constant.
Now, we estimate W. It is straightforward to see that

Wy < ||VG0 *p— VG(;HOO

By using a change of variable y = /Aty’, we obtain

Gs * p(x; At) — Gs(x) = /

R2

[752 Gs(x)VAty

1
+ AOGs & Iy | (o5 1)y
Applying the facts that

/]RZ y'p(y;1)dy =0, max [0y, Gs| < C§°

ij2=1,2
we have that
Wy < |[VGs*p—VGs|lee < C"ALS (80)

where C” is an independent constant. Combining (79) and (80),
and noting that N > §~!, we arrive at

IVl < VDA N

with probability greater than 1 — exp [—$At(In N)?]. [ ]
Claim B.3: The following inequality holds:

IEMQ)] 0 < A

Proof: By our assumptions in Theorem VIL1, 3¢ > 0 such
that X € Q7 and § < . Since G () is supported in Bj,

m m

Gs(x—X1)=0 Va¢Q

n’

Ym=1,...M, i=1,...,N.
Therefore, we have
1 i
||}/1()||IQF =~ [ o Gﬁ(y - X;rL)p($7trrL+1|y;trrz)
N Qc JOS
- dydex.

By definition, V& € Q°,y € an, « — y| > (. Thus, we can

choose At small enough so that | —y — v(t,,)At| > %

Defining B, = {z : |z| < (}, we have
1Yi (1,00

1 ) 1 )2
< — | Gsty—X')d —— e ihard
> N/Q:“ 5(y m) y/(BUQ)“ 47TDAte Z
1/°° T2 1 e At?
— e airdr = —e T60aT < ——
N Jc;» 2DAL N =N

since At < (. Hence

N
IEMO)llae < D I1Yi()lhae < A

i=1
Claim B.4: The inequality

N
> leil < 28tK

i=1
is true with probability greater than 1 — 2 exp [~-CAtKN/2],

where C' is an independent constant.
Proof: We define

¢, = loil = El@i])-

Then, E(¢)) =0 and E(]p;|) < AtKN~'. Applying Ben-
nett’s inequality (50) with n = AtK, My =N"', and V =
AtKN~!, we obtain

N
PS¢l 2 AIK | < 2exp[~B(1)AtKN/2).
i=1
Hence
N N N
STleil < Doel+ Y E(eil) < 24tk
i=1 i=1 i=1

with probability greater than 1 — 2exp [-B(1)AtKN/2]. R
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