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REGGE POLES IN THE :n:N SCATTERING .AND IN THE :n: + :n: ~ N + N 

Virendra Singh 

Lawrence Radiation Laboratory 
. University of California 

Berkeley, California 

August 7, 1962 

ABSTRACT 

We introduce the Regge-Froissart continuations of various partial-wave 

amplitudes for :n:N scattering into the complex J plane. The notion of J parity 

is clarified by considering parity noncons-ervation. The analyticity and symmetry 

properties of the Regge-Froissart continuation in the energy plane are also 

studied and the results of analytis applied to backward pion-proton scattering. 

A similar discussion is given .of the :n:.+ :n: .~ N + N channel and the forward elastic 

pion-proton scattering . 
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· REGGE POLES IN THE JrN SCATTERING AND IN THE 1L + 1L ~ N +. Nf 
Virendra Singh*+ 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

August 7, 1962 

I. INTRODUCTION. 

The importance of regarding the scattering amplitudes as a simultaneous 

analytic function of energy and angular momentum J was first pointed out by 

Regge for nonrelativistic potential scattering.1 This notion has been extended 

to the relativistic S matrix and has already revolutiond:zed present thinking in 

strong-interaction physics. 2 Here, we present a systematic discussion of the 

pion-nucleon problem from that point.of view. 

In Sec. II, we introduce the proper Regge-Froissart continuations of various 

• partial-wave amplitudes into the complex J plane for JrN scattering, where we assume 

parity nonconservation. This is done to elucidate the nature of the J parity and 

to bring out clearly that J parity has nothing to do with space parity. As a 

byproduct of this discussion we clarify the concept.of the range of exchange 

potential for the scattering of two une~ual-mass particles--this is discussed in 

the Appendix. These J-plane continuations are studied in Sec. III as to their 

analytic behavior in the energy variable and new amplitudes free .from kinematical 

singularities are introduced. Also, these amplitudes b~ve important symmetry 

properties, which reflect in the expressions given in Sec. IV for the backward 

~ pion-proton scattering in the direct channel. The observed particle and resonance 

states in the JrN channel are also discussed in Sec. III. The last two sections, 

V and VI, deal respectively with the J-plane analyticity of helicity amplitudes 

in the 1L + 1L ~ N + N channel and with its implications for the forward elastic 

pion-proton scattering. 
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II. REGGE-FROISSART CONTINUATION OF PARTIAL-WAVE 

AMPLITUDES IN THE rrN SCATTERING CHANNEL~ J PARITY 

UCRL-10416 

We introduce the proper analytic continuations into the complex J plane 

of the various partial-wave amplitudes for rrN scattering. Even though parity is 

conserved, the discussion is carried out for the general parity-nonconserving 

case because confusion has prevailed whether J parity and ordinary parity (i.e., 

space parity) are distinct quantum numbers for Regge trajectories. The J parity 

is the notion that onlythe alternate physical J values on the Regge trajectories 

give rise to physical bound states and resonances. This certainly is true for 

spin-zero--spin-zero particle scattering. Unfortunately the separation of the 

amplitude into even and odd J-parity parts for this case coincides with the 

separation into even and odd space parity parts. So one is likely to regard the 

J-parity notion as nothing distinct from the space-parity diagonalization, and 

this is the source of confusion. The only way to resolve this situation is to 

study a problem in which parity is not conserved and then see whether one still 

has the notion of J parity. As parity conservation is implied by angular-momentum 

conservation for scattering of two spin-zero particles, one has to study a problem 

with spin. In the following we study scattering of a spin-zero particle by a 

spin-one-half particle; i.e., we study rrN scattering where we assume parity non­

conservation. 

There are now four independent invariant amplitudes, instead of the usual 

two amplitudes A and B. The T matrix can be expressed as 

T -A + i y ·QB + i y 
5 

y ·QC - /' 
5 

D , (2 .1) 

where 

Q = !(K]_ + ~) ' 

'v' 
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and Kl and K
2 

are the four-momenta of the initial and the final pion, respectively. 

where 

and 

The differential cross section dcr/dQ can be written as 

~~= E !(final lfl initial)l
2

, 
spins 

(2 .2) 

(2.3) 

/\ 
and k. 

l 
are unit vectors in the direction of the final and the initial 

pion three-momentum, respectively. 

and 

The f .. 's are given by 
l 

fl 
E+m 

)[A + (w - m)B] , 8n:w 

f2 
E - m )[-A+ (w + m)B] , = 8n:w 

f3 
k 

- Csn:w )[we + D) , 

f4 - ( k )[we - D) , 8n:w (2 .4) 

with k, E and W being the magnitude of the three-momentum of the pion, the energy 

of the nucleon, and the total energy, respectively, in the center-of-mass system: 

i.e., 

E 
if + m

2 
- l 

= 2W ' 

and 
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= 
_2 2 2 2 ,_;:> w - (2m + 2) + (m - 1) /w . 

We might note that time-reversal invariance implies that D = 0; i.e., that 

and 

where 

However, we do not need to assume time-reversal invariance. 

The partial-wave decompositions of the f. 1
S are given "by 

l 

J J I 

fl = L. aJ .1. J .1. Pj.~-.1. L. a 1 T 1 p 1 

' -2, -2 ·2 J+2) u+2 J-2 

J I J I 

f2 L. a 1 1 PJ 1 L. a 1 1 PJ. l ' J+2,J+2 +2 J-2,J-2 -2 

J I J I 

f3 = L. a 1 1 p 1 L. a 1 1 PJ.l J+2,J-2 J+2 J-2,J+2 - 2 ' 

= 

J 
aL",L' is the partial-wave amplitude for transition "between an initial 

and a final state, "both with total angular momentum J , and having orbital 

angular momenta L' and L", respectively. In the conventional notation 

and The summation over 

(2.5) 

.J runs over J The argument of the Legendre poly-

nomials is 

z (2. 6) 

where s, u, and t are the usual invariant variables, which have the significance 

of "becoming the total energy s~uared in the "barycentric systems of the nN 

scattering channel, the crossed nN scattering channel, and the n + rc ~ N + N 

channel, respectively. 
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The projection formulas for the different partial-wave amplitudes can 

be worked out and are given by 

and ~ ~ r 
-1 

Using these projection formulas (2.7), and the expressions (2.4) for 

f_ 's in terms of the invariant amplitudes, we get, finally, 
l 

and 

where 

~ Jl d(cos 9) A(s,u;·t)·PJ{cos 9) • 

-1 

The BJ' CJ' and DJ are defined similarly. 

Expressions (2.8) and (2.9) define the various partial-wave amplitudes 

for physical values of J. One has now to find an analytic continuation of 

these amplitudes into the complex J plane, from these physical J values, that 

is suitable for a Sommerfeld-Watson transform. As the only J dependence of 

(2. 7) 

(2 .8) 

(2. 9) 

partial-wave amplitudes is contained in AJ, BJ, CJ, andDJ, the problem 

reduces to finding a proper continuation of these quantities. To that purpose, 

, . ..;_• 
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~. 

we notice that invariant amplitudes satisfy fixed energy-dispersion relations .. 
of the type 

..._; 
00 

At(s,t' )dt' 
00 

Au(s,u')du' 
A(s, u, t) 1 J 1 J - t' - t 

+ - u' :n: :n: - u 
4 (m+l)2 

(2.10) 

00 

At (s, x' )d.x' 1 J := 

x 1· + 2k2·(1 -:n: cos g) 
4 

. 00 

A (s, x' 2 2/ 
1 J 

+ (m -1) s )dx' u + 2 :n: x' + 2k (l+cos g) . 2 2 2 
(m+l) - (m -1) /s 

(2 .ll) 

By substituting expression (2 .ll) for A in (2. 9), we get 

J 1 2 2 x' 
+ (-) -2 A)s,x' + (m -1) /s)]QJ-!(1 + 

2
k2 ) • (2 .12) 

1 

We see that except for the (-)J-2 factor, Eq. (2.12) provides an 

expression suitable for Sommerfeld-Watson transform. The canonical way to get 
1 

rid of the (- )J -2 factor is to define two analytic continuations of AJ l , 
-2 

one away from even integral values of J -! , and another from odd integral value~ 

of J 1. -2, i.e., 



;.· 

and 

= 12 J [At(s, X') 
rck 

· If one uses for 

-7-

AJ- 1 in Eq_. (2. 8), together with 
+2 
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e 
BJ- 1 for . +2 

(2 .13) 

B - 1 etc., one obtains a continuation of the different partial-wave amplitudes 
J+2 

that agrees with the amplitude for these physical values of J = l/2, 5/2, 9/2, 

etc. Similarly, by.using for A- 1 
J+2 

in Eq_. (2 .8 ), and similar replacements 

for BJ-l etc., one would obtain another continuation which agrees with the 
+2 

amplitude for these physical values of J = 3/2, 7/2, ll/2, This is 

precisely the notion of J parity, which here follows irrespective of any 

parity-conservation considerations, and only arising because of the simultaneous 

presence of the direct and exchange forces. It is a straightforward matter to 

express the Sommerfeld-Watson transform of the scattering-amplitudes in terms 

of these even and odd J-parity continuations of the various partial-wave ampli-

tudes. For example, 

= +if dJ J, e 
fl, 2 - r. J aJ 1 \J. 1 '+ cos rc -2' · -2 

i 
± 4 

c 

1 dJ 
cos rc J 

c 

J, 0 f 

a 1. 1 [PJ+ __ 
2
1_(-z) 

J-z, J-2 
-+ 

(2.14) 
cont'd 
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i J dJ J, e I - I - [P •1(-z) PJ:;_!(z)] + 4 J a 1 1 + 
cos :rr J+2jJ+2 J+2 

c 

"-' 
- i r dJ J, 0 I I 

+ 4 J a 1 1 [P- 1 ( -z) + PJ+!(z)) ' 
(2 .14) cos· 11:· J+2,J+2 J+2 -

..1 

c 

where on the right-hand side of Eq. (2.14) the upper signs refer to f 1 , the 

lower signs to f 2, and C is the usual undistorted contour for the Sommerfeld-

Watson transform. Of course, the contour C can be distorted in that entire 

region of the J plane over which the various continuations exist if the contri-

bution of the enclosed singularities, in particular Regge poles, is included. 

.J 
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III. REGGE TRAJECTORIES IN THE :n:N SCATTERING CHANNEL 

We now study the analyticity and symmetry properties in the energy 

~.. variable of the continuation of the partial-wave amplitudes into the complex J 

l,.l' 

plane, which we introduced in Sec. II. We shall also discuss the observed 

particle and resonance states in this channel in terms of the present analysis. 

If we consider the different partial-wave amplitudes continued into the 

complex J plane as functions of the invariant variable s == vf, we encount~r, 
e, 0 

apart from the s-plane singularities of AJ-1 etc., kinematical singularities 
+2 

of the Vs type caused by the factors of W-m, W+m, and W, etc., which occur 

in the problem because of the spin. The existence of kinematical singularities 

in the s plane was already brought out for partial-wave amplitudes corresponding 

to the physical J values, by earlier authors.
4 Thus it is advantageous to work 

in the W-complex plane. 
e, 0 

The functions AJ- 1 , etc., have additional branch points whose locations 
+2 

are given by k2 
== o, when J + ~ is not a positive integery apart from the 

usual branch points, which are those of AJ- 1 for physical values of J. How­+-
-1 2 

ever, the function · A~i.!/(2k2 )J+2 has precisely the same analytic structure as 

2 J+L 
the function AJ-~(2k) 2 , for physical values of J. 

+2 

We are thus led to consider the following quantities, if we wish to 

avoid any kinematical singuJa rities: 

J(e,O) 
J(e, 0) 16:n:w a - 1 -1 

h - 1 - 1 (w) J+2zJ+¥ 
J+2,J+2 E ± m (2k2/:2 ' 

(e, 0) (e, 0) 
J(e,O) A' ·1 BJ 1.. 

h 1 1 (w) (±_) J-2 + (w + m) -2 
J+2,J+2 (2k2 )J -~ (2k2 )J -! 

(3 .1) 

(3 .2) 
cont 'd 
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[· 

(e, 0) ( e, 0) 

+: 2(E + m)
2 AJ. 1 BJ+t ] +2 + (w ± m) (3 .2) 

(2k2 )J+~ (2k2 )J+~ J 

J(e,o) 
J ( e, 0) 16rcw a +1 ~ .1 

h- 1 -1 (w) J-2z J+-¥ (3.3) 
J+2,J+2 k (2k2)J -2 

( e, 0) (e, 0) (e, 0) 2 ( e, 0) 
J(e,o) WCJ-t D 1 2 CJ+t (2k )DJ+t J-2 -and h +1 -1 (w) = 

(2k2 )J -~ 
± 

(2k2 )J -~ 
+2Wk 

(2k2 )J+~ 
+ 

(2k2 )J+~ J-2, J+2 

(3 .4) 

It is easy to see from expressions (3.1) through (3.4) that these eight 

partial-wave amplitudes h defined for complex J have no kinematical singularities 

in the W plane, and their singularity structure in the W plane is precisely the 

same as that of the functions ht+(W) 

4 

introduced and discussed 

by Frazer and Fulco. 

Besides having nice analytic structure in the W plane, these new ampli­

tudes also have some very simpl.e symmetry properties in the W plane. 5 We have 

J(e, 0) J ( e, 0) 
hJ 1. J 1_(w) - h 1 1(-W) j 

-2J -2 J+2,J+2 

J(e,O) J(e,O) 
and hJ 1_ J 1_(w) - - h 1 1(-W) 

+2J -2 J-2, J+2 
(3. 6) 

The analogue of symmetry relation (3.5) for aJ 1_ J 1_(w) was first pointed out 
-2J -2 

by MacDowell for physical J values. 6 Here it is seen to hold true for complex J 

values also. The other symmetry relation is new. These relations essentially 

follow from the reflection properties of the f. (w) 's given by 
l 

\./ 
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and 

= -f ( -W) , 
2 

The reflection properties (3.7) and (3.8) follow from the invariant nature 

under W ~ -W transformation of the amplitudes A, B, C, and D. 

(3. 7) 

The symmetry properties (3.5) and (3.6) are very significant. We know 

from them that if hg~,;:g1~(W)has a singularity in the J plane, given by 

J = a(W), then hJJ(!' JO) .1. {w) would have a corresponding singularity in the J 
-~ -2 . 

plane at J = a( -W) . In particular this singularity may be a Regge pole, 

J = a(W). The symmetry relation also implies the relations between the residue 

of the Reg~ pole J = a(w) in ~J(eiO) 1 (W)and the residue of the Regge pole 
+2, J+2 

J = a(-w) in hJ(~, 0 \(w). 
J-2, J-2 

In the case of parity nonconservation, whichwe are considering, all 

the four partial-wave amplitudes having the same J pafi'ty. and corresponding to 

the same J are coupled- to one another,. and··thus would share' 'the same Regge poles 

in the J plane~ This sharing property combined with the above symmetry property 

implies tbat' if one one the amplitudes bas a pole at J = a(W), then it would 

also~·ha've a pole at .. J ."= a(-W), and .the other. three amplitudes likewise ·woUld 

have poles at J = a:(w) and J = a( -W). 

For the real physical case of the conserved parity, we have 

J(e,o) .. 
hJ±.1. J+- .1_(w) = o • 

. 2J . 2 

Further, unitarity no longer couples the even and odd space parit~ parts. 

Unitarity condition in. the physical elastic. .. region reads, for real J and 

real W, 



and 
J(O) 

Imh-1 -1 J+2,J+2 

..;.12-

·J(e,o) 

J(O) 
h -1 -1 
J+2,J+2 

2 

2 

UCRL-10416 

' 

·' 

i.e., the four amplitudes h -1 -1 are all decoupled, and, in general, would 
J+2,J+2 

have different J-plane singularities, apart from the correlation implied by the 

symmetry relation (3.5) and discussed before. 

A family of Regge trajectories can thus be specified if we give the J 

parity and space parity. So far we did not consider isospin. The inclusion of 

isospin gives one more quantum number, I = 1/2, 3/2 • 

If we regard the observed particle and resonance states with baryon 

' number one as Regge poles in the rcN scattering channel, thcl\n they can be 

interpreted as follows: 

(1) Nucleon, isospin one-half, and F~ rcN resonance:with I= 1/2 at 1680 

MeV energy may be regarded as the firsttwo members of the Regge family with 

I = 1/2, even parity, and even J parity. It must be observed that without the 

notion of J parity it would not have been possible to explain the absence of 

an I 1/2, P 3/2 rcN resonance. Further, both these objects have to lie on the 

same Regge trajectory; otherwise we would expect to find another particle with 

' nucleon quantum numbers and mass occurring where this Regge trajectory crossed 

J = 1/2. We can get an idea of the average slope of this Regge trajectory 
~. 

in terms of the observed masses of N and F.:2. rcN resonance. This turns 
2 

out to be -:da/dW~ ~ (370 MeV) ~l 

(2) The D ~ rcN ·. resonance with I = 1/2 at 1510 MeV has to be regarded· as 

the first member of the Regge family with I = 1/2, odd parity, and odd J 

parity. An observation of a second member of this family depends on whether 
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this Regge trajectory, ever crosses . J ~ l/2. ·On the 'basis ·of the above estimate 

of slope, we might.expect it to happen around2250 MeV, if orie were allowed such 

an extrapolation. More likely, however, is that ·this ·1s the -only observable· 

member of the family. 

(3) The 3, 3 resonance (i.e., · P ~ 1LN resonance with I = 3/2 at mass -1238 MeV) 

has to be regarded as the first member of the family with- I = 3/2, even parity, 

and odd J parity. Using our previous estimate of slope; one would expect .this 

trajectory to exhibit its second member F -~ 1LN resonance with I :::::: 3/2 around 

1900 MeV, where one has observed a bump in I = 3/2 state. The ~uantum nUmbers 

of the bump, however, are not yet certain • 

. '- ,: .· :. ----

. ' . • ' ,C ~ ··:.- ., '. 
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IV.· HIGH-ENERGY BACKWARD · rrN SCATTERING 

The results obtained in the last two sectionsabout the J-plane analy-

ticity in the rrN scattering, (i.e., the s channel) apply eq_uallytothe u-

channel, as this is also a rrN scattering channel. As the Regge poles in the 

u channel control the high-energy backward ·. rrN . scattering, .we are now in a 

position to give expressions for the · rrN backward-scattering angular distribution 

expected in the.Regge p;Lcture • 

. We have 

dcr 
dQ 

Using crossing symmetry, we have 

dcr 
dQ 

+ + 
(rr- P ~ :n:- p) 

= 

= 

l --z [u 
k 

(m2 )2 
-'------t.l:..... ] 

s 

since 

Re [ f (+ ) + f ( - ) ] * [ f ( + ) + f (- ) ] 
l l 2 2 . 

(4.1) 

2 

If (+)c ± f (-)c - [f (+)c ± f (-)c] I 
l l 2 2 

Re [f
1

(+)c ± f (-)c]* [f (+)c ± f (-)c] 
l 2 2 ' 

( 4.2) 

f (+ )c ( ) (- )c ( ) 
1, 2 u,s,t ± f1, 2 u,s,t (+)( ) - (-)( ) f 1, 2 s,u,t + f 1, 2 · s,u,t 

(4.3) 

This simply expresses the fact that + rr p scattering in the direct channel 

-looks like rr p scattering in the u channel and vice versa. The superscript 

c refers to the amplitudes in the crossed u channel with u as energy square. 

\/ 



\ ; 
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I, .. 

As the detailed expressions are long, l:et us illustrate how to work out 

(+)c( ) the contribution of the different Regge poles to f
1 

u,s,t and to 

f
2 

(+)c(u,s,t) by taking nucleon Regge poles as an example. 

Now we have 

f (+)c ( ) = l f (l/2)c (. t) g_ f (3/2)c( · t) 
2 u, s' t 3 2 u, s' + 3 2 u, s' ' ~ ~ ~ 

and fl,2(-)c (u,s,t).=~ fl,2(1/2)e(u,s,t) l f (3 /2 ) c ( . t·) 
3 1, 2 . . u, s, ' 

where superscripts 1 .L 2 , 2 refer to the value of total isospin. As the nucleon 

Regge trajectory has I = ~ , it would not contribute .to I = ~amplitudes and 

we get 

[f (+)c (-)c] 2 [ (l/2)c ( . )] 
1, 2 + fl, 2 N = 3· fl, 2 u, s, t .N 

and [f (+)c (-)c] = 
1,2 + fl,2 N 0 ' 

. . . . . -

where the superscript N stands for Nucleon Regge contribution. 
J(e) 

The physical nucleon pole appears in.the amplitude hJ+~,J+~(Wu) at 

J -= ~ and W = m 
u 

in the u channel, where and W 
u 

is the c.m. energy 

in the u channel. If we denote this Regge trajectory by J = ~(w), the 

amplitude h 1 /(e)(W) will have a trajectory given by J = a.~(-Wu). 
J -2, J -2 u 1\J 

Using the Sommerfeld-Watson transform for f
1 

, f
2 

in the u channel, obtained 

by replacing W and z by W and z (the energy and cosine of the angle of u c 

scattering in the u channel) in expression (2.14) and using the symmetry 

relation (3.5), we find that the contribution of the nucleon Regge pole to 



f (c) 
1 

f (c) 
2 

is gi vert by 

I I 

-16-

'/.. [Pa__(w )+_b_ (z ) + P. (w )-1 ( -z ).] 
'l\J u 2 c ~ u +2 c 

UCRL-10416 

(E -~ 
u 

a__( -W )-~ 
m) (2k 2 ) l\J u b ( -W ) 

u . N·· u I I 

and 

32W 
u 

· [P (. W )+l.. (z )±p ( W )+_b_(,..z )] , 
DN-u-2 c ~-u-2 c 

. . . . ·{ . J(e) . } 
bN(w ) = lim [aN(w ) - J] hJ 1 J 1 (w ) . , 

u J __.. a__ (w ) . u +27 +2 u 
1\l u 

4k 
2 = 

u 

E 
u 

z = c 

2 ( 2 )2/ u-2m -2+ m -1 u, 

2 2 
( W + m - 1) /2W , 

u ' u 

[ s - m
2 

- 1 + 2E (w - E ) ) u u u 

2k 2 
u 

(4.4) . ' 

By substituting Eq. (4.4) together with similar contributions from other 
' ' 

Regge poles in Eq. (4.2) we have the angular distribution in the backward np 

scattering. 

Now the backward direction in the s-channel nN scattering is given by 

2 . 2 
u - (m - 1) /s 0 

·:,-. 

,. 
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·Thus, at very high. energi~s, the back)vard cone Ms the. ·. u values, which are 

negative j · i.e • , w is pure imagirtary. .rf . ~(w ) and bN(w) · are real u . u 

analytic functions with 'cuts. oh the real axis only, then ~i(-Wu) and b (..;,1-f ) 
N u 

would be complex conjugates of ON(W) and' bN(w), respectively, and. there 

would be interference terms between the trajectories J = a.~ (w ) 
l'J' u 

which would lead t.o oscillations in the angular distribution. However, if the 

energies are not so high, then.the backward cone would essentially extend over 

2 2/ 2 . 2 l 2 2 (m - l) · s > Wu > 0; e.g., around s = 6. (BeV) we would have b (BeV) . > Wu > 0~ 

If at these energies one can assume that a single Regge term dominates--say 

a Regge nucleon term--then one may be justified iri throwing away the contribution 

of the J = a__( -W ) trajectory. This is because in this region 3 > W · > 0 , 
l'J u . .u 

and ~(-3) is expected to be approximately 
6 ~5~40 = 2.4 units of angular 

momentum les.s than OW(3) • 

comes from f (;t)c(u s t) 
2 ' ' 

Therefore, the only significant contribution remains 

and is given by 

• (w )-;t (E.-m)(2k 2 )~ u b(W) 
u u N u 

32W 
u 

. I 

+ P (w. ) 1 ( -z ) ] • a__ +- c 
!'J u 2 
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V •. RIDGE POLES ]Jif THE 1l+1l -7 N+N CHANNEL 

We now come to a discussion of the J:-plane analyticity in the 1l+1l -7 N + N 

channel; i.e., the t cha:t::tnel. The Regge poles in this channel control the high-

energy forward elastic rcN scattering. 

The partial-wave decomposition in this channel is given by 7 

- (5 .1) 

and B(±) (s, u, t) (5.2) 

where 2 = 4(q_ + 1) ' 

(±)J 
f ± = same definition as of Frazer and Fulco, 

and the sums over J run through J = o, 2, 4, ••• for A(+) and B(+), that is 

I= 0; and J = 1, 3, ••• for A(-) and B(-), that is I= l. 

In what follows we do not consider the analytic continuation of 

into the complex J plane, but rather the continuation of f1±)J and 

(f)_ (±)J defined by, 

(f)(±_)J = J + ~ 
- - ""J'(J+l) 

(±)J 
f_ ' (5 .3) 

, ...... ,. 
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as these are the quantities that ·we always encounter. This ·gets rid of the 

·fixed branch points in J at J = 0, ...;l. We have for physical J values · 

f (±)J - 1 
+ - B;t 

A (±) 
2 J 

-p ; J + 
(pq) 

(±) . (±) 
BJ -1 - BJ+l 

16rc(pq)J-l 

m 
[
(J + 1) B(±). +:- JB(±)] 

J+l J -1 (2J+l) (pq)J -l 

(5. 4) 

Using these expressions to project out these partial waves, we obtain, 

after certain simplificatioans, 

=- _i_ [l-:t(-)J]Jds'fA,(±)(s',t) 
Brc2 ( )J+l s pq . 

XQ s +p +q 
( 

1 2 2) 
J 2pq ' 

and 

(f)(±)J = - 1 - [l ± (-)J]Jds' B (±)(s',t) 
- - 16i2 (pq)J s 

2 ·2 s '+p +q 

2p2 

(5 .5) 

We have used the 'Crossing symmetry (Bose statistics for the pions) also 

in writing these expressions. Looking at these express~ons, one again sees 

that, apart from the factor [1 ± (-)J] , the quantities f+ (±)J and (f)= (±)J 

define analytic continuations that are suitable for making Sommerfeld-Watson 
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transforms. Thus we again define the even and odd J -PC!-rity continuations by. 

replacing (-)J by+ l for even J parity and by' -1 for odd J-parity continuations. 

This makes the odd J-parity continuations for I = 0 and the even J-parity 

continuations for I= l identically vanish. This is a particular instance·in 

which a symmetry property (here, Bose statistics for pions) tells us that only 

one J parity is physical. Since only one of the J-p~rity continuations is nonzero, 

we shall use the same notation as f+ ( ±)J and (f)_ ( ±)J to denote the non-

vanishing one. 

The analytic properties in t of the J-plane analytic continuations 

f+ (±)J and (!,)_ (±)J. are precisely the same as that of the physical partial 

.waves. They are thus real analytic functions in the t-plane with a right hand 

cut 4 < t < co , and a left hand cut 

Since unitarity couples both 

l - co <"t - 4(1 - ~ ), on the real axis. 
.. 4m . 

f +J and 
+ 

+J (!,)_ to a number of common 

channels like the I = 0, ~~ scattering channel, they will share the same Regge 

poles together with the I = o, ~~ scattering amplitude. Similarly for 

(f+)-J and (f)_-J 
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VI. HIGH-ENERGY FORWARD ELASTIC SCATTERING 

High-energy forward elastic scattering is dominated by the Regge 

poles in the crossed channel ~ + ~ ~ N + N; i.e., the t channel, which we 

analyzed in the last section from the Regge point of view. 

and 

with 

Here 

Thus 

and 

We have for differential and total cross sections, 

crtotal = 4~w Im (f + f ) 
l 2 t=O ' 

m~ 

w = (s 2 
- m l) /(2m) = the lab. energy of the pion. 

one has to substitute proper isospin combinations for 

(+) (-) -
f .. f. ± f. for + + = ~ p~~ p ' 1. l l 

f. = -'fi f.(-) 
l l 

for 
0 

~ p.~ ~ n • 

fl and f2 . 

He-expressing Eqs. (6.1) and (6.2) in terms of amplitudes A' and B, where 

we obtain, 

dcr 
d~ = 

A' =A+ w + t/(4m) 
l - t/(4m

2
) 

B ' 

(6.1) 

( 6.2) 

(6.4) 
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and l 
Im A' ( s, t = 0) • (6.6) 

Now we have from Eqs. (5.1), (5.2) and (5.3) , 

( +) 8rr J ( + )J 
A' - (s,t) = - 2 L: (pq) (J + l/2) f+ - (t) PJ(cos 9

3
) , 

p J 

and B(±)(s,t) = 8rr L: (pq)J-l (f) (±)J P'(cos 9). 
J -- J 3· 

(6.7) 

On the hypothesis that large s (i.e., cos 9
3

) behavior is dominated by 

the Regge poles in the t channel, we have 

(6.8) 

and 

where 

a+(t) and a-(t) are Regge poles that have maximum real parts for the 

isospin zero, rr + rr ~ N + N channel, and for the isospin one, rr + rr ~ N + N 

channel, respectively, and where 

{mJ f+ ±(J)(t) [J- cbt)]} , 

and { mJ-l(f) _ ±(J) (t) [J - c/(t) 1 
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In writing these expressions we have used the results concerning the 

J parity and sharing of Regge poles by different amplitudes, which were 

established in the last section. 

and 

These expressions (6.8) could be further simplified to 

( ±) 
B 

' 

+ + { lcl(t)-1 
cr(t) c_-(t) _ ;m ' 

+ ±(t) + is linearly related to b+-(t), and C to b ~(t) 

(6.9) 

Sub-

stituting these behaviors (6.9) into our expressions for total cross sections, 

we get 

and (Jtotal ( - ) atotal ( + ) 
~ p ·- ~ p (6.10) 

+ -Now if the constancy and e~uality of the ~ p and rr p cross section is 

to be achieved in this picture, then we must have 

+ a (o) = 1 , 

and (6.11) 

Thus these must be a trajectory having zero baryon number, even G parity, even 

J parity, and zero isospin; i.e., the trajectory has the ~uantum numbers of the 

vacuum that must pass through 1 at t = 0. This is the Pomeranchuk trajectory. 
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There can not be any trajectory that pasE.;es through a.point J >lat. t = 0 

otherwise we would have a cross section increasing as a power of energy;, which 

is certainly not allowed by the Mandelstam representation. Also, for isospin 

one we expect the p Regge trajectory to be same as a-(t).. Now Re a-(t) = l 

2 
at t:::::: 30m ; hence, at t = 0 we wouJd automatically have a-(0) < l " 

1! 

Thus, at high energies, the 1! +_p · and -
1! p . scattering will both be 

dominated by the Pomeranchuk Regge pole and we will have 

2 

l 
-irra+(t) 

+ e (6.12) 

0 l However, for the charge exchange 1! p ~ 1! n, the Pomeranchuk Regge po e 

can not contribute because there would have to be a charge exchange in the 

crossed channel; this can .not happen because the Pomeranchuk trajectory has zero 

isospin. Charge exchange is a pure I = 1 process ~hen looked at in the t 

channel. Thus, this process is dominated by the p Regge pole, and we have 

do" ( - 0 ) - rrp~rrn dt 
1 (~)2[a""(t)-l] -. 

s ~ m B;r 2m . · 

(l<(t) 1
2 

+ Ia -(t)<(t) ~~} l -
2 

(6.13) 

By using these expressions (6.12) and (6.13), it should be experimentally 

possible to determine the Pomeranchuk arid'p trajectories for negative values of 

t. A significant feature of- the Regge-poie hypothesis.·is the logarithmic • 

shrinkage of the width' of the-diffraction peak with energy. 

.. 
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APPENDIX. THE RANGE OF THE EXCHANGE POTENTIAL 

There has been some uncertainty as· to what quantity should. properly be 

called the range of the exchange potential in the case of the scattering of two 

unequal mass particles, such as· nN scattering. The discussion in Section II 

clarifies this situation. 

It will be seen from expressions (2 •12) and (2 .13.) that the absorptive 

parts in the t and u.channels having the same value of the integrationvariable 

x' superimpose each other. Now x' = t for t absorptive parts and x' = · 

2 2/ u - (m - l) s for u absorptive parts. Hence the range of the exchange force 

arising from the exchange of mass~ is [u- (m
2 ~ l)]-l/2 in the sense 

that (t)-1/ 2 is the range of the direct force arising from an exchange of mass 

~ in the t channel. Unlike the direct force, the range of the exchange 

fo~ce is energy dependent and gets smaller as the energy gets larger. In 

particular, the exchange of a single nucleon gives rise at low energies to a 

force of range of approximately (2m)-l/2 and approaches the naively expected 

range (m)-l only at very high energy. 

·• 

4' 
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